Ground state and optical conductivity of interacting polarons in a quantum dot
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
157 0
SM ISO690:2012
KLIMIN, Serghei, FOMIN, Vladimir, BROSENS, Fons, DEVREESE, Josef T.. Ground state and optical conductivity of interacting polarons in a quantum dot. In: Physical Review B - Condensed Matter and Materials Physics, 2004, vol. 69, p. 0. ISSN 1098-0121. DOI: https://doi.org/10.1103/PhysRevB.69.235324
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Physical Review B - Condensed Matter and Materials Physics
Volumul 69 / 2004 / ISSN 1098-0121 /ISSNe 1550-235X

Ground state and optical conductivity of interacting polarons in a quantum dot

DOI:https://doi.org/10.1103/PhysRevB.69.235324

Pag. 0-0

Klimin Serghei1, Fomin Vladimir21, Brosens Fons3, Devreese Josef T.2
 
1 Moldova State University,
2 Eindhoven University of Technology,
3 University of Antwerp
 
 
Disponibil în IBN: 30 iunie 2023


Rezumat

The ground-state energy, addition energies, and optical absorption spectra are derived for interacting polarons in parabolic quantum dots in three and two dimensions. A path integral formalism for identical particles is used in order to take into account the fermion statistics. The approach is applied to both closed-shell and open-shell systems of interacting polarons. Using a generalization of the Jensen-Feynman variational principle, the ground-state energy of a confined N-polaron system is analyzed as a function of N and of the electron-phonon coupling constant α. In contrast to few-electron systems without the electron-phonon interaction, three types of spin polarization are possible for the ground state of the few-polaron systems: (i) a spin-polarized state, (ii) a state where the spin is determined by Hund's rule, and (iii) a state with the minimal possible spin. A transition from a state fulfilling Hund's rule to a spin-polarized state occurs when the electron density is decreased. In the strong-coupling limit, the system of interacting polarons turns into a state with the minimal possible spin. These transitions should be experimentally observable in the optical absorption spectra of quantum dots.

Cuvinte-cheie
absorption spectrophotometry, acceleration, article, Electric conductivity, energy, molecular interaction, optics, particle size, phonon, polarization, quantum mechanics, Spectrometry, statistical analysis, Vibration

Crossref XML Export

<?xml version='1.0' encoding='utf-8'?>
<doi_batch version='4.3.7' xmlns='http://www.crossref.org/schema/4.3.7' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.crossref.org/schema/4.3.7 http://www.crossref.org/schema/deposit/crossref4.3.7.xsd'>
<head>
<doi_batch_id>ibn-184001</doi_batch_id>
<timestamp>1719716928</timestamp>
<depositor>
<depositor_name>Information Society Development Instiute, Republic of Moldova</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Physical Review B - Condensed Matter and Materials Physics</full_title>
<issn media_type='print'>10980121</issn>
</journal_metadata>
<journal_issue>
<publication_date media_type='print'>
<year>2004</year>
</publication_date>
<issue></issue>
</journal_issue>
<journal_article publication_type='full_text'><titles>
<title>Ground state and optical conductivity of interacting polarons in a quantum dot</title>
</titles>
<contributors>
<person_name sequence='first' contributor_role='author'>
<given_name>Serghei</given_name>
<surname>Klimin</surname>
</person_name>
<person_name sequence='additional' contributor_role='author'>
<given_name>Vladimir</given_name>
<surname>Fomin</surname>
</person_name>
<person_name sequence='additional' contributor_role='author'>
<given_name>Fons</given_name>
<surname>Brosens</surname>
</person_name>
<person_name sequence='additional' contributor_role='author'>
<given_name>Josef T.</given_name>
<surname>Devreese</surname>
</person_name>
</contributors>
<publication_date media_type='print'>
<year>2004</year>
</publication_date>
<pages>
<first_page>0</first_page>
<last_page>0</last_page>
</pages>
<doi_data>
<doi>10.1103/PhysRevB.69.235324</doi>
<resource>http://www.crossref.org/</resource>
</doi_data>
</journal_article>
</journal>
</body>
</doi_batch>