Dilution of a polar magnet: Structure and magnetism of Zn-substituted Co2Mo3 O8
Закрыть
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
255 0
SM ISO690:2012
PRODAN, Lilian, FILIPPOVA, Irina, ZUBTSOVSKII, Alexander O., SHOVA, Sergiu, WIDMANN, S., TSIRLIN, Alexander A., KEZSMARKI, Istvan, TSURKAN, Vladimir. Dilution of a polar magnet: Structure and magnetism of Zn-substituted Co2Mo3 O8. In: Physical Review B, 2022, vol. 106, p. 0. ISSN 2469-9950. DOI: https://doi.org/10.1103/PhysRevB.106.174421
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Physical Review B
Volumul 106 / 2022 / ISSN 2469-9950 /ISSNe 2469-9969

Dilution of a polar magnet: Structure and magnetism of Zn-substituted Co2Mo3 O8

DOI:https://doi.org/10.1103/PhysRevB.106.174421

Pag. 0-0

Prodan Lilian12, Filippova Irina2, Zubtsovskii Alexander O.1, Shova Sergiu3, Widmann S.1, Tsirlin Alexander A.14, Kezsmarki Istvan1, Tsurkan Vladimir12
 
1 University of Augsburg,
2 Institute of Applied Physics,
3 “Petru Poni” Institute of Macromolecular Chemistry,
4 Leipzig University
 
 
Disponibil în IBN: 14 decembrie 2022


Rezumat

We report crystal structure, magnetization, and specific heat measurements on single crystals of the hexagonal polar magnet Co2-xZnxMo3O8 magnetically diluted by replacing Co by Zn. In contrast to the transformation from the antiferromagnetic to a ferrimagnetic state observed in the isostructural Fe2Mo3O8 upon small Zn doping, a robust antiferromagnetic behavior is preserved in Zn-doped Co2Mo3O8 up to x=0.55. The Néel temperature decreases from TN=40 K at x=0 to 23 K at x=0.55, thus extrapolating to x=1.27 (36% filling) as the percolation threshold typical for a three-dimensional, highly coordinated network. This indicates strong magnetic couplings beyond the honeycomb planes in Co2Mo3O8. A sharp peak in the specific heat and a clear cusp in the susceptibility associated with the onset of magnetic order is observed up to x=0.55, whereas at x=0.66 these features are broadened due to increased disorder. Interestingly, the in-plane lattice parameter, the Curie-Weiss temperature, and the magnetic entropy vary with x in a concerted but nonmonotonic manner. These observations can be traced back to the observed site-selective Zn substitution. We found that in the low-doping regime (x<0.2) Zn2+ ions primarily occupy the octahedrally coordinated sites, although they have a clear preference for occupying the tetrahedrally coordinated sites at higher doping levels. Due to the multiple interlayer exchange paths, dependent on the coordination of the Co2+ ions, this behavior is reflected in the nonmonotonic variation of the Curie-Weiss temperature and magnetic entropy with substitution.

Cuvinte-cheie
Antiferromagnetism, Binary alloys, crystal structure, entropy, Magnetic couplings, Magnets, single crystals, specific heat, Zinc

Crossref XML Export

<?xml version='1.0' encoding='utf-8'?>
<doi_batch version='4.3.7' xmlns='http://www.crossref.org/schema/4.3.7' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.crossref.org/schema/4.3.7 http://www.crossref.org/schema/deposit/crossref4.3.7.xsd'>
<head>
<doi_batch_id>ibn-169706</doi_batch_id>
<timestamp>1719258601</timestamp>
<depositor>
<depositor_name>Information Society Development Instiute, Republic of Moldova</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Physical Review B</full_title>
<issn media_type='print'>24699950</issn>
</journal_metadata>
<journal_issue>
<publication_date media_type='print'>
<year>2022</year>
</publication_date>
<issue></issue>
</journal_issue>
<journal_article publication_type='full_text'><titles>
<title>Dilution of a polar magnet: Structure and magnetism of Zn-substituted Co2Mo3 O8</title>
</titles>
<contributors>
<person_name sequence='first' contributor_role='author'>
<given_name>Lilian</given_name>
<surname>Prodan</surname>
</person_name>
<person_name sequence='additional' contributor_role='author'>
<given_name>Irina</given_name>
<surname>Filippova</surname>
</person_name>
<person_name sequence='additional' contributor_role='author'>
<given_name>Alexander O.</given_name>
<surname>Zubtsovskii</surname>
</person_name>
<person_name sequence='additional' contributor_role='author'>
<given_name>Sergiu</given_name>
<surname>Şova</surname>
</person_name>
<person_name sequence='additional' contributor_role='author'>
<given_name>Sebastian</given_name>
<surname>Widmann</surname>
</person_name>
<person_name sequence='additional' contributor_role='author'>
<given_name>Alexander A.</given_name>
<surname>Tsirlin</surname>
</person_name>
<person_name sequence='additional' contributor_role='author'>
<given_name>Istvan</given_name>
<surname>Kezsmarki</surname>
</person_name>
<person_name sequence='additional' contributor_role='author'>
<given_name>Vladimir</given_name>
<surname>Ţurcan</surname>
</person_name>
</contributors>
<publication_date media_type='print'>
<year>2022</year>
</publication_date>
<pages>
<first_page>0</first_page>
<last_page>0</last_page>
</pages>
<doi_data>
<doi>10.1103/PhysRevB.106.174421</doi>
<resource>http://www.crossref.org/</resource>
</doi_data>
</journal_article>
</journal>
</body>
</doi_batch>