Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities
Закрыть
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
579 0
SM ISO690:2012
PERJAN, Andrei, RUSU, Galina. Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities. In: Topological Methods in Nonlinear Analysis, 2019, nr. 2(54), pp. 1093-1110. ISSN 1230-3429. DOI: https://doi.org/10.12775/TMNA.2019.089
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Topological Methods in Nonlinear Analysis
Numărul 2(54) / 2019 / ISSN 1230-3429

Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities

DOI:https://doi.org/10.12775/TMNA.2019.089

Pag. 1093-1110

Perjan Andrei, Rusu Galina
 
Moldova State University
 
 
Disponibil în IBN: 6 aprilie 2020


Rezumat

In a real Hilbert space H we consider the following perturbed Cauchy problem [formula presented], where u0, u1 ∈ H, f: [0, T] ↦ H and ε, δ are two small parameters, A is a linear self-adjoint operator, B is a locally Lipschitz and monotone operator. We study the behavior of solutions uεδ to the problem (Pεδ) in two different cases: (i) when ε → 0 and δ ≥ δ0 > 0; (ii) when ε → 0 and δ → 0. We obtain some a priori estimates of solutions to the perturbed problem, which are uniform with respect to parameters, and a relationship between solutions to both problems. We establish that the solution to the unperturbed problem has a singular behavior, relative to the parameters, in the neighborhood of t = 0. We show the boundary layer and boundary layer function in both cases.

Cuvinte-cheie
a priori estimate, Abstract second order, Cauchy problem, boundary layer function, singular perturbation

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'>
<identifier identifierType='DOI'>10.12775/TMNA.2019.089</identifier>
<creators>
<creator>
<creatorName>Perjan, A.</creatorName>
<affiliation>Universitatea de Stat din Moldova, Moldova, Republica</affiliation>
</creator>
<creator>
<creatorName>Rusu, G.I.</creatorName>
<affiliation>Universitatea de Stat din Moldova, Moldova, Republica</affiliation>
</creator>
</creators>
<titles>
<title xml:lang='en'>Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities</title>
</titles>
<publisher>Instrumentul Bibliometric National</publisher>
<publicationYear>2019</publicationYear>
<relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1230-3429</relatedIdentifier>
<subjects>
<subject>a priori estimate</subject>
<subject>Abstract second order</subject>
<subject>Cauchy problem</subject>
<subject>boundary layer function</subject>
<subject>singular perturbation</subject>
</subjects>
<dates>
<date dateType='Issued'>2019-12-25</date>
</dates>
<resourceType resourceTypeGeneral='Text'>Journal article</resourceType>
<descriptions>
<description xml:lang='en' descriptionType='Abstract'><p>In a real Hilbert space H we consider the following perturbed Cauchy problem [formula presented], where u<sub>0</sub>, u<sub>1</sub>&nbsp;&isin; H, f: [0, T] ↦ H and &epsilon;, &delta; are two small parameters, A is a linear self-adjoint operator, B is a locally Lipschitz and monotone operator. We study the behavior of solutions u<sub>&epsilon;&delta;</sub>&nbsp;to the problem (P<sub>&epsilon;&delta;</sub>) in two different cases: (i) when &epsilon; &rarr; 0 and &delta; &ge; &delta;<sub>0</sub>&nbsp;&gt; 0; (ii) when &epsilon; &rarr; 0 and &delta; &rarr; 0. We obtain some a priori estimates of solutions to the perturbed problem, which are uniform with respect to parameters, and a relationship between solutions to both problems. We establish that the solution to the unperturbed problem has a singular behavior, relative to the parameters, in the neighborhood of t = 0. We show the boundary layer and boundary layer function in both cases.</p></description>
</descriptions>
<formats>
<format>uri</format>
</formats>
</resource>