Center conditions for a cubic differential system having an integrating factor
Închide
Articolul precedent
Articolul urmator
296 5
Ultima descărcare din IBN:
2024-03-20 10:58
SM ISO690:2012
COZMA, Dumitru, MATEI, Angela. Center conditions for a cubic differential system having an integrating factor. In: Conference on Applied and Industrial Mathematics: CAIM 2022, Ed. 29, 25-27 august 2022, Chişinău. Chișinău, Republica Moldova: Casa Editorial-Poligrafică „Bons Offices”, 2022, Ediţia a 29, pp. 59-61. ISBN 978-9975-81-074-6.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Conference on Applied and Industrial Mathematics
Ediţia a 29, 2022
Conferința "Conference on Applied and Industrial Mathematics"
29, Chişinău, Moldova, 25-27 august 2022

Center conditions for a cubic differential system having an integrating factor


Pag. 59-61

Cozma Dumitru, Matei Angela
 
Tiraspol State University
 
 
Disponibil în IBN: 19 decembrie 2022


Rezumat

We consider the cubic system of differential equations x˙ = y + p2(x, y) + p3(x, y), y˙ = −x + q2(x, y) + q3(x, y), (1)where pj(x, y), qj (x, y) ∈ R[x, y] are homogeneous polinomials of degree j. The origin O(0, 0) is a singular point for (1) with purely imaginary eigenvalues, i.e. a focus or a center. The problem of distinguishing between a center and a focus (the problem of the center) is open for general cubic systems. In [1] the problem of the center was solved for cubic system (1) with: four invariant straight lines; three invariant straight lines; two invariant straight lines and one irreducible invariant conic. The center conditions for a cubic differential system (1) with two invariant straight lines and one irreducible invariant cubic curve Φ ≡ a30x3 + a21x2y + a12xy2 + a03y3 + x2 + y2 = 0 were found in [2] and for cubic system (1) having an integrating factor μ−1 = Φh were found in [3], where a30,a21,a12,a03 and h are real parameters. In this talk we give the conditions under which the cubic system (1) has an integrating factor of the form μ−1 = Ψh, (1) where Ψ ≡ a20x2+a11xy+a02y2+a10x+a01y+1 = 0 is an irreducible invariant conic and a20,a11,a02,a10,a01 and h are real parameters. According to [2] the cubic differential systems (1) which have integrating factors of the form (1) have a center at the singular point O(0, 0).

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-170099</cfResPublId>
<cfResPublDate>2022</cfResPublDate>
<cfVol>Ediţia a 29</cfVol>
<cfStartPage>59</cfStartPage>
<cfISBN>978-9975-81-074-6</cfISBN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/170099</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Center conditions for a cubic differential system having an integrating factor</cfTitle>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>We consider the cubic system of differential equations x˙ = y + p2(x, y) + p3(x, y), y˙ = &minus;x + q2(x, y) + q3(x, y), (1)where pj(x, y), qj (x, y) &isin; R[x, y] are homogeneous polinomials of degree j. The origin O(0, 0) is a singular point for (1) with purely imaginary eigenvalues, i.e. a focus or a center. The problem of distinguishing between a center and a focus (the problem of the center) is open for general cubic systems. In [1] the problem of the center was solved for cubic system (1) with: four invariant straight lines; three invariant straight lines; two invariant straight lines and one irreducible invariant conic. The center conditions for a cubic differential system (1) with two invariant straight lines and one irreducible invariant cubic curve &Phi; &equiv; a30x3 + a21x2y + a12xy2 + a03y3 + x2 + y2 = 0 were found in [2] and for cubic system (1) having an integrating factor &mu;&minus;1 = &Phi;h were found in [3], where a30,a21,a12,a03 and h are real parameters. In this talk we give the conditions under which the cubic system (1) has an integrating factor of the form &mu;&minus;1 = &Psi;h, (1) where &Psi; &equiv; a20x2+a11xy+a02y2+a10x+a01y+1 = 0 is an irreducible invariant conic and a20,a11,a02,a10,a01 and h are real parameters. According to [2] the cubic differential systems (1) which have integrating factors of the form (1) have a center at the singular point O(0, 0).</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2022T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-27550</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-33405</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-27550</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-27550-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2022T24:00:00</cfStartDate>
<cfFamilyNames>Cozma</cfFamilyNames>
<cfFirstNames>Dumitru</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-33405</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-33405-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2022T24:00:00</cfStartDate>
<cfFamilyNames>Matei</cfFamilyNames>
<cfFirstNames>Angela</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>