Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
798 3 |
Ultima descărcare din IBN: 2023-09-23 11:35 |
Căutarea după subiecte similare conform CZU |
517.9 (248) |
Differential equations. Integral equations. Other functional equations. Finite differences. Calculus of variations. Functional analysis (246) |
SM ISO690:2012 SUBA, Alexandru, TURUTA (PODERIOGHIN), Silvia. The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2019, nr. 2(90), pp. 13-40. ISSN 1024-7696. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica | |||||||||
Numărul 2(90) / 2019 / ISSN 1024-7696 /ISSNe 2587-4322 | |||||||||
|
|||||||||
CZU: 517.9 | |||||||||
MSC 2010: 34C05. | |||||||||
Pag. 13-40 | |||||||||
|
|||||||||
Descarcă PDF | |||||||||
Rezumat | |||||||||
In this article, we study the real planar cubic differential systems with a non-degenerate monodromic critical point M0. In the cases when the algebraic multiplicity m(Z) = 5 or m(l1) + m(Z) ≥ 5, where Z = 0 is the line at infinity and l1 = 0 is an affine real invariant straight line, we prove that the critical point M0 is of the center type if and only if the first Lyapunov quantity vanishes. More over, if m(Z) = 5 (respectively, m(l1) +m(Z) ≥ 5, m(l1) ≥ j, j = 2, 3) then M0 is a center if the cubic systems have a polynomial first integral (respectively, an integrating factor of the form 1/lj 1). |
|||||||||
Cuvinte-cheie Cubic differential system, center problem, invariant straight line, algebraic multiplicity |
|||||||||
|
Crossref XML Export
<?xml version='1.0' encoding='utf-8'?> <doi_batch version='4.3.7' xmlns='http://www.crossref.org/schema/4.3.7' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.crossref.org/schema/4.3.7 http://www.crossref.org/schema/deposit/crossref4.3.7.xsd'> <head> <doi_batch_id>ibn-91137</doi_batch_id> <timestamp>1725965603</timestamp> <depositor> <depositor_name>Information Society Development Instiute, Republic of Moldova</depositor_name> <email_address>[email protected]</email_address> </depositor> <registrant>Institutul de Matematică şi Informatică al AŞM</registrant> </head> <body> <journal> <journal_metadata> <full_title>Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica</full_title> <issn media_type='print'>10247696</issn> </journal_metadata> <journal_issue> <publication_date media_type='print'> <year>2019</year> </publication_date> <issue>2(90)</issue> </journal_issue> <journal_article publication_type='full_text'><titles> <title>The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five</title> </titles> <contributors> <person_name sequence='first' contributor_role='author'> <given_name>Alexandru</given_name> <surname>Şubă</surname> </person_name> <person_name sequence='additional' contributor_role='author'> <given_name>Silvia</given_name> <surname>Turuta (Poderioghin)</surname> </person_name> </contributors> <publication_date media_type='print'> <year>2019</year> </publication_date> <pages> <first_page>13</first_page> <last_page>40</last_page> </pages> </journal_article> </journal> </body> </doi_batch>