Detection in the contacts with bismuth-antimony alloy: influence of the free electrons concentration on the current responsivity
Închide
Articolul precedent
Articolul urmator
632 2
Ultima descărcare din IBN:
2020-12-07 12:20
SM ISO690:2012
KERNER, Iacov. Detection in the contacts with bismuth-antimony alloy: influence of the free electrons concentration on the current responsivity. In: Microelectronics and Computer Science, Ed. 9, 19-21 octombrie 2017, Chisinau. Chișinău, Republica Moldova: Universitatea Tehnică a Moldovei, 2017, Ediția 9, pp. 122-125. ISBN 978-9975-4264-8-0.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Microelectronics and Computer Science
Ediția 9, 2017
Conferința "Microelectronics and Computer Science"
9, Chisinau, Moldova, 19-21 octombrie 2017

Detection in the contacts with bismuth-antimony alloy: influence of the free electrons concentration on the current responsivity

Pag. 122-125

Kerner Iacov
 
Institute of the Electronic Engineering and Nanotechnologies "D. Ghitu" of the Academy of Sciences of Moldova
 
 
Disponibil în IBN: 25 octombrie 2017


Rezumat

Diode detectors (DD) are widely used in electronic information and communication systems. In this paper the numerical modeling of the electrical potential distribution and current passing in the contacts of niobium nitride (NbN) with semiconductor alloy bismuth-antimony (Bi-Sb) was made. The contacts of Bi-Sb with dfferent materials were studied. Also it was studied situation, when the surface states have no time to recharge with applied electric voltage (a “dynamic” regime). There were analyzed possibilities to create the diode detectors based on these contacts and working at liquid helium temperatures 4.2 K and 1 K. The dependences of the current responsivity (CR), the voltage responsivity (VR) and the noise equivalent power (NEP) on the signal frequency (f) were analyzed. The dependences of the current responsivity on the free electrons concentration was analyzed too. The obtained results were compared with literature data. Both DD working at temperature of liquid nitrogen (T = 77.4 K) and liquid helium were considered. The comparison with existent literature data shows the proposed DD can be 10¸100 times better. The physical reasons of these advantages were discussed. It is shown that unique properties of Bi-Sb alloys and especially of Bi0.88Sb0.12 alloy make these alloys to be the very perspective materials for cryoelectronics.

Cuvinte-cheie
detection, Schottky diodes, superconductivity