Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
802 3 |
Ultima descărcare din IBN: 2023-09-23 11:35 |
Căutarea după subiecte similare conform CZU |
517.9 (248) |
Differential equations. Integral equations. Other functional equations. Finite differences. Calculus of variations. Functional analysis (246) |
SM ISO690:2012 SUBA, Alexandru, TURUTA (PODERIOGHIN), Silvia. The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2019, nr. 2(90), pp. 13-40. ISSN 1024-7696. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica | |||||||||
Numărul 2(90) / 2019 / ISSN 1024-7696 /ISSNe 2587-4322 | |||||||||
|
|||||||||
CZU: 517.9 | |||||||||
MSC 2010: 34C05. | |||||||||
Pag. 13-40 | |||||||||
|
|||||||||
Descarcă PDF | |||||||||
Rezumat | |||||||||
In this article, we study the real planar cubic differential systems with a non-degenerate monodromic critical point M0. In the cases when the algebraic multiplicity m(Z) = 5 or m(l1) + m(Z) ≥ 5, where Z = 0 is the line at infinity and l1 = 0 is an affine real invariant straight line, we prove that the critical point M0 is of the center type if and only if the first Lyapunov quantity vanishes. More over, if m(Z) = 5 (respectively, m(l1) +m(Z) ≥ 5, m(l1) ≥ j, j = 2, 3) then M0 is a center if the cubic systems have a polynomial first integral (respectively, an integrating factor of the form 1/lj 1). |
|||||||||
Cuvinte-cheie Cubic differential system, center problem, invariant straight line, algebraic multiplicity |
|||||||||
|
DataCite XML Export
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'> <creators> <creator> <creatorName>Şubă, A.S.</creatorName> <affiliation>Institutul de Matematică şi Informatică "Vladimir Andrunachievici", Moldova, Republica</affiliation> </creator> <creator> <creatorName>Turuta (Poderioghin), S.I.</creatorName> <affiliation>Institutul de Matematică şi Informatică "Vladimir Andrunachievici", Moldova, Republica</affiliation> </creator> </creators> <titles> <title xml:lang='en'>The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five</title> </titles> <publisher>Instrumentul Bibliometric National</publisher> <publicationYear>2019</publicationYear> <relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1024-7696</relatedIdentifier> <subjects> <subject>Cubic differential system</subject> <subject>center problem</subject> <subject>invariant straight line</subject> <subject>algebraic multiplicity</subject> <subject schemeURI='http://udcdata.info/' subjectScheme='UDC'>517.9</subject> </subjects> <dates> <date dateType='Issued'>2019-12-27</date> </dates> <resourceType resourceTypeGeneral='Text'>Journal article</resourceType> <descriptions> <description xml:lang='en' descriptionType='Abstract'><p>In this article, we study the real planar cubic differential systems with a non-degenerate monodromic critical point M0. In the cases when the algebraic multiplicity m(Z) = 5 or m(l1) + m(Z) ≥ 5, where Z = 0 is the line at infinity and l1 = 0 is an affine real invariant straight line, we prove that the critical point M0 is of the center type if and only if the first Lyapunov quantity vanishes. More over, if m(Z) = 5 (respectively, m(l1) +m(Z) ≥ 5, m(l1) ≥ j, j = 2, 3) then M0 is a center if the cubic systems have a polynomial first integral (respectively, an integrating factor of the form 1/lj 1).</p></description> </descriptions> <formats> <format>application/pdf</format> </formats> </resource>