Bell Numbers of Complete Multipartite Graphs
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
591 2
Ultima descărcare din IBN:
2017-04-26 08:32
Căutarea după subiecte
similare conform CZU
519.1 (101)
Analiză combinatorică. Teoria grafurilor (99)
SM ISO690:2012
ALLAGAN, Julian-A.; SERKAN, Christopher. Bell Numbers of Complete Multipartite Graphs. In: Computer Science Journal of Moldova. 2016, nr. 2(71), pp. 234-242. ISSN 1561-4042.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Computer Science Journal of Moldova
Numărul 2(71) / 2016 / ISSN 1561-4042

Bell Numbers of Complete Multipartite Graphs
CZU: 519.1

Pag. 234-242

Allagan Julian-A., Serkan Christopher
 
University of North Georgia
 
Proiect:
INTAS 2004-78-7193 Imaging GaAs X-ray Detectors
 
Disponibil în IBN: 2 septembrie 2016


Rezumat

The Stirling number S(G; k) is the number of partitions of the vertices of a graph G into k nonempty independent sets and the number of all partitions of G is its Bell number, B(G). We find S(G; k) and B(G) when G is any complete multipartite graph, giving the upper bounds of these parameters for any graph.

Cuvinte-cheie
Bell number, Bell polynomial, Stirling numbers.,

Partition