Challenges of nanotechnologies and some reliability aspects
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
795 0
Căutarea după subiecte
similare conform CZU
621.3.049.77 (16)
Electrotehnică (1146)
SM ISO690:2012
BĂJENESCU, Titu-Marius, BÂZU, Marius. Challenges of nanotechnologies and some reliability aspects. In: Journal of Engineering Sciences, 2020, vol. 27, nr. 2, pp. 62-75. ISSN 2587-3474. DOI: https://doi.org/10.5281/zenodo.3784350
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Journal of Engineering Sciences
Volumul 27, Numărul 2 / 2020 / ISSN 2587-3474 /ISSNe 2587-3482

Challenges of nanotechnologies and some reliability aspects

DOI: https://doi.org/10.5281/zenodo.3784350
CZU: 621.3.049.77

Pag. 62-75

Băjenescu Titu-Marius1, Bâzu Marius2
 
1 Swiss Technology Association,
2 National Institute for Research and Development in Microtechnologies
 
Disponibil în IBN: 3 iunie 2020


Rezumat

The article focuses on the analysis of different nanoelectronic architectures with special design rules, taking into account the reliability of the future product. In the next decade, the reliability will play an even bigger role for industries in nanofabrication, which amounts to designing, and manufacturing devices on the nanometre scale. The main thrust in any reliability work is identifying failure modes and mechanisms. This is especially true for the new technology of microelectromechanical systems (MEMS). High reliability is often stressed as an argument for projects in nanotechnology. Despite these claims, only little work has actually been done in the field of reliability in nanotechnology in clear contrast with microelectronics which is now extending its reliability modelling to nanoscaled semiconductor circuits. Nano-manufacturing will provide more twists to the traditional models due to the nature of nano-defects, and Heisenberg uncertainty. Nanotechnology has the potential to create many new materials and devices with wide-ranging applications, such as in medicine, electronics, and energy production. The reliability aspect includes both the electronic and the mechanical parts, complicated by the interactions. The challenging issue in MEMS technology development and commercialization is justifying its reliability. Packaging has often been referred as the “Achilles heel of MEMS manufacturing”.

Articolul este axat pe analiza diferitor arhitecturi nanoelectronice cu reguli speciale de proiectare, ţinând cont și de fiabilitatea viitorului produs. În următorul deceniu, fiabilitatea va juca un rol și mai mare pentru industriile din nanofabricare, ceea ce se referă la proiectarea și fabricarea dispozitivelor la scara nanometrică. Principala forţă a oricărei testări de fiabilitate este identificarea modurilor și mecanismelor de avariere. Acest lucru este valabil mai ales pentru noua tehnologie a sistemelor microelectromecanice (MEMS). Fiabilitatea ridicată este adesea subliniată ca argument pentru proiectele din nanotehnologie. În ciuda acestor afirmaţii, în domeniul fiabilităţii în nanotehnologie s-au realizat puţine lucrări, în contrast clar cu microelectronica, care acum își extinde modelarea fiabilităţii la circuitele cu semiconductor nanoscalat. Nano-fabricarea va oferi mai multe reveniri la modelele tradiţionale, datorită naturii nano-defectelor și incertitudinii Heisenberg. Nanotehnologia are potenţialul de a crea multe materiale și dispozitive noi cu aplicaţii largi, cum ar fi în medicină, electronică și producţie de energie. Aspectul de fiabilitate include atât componentele electronice, cât și cele mecanice, cu diverse interacţiuni. Problema provocatoare în dezvoltarea și comercializarea tehnologiei MEMS justifică fiabilitatea acesteia. Ambalajul a fost adesea denumit „călcâiul lui Ahile din fabricaţia MEMS”.

Cuvinte-cheie
MEMS, NEMS, nano-objects, quantum-dots, Nanodevices, nanoelectronics, dominant failures modes, Micro / nanosystem products, reliability, failure analysis,

MEMS, NEMS, nano-obiecte, nanodispozitive, nanoelectronică, moduri dominante de defectare, produse micro /nanosistem, fiabilitate, analiza defectărilor

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-105144</cfResPublId>
<cfResPublDate>2020-06-03</cfResPublDate>
<cfIssue>2</cfIssue>
<cfStartPage>62</cfStartPage>
<cfISSN>2587-3474</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/105144</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Challenges of nanotechnologies and some reliability aspects</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>MEMS; NEMS; nano-objects; quantum-dots; Nanodevices; nanoelectronics; dominant
failures modes; Micro / nanosystem products; reliability; failure analysis; MEMS; NEMS; nano-obiecte; nanodispozitive; nanoelectronică; moduri dominante
de defectare; produse micro /nanosistem; fiabilitate; analiza defectărilor</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>The article focuses on the analysis of different nanoelectronic architectures with special design rules, taking into account the reliability of the future product. In the next decade, the reliability will play an even bigger role for industries in nanofabrication, which amounts to designing, and manufacturing devices on the nanometre scale. The main thrust in any reliability work is identifying failure modes and mechanisms. This is especially true for the new technology of microelectromechanical systems (MEMS). High reliability is often stressed as an argument for projects in nanotechnology. Despite these claims, only little work has actually been done in the field of reliability in nanotechnology in clear contrast with microelectronics which is now extending its reliability modelling to nanoscaled semiconductor circuits. Nano-manufacturing will provide more twists to the traditional models due to the nature of nano-defects, and Heisenberg uncertainty. Nanotechnology has the potential to create many new materials and devices with wide-ranging applications, such as in medicine, electronics, and energy production. The reliability aspect includes both the electronic and the mechanical parts, complicated by the interactions. The challenging issue in MEMS technology development and commercialization is justifying its reliability. Packaging has often been referred as the &ldquo;Achilles heel of MEMS manufacturing&rdquo;.</p></cfAbstr>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>Articolul este axat pe analiza diferitor arhitecturi nanoelectronice cu reguli speciale de proiectare, ţin&acirc;nd cont și de fiabilitatea viitorului produs. &Icirc;n următorul deceniu, fiabilitatea va juca un rol și mai mare pentru industriile din nanofabricare, ceea ce se referă la proiectarea și fabricarea dispozitivelor la scara nanometrică. Principala forţă a oricărei testări de fiabilitate este identificarea modurilor și mecanismelor de avariere. Acest lucru este valabil mai ales pentru noua tehnologie a sistemelor microelectromecanice (MEMS). Fiabilitatea ridicată este adesea subliniată ca argument pentru proiectele din nanotehnologie. &Icirc;n ciuda acestor afirmaţii, &icirc;n domeniul fiabilităţii &icirc;n nanotehnologie s-au realizat puţine lucrări, &icirc;n contrast clar cu microelectronica, care acum &icirc;și extinde modelarea fiabilităţii la circuitele cu semiconductor nanoscalat. Nano-fabricarea va oferi mai multe reveniri la modelele tradiţionale, datorită naturii nano-defectelor și incertitudinii Heisenberg. Nanotehnologia are potenţialul de a crea multe materiale și dispozitive noi cu aplicaţii largi, cum ar fi &icirc;n medicină, electronică și producţie de energie. Aspectul de fiabilitate include at&acirc;t componentele electronice, c&acirc;t și cele mecanice, cu diverse interacţiuni. Problema provocatoare &icirc;n dezvoltarea și comercializarea tehnologiei MEMS justifică fiabilitatea acesteia. Ambalajul a fost adesea denumit &bdquo;călc&acirc;iul lui Ahile din fabricaţia MEMS&rdquo;.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2020-06-03T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2020-06-03T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-38516</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2020-06-03T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-38515</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2020-06-03T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfFedId>
<cfFedIdId>ibn-doi-105144</cfFedIdId>
<cfFedId>10.5281/zenodo.3784350</cfFedId>
<cfStartDate>2020-06-03T24:00:00</cfStartDate>
<cfFedId_Class>
<cfClassId>31d222b4-11e0-434b-b5ae-088119c51189</cfClassId>
<cfClassSchemeId>bccb3266-689d-4740-a039-c96594b4d916</cfClassSchemeId>
</cfFedId_Class>
<cfFedId_Srv>
<cfSrvId>5123451</cfSrvId>
<cfClassId>eda2b2e2-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>5a270628-f593-4ff4-a44a-95660c76e182</cfClassSchemeId>
</cfFedId_Srv>
</cfFedId>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-38516</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-38516-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2020-06-03T24:00:00</cfStartDate>
<cfFamilyNames>Băjenescu</cfFamilyNames>
<cfFirstNames>Titu-Marius</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-38515</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-38515-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2020-06-03T24:00:00</cfStartDate>
<cfFamilyNames>Bâzu</cfFamilyNames>
<cfFirstNames>Marius</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfSrv>
<cfSrvId>5123451</cfSrvId>
<cfName cfLangCode='en' cfTrans='o'>CrossRef DOI prefix service</cfName>
<cfDescr cfLangCode='en' cfTrans='o'>The service of issuing DOI prefixes to publishers</cfDescr>
<cfKeyw cfLangCode='en' cfTrans='o'>persistent identifier; Digital Object Identifier</cfKeyw>
</cfSrv>
</CERIF>