Elucidating the role of non-covalent interactions in unexpectedly high and selective CO2uptake and catalytic conversion of porphyrin-based ionic organic polymers
Close
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
441 1
Ultima descărcare din IBN:
2023-02-24 11:30
SM ISO690:2012
KOSTAKOGLU, Sinem Tuncel, CHUMAKOV, Yurii, ZORLU, Yunus, SADAK, Ali Enis, DENIZALTI, Serpil, GÜREK, Ayşe Gül, AYHAN, Mehmet Menaf. Elucidating the role of non-covalent interactions in unexpectedly high and selective CO2uptake and catalytic conversion of porphyrin-based ionic organic polymers. In: Materials Advances, 2021, nr. 2(11), pp. 3685-3694. ISSN 2633-5409. DOI: https://doi.org/10.1039/d1ma00217a
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Materials Advances
Numărul 2(11) / 2021 / ISSN 2633-5409 /ISSNe 2633-5409

Elucidating the role of non-covalent interactions in unexpectedly high and selective CO2uptake and catalytic conversion of porphyrin-based ionic organic polymers

DOI:https://doi.org/10.1039/d1ma00217a

Pag. 3685-3694

Kostakoglu Sinem Tuncel1, Chumakov Yurii12, Zorlu Yunus1, Sadak Ali Enis3, Denizalti Serpil4, Gürek Ayşe Gül1, Ayhan Mehmet Menaf1
 
1 Gebze Technical University,
2 Institute of Applied Physics,
3 National Metrology Institute (TUBITAKUME), Kocaeli,
4 Ege University Izmir
 
 
Disponibil în IBN: 28 iunie 2021


Rezumat

Here, we present viologen-porphyrin based ionic covalent organic polymers (H2-ICOP and Zn-ICOP) with multiple CO2-philic sites. The specific surface areas of H2-ICOP and Zn-ICOP were found to be 9 m2 g-1 and 20 m2 g-1, respectively. CO2 uptake analyses reveal that H2-ICOP exhibits very high CO2 capture uptake (62.9 mg g-1), which is one of the highest values among previously reported ICOPs. The results indicate very efficient non-covalent interactions between H2-ICOP and CO2. The possible non-covalent interactions of hydrogen (OCO2⋯H-N), tetrel (CCO2⋯N, CCO2⋯Cl-), pnicogen (OCO2⋯N+), and spodium bonds (OCO2⋯Zn) between CO2 and H2-ICOP and Zn-ICOP are investigated via symmetry adapted perturbation theory (SAPT) analysis and electrostatic potential maps (MEP). The strength of non-covalent interactions in H2-ICOP and Zn-ICOP is decreasing in the following order ΔEC⋯N > ΔEC⋯Cl- > ΔEO⋯N+ and ΔEZn⋯O > ΔEC⋯Cl- > ΔEC⋯N > ΔEO⋯N+, respectively. The major CO2 uptake contribution comes from CCO2⋯N tetrel bonding (-22.02 kJ mol-1) interactions for H2-ICOP, whereas OCO2⋯Zn spodium bonding (-21.065 kJ mol-1) interactions for Zn-ICOP. H2-ICOP has more CO2-philic moieties with powerful non-covalent interactions compared to Zn-ICOP, which is in good agreement with the experimental results. Furthermore, the CO2 catalytic conversion performances of Zn-ICOP and H2-ICOP gave good yields of 83% and 54%, respectively. Surprisingly, Zn-ICOP, despite having significantly lower CO2 uptake capacity, displayed better catalytic activity than H2-ICOP, owing to a higher number of counter anions (Cl-) on its surface, which shows the crucial role of the counter anion (Cl-) in the mechanism of this catalytic reaction.

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-133954</cfResPublId>
<cfResPublDate>2021-06-07</cfResPublDate>
<cfVol>11</cfVol>
<cfIssue>2</cfIssue>
<cfStartPage>3685</cfStartPage>
<cfISSN>2633-5409</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/133954</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Elucidating the role of non-covalent interactions in unexpectedly high and selective CO2uptake and catalytic conversion of porphyrin-based ionic organic polymers</cfTitle>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>Here, we present viologen-porphyrin based ionic covalent organic polymers (H2-ICOP and Zn-ICOP) with multiple CO2-philic sites. The specific surface areas of H2-ICOP and Zn-ICOP were found to be 9 m2 g-1 and 20 m2 g-1, respectively. CO2 uptake analyses reveal that H2-ICOP exhibits very high CO2 capture uptake (62.9 mg g-1), which is one of the highest values among previously reported ICOPs. The results indicate very efficient non-covalent interactions between H2-ICOP and CO2. The possible non-covalent interactions of hydrogen (OCO2⋯H-N), tetrel (CCO2⋯N, CCO2⋯Cl-), pnicogen (OCO2⋯N+), and spodium bonds (OCO2⋯Zn) between CO2 and H2-ICOP and Zn-ICOP are investigated via symmetry adapted perturbation theory (SAPT) analysis and electrostatic potential maps (MEP). The strength of non-covalent interactions in H2-ICOP and Zn-ICOP is decreasing in the following order &Delta;EC⋯N &gt; &Delta;EC⋯Cl- &gt; &Delta;EO⋯N+ and &Delta;EZn⋯O &gt; &Delta;EC⋯Cl- &gt; &Delta;EC⋯N &gt; &Delta;EO⋯N+, respectively. The major CO2 uptake contribution comes from CCO2⋯N tetrel bonding (-22.02 kJ mol-1) interactions for H2-ICOP, whereas OCO2⋯Zn spodium bonding (-21.065 kJ mol-1) interactions for Zn-ICOP. H2-ICOP has more CO2-philic moieties with powerful non-covalent interactions compared to Zn-ICOP, which is in good agreement with the experimental results. Furthermore, the CO2 catalytic conversion performances of Zn-ICOP and H2-ICOP gave good yields of 83% and 54%, respectively. Surprisingly, Zn-ICOP, despite having significantly lower CO2 uptake capacity, displayed better catalytic activity than H2-ICOP, owing to a higher number of counter anions (Cl-) on its surface, which shows the crucial role of the counter anion (Cl-) in the mechanism of this catalytic reaction.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-90337</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-991</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-58280</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-90338</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-90339</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-58281</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-87327</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfFedId>
<cfFedIdId>ibn-doi-133954</cfFedIdId>
<cfFedId>10.1039/d1ma00217a</cfFedId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
<cfFedId_Class>
<cfClassId>31d222b4-11e0-434b-b5ae-088119c51189</cfClassId>
<cfClassSchemeId>bccb3266-689d-4740-a039-c96594b4d916</cfClassSchemeId>
</cfFedId_Class>
<cfFedId_Srv>
<cfSrvId>5123451</cfSrvId>
<cfClassId>eda2b2e2-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>5a270628-f593-4ff4-a44a-95660c76e182</cfClassSchemeId>
</cfFedId_Srv>
</cfFedId>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-90337</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-90337-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
<cfFamilyNames>Kostakoglu</cfFamilyNames>
<cfFirstNames>Sinem Tuncel</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-991</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-991-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
<cfFamilyNames>Chumakov</cfFamilyNames>
<cfFirstNames>Yurii</cfFirstNames>
<cfFamilyNames>Чумаков</cfFamilyNames>
<cfFirstNames>Юрий</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-58280</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-58280-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
<cfFamilyNames>Zorlu</cfFamilyNames>
<cfFirstNames>Yunus</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-90338</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-90338-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
<cfFamilyNames>Sadak</cfFamilyNames>
<cfFirstNames>Ali Enis</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-90339</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-90339-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
<cfFamilyNames>Denizalti</cfFamilyNames>
<cfFirstNames>Serpil</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-58281</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-58281-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
<cfFamilyNames>Gürek</cfFamilyNames>
<cfFirstNames>Ayşe Gül</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-87327</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-87327-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-06-07T24:00:00</cfStartDate>
<cfFamilyNames>Ayhan</cfFamilyNames>
<cfFirstNames>Mehmet Menaf</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfSrv>
<cfSrvId>5123451</cfSrvId>
<cfName cfLangCode='en' cfTrans='o'>CrossRef DOI prefix service</cfName>
<cfDescr cfLangCode='en' cfTrans='o'>The service of issuing DOI prefixes to publishers</cfDescr>
<cfKeyw cfLangCode='en' cfTrans='o'>persistent identifier; Digital Object Identifier</cfKeyw>
</cfSrv>
</CERIF>