Monotone Nonautonomous Differential Equations with the First Integral
Închide
Articolul precedent
Articolul urmator
124 0
Căutarea după subiecte
similare conform CZU
517.9 (245)
Ecuații diferențiale. Ecuații integrale. Alte ecuații funcționale. Diferențe finite. Calculul variațional. Analiză funcțională (243)
SM ISO690:2012
CHEBAN, David. Monotone Nonautonomous Differential Equations with the First Integral. In: Сучаснi проблеми диференцiальних рiвнянь та їх застосування : Матерiали мiжнародної наукової конференцiї, присвяченої 100-рiччю вiд дня народження професора С.Д. Ейдельмана, Ed. 1, 16-19 septembrie 2020, Чернiвцi. Чернiвцi: Чернівецький національний університет імені Юрія Федьковича, 2020, pp. 17-18.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Сучаснi проблеми диференцiальних рiвнянь та їх застосування 2020
Conferința "Сучаснi проблеми диференцiальних рiвнянь та їх застосування"
1, Чернiвцi, Ucraina, 16-19 septembrie 2020

Monotone Nonautonomous Differential Equations with the First Integral

CZU: 517.9

Pag. 17-18

Cheban David
 
Moldova State University
 
 
Disponibil în IBN: 24 noiembrie 2023


Rezumat

Let Rn be an n-dimensional real Euclidean space with the norm j  j. Let us consider a differential equation u0 = f(t; u); (1) where f 2 C(R  Rn;Rn). Along with equation (1) we consider its Hclass, i.e., the family of equations v0 = g(t; v); (2) where g 2 H(f) = ff :  2 Rg, f (t; u) = f(t + ; u) for all (t; u) 2 R  Rn and by bar we denote the closure in C(R  Rn;Rn). Condition (A1). The function f is said to be regular if for every equation (2) the conditions of existence, uniqueness and extendability on R+ are fulfilled. Let Rn + := fx 2 Rn : such that xi  0 (x := (x1; : : : ; xn)) for any i = 1; 2; : : : ; ng be the cone of nonnegative vectors of Rn. By Rn + on the space Rn is defined a partial order. Namely: u  v if v  u 2 Rn +. Condition (A2). Equation (1) is monotone. This means that the cocycle hRn; '; (H(f); R; )i (or shortly ') generated by (1) is monotone, i.e., if u; v 2 Rn and u  v then '(t; u; g)  '(t; v; g) for all t  0 and g 2 H(f). Condition (A3). fi(t; x)  0 for all x 2 ?i, t 2 R and i = 1; : : : ; n, where Гi := fx 2 Rn + : xi = 0g.