Cybernetic Modelling. Proof-of-Concept Example
Închide
Articolul precedent
Articolul urmator
778 5
Ultima descărcare din IBN:
2024-01-03 05:54
SM ISO690:2012
BĂRBAT, Boldur-Eugen, FILIP, Florin Gheorghe. Cybernetic Modelling. Proof-of-Concept Example. In: Microelectronics and Computer Science, Ed. 9, 19-21 octombrie 2017, Chisinau. Chișinău, Republica Moldova: Universitatea Tehnică a Moldovei, 2017, Ediția 9, pp. 239-242. ISBN 978-9975-4264-8-0.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Microelectronics and Computer Science
Ediția 9, 2017
Conferința "Microelectronics and Computer Science"
9, Chisinau, Moldova, 19-21 octombrie 2017

Cybernetic Modelling. Proof-of-Concept Example

Pag. 239-242

Bărbat Boldur-Eugen, Filip Florin Gheorghe
 
Romanian Academy of Science
 
 
Disponibil în IBN: 27 octombrie 2017


Rezumat

Continuing  the preceding  paper  [5],  this one  illustrates  Cybernetic Modelling ,  applying it to  biologic stability.  A Lotka Volterra model  for preda tor prey spe cies  is employed  to  (discrete time)  modelling  homeostasis with hysteretic  delay ,  simulating (macrochronic) stability of simple cybernetic  (Barkhausen loop)  systems .  NL capability is  achieved replacing differential equations  by  iterative loops  (with polysemantic time  granularity)  and  employing  ( some )  non numeric mathematics .  The modelling subspecies is evaluated from  both transdisciplinary bridge  legs :  software engineering  (undemanding yet flexible  post industrial  apparatus )  and  biology/ecology  (versatile (field or laboratory) research  tool , with user friend ly interface, allowing to  write  “What if”  scenarios for handling  (over)simplified  ecologic  (sub) systems in  their  real world habitats ) .  

Cuvinte-cheie
biologic stability (Lotka Volterra model), c ybernetic m odel ling (CyMo), non algorithmic software, non numeric mathematics, service oriented engineering

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'>
<creators>
<creator>
<creatorName>Bărbat, B.</creatorName>
<affiliation>Academia Româna, România</affiliation>
</creator>
<creator>
<creatorName>Filip, F.</creatorName>
<affiliation>Academia Româna, România</affiliation>
</creator>
</creators>
<titles>
<title xml:lang='en'>Cybernetic Modelling. Proof-of-Concept Example</title>
</titles>
<publisher>Instrumentul Bibliometric National</publisher>
<publicationYear>2017</publicationYear>
<relatedIdentifier relatedIdentifierType='ISBN' relationType='IsPartOf'>978-9975-4264-8-0</relatedIdentifier>
<subjects>
<subject>biologic stability (Lotka Volterra model)</subject>
<subject>c ybernetic  m odel ling  (CyMo)</subject>
<subject>non algorithmic  software</subject>
<subject>non numeric mathematics</subject>
<subject>service oriented  engineering</subject>
</subjects>
<dates>
<date dateType='Issued'>2017</date>
</dates>
<resourceType resourceTypeGeneral='Text'>Conference Paper</resourceType>
<descriptions>
<description xml:lang='en' descriptionType='Abstract'><p><strong>Continuing </strong>&nbsp;<strong>the preceding </strong>&nbsp;<strong>paper </strong>&nbsp;<strong>[5], </strong>&nbsp;<strong>this one </strong>&nbsp;<strong>illustrates </strong>&nbsp;<strong><em>Cybernetic Modelling</em></strong> <strong>, </strong>&nbsp;<strong>applying it to </strong>&nbsp;<strong>biologic stability. </strong>&nbsp;<strong>A Lotka</strong> <strong>Volterra model </strong>&nbsp;<strong>for preda</strong> <strong>tor</strong> <strong>prey spe</strong> <strong>cies </strong>&nbsp;<strong>is employed </strong>&nbsp;<strong>to </strong>&nbsp;<strong>(discrete</strong> <strong>time) </strong>&nbsp;<strong>modelling </strong>&nbsp;<strong>homeostasis with hysteretic </strong>&nbsp;<strong>delay</strong> <strong>, </strong>&nbsp;<strong>simulating (macrochronic) stability of simple cybernetic </strong>&nbsp;<strong>(Barkhausen loop) </strong>&nbsp;<strong>systems</strong> <strong>. </strong>&nbsp;<strong>NL</strong> <strong>capability is </strong>&nbsp;<strong>achieved replacing differential equations </strong>&nbsp;<strong>by </strong>&nbsp;<strong>iterative loops </strong>&nbsp;<strong>(with polysemantic time </strong>&nbsp;<strong>granularity) </strong>&nbsp;<strong>and </strong>&nbsp;<strong>employing </strong>&nbsp;<strong>(</strong> <strong>some</strong> <strong>) </strong>&nbsp;<strong>non</strong> <strong>numeric mathematics</strong> <strong>. </strong>&nbsp;<strong>The modelling subspecies is evaluated from </strong>&nbsp;<strong>both transdisciplinary bridge </strong>&nbsp;<strong>legs</strong> <strong>: </strong>&nbsp;<strong><em>software engineering </em></strong>&nbsp;<strong>(undemanding yet flexible </strong>&nbsp;<strong>post</strong> <strong>industrial </strong>&nbsp;<strong>apparatus</strong> <strong>) </strong>&nbsp;<strong>and </strong>&nbsp;<strong><em>biology/ecology </em></strong>&nbsp;<strong>(versatile (field or laboratory) research </strong>&nbsp;<strong>tool</strong> <strong>, with user</strong> <strong>friend</strong> <strong>ly interface, allowing to </strong>&nbsp;<strong>write </strong>&nbsp;<strong>&ldquo;What</strong> <strong>if&rdquo; </strong>&nbsp;<strong>scenarios for handling </strong>&nbsp;<strong>(over)simplified </strong>&nbsp;<strong>ecologic </strong>&nbsp;<strong>(sub)</strong> <strong>systems in </strong>&nbsp;<strong>their </strong>&nbsp;<strong>real</strong> <strong>world habitats</strong> <strong>)</strong> <strong>. </strong>&nbsp;</p></description>
</descriptions>
<formats>
<format>application/pdf</format>
</formats>
</resource>