An optimal control problem for a modified M=G=k queueing system
Închide
Articolul precedent
Articolul urmator
220 4
Ultima descărcare din IBN:
2024-10-22 05:03
Căutarea după subiecte
similare conform CZU
519.68+517.977.5 (1)
Matematică computațională. Analiză numerică. Programarea calculatoarelor (128)
Ecuații diferențiale. Ecuații integrale. Alte ecuații funcționale. Diferențe finite. Calculul variațional. Analiză funcțională (252)
SM ISO690:2012
LEFEBVRE, Mario. An optimal control problem for a modified M=G=k queueing system. In: Workshop on Intelligent Information Systems, Ed. 2023, 19-21 octombrie 2023, Chişinău. Chişinau, Moldova: Valnex, 2023, pp. 141-148. ISBN 978-9975-68-492-7..
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Workshop on Intelligent Information Systems 2023
Conferința "Workshop on Intelligent Information Systems"
2023, Chişinău, Moldova, 19-21 octombrie 2023

An optimal control problem for a modified M=G=k queueing system

CZU: 519.68+517.977.5

Pag. 141-148

Lefebvre Mario
 
Polytechnique Montréal
 
 
 
Disponibil în IBN: 8 decembrie 2023


Rezumat

Assume that in the M=G=k queueing model, it is possible to choose the number of servers who are working at the beginning of any service period. Suppose that the system starts at time t0 and that there are then k + l customers waiting for service. We want to determine the optimal number of servers that should be used to reduce the total number of customers to k + r, where 0  r < l, taking the control costs into account. The particular case when the service time is deterministic is treated.

Cuvinte-cheie
homing problem, stochastic control, M=M=k=c queueing system, first-passage time