Oligonuclear 3d-4f complexes as tectons in designing supramolecular solid-state architectures: Impact of the nature of linkers on the structural diversity
Close
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
157 0
SM ISO690:2012
GHEORGHE, Ruxandra, CUCOS, Paula, ANDRUH, Marius, COSTES, Jean-Pierre, DONNADIEU, Bruno, SHOVA, Sergiu. Oligonuclear 3d-4f complexes as tectons in designing supramolecular solid-state architectures: Impact of the nature of linkers on the structural diversity. In: Chemistry - A European Journal, 2005, vol. 12, pp. 187-203. ISSN 0947-6539. DOI: https://doi.org/10.1002/chem.200500321
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Chemistry - A European Journal
Volumul 12 / 2005 / ISSN 0947-6539

Oligonuclear 3d-4f complexes as tectons in designing supramolecular solid-state architectures: Impact of the nature of linkers on the structural diversity

DOI:https://doi.org/10.1002/chem.200500321

Pag. 187-203

Gheorghe Ruxandra1, Cucos Paula1, Andruh Marius1, Costes Jean-Pierre2, Donnadieu Bruno2, Shova Sergiu3
 
1 University of Bucharest,
2 Laboratoire de Chimie de Coordination du CNRS,
3 Moldova State University
 
 
Disponibil în IBN: 30 iunie 2023


Rezumat

Heteronuclear cationic complexes, [LCuLn]3 and [(LCu) 2Ln]3+, were employed as nodes in designing high-nuclearity complexes and coordination polymers with a rich variety of network topologies (L is the dianion of the Schiff base resulting from the 2:1 condensation of 3-methoxysalycilaldehyde with 1.3-propanediamine). Two families of linkers have been chosen: the first consists of exo-dentate ligands bearing nitrogen-donor atoms (bipyridine (bipy), dicyanamido (dca)), whereas the second consists of exo-dentate ligands with oxygen-donor atoms (anions derived from the acetylenedicarboxylic (H2acdca), fumaric (H2fum), trimesic (H3trim), and oxalic (H2ox) acids). The ligands belonging to the first family prefer copper(II) ions, whereas the ligands from the second family interact preferentially with oxophilic rare-earth cations. The following complexes have been obtained and crystallographically characterized: [LCuII(OH2)GdIII(NO3)3] (1). [{LCuIIGdIII(NO3)32(μ-4,4′-bipy)] (2), χ 1[LCu IIGdIII(acdca)1.5(H2O) 2]·13H2O (3), χ 2[LCu IIGdIII(fum)1.5(H2O) 2]·4H2O· C2H5OH (4), χ 1[LCuIISmIII(H 2O)-(Hfum)(fum)] (5), χ 1[LCu IIErIII(H2O)2-(fum)]NO 3·3H2O (6), χ 2[LCu IISmIII-(fum)1.5(H2O) 2]·4H2O·C2H5OH (7), [{(LCuII)2SmIII}2fum 2](OH)2 (8), χ 1[LCu IIGdIII(trim)(H2O)2]·H 2O (9), χ 2[{(LCuII2PrIII}(C2O4)0.5(dca)] dca·2H2O (10), [LCuIIGdIII(ox)(H 2O)3][CrIII(2,2′-bipy)(ox) 2]·9H2O (11), and [LCuGd-(H2O) 4{Cr(CN)6}]·3H2O (12). Compound 1 is representative of the whole family of binuclear CuII-LnIII complexes which have been used as precursors in constructing heteropolymetallic complexes. The rich variety of the resulting structures is due to several factors: 1) the nature of the donor atoms of the linkers, 2) the preference of the copper(II) ion for nitrogen atoms, 3) the oxophilicity of the lanthanides, 4) the degree of deprotonation of the polycarboxylic acids, 5) the various connectivity modes exhibited by the carboxylato groups, and 6) the stoichiometry of the final products, that is, the CuII/LnIII/linker molar ratio. A unique cluster formed by 24 water molecules was found in crystal 11. In compounds 2, 3, 4, 9, and 11 the CuII-GdIII exchange interaction was found to be ferromagnetic, with J values in the range of 3.53-8.96 cm-1. Compound 12 represents a new example of a polynuclear complex containing three different paramagnetic ions. The intranode CuII-GdIII ferromagnetic interaction is over-whelmed by the antiferromagnetic interactions occurring between the cyanobridged Gd III and CrIII ions. 

Cuvinte-cheie
coordination polymers, copper, Heteropolynuclear complexes, lanthanides, magnetic properties