Charge-Transport Properties of F6TNAP-Based Charge-Transfer Cocrystals
Закрыть
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
419 0
SM ISO690:2012
DASARI, Raghunath Reddy, WANG, Xu, WISCONS, Ren A., HANEEF, Hamna F., ASHOKAN, Ajith, ZHANG, Yadong, FONARI, Marina, BARLOW, Stephen V., KOROPCHANU, V., TIMOFEEVA, Tatiana, JURCHESCU, Oana D., BREDAS, J.-L., MATZGER, Adam Jay, MARDER, Seth R.. Charge-Transport Properties of F6TNAP-Based Charge-Transfer Cocrystals. In: Advanced Functional Materials, 2019, vol. 29, p. 0. ISSN 1616-301X. DOI: https://doi.org/10.1002/adfm.201904858
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Advanced Functional Materials
Volumul 29 / 2019 / ISSN 1616-301X

Charge-Transport Properties of F6TNAP-Based Charge-Transfer Cocrystals

DOI:https://doi.org/10.1002/adfm.201904858

Pag. 0-0

Dasari Raghunath Reddy1, Wang Xu2, Wiscons Ren A.3, Haneef Hamna F.4, Ashokan Ajith1, Zhang Yadong1, Fonari Marina56, Barlow Stephen V.1, Koropchanu V.1, Timofeeva Tatiana5, Jurchescu Oana D.4, Bredas J.-L.1, Matzger Adam Jay3, Marder Seth R.1
 
1 Georgia Institute of Technology,
2 New Mexico Highlands University, Las Vegas,
3 University of Michigan,
4 Wake Forest University,
5 New Mexico Highlands University, Department of Chemistry, Las Vegas,
6 Institute of Applied Physics
 
 
Disponibil în IBN: 4 mai 2021


Rezumat

The crystal structures of the charge-transfer (CT) cocrystals formed by the π-electron acceptor 1,3,4,5,7,8-hexafluoro-11,11,12,12-tetracyanonaphtho-2,6-quinodimethane (F6TNAP) with the planar π-electron-donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3-d]thiophene (BTBT), benzo[1,2-b:4,5-b′]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using single-crystal X-ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixed-stacking motifs. Cocrystals based on BTBT and CBZ π-electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringbone-type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of ground-state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TP-, BDT-, and PY-based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Charge-carrier mobility values are obtained from space-charge limited current (SCLC) measurements and field-effect transistor measurements, with values exceeding 1 cm2 V−1 s1 being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals. 

Cuvinte-cheie
bandwidth, Carrier mobility, density functional theory, electronic structure, Electrons, Field effect transistors, Ground state, infrared spectroscopy, Molecules, single crystals

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'>
<identifier identifierType='DOI'>10.1002/adfm.201904858</identifier>
<creators>
<creator>
<creatorName>Dasari, R.</creatorName>
<affiliation>Georgia Institute of Technology, Statele Unite ale Americii</affiliation>
</creator>
<creator>
<creatorName>Wang, X.</creatorName>
<affiliation>New Mexico Highlands University, Las Vegas, Statele Unite ale Americii</affiliation>
</creator>
<creator>
<creatorName>Wiscons, R.</creatorName>
<affiliation>University of Michigan, Statele Unite ale Americii</affiliation>
</creator>
<creator>
<creatorName>Haneef, H.</creatorName>
<affiliation>Wake Forest University, Statele Unite ale Americii</affiliation>
</creator>
<creator>
<creatorName>Ashokan, A.</creatorName>
<affiliation>Georgia Institute of Technology, Statele Unite ale Americii</affiliation>
</creator>
<creator>
<creatorName>Zhang, Y.</creatorName>
<affiliation>Georgia Institute of Technology, Statele Unite ale Americii</affiliation>
</creator>
<creator>
<creatorName>Fonari, M.S.</creatorName>
<affiliation>New Mexico Highlands University, Department of Chemistry, Las Vegas, Statele Unite ale Americii</affiliation>
</creator>
<creator>
<creatorName>Barlow, S.</creatorName>
<affiliation>Georgia Institute of Technology, Statele Unite ale Americii</affiliation>
</creator>
<creator>
<creatorName>Coropceanu, V.</creatorName>
<affiliation>Georgia Institute of Technology, Statele Unite ale Americii</affiliation>
</creator>
<creator>
<creatorName>Timofeeva, T.V.</creatorName>
<affiliation>New Mexico Highlands University, Department of Chemistry, Las Vegas, Statele Unite ale Americii</affiliation>
</creator>
<creator>
<creatorName>Jurchescu, O.</creatorName>
<affiliation>Wake Forest University, Statele Unite ale Americii</affiliation>
</creator>
<creator>
<creatorName>Bredas, J.</creatorName>
<affiliation>Georgia Institute of Technology, Statele Unite ale Americii</affiliation>
</creator>
<creator>
<creatorName>Matzger, A.</creatorName>
<affiliation>University of Michigan, Statele Unite ale Americii</affiliation>
</creator>
<creator>
<creatorName>Marder, S.</creatorName>
<affiliation>Georgia Institute of Technology, Statele Unite ale Americii</affiliation>
</creator>
</creators>
<titles>
<title xml:lang='en'>Charge-Transport Properties of F6TNAP-Based Charge-Transfer Cocrystals</title>
</titles>
<publisher>Instrumentul Bibliometric National</publisher>
<publicationYear>2019</publicationYear>
<relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1616-301X</relatedIdentifier>
<subjects>
<subject>bandwidth</subject>
<subject>Carrier mobility</subject>
<subject>density functional theory</subject>
<subject>electronic structure</subject>
<subject>Electrons</subject>
<subject>Field effect transistors</subject>
<subject>Ground state</subject>
<subject>infrared spectroscopy</subject>
<subject>Molecules</subject>
<subject>single crystals</subject>
</subjects>
<dates>
<date dateType='Issued'>2019-12-01</date>
</dates>
<resourceType resourceTypeGeneral='Text'>Journal article</resourceType>
<descriptions>
<description xml:lang='en' descriptionType='Abstract'><p>The crystal structures of the charge-transfer (CT) cocrystals formed by the &pi;-electron acceptor 1,3,4,5,7,8-hexafluoro-11,11,12,12-tetracyanonaphtho-2,6-quinodimethane (F<sub>6</sub>TNAP) with the planar &pi;-electron-donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3-d]thiophene (BTBT), benzo[1,2-b:4,5-b&prime;]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using single-crystal X-ray diffraction (SCXRD), along with those of two polymorphs of F<sub>6</sub>TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixed-stacking motifs. Cocrystals based on BTBT and CBZ &pi;-electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringbone-type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of ground-state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TP-, BDT-, and PY-based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Charge-carrier mobility values are obtained from space-charge limited current (SCLC) measurements and field-effect transistor measurements, with values exceeding 1 cm<sup>2</sup>&nbsp;V<sup>&minus;1</sup>&nbsp;s<sup>1</sup>&nbsp;being estimated from SCLC measurements for BTBT:F<sub>6</sub>TNAP and CBZ:F<sub>6</sub>TNAP cocrystals.&nbsp;</p></description>
</descriptions>
<formats>
<format>uri</format>
</formats>
</resource>