Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
245 25 |
Ultima descărcare din IBN: 2024-08-18 14:28 |
Căutarea după subiecte similare conform CZU |
517.91 (11) |
Ecuații diferențiale. Ecuații integrale. Alte ecuații funcționale. Diferențe finite. Calculul variațional. Analiză funcțională (246) |
SM ISO690:2012 BELAIDI, Benharrat. Growth Properties of Solutions to Higher Order Complex Linear Differential Equations with Analytic Coefficients in the Annulus. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2023, nr. 2(102), pp. 19-35. ISSN 1024-7696. DOI: https://doi.org/10.56415/basm.y2023.i2.p19 |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica | ||||||||
Numărul 2(102) / 2023 / ISSN 1024-7696 /ISSNe 2587-4322 | ||||||||
|
||||||||
DOI:https://doi.org/10.56415/basm.y2023.i2.p19 | ||||||||
CZU: 517.91 | ||||||||
Pag. 19-35 | ||||||||
|
||||||||
Descarcă PDF | ||||||||
Rezumat | ||||||||
In this paper, by using the Nevanlinna value distribution theory of meromorphic functions on an annulus, we deal with the growth properties of solutions of the linear differential equation f(k)+Bk−1 (z) f(k−1)+· · ·+B1 (z) f0+B0 (z) f = 0, where k ≥ 2 is an integer and Bk−1 (z) , ...,B1 (z) ,B0 (z) are analytic on an annulus. Under some conditions on the coefficients, we obtain some results concerning the estimates of the order and the hyper-order of solutions of the above equation. The results obtained extend and improve those of Wu and Xuan in [16]. |
||||||||
Cuvinte-cheie and phrases: linear differential equations, analytic solutions, annulus, hyper order |
||||||||
|
Dublin Core Export
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc='http://purl.org/dc/elements/1.1/' xmlns:oai_dc='http://www.openarchives.org/OAI/2.0/oai_dc/' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd'> <dc:creator>Belaidi, B.</dc:creator> <dc:date>2023-11-22</dc:date> <dc:description xml:lang='en'><p>In this paper, by using the Nevanlinna value distribution theory of meromorphic functions on an annulus, we deal with the growth properties of solutions of the linear differential equation f(k)+Bk−1 (z) f(k−1)+· · ·+B1 (z) f0+B0 (z) f = 0, where k ≥ 2 is an integer and Bk−1 (z) , ...,B1 (z) ,B0 (z) are analytic on an annulus. Under some conditions on the coefficients, we obtain some results concerning the estimates of the order and the hyper-order of solutions of the above equation. The results obtained extend and improve those of Wu and Xuan in [16].</p></dc:description> <dc:identifier>10.56415/basm.y2023.i2.p19</dc:identifier> <dc:source>Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica 102 (2) 19-35</dc:source> <dc:subject>and phrases: linear differential equations</dc:subject> <dc:subject>analytic solutions</dc:subject> <dc:subject>annulus</dc:subject> <dc:subject>hyper order</dc:subject> <dc:title>Growth Properties of Solutions to Higher Order Complex Linear Differential Equations with Analytic Coefficients in the Annulus</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> </oai_dc:dc>