Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
428 4 |
Ultima descărcare din IBN: 2023-12-02 08:18 |
Căutarea după subiecte similare conform CZU |
517+519.634 (1) |
Analiză (306) |
Matematică computațională. Analiză numerică. Programarea calculatoarelor (125) |
SM ISO690:2012 DUKHNOVSKY, Sergey. A self–similar solution and the tanh–function method for the kinetic Carleman system. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2022, nr. 1(98), pp. 99-110. ISSN 1024-7696. DOI: https://doi.org/10.56415/basm.y2022.i1.p99 |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica | |||||||||
Numărul 1(98) / 2022 / ISSN 1024-7696 /ISSNe 2587-4322 | |||||||||
|
|||||||||
DOI:https://doi.org/10.56415/basm.y2022.i1.p99 | |||||||||
CZU: 517+519.634 | |||||||||
MSC 2010: 35L45, 35L60, 35Q20. | |||||||||
Pag. 99-110 | |||||||||
|
|||||||||
Descarcă PDF | |||||||||
Rezumat | |||||||||
In this article, we consider the one–dimensional kinetic system of Carleman equations. The Carleman system is the kinetic Boltzmann equation. This system describes a monatomic rarefied gas consisting of two groups of particles. One particle from the first group, interacting with a particle of the first group, transforms into two particles of the second group. Similarly, two particles of the second group, interacting with themselves, transform into two particles of the first group, respectively. We found traveling wave solutions by using the tanh–function method for nonlinear partial differential system. The results of the work can be useful for mathematical modeling in various fields of science and technology: kinetic theory of gases, gas dynamics, autocatalysis. The obtained exact solutions are new. |
|||||||||
Cuvinte-cheie Painlev´e test, Carleman system, tanh–function method, traveling wave solutions |
|||||||||
|
DataCite XML Export
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'> <identifier identifierType='DOI'>10.56415/basm.y2022.i1.p99</identifier> <creators> <creator> <creatorName>Duhnovski, S.</creatorName> <affiliation>Московский государственный строительный университет, Rusia</affiliation> </creator> </creators> <titles> <title xml:lang='en'>A self–similar solution and the tanh–function method for the kinetic Carleman system</title> </titles> <publisher>Instrumentul Bibliometric National</publisher> <publicationYear>2022</publicationYear> <relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1024-7696</relatedIdentifier> <subjects> <subject>Painlev´e test</subject> <subject>Carleman system</subject> <subject>tanh–function method</subject> <subject>traveling wave solutions</subject> <subject schemeURI='http://udcdata.info/' subjectScheme='UDC'>517+519.634</subject> </subjects> <dates> <date dateType='Issued'>2022-07-26</date> </dates> <resourceType resourceTypeGeneral='Text'>Journal article</resourceType> <descriptions> <description xml:lang='en' descriptionType='Abstract'><p>In this article, we consider the one–dimensional kinetic system of Carleman equations. The Carleman system is the kinetic Boltzmann equation. This system describes a monatomic rarefied gas consisting of two groups of particles. One particle from the first group, interacting with a particle of the first group, transforms into two particles of the second group. Similarly, two particles of the second group, interacting with themselves, transform into two particles of the first group, respectively. We found traveling wave solutions by using the tanh–function method for nonlinear partial differential system. The results of the work can be useful for mathematical modeling in various fields of science and technology: kinetic theory of gases, gas dynamics, autocatalysis. The obtained exact solutions are new.</p></description> </descriptions> <formats> <format>application/pdf</format> </formats> </resource>