Fermi-surface rearrangement in Bi bicrystals with twisting superconducting crystallite interfaces
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
136 0
SM ISO690:2012
MUNTYANU, Fiodor M., GILEWSKI, Andrzej, NENKOV , Konstantin A., ZALESKI, Andrzej Janusz, CHISTOL, Vitalie. Fermi-surface rearrangement in Bi bicrystals with twisting superconducting crystallite interfaces. In: Physical Review B - Condensed Matter and Materials Physics, 2007, vol. 76, p. 0. ISSN 1098-0121. DOI: https://doi.org/10.1103/PhysRevB.76.014532
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Physical Review B - Condensed Matter and Materials Physics
Volumul 76 / 2007 / ISSN 1098-0121 /ISSNe 1550-235X

Fermi-surface rearrangement in Bi bicrystals with twisting superconducting crystallite interfaces

DOI:https://doi.org/10.1103/PhysRevB.76.014532

Pag. 0-0

Muntyanu Fiodor M.12, Gilewski Andrzej2, Nenkov Konstantin A.23, Zaleski Andrzej Janusz4, Chistol Vitalie5
 
1 Institute of Applied Physics, Academy of Sciences of Moldova,
2 International Laboratory of High Magnetic Fields and Low Temperatures,
3 Leibniz-Institut für Festkörper und Werkstofforschung Dresden - IFW Dresden,
4 Institute of Low Temperatures and Structural Research, PAS,
5 Technical University of Moldova
 
 
Disponibil în IBN: 29 iunie 2023


Rezumat

We report an investigation of quantum oscillations of Hall resistance and magnetoresistance in Bi bicrystals with superconducting interface of twisting type. From the observed quantum oscillations, we find a similar Fermi surface consisting at interface of bicrystals and bulk nonsuperconducting rhombohedral Bi. At the same time, clear differences are observed in the normal and superconducting behavior of the small and large crystallite disorientation angle interfaces. It is shown that the Fermi surface for electrons in small angle interfaces is less anisotropic and is much larger in volume than in bulk Bi. The considerable change of the shape, elongation, and volume of hole isoenergetic surface at large angle interfaces is revealed. 

Cuvinte-cheie
Bismuth, thermoelectric, thin films