Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
277 25 |
Ultima descărcare din IBN: 2024-08-18 14:28 |
Căutarea după subiecte similare conform CZU |
517.91 (11) |
Дифференциальные, интегральные и другие функциональные уравнения. Конечные разности. Вариационное исчисление. Функциональный анализ (252) |
SM ISO690:2012 BELAIDI, Benharrat. Growth Properties of Solutions to Higher Order Complex Linear Differential Equations with Analytic Coefficients in the Annulus. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2023, nr. 2(102), pp. 19-35. ISSN 1024-7696. DOI: https://doi.org/10.56415/basm.y2023.i2.p19 |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica | ||||||||
Numărul 2(102) / 2023 / ISSN 1024-7696 /ISSNe 2587-4322 | ||||||||
|
||||||||
DOI:https://doi.org/10.56415/basm.y2023.i2.p19 | ||||||||
CZU: 517.91 | ||||||||
Pag. 19-35 | ||||||||
|
||||||||
Descarcă PDF | ||||||||
Rezumat | ||||||||
In this paper, by using the Nevanlinna value distribution theory of meromorphic functions on an annulus, we deal with the growth properties of solutions of the linear differential equation f(k)+Bk−1 (z) f(k−1)+· · ·+B1 (z) f0+B0 (z) f = 0, where k ≥ 2 is an integer and Bk−1 (z) , ...,B1 (z) ,B0 (z) are analytic on an annulus. Under some conditions on the coefficients, we obtain some results concerning the estimates of the order and the hyper-order of solutions of the above equation. The results obtained extend and improve those of Wu and Xuan in [16]. |
||||||||
Cuvinte-cheie and phrases: linear differential equations, analytic solutions, annulus, hyper order |
||||||||
|
DataCite XML Export
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'> <identifier identifierType='DOI'>10.56415/basm.y2023.i2.p19</identifier> <creators> <creator> <creatorName>Belaidi, B.</creatorName> <affiliation>Department of Mathematics, University of Mostaganem (UMAB), Algeria</affiliation> </creator> </creators> <titles> <title xml:lang='en'>Growth Properties of Solutions to Higher Order Complex Linear Differential Equations with Analytic Coefficients in the Annulus</title> </titles> <publisher>Instrumentul Bibliometric National</publisher> <publicationYear>2023</publicationYear> <relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1024-7696</relatedIdentifier> <subjects> <subject>and phrases: linear differential equations</subject> <subject>analytic solutions</subject> <subject>annulus</subject> <subject>hyper order</subject> <subject schemeURI='http://udcdata.info/' subjectScheme='UDC'>517.91</subject> </subjects> <dates> <date dateType='Issued'>2023-11-22</date> </dates> <resourceType resourceTypeGeneral='Text'>Journal article</resourceType> <descriptions> <description xml:lang='en' descriptionType='Abstract'><p>In this paper, by using the Nevanlinna value distribution theory of meromorphic functions on an annulus, we deal with the growth properties of solutions of the linear differential equation f(k)+Bk−1 (z) f(k−1)+· · ·+B1 (z) f0+B0 (z) f = 0, where k ≥ 2 is an integer and Bk−1 (z) , ...,B1 (z) ,B0 (z) are analytic on an annulus. Under some conditions on the coefficients, we obtain some results concerning the estimates of the order and the hyper-order of solutions of the above equation. The results obtained extend and improve those of Wu and Xuan in [16].</p></description> </descriptions> <formats> <format>application/pdf</format> </formats> </resource>