Structural transition in the magnetoelectric ZnC r2 S e4 spinel under pressure
Close
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
258 5
Ultima descărcare din IBN:
2023-09-13 15:57
SM ISO690:2012
EFTHIMIOPOULOS, Ilias, LIU, Zhi T.Y., KHARE, Sanjay V., SARIN, Pankaj, TSURKAN, Vladimir, LOIDL, Alois, POPOV, Dimitriy Yu., WANG, Yuejian. Structural transition in the magnetoelectric ZnC r2 S e4 spinel under pressure. In: Physical Review B, 2016, vol. 93, pp. 1-17. ISSN 2469-9950. DOI: https://doi.org/10.1103/PhysRevB.93.174103
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Physical Review B
Volumul 93 / 2016 / ISSN 2469-9950 /ISSNe 2469-9969

Structural transition in the magnetoelectric ZnC r2 S e4 spinel under pressure

DOI:https://doi.org/10.1103/PhysRevB.93.174103

Pag. 1-17

Efthimiopoulos Ilias1, Liu Zhi T.Y.2, Khare Sanjay V.2, Sarin Pankaj3, Tsurkan Vladimir45, Loidl Alois4, Popov Dimitriy Yu.6, Wang Yuejian1
 
1 Oakland University, Rochester,
2 University of Toledo,
3 Oklahoma State University,
4 Institute of Applied Physics, Academy of Sciences of Moldova,
5 University of Augsburg,
6 Carnegie Institution of Washington
 
 
Disponibil în IBN: 11 august 2022


Rezumat

Τhe magnetoelectric ZnCr2Se4 spinel, with space group Fd3m, undergoes a reversible first-order structural transition initiating at 17 GPa, as revealed by our high-pressure x-ray diffraction studies at room temperature. We tentatively assign the high-pressure modification to an AMo2S4-type phase, a distorted variant of the monoclinic Cr3S4 structure. Furthermore, our Raman investigation provides evidence for a pressure-induced insulator-metal transition. Our density functional theory calculations successfully reproduce the structural transition. They indicate significant band gap and magnetic moment reduction accompanying the pressure-induced structural modification. We discuss our findings in conjunction with the available high-pressure results on other Cr-based chalcogenide spinels. 

Cuvinte-cheie
Chromium compounds, density functional theory, Energy gap, Magnetic moments, Metal insulator transition, Selenium compounds

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc='http://purl.org/dc/elements/1.1/' xmlns:oai_dc='http://www.openarchives.org/OAI/2.0/oai_dc/' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd'>
<dc:creator>Efthimiopoulos, I.</dc:creator>
<dc:creator>Liu, Z.</dc:creator>
<dc:creator>Khare, S.</dc:creator>
<dc:creator>Sarin, P.</dc:creator>
<dc:creator>Ţurcan, V.V.</dc:creator>
<dc:creator>Loidl, A.</dc:creator>
<dc:creator>Popov, D.</dc:creator>
<dc:creator>Wang, Y.</dc:creator>
<dc:date>2016-05-09</dc:date>
<dc:description xml:lang='en'><p>&Tau;he magnetoelectric ZnCr2Se4 spinel, with space group Fd3m, undergoes a reversible first-order structural transition initiating at 17 GPa, as revealed by our high-pressure x-ray diffraction studies at room temperature. We tentatively assign the high-pressure modification to an AMo2S4-type phase, a distorted variant of the monoclinic Cr3S4 structure. Furthermore, our Raman investigation provides evidence for a pressure-induced insulator-metal transition. Our density functional theory calculations successfully reproduce the structural transition. They indicate significant band gap and magnetic moment reduction accompanying the pressure-induced structural modification. We discuss our findings in conjunction with the available high-pressure results on other Cr-based chalcogenide spinels.&nbsp;</p></dc:description>
<dc:identifier>10.1103/PhysRevB.93.174103</dc:identifier>
<dc:source>Physical Review B  () 1-17</dc:source>
<dc:subject>Chromium compounds</dc:subject>
<dc:subject>density functional theory</dc:subject>
<dc:subject>Energy gap</dc:subject>
<dc:subject>Magnetic moments</dc:subject>
<dc:subject>Metal insulator transition</dc:subject>
<dc:subject>Selenium compounds</dc:subject>
<dc:title>Structural transition in the magnetoelectric ZnC r2 S e4 spinel under pressure</dc:title>
<dc:type>info:eu-repo/semantics/article</dc:type>
</oai_dc:dc>