Micrometer-size GaN Schottky-diodes for MM-wave frequency multipliers
Închide
Articolul precedent
Articolul urmator
62 0
SM ISO690:2012
COJOCARI, Oleg, POPA, Veaceslav, URSACHI, Veaceslav, TIGINYANU, Ion, MUTAMBA, Kabula, SAGLAM, M., HARTNAGEL, Hans Ludwig. Micrometer-size GaN Schottky-diodes for MM-wave frequency multipliers. In: International Conference on Infrared and Millimeter Waves, Ed. 29, 27 septembrie - 1 octombrie 2004, Karlsruhe. New Jersey: Institute of Electrical and Electronics Engineers Inc. (IEEE), 2004, Ediția 29, pp. 317-318. ISBN 0780384903, 978-078038490-3. DOI: https://doi.org/10.1109/ICIMW.2004.1422084
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
International Conference on Infrared and Millimeter Waves
Ediția 29, 2004
Conferința "2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics"
29, Karlsruhe, Germania, 27 septembrie - 1 octombrie 2004

Micrometer-size GaN Schottky-diodes for MM-wave frequency multipliers

DOI:https://doi.org/10.1109/ICIMW.2004.1422084

Pag. 317-318

Cojocari Oleg123, Popa Veaceslav13, Ursachi Veaceslav13, Tiginyanu Ion13, Mutamba Kabula2, Saglam M.2, Hartnagel Hans Ludwig2
 
1 Institute of Applied Physics, Academy of Sciences of Moldova,
2 Technical University Darmstadt,
3 Technical University of Moldova
 
 
Disponibil în IBN: 30 ianuarie 2024


Rezumat

Small-size Pt/n-GaN Schottky diodes are fabricated using electrochemical technique for anode metallisation. Effects of surface passivation and thermal annealing on the interface quality is studied using PL-measurements and electrical characterisation. DC-characteristics of 5μm-diameter anodes result in a cut-off frequency of 390GHz. The perspectives of GaN-diodes for THz-frequency multipliers are discussed.

Cuvinte-cheie
Annealing, capacitance, Current voltage characteristics, Electric breakdown, electrochemistry, Epitaxial growth, etching, Frequency multiplying circuits, Gallium nitride, Lattice constants, Metallorganic chemical vapor deposition, Passivation, photoluminescence, Plasma enhanced chemical vapor deposition