Gas sensor performances of α-MoO3 belts nanostructured with Pd
Close
Articolul precedent
Articolul urmator
741 10
Ultima descărcare din IBN:
2023-11-01 16:54
SM ISO690:2012
CREŢU, Vasilii, POSTICA, Vasile, ABABII, Nicolai, TROFIM, Viorel, RAILEAN, Sergey, LUPAN, Oleg. Gas sensor performances of α-MoO3 belts nanostructured with Pd. In: Health Technology Management: 3rd International Conference, Ed. 3, 6-7 octombrie 2016, Chișinău. Chișinău, Republica Moldova: Technical University of Moldova, 2016, Editia 3, pp. 82-83.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Health Technology Management
Editia 3, 2016
Conferința "Health Technology Management"
3, Chișinău, Moldova, 6-7 octombrie 2016

Gas sensor performances of α-MoO3 belts nanostructured with Pd


Pag. 82-83

Creţu Vasilii, Postica Vasile, Ababii Nicolai, Trofim Viorel, Railean Sergey, Lupan Oleg
 
Technical University of Moldova
 
Proiecte:
 
Disponibil în IBN: 2 aprilie 2019


Rezumat

Molybdenum trioxide (MoO3) due to its unique physical and chemical properties is one of the most attractive candidates for different promising technological applications [1]. -MoO3 has a unique morphology that resembles a structure of layered graphene [2]. Due to the layered structure and high chemical stability MoO3 is used for such applications as gas sensors, recording or storage materials, lubricants, electrochromism, and fotochromism [3]. Meanwhile, MoO3 is a promising material for catalysts [4], the field emission, light emitting diode, and energy storage elements [5], etc., because of its electrical and optical propierties. Nanobelts shaped nanostructures of MoO3 are of major interest due to various gas properties and simple integration technology for bottom-up and the possibility of obtaining cost-effective technologies. Their major drawback is the high surface-to-volume ratio. The increased gas response was obtained by nanostructuration of -MoO3 nanostructure surface with an aqueous solution of PdCl2 presented in our previous work [6]. Figure 1. (a) The SEM images of the nanogranulate belts Pd / α-MoO3 with scale bar of 200 nm; (b) The SEM images of the nanogranulate belts Pd / α-MoO3 after the application of hydrogen gas tests; (c) Gas response measurements to hydrogen gas of nanostructured Pd / α-MoO3. In Figure 1 (a) is provided the surface after the chemical reaction with aqueous PdCl2 solution. The belts surface of α-MoO3 becomes nanostructured by forming nanocrystallites or nanogranulates. Layered morphology of the belts is not modified by reaction with PdCl2 and obvious changes in morphology of α-MoO3 belts was not observed. It was observed that after the reduction with hydrogen in Figure 1 (b), the surface concentration of the Mo6+, decreases greatly by reducing of Mo5+ and the Mo4+. H+ ions interact mainly with oxygen atoms double coordinated from network, leading to the formation of hydrogen molibdenum bronze (HxMoO3) and MoO3 substoichiometric (MoO3-x). Response to H2 gas is calculated using the formula S=((Igaz-Iair)/Iair)*100% thereby obtaining a response of 141% at operating temperature of 150 °C, response time 17 s and the partial recovery time is 9 s. The samples did not demonstrate a full recovery of the signal due to changes in surface morphology.

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-75023</cfResPublId>
<cfResPublDate>2016</cfResPublDate>
<cfVol>Editia 3</cfVol>
<cfStartPage>82</cfStartPage>
<cfISBN></cfISBN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/75023</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Gas sensor performances of &alpha;-MoO3 belts nanostructured with Pd</cfTitle>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>Molybdenum trioxide (MoO3) due to its unique physical and chemical properties is one of the most attractive candidates for different promising technological applications [1]. -MoO3 has a unique morphology that resembles a structure of layered graphene [2]. Due to the layered structure and high chemical stability MoO3 is used for such applications as gas sensors, recording or storage materials, lubricants, electrochromism, and fotochromism [3]. Meanwhile, MoO3 is a promising material for catalysts [4], the field emission, light emitting diode, and energy storage elements [5], etc., because of its electrical and optical propierties. Nanobelts shaped nanostructures of MoO3 are of major interest due to various gas properties and simple integration technology for bottom-up and the possibility of obtaining cost-effective technologies. Their major drawback is the high surface-to-volume ratio. The increased gas response was obtained by nanostructuration of -MoO3 nanostructure surface with an aqueous solution of PdCl2 presented in our previous work [6]. Figure 1. (a) The SEM images of the nanogranulate belts Pd / &alpha;-MoO3 with scale bar of 200 nm; (b) The SEM images of the nanogranulate belts Pd / &alpha;-MoO3 after the application of hydrogen gas tests; (c) Gas response measurements to hydrogen gas of nanostructured Pd / &alpha;-MoO3. In Figure 1 (a) is provided the surface after the chemical reaction with aqueous PdCl2 solution. The belts surface of &alpha;-MoO3 becomes nanostructured by forming nanocrystallites or nanogranulates. Layered morphology of the belts is not modified by reaction with PdCl2 and obvious changes in morphology of &alpha;-MoO3 belts was not observed. It was observed that after the reduction with hydrogen in Figure 1 (b), the surface concentration of the Mo6+, decreases greatly by reducing of Mo5+ and the Mo4+. H+ ions interact mainly with oxygen atoms double coordinated from network, leading to the formation of hydrogen molibdenum bronze (HxMoO3) and MoO3 substoichiometric (MoO3-x). Response to H2 gas is calculated using the formula S=((Igaz-Iair)/Iair)*100% thereby obtaining a response of 141% at operating temperature of 150 &deg;C, response time 17 s and the partial recovery time is 9 s. The samples did not demonstrate a full recovery of the signal due to changes in surface morphology.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-13311</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-43464</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-43465</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-4354</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-212</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-863</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-13311</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-13311-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
<cfFamilyNames>Creţu</cfFamilyNames>
<cfFirstNames>Vasilii</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-43464</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-43464-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
<cfFamilyNames>Postica</cfFamilyNames>
<cfFirstNames>Vasile</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-43465</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-43465-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
<cfFamilyNames>Ababii</cfFamilyNames>
<cfFirstNames>Nicolai</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-4354</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-4354-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
<cfFamilyNames>Trofim</cfFamilyNames>
<cfFirstNames>Viorel</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-212</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-212-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
<cfFamilyNames>Railean</cfFamilyNames>
<cfFirstNames>Sergey</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-863</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-863-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2016T24:00:00</cfStartDate>
<cfFamilyNames>Lupan</cfFamilyNames>
<cfFirstNames>Oleg</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>