The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
827 3
Ultima descărcare din IBN:
2023-09-23 11:35
Căutarea după subiecte
similare conform CZU
517.9 (248)
Ecuații diferențiale. Ecuații integrale. Alte ecuații funcționale. Diferențe finite. Calculul variațional. Analiză funcțională (246)
SM ISO690:2012
SUBA, Alexandru, TURUTA (PODERIOGHIN), Silvia. The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2019, nr. 2(90), pp. 13-40. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 2(90) / 2019 / ISSN 1024-7696 /ISSNe 2587-4322

The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five

CZU: 517.9
MSC 2010: 34C05.

Pag. 13-40

Suba Alexandru, Turuta (Poderioghin) Silvia
 
Vladimir Andrunachievici Institute of Mathematics and Computer Science
 
 
 
Disponibil în IBN: 3 ianuarie 2020


Rezumat

In this article, we study the real planar cubic differential systems with a non-degenerate monodromic critical point M0. In the cases when the algebraic multiplicity m(Z) = 5 or m(l1) + m(Z) ≥ 5, where Z = 0 is the line at infinity and l1 = 0 is an affine real invariant straight line, we prove that the critical point M0 is of the center type if and only if the first Lyapunov quantity vanishes. More over, if m(Z) = 5 (respectively, m(l1) +m(Z) ≥ 5, m(l1) ≥ j, j = 2, 3) then M0 is a center if the cubic systems have a polynomial first integral (respectively, an integrating factor of the form 1/lj 1).

Cuvinte-cheie
Cubic differential system, center problem, invariant straight line, algebraic multiplicity

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'>
<creators>
<creator>
<creatorName>Şubă, A.S.</creatorName>
<affiliation>Institutul de Matematică şi Informatică "Vladimir Andrunachievici", Moldova, Republica</affiliation>
</creator>
<creator>
<creatorName>Turuta (Poderioghin), S.I.</creatorName>
<affiliation>Institutul de Matematică şi Informatică "Vladimir Andrunachievici", Moldova, Republica</affiliation>
</creator>
</creators>
<titles>
<title xml:lang='en'>The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five</title>
</titles>
<publisher>Instrumentul Bibliometric National</publisher>
<publicationYear>2019</publicationYear>
<relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1024-7696</relatedIdentifier>
<subjects>
<subject>Cubic differential system</subject>
<subject>center problem</subject>
<subject>invariant
straight line</subject>
<subject>algebraic multiplicity</subject>
<subject schemeURI='http://udcdata.info/' subjectScheme='UDC'>517.9</subject>
</subjects>
<dates>
<date dateType='Issued'>2019-12-27</date>
</dates>
<resourceType resourceTypeGeneral='Text'>Journal article</resourceType>
<descriptions>
<description xml:lang='en' descriptionType='Abstract'><p>In this article, we study the real planar cubic differential systems with a non-degenerate monodromic critical point M0. In the cases when the algebraic multiplicity m(Z) = 5 or m(l1) + m(Z) &ge; 5, where Z = 0 is the line at infinity and l1 = 0 is an affine real invariant straight line, we prove that the critical point M0 is of the center type if and only if the first Lyapunov quantity vanishes. More over, if m(Z) = 5 (respectively, m(l1) +m(Z) &ge; 5, m(l1) &ge; j, j = 2, 3) then M0 is a center if the cubic systems have a polynomial first integral (respectively, an integrating factor of the form 1/lj 1).</p></description>
</descriptions>
<formats>
<format>application/pdf</format>
</formats>
</resource>