Dilution of a polar magnet: Structure and magnetism of Zn-substituted Co2Mo3 O8
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
236 0
SM ISO690:2012
PRODAN, Lilian, FILIPPOVA, Irina, ZUBTSOVSKII, Alexander O., SHOVA, Sergiu, WIDMANN, S., TSIRLIN, Alexander A., KEZSMARKI, Istvan, TSURKAN, Vladimir. Dilution of a polar magnet: Structure and magnetism of Zn-substituted Co2Mo3 O8. In: Physical Review B, 2022, vol. 106, p. 0. ISSN 2469-9950. DOI: https://doi.org/10.1103/PhysRevB.106.174421
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Physical Review B
Volumul 106 / 2022 / ISSN 2469-9950 /ISSNe 2469-9969

Dilution of a polar magnet: Structure and magnetism of Zn-substituted Co2Mo3 O8

DOI:https://doi.org/10.1103/PhysRevB.106.174421

Pag. 0-0

Prodan Lilian12, Filippova Irina2, Zubtsovskii Alexander O.1, Shova Sergiu3, Widmann S.1, Tsirlin Alexander A.14, Kezsmarki Istvan1, Tsurkan Vladimir12
 
1 University of Augsburg,
2 Institute of Applied Physics,
3 “Petru Poni” Institute of Macromolecular Chemistry,
4 Leipzig University
 
 
Disponibil în IBN: 14 decembrie 2022


Rezumat

We report crystal structure, magnetization, and specific heat measurements on single crystals of the hexagonal polar magnet Co2-xZnxMo3O8 magnetically diluted by replacing Co by Zn. In contrast to the transformation from the antiferromagnetic to a ferrimagnetic state observed in the isostructural Fe2Mo3O8 upon small Zn doping, a robust antiferromagnetic behavior is preserved in Zn-doped Co2Mo3O8 up to x=0.55. The Néel temperature decreases from TN=40 K at x=0 to 23 K at x=0.55, thus extrapolating to x=1.27 (36% filling) as the percolation threshold typical for a three-dimensional, highly coordinated network. This indicates strong magnetic couplings beyond the honeycomb planes in Co2Mo3O8. A sharp peak in the specific heat and a clear cusp in the susceptibility associated with the onset of magnetic order is observed up to x=0.55, whereas at x=0.66 these features are broadened due to increased disorder. Interestingly, the in-plane lattice parameter, the Curie-Weiss temperature, and the magnetic entropy vary with x in a concerted but nonmonotonic manner. These observations can be traced back to the observed site-selective Zn substitution. We found that in the low-doping regime (x<0.2) Zn2+ ions primarily occupy the octahedrally coordinated sites, although they have a clear preference for occupying the tetrahedrally coordinated sites at higher doping levels. Due to the multiple interlayer exchange paths, dependent on the coordination of the Co2+ ions, this behavior is reflected in the nonmonotonic variation of the Curie-Weiss temperature and magnetic entropy with substitution.

Cuvinte-cheie
Antiferromagnetism, Binary alloys, crystal structure, entropy, Magnetic couplings, Magnets, single crystals, specific heat, Zinc

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-169706</cfResPublId>
<cfResPublDate>2022-11-01</cfResPublDate>
<cfISSN>2469-9950</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/169706</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Dilution of a polar magnet: Structure and magnetism of Zn-substituted Co2Mo3 O8</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>Antiferromagnetism; Binary alloys; crystal structure; entropy; Magnetic couplings; Magnets; single crystals; specific heat; Zinc</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>We report crystal structure, magnetization, and specific heat measurements on single crystals of the hexagonal polar magnet Co2-xZnxMo3O8 magnetically diluted by replacing Co by Zn. In contrast to the transformation from the antiferromagnetic to a ferrimagnetic state observed in the isostructural Fe2Mo3O8 upon small Zn doping, a robust antiferromagnetic behavior is preserved in Zn-doped Co2Mo3O8 up to x=0.55. The N&eacute;el temperature decreases from TN=40 K at x=0 to 23 K at x=0.55, thus extrapolating to x=1.27 (36% filling) as the percolation threshold typical for a three-dimensional, highly coordinated network. This indicates strong magnetic couplings beyond the honeycomb planes in Co2Mo3O8. A sharp peak in the specific heat and a clear cusp in the susceptibility associated with the onset of magnetic order is observed up to x=0.55, whereas at x=0.66 these features are broadened due to increased disorder. Interestingly, the in-plane lattice parameter, the Curie-Weiss temperature, and the magnetic entropy vary with x in a concerted but nonmonotonic manner. These observations can be traced back to the observed site-selective Zn substitution. We found that in the low-doping regime (x&lt;0.2) Zn2+ ions primarily occupy the octahedrally coordinated sites, although they have a clear preference for occupying the tetrahedrally coordinated sites at higher doping levels. Due to the multiple interlayer exchange paths, dependent on the coordination of the Co2+ ions, this behavior is reflected in the nonmonotonic variation of the Curie-Weiss temperature and magnetic entropy with substitution.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-28950</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-1016</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-104430</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-12182</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-54337</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-58954</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-55663</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-1111</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfFedId>
<cfFedIdId>ibn-doi-169706</cfFedIdId>
<cfFedId>10.1103/PhysRevB.106.174421</cfFedId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
<cfFedId_Class>
<cfClassId>31d222b4-11e0-434b-b5ae-088119c51189</cfClassId>
<cfClassSchemeId>bccb3266-689d-4740-a039-c96594b4d916</cfClassSchemeId>
</cfFedId_Class>
<cfFedId_Srv>
<cfSrvId>5123451</cfSrvId>
<cfClassId>eda2b2e2-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>5a270628-f593-4ff4-a44a-95660c76e182</cfClassSchemeId>
</cfFedId_Srv>
</cfFedId>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-28950</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-28950-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
<cfFamilyNames>Prodan</cfFamilyNames>
<cfFirstNames>Lilian</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-1016</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-1016-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
<cfFamilyNames>Filippova</cfFamilyNames>
<cfFirstNames>Irina</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-104430</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-104430-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
<cfFamilyNames>Zubtsovskii</cfFamilyNames>
<cfFirstNames>Alexander O.</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-12182</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-12182-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
<cfFamilyNames>Shova</cfFamilyNames>
<cfFirstNames>Sergiu</cfFirstNames>
<cfFamilyNames>Шова</cfFamilyNames>
<cfFirstNames>Сергей</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-54337</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-54337-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
<cfFamilyNames>Widmann</cfFamilyNames>
<cfFirstNames>S.</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-58954</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-58954-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
<cfFamilyNames>Tsirlin</cfFamilyNames>
<cfFirstNames>Alexander A.</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-55663</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-55663-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
<cfFamilyNames>Kezsmarki</cfFamilyNames>
<cfFirstNames>Istvan</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-1111</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-1111-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2022-11-01T24:00:00</cfStartDate>
<cfFamilyNames>Tsurkan</cfFamilyNames>
<cfFirstNames>Vladimir</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfSrv>
<cfSrvId>5123451</cfSrvId>
<cfName cfLangCode='en' cfTrans='o'>CrossRef DOI prefix service</cfName>
<cfDescr cfLangCode='en' cfTrans='o'>The service of issuing DOI prefixes to publishers</cfDescr>
<cfKeyw cfLangCode='en' cfTrans='o'>persistent identifier; Digital Object Identifier</cfKeyw>
</cfSrv>
</CERIF>