A self–similar solution and the tanh–function method for the kinetic Carleman system
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
426 4
Ultima descărcare din IBN:
2023-12-02 08:18
Căutarea după subiecte
similare conform CZU
517+519.634 (1)
Analiză (306)
Matematică computațională. Analiză numerică. Programarea calculatoarelor (125)
SM ISO690:2012
DUKHNOVSKY, Sergey. A self–similar solution and the tanh–function method for the kinetic Carleman system. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2022, nr. 1(98), pp. 99-110. ISSN 1024-7696. DOI: https://doi.org/10.56415/basm.y2022.i1.p99
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 1(98) / 2022 / ISSN 1024-7696 /ISSNe 2587-4322

A self–similar solution and the tanh–function method for the kinetic Carleman system

DOI:https://doi.org/10.56415/basm.y2022.i1.p99
CZU: 517+519.634
MSC 2010: 35L45, 35L60, 35Q20.

Pag. 99-110

Autori:
Dukhnovsky Sergey
 
Moscow State University of Civil Engineering
 
 
 
Disponibil în IBN: 27 iulie 2022


Rezumat

In this article, we consider the one–dimensional kinetic system of Carleman equations. The Carleman system is the kinetic Boltzmann equation. This system describes a monatomic rarefied gas consisting of two groups of particles. One particle from the first group, interacting with a particle of the first group, transforms into two particles of the second group. Similarly, two particles of the second group, interacting with themselves, transform into two particles of the first group, respectively. We found traveling wave solutions by using the tanh–function method for nonlinear partial differential system. The results of the work can be useful for mathematical modeling in various fields of science and technology: kinetic theory of gases, gas dynamics, autocatalysis. The obtained exact solutions are new.

Cuvinte-cheie
Painlev´e test, Carleman system, tanh–function method, traveling wave solutions

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-161818</cfResPublId>
<cfResPublDate>2022-07-26</cfResPublDate>
<cfVol>98</cfVol>
<cfIssue>1</cfIssue>
<cfStartPage>99</cfStartPage>
<cfISSN>1024-7696</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/161818</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>A self&ndash;similar solution and the tanh&ndash;function method for the kinetic Carleman system</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>Painlev´e test; Carleman system; tanh–function method; traveling wave solutions</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>In this article, we consider the one&ndash;dimensional kinetic system of Carleman equations. The Carleman system is the kinetic Boltzmann equation. This system describes a monatomic rarefied gas consisting of two groups of particles. One particle from the first group, interacting with a particle of the first group, transforms into two particles of the second group. Similarly, two particles of the second group, interacting with themselves, transform into two particles of the first group, respectively. We found traveling wave solutions by using the tanh&ndash;function method for nonlinear partial differential system. The results of the work can be useful for mathematical modeling in various fields of science and technology: kinetic theory of gases, gas dynamics, autocatalysis. The obtained exact solutions are new.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-07-26T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2022-07-26T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-91512</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-07-26T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfFedId>
<cfFedIdId>ibn-doi-161818</cfFedIdId>
<cfFedId>10.56415/basm.y2022.i1.p99</cfFedId>
<cfStartDate>2022-07-26T24:00:00</cfStartDate>
<cfFedId_Class>
<cfClassId>31d222b4-11e0-434b-b5ae-088119c51189</cfClassId>
<cfClassSchemeId>bccb3266-689d-4740-a039-c96594b4d916</cfClassSchemeId>
</cfFedId_Class>
<cfFedId_Srv>
<cfSrvId>5123451</cfSrvId>
<cfClassId>eda2b2e2-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>5a270628-f593-4ff4-a44a-95660c76e182</cfClassSchemeId>
</cfFedId_Srv>
</cfFedId>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-91512</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-91512-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2022-07-26T24:00:00</cfStartDate>
<cfFamilyNames>Dukhnovsky</cfFamilyNames>
<cfFirstNames>Sergey</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfSrv>
<cfSrvId>5123451</cfSrvId>
<cfName cfLangCode='en' cfTrans='o'>CrossRef DOI prefix service</cfName>
<cfDescr cfLangCode='en' cfTrans='o'>The service of issuing DOI prefixes to publishers</cfDescr>
<cfKeyw cfLangCode='en' cfTrans='o'>persistent identifier; Digital Object Identifier</cfKeyw>
</cfSrv>
</CERIF>