Magic Sigma Coloring of a Graph
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
433 11
Ultima descărcare din IBN:
2024-02-07 08:10
Căutarea după subiecte
similare conform CZU
519.17 (68)
Analiză combinatorică. Teoria grafurilor (115)
SM ISO690:2012
SWAMY, Narahari Narasimha, SOORYANARAYANA, Badekara, AKSHARA, Prasad S. P.. Magic Sigma Coloring of a Graph. In: Computer Science Journal of Moldova, 2021, nr. 2(86), pp. 257-270. ISSN 1561-4042.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Computer Science Journal of Moldova
Numărul 2(86) / 2021 / ISSN 1561-4042 /ISSNe 2587-4330

Magic Sigma Coloring of a Graph

CZU: 519.17
MSC 2010: 2010. 05C15.

Pag. 257-270

Swamy Narahari Narasimha1, Sooryanarayana Badekara2, Akshara Prasad S. P.1
 
1 Tumkur University,
2 Dr. Ambedkar Institute Of Technology
 
 
Disponibil în IBN: 21 septembrie 2021


Rezumat

A sigma coloring of a non-trivial connected graph G is a coloring c : V (G) → N such that (u) 6= (v) for every two adjacent vertices u, v ∈ V (G), where (v) is the sum of the colors of the vertices in the open neighborhood N(v) of v ∈ V (G). The minimum number of colors required in a sigma coloring of a graph G is called the sigma chromatic number of G, denoted (G). A coloring c : V (G) → {1, 2, · · · , k} is said to be a magic sigma coloring of G if the sum of colors of all the vertices in the open neighborhood of each vertex of G is the same. In this paper, we study some of the properties of magic sigma coloring of a graph. Further, we define the magic sigma chromatic number of a graph and determine it for some known families of graphs.

Cuvinte-cheie
Sigma Coloring, open neighborhood sum, magic sigma coloring, sigma chromatic number

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-138680</cfResPublId>
<cfResPublDate>2021-09-15</cfResPublDate>
<cfVol>86</cfVol>
<cfIssue>2</cfIssue>
<cfStartPage>257</cfStartPage>
<cfISSN>1561-4042</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/138680</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Magic Sigma Coloring of a Graph</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>Sigma Coloring; open neighborhood sum; magic
sigma coloring; sigma chromatic number</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>A sigma coloring of a non-trivial connected graph G is a coloring c : V (G) &rarr; N such that (u) 6= (v) for every two adjacent vertices u, v &isin; V (G), where (v) is the sum of the colors of the vertices in the open neighborhood N(v) of v &isin; V (G). The minimum number of colors required in a sigma coloring of a graph G is called the sigma chromatic number of G, denoted (G). A coloring c : V (G) &rarr; {1, 2, &middot; &middot; &middot; , k} is said to be a magic sigma coloring of G if the sum of colors of all the vertices in the open neighborhood of each vertex of G is the same. In this paper, we study some of the properties of magic sigma coloring of a graph. Further, we define the magic sigma chromatic number of a graph and determine it for some known families of graphs.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-09-15T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2021-09-15T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-92151</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-09-15T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-92152</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-09-15T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-92153</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-09-15T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-92151</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-92151-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-09-15T24:00:00</cfStartDate>
<cfFamilyNames>Swamy</cfFamilyNames>
<cfFirstNames>Narahari Narasimha</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-92152</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-92152-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-09-15T24:00:00</cfStartDate>
<cfFamilyNames>Sooryanarayana</cfFamilyNames>
<cfFirstNames>Badekara</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-92153</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-92153-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-09-15T24:00:00</cfStartDate>
<cfFamilyNames>Akshara</cfFamilyNames>
<cfFirstNames>Prasad S. P.</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>