On two stability types for a multicriteria integer linear programming problem
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
338 4
Ultima descărcare din IBN:
2021-10-12 11:20
Căutarea după subiecte
similare conform CZU
519.6+519.8 (11)
Matematică computațională. Analiză numerică. Programarea calculatoarelor (110)
Cercetări operaționale (OR) teorii şi metode matematice (144)
SM ISO690:2012
EMELICHEV, Vladimir; BUKHTOYAROV, Sergei. On two stability types for a multicriteria integer linear programming problem. In: Buletinul Academiei de Ştiinţe a Moldovei. Matematica. 2020, nr. 1(92), pp. 17-30. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Moldovei. Matematica
Numărul 1(92) / 2020 / ISSN 1024-7696

On two stability types for a multicriteria integer linear programming problem

CZU: 519.6+519.8
MSC 2010: 90C09, 90C29, 90C31.

Pag. 17-30

Emelichev Vladimir, Bukhtoyarov Sergei
 
Belarusian State University
 
Disponibil în IBN: 5 septembrie 2020


Rezumat

We consider a multicriteria integer linear programming problem with a parametrized optimality principle which is implemented by means of partitioning the partial criteria set into non-empty subsets, inside which relations on the set of solutions are based on the Pareto minimum. The introduction of this principle allows us to connect such classical selection functions as Pareto and aggregative-extremal. A quantitative analysis of two types of stability of the problem to perturbations of the parameters of objective functions is given under the assumption that an arbitrary lp-H¨older norm, 1 ≤ p ≤ ∞, is given in the solution space, and the Chebyshev norm is given in the criteria space. The formulas for the radii of quasistability and strong quasi-stability are obtained. Criteria of these types of stability are given as corollaries.

Cuvinte-cheie
Multicriterial optimization, integer linear programming, Pareto set, effective solution, extreme solution, quasistability radius, strong quasistability radius, H¨older norm, Chebyshev norm