On integrability of homogeneous rational equations
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
535 5
Ultima descărcare din IBN:
2024-01-29 13:59
Căutarea după subiecte
similare conform CZU
517.91 (11)
Ecuații diferențiale. Ecuații integrale. Alte ecuații funcționale. Diferențe finite. Calculul variațional. Analiză funcțională (252)
SM ISO690:2012
COZMA, Dumitru, MATEI, Angela. On integrability of homogeneous rational equations. In: Acta et commentationes (Ştiinţe Exacte și ale Naturii), 2020, nr. 2(10), pp. 54-67. ISSN 2537-6284. DOI: https://doi.org/10.36120/2587-3644.v10i2.54-67
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Acta et commentationes (Ştiinţe Exacte și ale Naturii)
Numărul 2(10) / 2020 / ISSN 2537-6284 /ISSNe 2587-3644

On integrability of homogeneous rational equations

Integrabilitatea ecuatiilor diferentiale rationale omogene

DOI:https://doi.org/10.36120/2587-3644.v10i2.54-67
CZU: 517.91
MSC 2010: 34C05, 37G10.

Pag. 54-67

Cozma Dumitru, Matei Angela
 
Tiraspol State University
 
 
 
Disponibil în IBN: 16 ianuarie 2021


Rezumat

We study the integrability of homogeneous rational linear and homogeneous rational quadratic differential equations. We prove that these equations can be integrated by using their algebraic solutions which are invariant straight lines.

Se studiaza integrabilitatea ecuatiilor diferentiale rationare liniare omogene si rationare patratice omogene. Se demonstreaza ca aceste ecuatii pot fi integrate folosind solutiile algebrice ale ecuatiilor care reprezinta drepte invariante.

Cuvinte-cheie
homogeneous differential equations, algebraic solutions, integrability,

ecuatii diferentiale omogene, solutii algebrice, integrabilitate

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-119750</cfResPublId>
<cfResPublDate>2020-12-28</cfResPublDate>
<cfVol>10</cfVol>
<cfIssue>2</cfIssue>
<cfStartPage>54</cfStartPage>
<cfISSN>2537-6284</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/119750</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>On integrability of homogeneous rational equations</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>homogeneous differential equations; algebraic solutions; integrability; ecuatii diferentiale omogene; solutii algebrice; integrabilitate</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>We study the integrability of homogeneous rational linear and homogeneous rational quadratic differential equations. We prove that these equations can be integrated by using their algebraic solutions which are invariant straight lines.</p></cfAbstr>
<cfAbstr cfLangCode='RO' cfTrans='o'><p>Se studiaza integrabilitatea ecuatiilor diferentiale rationare liniare omogene si rationare patratice omogene. Se demonstreaza ca aceste ecuatii pot fi integrate folosind solutiile algebrice ale ecuatiilor care reprezinta drepte invariante.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2020-12-28T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2020-12-28T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-27550</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2020-12-28T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-33405</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2020-12-28T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfFedId>
<cfFedIdId>ibn-doi-119750</cfFedIdId>
<cfFedId>10.36120/2587-3644.v10i2.54-67</cfFedId>
<cfStartDate>2020-12-28T24:00:00</cfStartDate>
<cfFedId_Class>
<cfClassId>31d222b4-11e0-434b-b5ae-088119c51189</cfClassId>
<cfClassSchemeId>bccb3266-689d-4740-a039-c96594b4d916</cfClassSchemeId>
</cfFedId_Class>
<cfFedId_Srv>
<cfSrvId>5123451</cfSrvId>
<cfClassId>eda2b2e2-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>5a270628-f593-4ff4-a44a-95660c76e182</cfClassSchemeId>
</cfFedId_Srv>
</cfFedId>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-27550</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-27550-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2020-12-28T24:00:00</cfStartDate>
<cfFamilyNames>Cozma</cfFamilyNames>
<cfFirstNames>Dumitru</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-33405</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-33405-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2020-12-28T24:00:00</cfStartDate>
<cfFamilyNames>Matei</cfFamilyNames>
<cfFirstNames>Angela</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfSrv>
<cfSrvId>5123451</cfSrvId>
<cfName cfLangCode='en' cfTrans='o'>CrossRef DOI prefix service</cfName>
<cfDescr cfLangCode='en' cfTrans='o'>The service of issuing DOI prefixes to publishers</cfDescr>
<cfKeyw cfLangCode='en' cfTrans='o'>persistent identifier; Digital Object Identifier</cfKeyw>
</cfSrv>
</CERIF>