Pd-Functionalized ZnO:Eu Columnar Films for Room-Temperature Hydrogen Gas Sensing: A Combined Experimental and Computational Approach
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
801 0
SM ISO690:2012
LUPAN, Cristian, KHALEDIALIDUSTI, Rasoul, MISHRA, Abhishek Kumar, POSTICA, Vasile, TERASA, Maik-Ivo, MAGARIU, Nicolae, PAUPORTE, Thierry, VIANA, Bruno, DREWES, Jonas, VAHL, Alexander, FAUPEL, Franz, ADELUNG, Rainer. Pd-Functionalized ZnO:Eu Columnar Films for Room-Temperature Hydrogen Gas Sensing: A Combined Experimental and Computational Approach. In: ACS Applied Materials and Interfaces, 2020, vol. 12, pp. 24951-24964. ISSN -. DOI: https://doi.org/10.1021/acsami.0c02103
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
ACS Applied Materials and Interfaces
Volumul 12 / 2020 / ISSN - /ISSNe 1944-8244

Pd-Functionalized ZnO:Eu Columnar Films for Room-Temperature Hydrogen Gas Sensing: A Combined Experimental and Computational Approach

DOI: https://doi.org/10.1021/acsami.0c02103

Pag. 24951-24964

Lupan Cristian1, Khaledialidusti Rasoul2, Mishra Abhishek Kumar3, Postica Vasile1, Terasa Maik-Ivo4, Magariu Nicolae1, Pauporte Thierry5, Viana Bruno5, Drewes Jonas4, Vahl Alexander4, Faupel Franz4, Adelung Rainer4
 
1 Technical University of Moldova,
2 Norwegian University of Science and Technology, Trondheim,
3 University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun,
4 Institute for Material Science, Christian-Albrechts-University of Kiel,
5 PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris
 
Disponibil în IBN: 9 octombrie 2020


Rezumat

Reducing the operating temperature to room temperature is a serious obstacle on long-life sensitivity with long-term stability performances of gas sensors based on semiconducting oxides, and this should be overcome by new nanotechnological approaches. In this work, we report the structural, morphological, chemical, optical, and gas detection characteristics of Eu-doped ZnO (ZnO:Eu) columnar films as a function of Eu content. The scanning electron microscopy (SEM) investigations showed that columnar films, grown via synthesis from a chemical solutions (SCS) approach, are composed of densely packed columnar type grains. The sample sets with contents of ∼0.05, 0.1, 0.15, and 0.2 at% Eu in ZnO:Eu columnar films were studied. Surface functionalization was achieved using PdCl2 aqueous solution with additional thermal annealing in air at 650 °C. The temperature-dependent gas-detection characteristics of Pd-functionalized ZnO:Eu columnar films were measured in detail, showing a good selectivity toward H2 gas at operating OPT temperatures of 200-300 °C among several test gases and volatile organic compound vapors, such as methane, ammonia, acetone, ethanol, n-butanol, and 2-propanol. At an operating temperature OPT of 250 °C, a high gas response Igas/Iair of ∼115 for 100 ppm H2 was obtained. Experimental results indicate that Eu doping with an optimal content of about 0.05-0.1 at% along with Pd functionalization of ZnO columns leads to a reduction of the operating temperature of the H2 gas sensor. DFT-based computations provide mechanistic insights into the gas-sensing mechanism by investigating interactions between the Pd-functionalized ZnO:Eu surface and H2 gas molecules supporting the experimentally observed results. The proposed columnar materials and gas sensor structures would provide a special advantage in the fields of fundamental research, applied physics studies, and ecological and industrial applications.

Cuvinte-cheie
Chemical deposition, DFT, Eu-doped ZnO, Functionalization, gas sensor, hydrogen, Pd