On the applicability of incremental model-free methods to determine activation energy corresponding to heterogeneous processes performed under arbitrary temperature programs
Close
Articolul precedent
Articolul urmator
485 0
SM ISO690:2012
BUDRUGEAC, Petru. On the applicability of incremental model-free methods to determine activation energy corresponding to heterogeneous processes performed under arbitrary temperature programs. In: Book of Abstracts: of the 28th Symposium on Thermal Analysis and Calorimetry – Eugen Segal – of the Commission for Thermal Analysis and Calorimetry of the Romanian Academy (CATCAR28), Ed. 28, 9-10 mai 2019, Chişinău. România, Arad: Gutenberg Univers Arad Publishing House, 2019, p. 30. ISBN 978-606-675-208-4.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Book of Abstracts 2019
Simpozionul "28th Symposium on Thermal Analysis and Calorimetry – Eugen Segal – of the Commission for Thermal Analysis and Calorimetry of the Romanian Academy (CATCAR28) "
28, Chişinău, Moldova, 9-10 mai 2019

On the applicability of incremental model-free methods to determine activation energy corresponding to heterogeneous processes performed under arbitrary temperature programs


Pag. 30-30

Budrugeac Petru
 
National Institute for Research and Development in Electrical Engineering ICPE-CA, Bucharest
 
 
Disponibil în IBN: 15 mai 2020


Rezumat

The applicability of the following isoconversional (model-free) incremental methods for determining the energy of activation of the heterogeneous processes under arbitrary temperature programs are discussed: advanced nonlinear isoconversional method (A-NL method), iterative incremental isoconversion method (IT-method) and incremental differential method (Incr-dif method). It is justified that when a process takes place in some arbitrary temperature programs, always applying the A-NL method considering that dependence T vs. t is linear even for narrow domains of the degree of conversion leads to erroneous activation energy values. A procedure for applying the A-NL method applicable to any temperature programs (modified A-NL method) has been suggested. This procedure has been verified for simulated sinusoidal modulated data, experimental data obtained by TG analysis of HDPE under quasi-isothermal conditions, and experimental TG data obtained in investigating thermal decomposition of LDPE under arbitrary temperature programs. For this purpose, the values of the activation energy obtained by the modified A-NL, IT and Incr-dif were compared.