Computation power of asynchronous spiking neural P systems with polarizations
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
783 0
SM ISO690:2012
WU, Tingfang, PAN, Linqiang, ALHAZOV, Artiom. Computation power of asynchronous spiking neural P systems with polarizations. In: Theoretical Computer Science, 2019, nr. 777, pp. 474-489. ISSN 0304-3975. DOI: https://doi.org/10.1016/j.tcs.2018.10.024
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Theoretical Computer Science
Numărul 777 / 2019 / ISSN 0304-3975 /ISSNe 1879-2294

Computation power of asynchronous spiking neural P systems with polarizations

DOI:https://doi.org/10.1016/j.tcs.2018.10.024

Pag. 474-489

Wu Tingfang1, Pan Linqiang1, Alhazov Artiom2
 
1 Huazhong University of Science and Technology,
2 Vladimir Andrunachievici Institute of Mathematics and Computer Science
 
 
Disponibil în IBN: 2 iulie 2019


Rezumat

Spiking neural P systems (SN P systems) are a class of parallel computing models, inspired by the way in which neurons process information and communicate to each other by means of spikes. In this work, we consider a variant of SN P systems, SN P systems with polarizations (PSN P systems), where the integrate-and-fire conditions are associated with polarizations of neurons. The computation power of PSN P systems working in the asynchronous mode (at a computation step, a neuron with enabled rules does not obligatorily fire), instead of the synchronous mode (a neuron with enabled rules should fire), is investigated. We proved that asynchronous PSN P systems with extended rules (the application of a rule can produce more than one spikes) or standard rules (all rules can only produce a spike) can both characterize partially blind counter machines, hence, such systems are not Turing universal. The equivalence of the computation power of asynchronous PSN P systems in both cases of using extended rules or standard rules indicates that asynchronous PSN P systems are robust in terms of the amount of information exchanged among neurons. It is known that synchronous PSN P systems with standard rules are Turing universal, so these results also suggest that the working model, synchronization or asynchronization, is an essential ingredient for a PSN P system to achieve a powerful computation capability.

Cuvinte-cheie
Asynchronization, Bio-inspired computing, Membrane computing, Spiking neural network, Spiking neural P system

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-80228</cfResPublId>
<cfResPublDate>2019-07-19</cfResPublDate>
<cfIssue>777</cfIssue>
<cfStartPage>474</cfStartPage>
<cfISSN>0304-3975</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/80228</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Computation power of asynchronous spiking neural P systems with polarizations</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>Asynchronization; Bio-inspired computing; Membrane computing; Spiking neural network; Spiking neural P system</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>Spiking neural P systems (SN P systems) are a class of parallel computing models, inspired by the way in which neurons process information and communicate to each other by means of spikes. In this work, we consider a variant of SN P systems, SN P systems with polarizations (PSN P systems), where the integrate-and-fire conditions are associated with polarizations of neurons. The computation power of PSN P systems working in the asynchronous mode (at a computation step, a neuron with enabled rules does not obligatorily fire), instead of the synchronous mode (a neuron with enabled rules should fire), is investigated. We proved that asynchronous PSN P systems with extended rules (the application of a rule can produce more than one spikes) or standard rules (all rules can only produce a spike) can both characterize partially blind counter machines, hence, such systems are not Turing universal. The equivalence of the computation power of asynchronous PSN P systems in both cases of using extended rules or standard rules indicates that asynchronous PSN P systems are robust in terms of the amount of information exchanged among neurons. It is known that synchronous PSN P systems with standard rules are Turing universal, so these results also suggest that the working model, synchronization or asynchronization, is an essential ingredient for a PSN P system to achieve a powerful computation capability.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2019-07-19T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2019-07-19T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-64388</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2019-07-19T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-64389</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2019-07-19T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-13033</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2019-07-19T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfFedId>
<cfFedIdId>ibn-doi-80228</cfFedIdId>
<cfFedId>10.1016/j.tcs.2018.10.024</cfFedId>
<cfStartDate>2019-07-19T24:00:00</cfStartDate>
<cfFedId_Class>
<cfClassId>31d222b4-11e0-434b-b5ae-088119c51189</cfClassId>
<cfClassSchemeId>bccb3266-689d-4740-a039-c96594b4d916</cfClassSchemeId>
</cfFedId_Class>
<cfFedId_Srv>
<cfSrvId>5123451</cfSrvId>
<cfClassId>eda2b2e2-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>5a270628-f593-4ff4-a44a-95660c76e182</cfClassSchemeId>
</cfFedId_Srv>
</cfFedId>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-64388</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-64388-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2019-07-19T24:00:00</cfStartDate>
<cfFamilyNames>Wu</cfFamilyNames>
<cfFirstNames>Tingfang</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-64389</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-64389-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2019-07-19T24:00:00</cfStartDate>
<cfFamilyNames>Pan</cfFamilyNames>
<cfFirstNames>Linqiang</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-13033</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-13033-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2019-07-19T24:00:00</cfStartDate>
<cfFamilyNames>Alhazov</cfFamilyNames>
<cfFirstNames>Artiom</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfSrv>
<cfSrvId>5123451</cfSrvId>
<cfName cfLangCode='en' cfTrans='o'>CrossRef DOI prefix service</cfName>
<cfDescr cfLangCode='en' cfTrans='o'>The service of issuing DOI prefixes to publishers</cfDescr>
<cfKeyw cfLangCode='en' cfTrans='o'>persistent identifier; Digital Object Identifier</cfKeyw>
</cfSrv>
</CERIF>