﻿﻿ ﻿ ﻿﻿ The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five
 Conţinutul numărului revistei Articolul precedent Articolul urmator 798 3 Ultima descărcare din IBN: 2023-09-23 11:35 Căutarea după subiecte similare conform CZU 517.9 (248) Differential equations. Integral equations. Other functional equations. Finite differences. Calculus of variations. Functional analysis (246) SM ISO690:2012SUBA, Alexandru, TURUTA (PODERIOGHIN), Silvia. The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2019, nr. 2(90), pp. 13-40. ISSN 1024-7696. EXPORT metadate: Google Scholar Crossref CERIF DataCiteDublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 2(90) / 2019 / ISSN 1024-7696 /ISSNe 2587-4322

 The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five
CZU: 517.9
MSC 2010: 34C05.

Pag. 13-40

 Autori: Suba Alexandru, Turuta (Poderioghin) Silvia Vladimir Andrunachievici Institute of Mathematics and Computer Science Disponibil în IBN: 3 ianuarie 2020

Rezumat

In this article, we study the real planar cubic differential systems with a non-degenerate monodromic critical point M0. In the cases when the algebraic multiplicity m(Z) = 5 or m(l1) + m(Z) ≥ 5, where Z = 0 is the line at infinity and l1 = 0 is an affine real invariant straight line, we prove that the critical point M0 is of the center type if and only if the first Lyapunov quantity vanishes. More over, if m(Z) = 5 (respectively, m(l1) +m(Z) ≥ 5, m(l1) ≥ j, j = 2, 3) then M0 is a center if the cubic systems have a polynomial first integral (respectively, an integrating factor of the form 1/lj 1).

Cuvinte-cheie
Cubic differential system, center problem, invariant straight line, algebraic multiplicity

### Crossref XML Export

<?xml version='1.0' encoding='utf-8'?>
<doi_batch version='4.3.7' xmlns='http://www.crossref.org/schema/4.3.7' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.crossref.org/schema/4.3.7 http://www.crossref.org/schema/deposit/crossref4.3.7.xsd'>
<doi_batch_id>ibn-91137</doi_batch_id>
<timestamp>1725965603</timestamp>
<depositor>
<depositor_name>Information Society Development Instiute, Republic of Moldova</depositor_name>
</depositor>
<registrant>Institutul de Matematică şi Informatică al AŞM</registrant>
<body>
<journal>
<full_title>Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica</full_title>
<issn media_type='print'>10247696</issn>
<journal_issue>
<publication_date media_type='print'>
<year>2019</year>
</publication_date>
<issue>2(90)</issue>
</journal_issue>
<journal_article publication_type='full_text'><titles>
<title>The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five</title>
</titles>
<contributors>
<person_name sequence='first' contributor_role='author'>
<given_name>Alexandru</given_name>
<surname>Şubă</surname>
</person_name>
<given_name>Silvia</given_name>
<surname>Turuta (Poderioghin)</surname>
</person_name>
</contributors>
<publication_date media_type='print'>
<year>2019</year>
</publication_date>
<pages>
<first_page>13</first_page>
<last_page>40</last_page>
</pages>
</journal_article>
</journal>
</body>
</doi_batch>