Synthesis and epr study of mono- and binuclear copper and oxovanadium complexes with compartmental isothiosemicarbazone
Închide
Articolul precedent
Articolul urmator
817 13
Ultima descărcare din IBN:
2022-12-27 15:32
SM ISO690:2012
GERU, Ion, GAIU, Nicolae, ZHOVMIR, F., LOZAN, Vasile. Synthesis and epr study of mono- and binuclear copper and oxovanadium complexes with compartmental isothiosemicarbazone. In: Achievements and perspectives of modern chemistry, 9-11 octombrie 2019, Chişinău. Chisinau, Republic of Moldova: Tipografia Academiei de Ştiinţe a Moldovei, 2019, p. 102. ISBN 978-9975-62-428-2.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Achievements and perspectives of modern chemistry 2019
Conferința "International Conference "Achievements and perspectives of modern chemistry""
Chişinău, Moldova, 9-11 octombrie 2019

Synthesis and epr study of mono- and binuclear copper and oxovanadium complexes with compartmental isothiosemicarbazone


Pag. 102-102

Geru Ion1, Gaiu Nicolae12, Zhovmir F.1, Lozan Vasile1
 
1 Institute of Chemistry,
2 Moldova State University
 
 
Disponibil în IBN: 5 noiembrie 2019


Rezumat

On template condensation of 3-formylsalicylic acid S-methylisothiosemicarbazone with 3formylsalicylic acid and Cu(CH3COO)2·H2O (molar ratio 1:1:1) in DMF was obtained mononuclear compound [Cu(L-(COOH)2)]·0.5DMF (1), where L-(COOH)2 represents compartmental ligand N1N4-bis(3-carboxysalicylidenato)-S-methylisothiosemicarbazide (va COOH=1723 cm-1,v.s.). On interaction of 1 with an excess of Cu(CH3COO)2·H2O in DMF in open reaction vessel the dicopper compound [Cu2(L-(COO)2)] 3H2O (2)was synthesized. Reaction of 1 via intermediate Li salt with equimolar VO(SO4)·5H2O in DMSO was isolated heteronuclear complex [CuVO(L-(COO)2)]·DMSO (3).The EPR spectra at room temperature of all three complexes 1 (Figure 1), 2 and 3 (Figure 2) consist of a single resonance line without hyperfine structure with parameters: g=2.054, deltaHpp = 131.5 Oe (1); g=2.046, delta Hpp=288.6 Oe (2); g=2.061, delta Hpp=53.2 Oe (3). In Figure 3 and 4 the dependence of Gauss function fG(H-H0) (black circles) and Lorentz function fL(H-H0) (open circles) versus (H-H0)2 in linearized coordinates are presented. Based on the method of linear anamorphoses [1] it was shown that at room temperature the narrowing of EPR lines of 2 and 3arises due to exchange interaction between paramagnetic ions presented in 2 and, correspondingly, 3. Using the data from Figure 3 and Figure 4, the exchange fields He=240 ±30 Oe (2) and He=220 ±30 Oe (3) were determined.

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-86973</cfResPublId>
<cfResPublDate>2019</cfResPublDate>
<cfStartPage>102</cfStartPage>
<cfISBN>978-9975-62-428-2</cfISBN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/86973</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Synthesis and epr study of mono- and binuclear copper and oxovanadium complexes with compartmental isothiosemicarbazone</cfTitle>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>On template condensation of 3-formylsalicylic acid S-methylisothiosemicarbazone with 3formylsalicylic acid and Cu(CH3COO)2&middot;H2O (molar ratio 1:1:1) in DMF was obtained mononuclear compound [Cu(L-(COOH)2)]&middot;0.5DMF (1), where L-(COOH)2 represents compartmental ligand N1N4-bis(3-carboxysalicylidenato)-S-methylisothiosemicarbazide (va COOH=1723 cm-1,v.s.). On interaction of 1 with an excess of Cu(CH3COO)2&middot;H2O in DMF in open reaction vessel the dicopper compound [Cu2(L-(COO)2)] 3H2O (2)was synthesized. Reaction of 1 via intermediate Li salt with equimolar VO(SO4)&middot;5H2O in DMSO was isolated heteronuclear complex [CuVO(L-(COO)2)]&middot;DMSO (3).</p><p>The EPR spectra at room temperature of all three complexes 1 (Figure 1), 2 and 3 (Figure 2) consist of a single resonance line without hyperfine structure with parameters: g=2.054, deltaHpp = 131.5 Oe (1); g=2.046, delta Hpp=288.6 Oe (2); g=2.061, delta Hpp=53.2 Oe (3). In Figure 3 and 4 the dependence of Gauss function fG(H-H0) (black circles) and Lorentz function fL(H-H0) (open circles) versus (H-H0)2 in linearized coordinates are presented. Based on the method of linear anamorphoses [1] it was shown that at room temperature the narrowing of EPR lines of 2 and 3arises due to exchange interaction between paramagnetic ions presented in 2 and, correspondingly, 3. Using the data from Figure 3 and Figure 4, the exchange fields He=240 &plusmn;30 Oe (2) and He=220 &plusmn;30 Oe (3) were determined.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2019T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2019T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-237</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2019T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-13340</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2019T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-25710</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2019T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-12141</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2019T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-237</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-237-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2019T24:00:00</cfStartDate>
<cfFamilyNames>Жеру</cfFamilyNames>
<cfFirstNames>И.</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-13340</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-13340-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2019T24:00:00</cfStartDate>
<cfFamilyNames>Gaiu</cfFamilyNames>
<cfFirstNames>Nicolae</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-25710</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-25710-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2019T24:00:00</cfStartDate>
<cfFamilyNames>Zhovmir</cfFamilyNames>
<cfFirstNames>F.</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-12141</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-12141-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2019T24:00:00</cfStartDate>
<cfFamilyNames>Лозан</cfFamilyNames>
<cfFirstNames>В.</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>