Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
535 5 |
Ultima descărcare din IBN: 2024-01-29 13:59 |
Căutarea după subiecte similare conform CZU |
517.91 (11) |
Ecuații diferențiale. Ecuații integrale. Alte ecuații funcționale. Diferențe finite. Calculul variațional. Analiză funcțională (252) |
SM ISO690:2012 COZMA, Dumitru, MATEI, Angela. On integrability of homogeneous rational equations. In: Acta et commentationes (Ştiinţe Exacte și ale Naturii), 2020, nr. 2(10), pp. 54-67. ISSN 2537-6284. DOI: https://doi.org/10.36120/2587-3644.v10i2.54-67 |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Acta et commentationes (Ştiinţe Exacte și ale Naturii) | ||||||||
Numărul 2(10) / 2020 / ISSN 2537-6284 /ISSNe 2587-3644 | ||||||||
|
||||||||
DOI:https://doi.org/10.36120/2587-3644.v10i2.54-67 | ||||||||
CZU: 517.91 | ||||||||
MSC 2010: 34C05, 37G10. | ||||||||
Pag. 54-67 | ||||||||
|
||||||||
Descarcă PDF | ||||||||
Rezumat | ||||||||
We study the integrability of homogeneous rational linear and homogeneous rational quadratic differential equations. We prove that these equations can be integrated by using their algebraic solutions which are invariant straight lines. |
||||||||
Cuvinte-cheie homogeneous differential equations, algebraic solutions, integrability, ecuatii diferentiale omogene, solutii algebrice, integrabilitate |
||||||||
|
Cerif XML Export
<?xml version='1.0' encoding='utf-8'?> <CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'> <cfResPubl> <cfResPublId>ibn-ResPubl-119750</cfResPublId> <cfResPublDate>2020-12-28</cfResPublDate> <cfVol>10</cfVol> <cfIssue>2</cfIssue> <cfStartPage>54</cfStartPage> <cfISSN>2537-6284</cfISSN> <cfURI>https://ibn.idsi.md/ro/vizualizare_articol/119750</cfURI> <cfTitle cfLangCode='EN' cfTrans='o'>On integrability of homogeneous rational equations</cfTitle> <cfKeyw cfLangCode='EN' cfTrans='o'>homogeneous differential equations; algebraic solutions; integrability; ecuatii diferentiale omogene; solutii algebrice; integrabilitate</cfKeyw> <cfAbstr cfLangCode='EN' cfTrans='o'><p>We study the integrability of homogeneous rational linear and homogeneous rational quadratic differential equations. We prove that these equations can be integrated by using their algebraic solutions which are invariant straight lines.</p></cfAbstr> <cfAbstr cfLangCode='RO' cfTrans='o'><p>Se studiaza integrabilitatea ecuatiilor diferentiale rationare liniare omogene si rationare patratice omogene. Se demonstreaza ca aceste ecuatii pot fi integrate folosind solutiile algebrice ale ecuatiilor care reprezinta drepte invariante.</p></cfAbstr> <cfResPubl_Class> <cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId> <cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId> <cfStartDate>2020-12-28T24:00:00</cfStartDate> </cfResPubl_Class> <cfResPubl_Class> <cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId> <cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId> <cfStartDate>2020-12-28T24:00:00</cfStartDate> </cfResPubl_Class> <cfPers_ResPubl> <cfPersId>ibn-person-27550</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2020-12-28T24:00:00</cfStartDate> </cfPers_ResPubl> <cfPers_ResPubl> <cfPersId>ibn-person-33405</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2020-12-28T24:00:00</cfStartDate> </cfPers_ResPubl> <cfFedId> <cfFedIdId>ibn-doi-119750</cfFedIdId> <cfFedId>10.36120/2587-3644.v10i2.54-67</cfFedId> <cfStartDate>2020-12-28T24:00:00</cfStartDate> <cfFedId_Class> <cfClassId>31d222b4-11e0-434b-b5ae-088119c51189</cfClassId> <cfClassSchemeId>bccb3266-689d-4740-a039-c96594b4d916</cfClassSchemeId> </cfFedId_Class> <cfFedId_Srv> <cfSrvId>5123451</cfSrvId> <cfClassId>eda2b2e2-34c5-11e1-b86c-0800200c9a66</cfClassId> <cfClassSchemeId>5a270628-f593-4ff4-a44a-95660c76e182</cfClassSchemeId> </cfFedId_Srv> </cfFedId> </cfResPubl> <cfPers> <cfPersId>ibn-Pers-27550</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-27550-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2020-12-28T24:00:00</cfStartDate> <cfFamilyNames>Cozma</cfFamilyNames> <cfFirstNames>Dumitru</cfFirstNames> </cfPersName_Pers> </cfPers> <cfPers> <cfPersId>ibn-Pers-33405</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-33405-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2020-12-28T24:00:00</cfStartDate> <cfFamilyNames>Matei</cfFamilyNames> <cfFirstNames>Angela</cfFirstNames> </cfPersName_Pers> </cfPers> <cfSrv> <cfSrvId>5123451</cfSrvId> <cfName cfLangCode='en' cfTrans='o'>CrossRef DOI prefix service</cfName> <cfDescr cfLangCode='en' cfTrans='o'>The service of issuing DOI prefixes to publishers</cfDescr> <cfKeyw cfLangCode='en' cfTrans='o'>persistent identifier; Digital Object Identifier</cfKeyw> </cfSrv> </CERIF>