On integrability of homogeneous rational equations
Close
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
536 5
Ultima descărcare din IBN:
2024-01-29 13:59
Căutarea după subiecte
similare conform CZU
517.91 (11)
Differential equations. Integral equations. Other functional equations. Finite differences. Calculus of variations. Functional analysis (252)
SM ISO690:2012
COZMA, Dumitru, MATEI, Angela. On integrability of homogeneous rational equations. In: Acta et commentationes (Ştiinţe Exacte și ale Naturii), 2020, nr. 2(10), pp. 54-67. ISSN 2537-6284. DOI: https://doi.org/10.36120/2587-3644.v10i2.54-67
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Acta et commentationes (Ştiinţe Exacte și ale Naturii)
Numărul 2(10) / 2020 / ISSN 2537-6284 /ISSNe 2587-3644

On integrability of homogeneous rational equations

Integrabilitatea ecuatiilor diferentiale rationale omogene

DOI:https://doi.org/10.36120/2587-3644.v10i2.54-67
CZU: 517.91
MSC 2010: 34C05, 37G10.

Pag. 54-67

Cozma Dumitru, Matei Angela
 
Tiraspol State University
 
 
 
Disponibil în IBN: 16 ianuarie 2021


Rezumat

We study the integrability of homogeneous rational linear and homogeneous rational quadratic differential equations. We prove that these equations can be integrated by using their algebraic solutions which are invariant straight lines.

Se studiaza integrabilitatea ecuatiilor diferentiale rationare liniare omogene si rationare patratice omogene. Se demonstreaza ca aceste ecuatii pot fi integrate folosind solutiile algebrice ale ecuatiilor care reprezinta drepte invariante.

Cuvinte-cheie
homogeneous differential equations, algebraic solutions, integrability,

ecuatii diferentiale omogene, solutii algebrice, integrabilitate