Cubic differential systems with two invariant straight lines of multiplicity m﴾6,1)
Închide
Articolul precedent
Articolul urmator
479 2
Ultima descărcare din IBN:
2023-01-23 18:45
SM ISO690:2012
VACARAŞ, Olga. Cubic differential systems with two invariant straight lines of multiplicity m﴾6,1). In: Tendinţe contemporane ale dezvoltării ştiinţei: viziuni ale tinerilor cercetători, Ed. 3, 10 martie 2014, Chișinău. Chișinău, Republica Moldova: Universitatea Academiei de Ştiinţe a Moldovei, 2014, Editia 3, p. 14. ISBN 978-9975-4257-2-8.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Tendinţe contemporane ale dezvoltării ştiinţei: viziuni ale tinerilor cercetători
Editia 3, 2014
Conferința "Tendinţe contemporane ale dezvoltării ştiinţei: viziuni ale tinerilor cercetători"
3, Chișinău, Moldova, 10 martie 2014

Cubic differential systems with two invariant straight lines of multiplicity m﴾6,1)


Pag. 14-14

Vacaraş Olga
 
Institutul de Matematică şi Informatică al AŞM
 
Proiecte:
 
Disponibil în IBN: 8 februarie 2019



Teza

We consider the real cubic system of differential equations dx / dt = P(x, y), dy / dt = Q(x, y); GCD(P,Q) = 1, (1) max{deg(P), deg(Q)}= 3. A straight line a x + b y +g = 0, a,b ,g ÎC, (a,b ) ¹ (0,0) is invariant for (1) if there exists a polynomial K(x, y) such that the identity aP(x, y)+bQ(x, y) º (ax +by +g )K(x, y) holds. In this paper we show that if the cubic system admits an affine straight line of multiplicity six, then the line at infinity cannot have multiplicity greater than one. Theorem. Any cubic system having two invariant straight lines (including the line at infinity) of the multiplicity m(6,1) via affine transformation and time rescaling can be brought to the form , 1 3 , 0. 3 2 x& = x y& = + ax + x y a ¹ (2) For system (2), x = 0 is the invariant straight line of multiplicity m1 = 6 and the line at infinity has multiplicity m2 = 1 . The perturbed cubic system (3) has six distinct invariant straight lines = 0, 6 e + (3 - 3e ) - 3e - 3 3 x y x 2 0, 6 (3 3 ) 3 2 0, 6 (3 3 ) 6 2 0, 3 3 3 3 3 3 3 - e = ye + - e x + e - e = ye + - e x - e - e = 2 2 2 2 0 2 2 3 3 2 3 x - x e - xe - xe -e - ae = which converge to x = 0 when e ®0.