The Multifrequency Systems with Linearly Transformed Arguments and Multipoint and Local-Integral Conditions
Close
Articolul precedent
Articolul urmator
268 3
Ultima descărcare din IBN:
2024-03-04 11:35
SM ISO690:2012
BIHUN, Yaroslav, PETRYSHYN, Roman, SKUTAR, Ihor. The Multifrequency Systems with Linearly Transformed Arguments and Multipoint and Local-Integral Conditions. In: Conference on Applied and Industrial Mathematics: CAIM 2022, Ed. 29, 25-27 august 2022, Chişinău. Chișinău, Republica Moldova: Casa Editorial-Poligrafică „Bons Offices”, 2022, Ediţia a 29, pp. 45-47. ISBN 978-9975-81-074-6.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Conference on Applied and Industrial Mathematics
Ediţia a 29, 2022
Conferința "Conference on Applied and Industrial Mathematics"
29, Chişinău, Moldova, 25-27 august 2022

The Multifrequency Systems with Linearly Transformed Arguments and Multipoint and Local-Integral Conditions


Pag. 45-47

Bihun Yaroslav, Petryshyn Roman, Skutar Ihor
 
Yuriy Fedkovych National University of Chernivtsi
 
 
Disponibil în IBN: 19 decembrie 2022


Rezumat

A problem of existence and uniqueness of the solution and its approximate construction for the system of differential equations with a vector of slow variables a ∈ Δ ⊂ Rn and fast variables φ ∈ Tm of the form da dτ = X(τ, aΛ,φΘ), dφ dτ = ω(τ ) ε + Y (τ, aΛ,φΘ), (1) are investigated in the paper. Here τ ∈ [0,L], small parameter ε ∈ (0, ε0], 0 < λ1 < · · · < λp ≤ 1, 0 < θ1 < · · · < θq ≤ 1, aΛ = (aλ1, . . . ,aλp ), aλi (τ) = a(λiτ ), φΘ = (φθ1, . . . ,φθq ), φθj (τ) = φ(θjτ ). Multifrequency ODE systems are researched in detail in [1], systems with delayed argument were studied in [2, 3], etc. Conditions are set for the system (1) r ν=1 ανa(τν) = s ν=1 ην ξν fν(τ, aΛ,φΘ)dτ, r ν=1 βνφ(τν) = s ν=1 ην ξν gν(τ, aΛ,φΘ)dτ, (2) where [ξν, ην] ⊂ [0,L], ∩ν [ξν, ην] = ∅. For the problem (1), (2) a much simpler problem is constructed by averaging over fast variables φθν on the cube of periods [0, 2π]mq. A sufficient condition for the system of equations (1) to exit a small circumference of the resonance of frequencies ω(τ ) was found, the condition of which in the point τ ∈ [0,L] is q ν=1 θν  kν,ω(θντ )  = 0,kν ∈ Zm, ∥k1∥ + · · · + ∥kq∥ ̸= 0. It is proved that for the smooth enough right parts of the system (1) and sub-integral functions under conditions (2), the condition to exit the circumference of resonances and for small enough ε0 > 0 there exists a unique solution for the problem (1), (2) and an estimation is found ∥a(τ ; y,ψ, ε)−a(τ ; y)∥+∥φ(τ ; y,ψ, ε)−φ(τ ; y,ψ, ε)∥ ≤ c1εα,α = (mq)−1, where c1 > 0 and does not depend on ε,  a(0; y,ψ, ε),φ(0; y,ψ, ε)  = (y,ψ),  a(τ ; y), φ(τ ; y,ψ, ε)  – the solution of the averaged problem with initial conditions (y, ψ), while ∥y − y∥ + ∥ψ − ψ∥ ≤ c2εα.

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'>
<creators>
<creator>
<creatorName>Bihun, Y.</creatorName>
<affiliation>Черновицкий Национальный Университет им.Ю.Федьковича, Ucraina</affiliation>
</creator>
<creator>
<creatorName>Petryshyn, R.</creatorName>
<affiliation>Черновицкий Национальный Университет им.Ю.Федьковича, Ucraina</affiliation>
</creator>
<creator>
<creatorName>Skutar, I.</creatorName>
<affiliation>Черновицкий Национальный Университет им.Ю.Федьковича, Ucraina</affiliation>
</creator>
</creators>
<titles>
<title xml:lang='en'>The Multifrequency Systems with Linearly Transformed Arguments and Multipoint and Local-Integral Conditions</title>
</titles>
<publisher>Instrumentul Bibliometric National</publisher>
<publicationYear>2022</publicationYear>
<relatedIdentifier relatedIdentifierType='ISBN' relationType='IsPartOf'>978-9975-81-074-6</relatedIdentifier>
<dates>
<date dateType='Issued'>2022</date>
</dates>
<resourceType resourceTypeGeneral='Text'>Conference Paper</resourceType>
<descriptions>
<description xml:lang='en' descriptionType='Abstract'><p>A problem of existence and uniqueness of the solution and its&nbsp;approximate construction for the system of differential equations with a vector of slow variables a &isin; &Delta; &sub; Rn and fast variables &phi; &isin; Tm of the form da d&tau; = X(&tau;, a&Lambda;,&phi;&Theta;), d&phi; d&tau; = &omega;(&tau; ) &epsilon; + Y (&tau;, a&Lambda;,&phi;&Theta;), (1) are investigated in the paper. Here &tau; &isin; [0,L], small parameter &epsilon; &isin; (0, &epsilon;0], 0 &lt; &lambda;1 &lt; &middot; &middot; &middot; &lt; &lambda;p &le; 1, 0 &lt; &theta;1 &lt; &middot; &middot; &middot; &lt; &theta;q &le; 1, a&Lambda; = (a&lambda;1, . . . ,a&lambda;p ), a&lambda;i (&tau;) = a(&lambda;i&tau; ), &phi;&Theta; = (&phi;&theta;1, . . . ,&phi;&theta;q ), &phi;&theta;j (&tau;) = &phi;(&theta;j&tau; ). Multifrequency ODE systems are researched in detail in [1], systems with delayed argument were studied in [2, 3], etc. Conditions are set for the system (1) r &nu;=1 &alpha;&nu;a(&tau;&nu;) = s &nu;=1 &eta;&nu; &xi;&nu; f&nu;(&tau;, a&Lambda;,&phi;&Theta;)d&tau;, r &nu;=1 &beta;&nu;&phi;(&tau;&nu;) = s &nu;=1 &eta;&nu; &xi;&nu; g&nu;(&tau;, a&Lambda;,&phi;&Theta;)d&tau;, (2) where [&xi;&nu;, &eta;&nu;] &sub; [0,L], &cap;&nu; [&xi;&nu;, &eta;&nu;] = &empty;. For the problem (1), (2) a much simpler problem is constructed by averaging over fast variables &phi;&theta;&nu; on the cube of periods [0, 2&pi;]mq. A sufficient condition for the system of equations (1) to exit a small circumference of the resonance of frequencies &omega;(&tau; ) was found, the condition of which in the point &tau; &isin; [0,L] is q &nu;=1 &theta;&nu;  k&nu;,&omega;(&theta;&nu;&tau; )  = 0,k&nu; &isin; Zm, ∥k1∥ + &middot; &middot; &middot; + ∥kq∥ ̸= 0. It is proved that for the smooth enough right parts of the system (1) and sub-integral functions under conditions (2), the condition to&nbsp;exit the circumference of resonances and for small enough &epsilon;0 &gt; 0 there exists a unique solution for the problem (1), (2) and an estimation is found ∥a(&tau; ; y,&psi;, &epsilon;)&minus;a(&tau; ; y)∥+∥&phi;(&tau; ; y,&psi;, &epsilon;)&minus;&phi;(&tau; ; y,&psi;, &epsilon;)∥ &le; c1&epsilon;&alpha;,&alpha; = (mq)&minus;1, where c1 &gt; 0 and does not depend on &epsilon;,  a(0; y,&psi;, &epsilon;),&phi;(0; y,&psi;, &epsilon;)  = (y,&psi;),  a(&tau; ; y), &phi;(&tau; ; y,&psi;, &epsilon;)  &ndash; the solution of the averaged problem with initial conditions (y, &psi;), while ∥y &minus; y∥ + ∥&psi; &minus; &psi;∥ &le; c2&epsilon;&alpha;.</p></description>
</descriptions>
<formats>
<format>application/pdf</format>
</formats>
</resource>