Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
![]() |
![]() ![]() |
Ultima descărcare din IBN: 2021-05-06 12:46 |
![]() ZABOLOTNÎI, Pavel. Informaţie despre grupurile rotative ale poliedrelor regulate
. In: Studia Universitatis Moldaviae (Seria Ştiinţe Exacte şi Economice), 2009, nr. 7(27), pp. 25-35. ISSN 1857-2073. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Studia Universitatis Moldaviae (Seria Ştiinţe Exacte şi Economice) | |||||
Numărul 7(27) / 2009 / ISSN 1857-2073 /ISSNe 2345-1033 | |||||
|
|||||
Pag. 25-35 | |||||
|
|||||
![]() |
|||||
Rezumat | |||||
The work contains a detailed description of the location of symmetry elements in sets, corresponding to every rotational symmetry group 3/2, 3/4, 3/5. All these groups are described in a common coordinate system, which simplifies both finding group symmetry element directions as well as comparing these directions for elements of different groups. Every element of every group has a unique index, and numerous automatically computed summary tables will help finding the angle between directions of any two symmetry axes from any of the three mentioned symmetry groups. |
|||||
|
Cerif XML Export
<?xml version='1.0' encoding='utf-8'?> <CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'> <cfResPubl> <cfResPublId>ibn-ResPubl-10694</cfResPublId> <cfResPublDate>2009-01-01</cfResPublDate> <cfVol>27</cfVol> <cfIssue>7</cfIssue> <cfStartPage>25</cfStartPage> <cfISSN>1857-2073</cfISSN> <cfURI>https://ibn.idsi.md/ro/vizualizare_articol/10694</cfURI> <cfTitle cfLangCode='RO' cfTrans='o'>Informaţie despre grupurile rotative ale poliedrelor regulate </cfTitle> <cfAbstr cfLangCode='EN' cfTrans='o'>The work contains a detailed description of the location of symmetry elements in sets, corresponding to every rotational symmetry group 3/2, 3/4, 3/5. All these groups are described in a common coordinate system, which simplifies both finding group symmetry element directions as well as comparing these directions for elements of different groups. Every element of every group has a unique index, and numerous automatically computed summary tables will help finding the angle between directions of any two symmetry axes from any of the three mentioned symmetry groups.</cfAbstr> <cfResPubl_Class> <cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId> <cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId> <cfStartDate>2009-01-01T24:00:00</cfStartDate> </cfResPubl_Class> <cfResPubl_Class> <cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId> <cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId> <cfStartDate>2009-01-01T24:00:00</cfStartDate> </cfResPubl_Class> <cfPers_ResPubl> <cfPersId>ibn-person-10592</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2009-01-01T24:00:00</cfStartDate> </cfPers_ResPubl> </cfResPubl> <cfPers> <cfPersId>ibn-Pers-10592</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-10592-2</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2009-01-01T24:00:00</cfStartDate> <cfFamilyNames>Zabolotnîi</cfFamilyNames> <cfFirstNames>Pavel</cfFirstNames> </cfPersName_Pers> </cfPers> </CERIF>