Анализ устойчивости движущейся упругой полосы
Închide
Articolul precedent
Articolul urmator
521 1
Ultima descărcare din IBN:
2022-12-29 10:44
SM ISO690:2012
БАРСУК, Александр. Анализ устойчивости движущейся упругой полосы. In: Integrare prin cercetare şi inovare.: Ştiinţe ale naturii. Ştiinţe exacte , 10-11 noiembrie 2014, Chișinău. Chisinau, Republica Moldova: Universitatea de Stat din Moldova, 2014, R, SNE, pp. 138-140.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Integrare prin cercetare şi inovare.
R, SNE, 2014
Conferința "Integrare prin cercetare şi inovare"
Chișinău, Moldova, 10-11 noiembrie 2014

Анализ устойчивости движущейся упругой полосы


Pag. 138-140

Барсук Александр
 
Молдавский Государственный Университет
 
 
Disponibil în IBN: 8 aprilie 2020


Rezumat

Исследование динамического поведения  движущихся упругих систем в течение уже длительного времени  привлекает пристальное внимание исследователей. Отметим в этой связи цикл работ, выполненных в последнее время коллективом исследователей под руководством Prof. N.V. Banichuk и Prof. P.Neittaanmaki и посвященных моделированию процессов изготовления бумаги [1]. Особый интерес для этого класса задач представляет анализ устойчивости  движущихся систем. Общим методом исследования устойчивости упругих систем является динамический метод [2]. В соответствии с этим методом, решается  задача о гармонических колебаниях исследуемой системы с последующим анализом поведения частот в зависимости от параметров системы. При этом появление комплексных частот интерпретируется как потеря устойчивости по динамическим формам и соответствует потере устойчивости по Ляпунову, в то время как обращению частот в ноль  отвечает потеря устойчивости по статическим формам, что соответствует критерию Эйлера потери устойчивости.  В данном сообщении динамический анализ системы дополняется бифуркационным анализом соотношений, отвечающих условиям разрешимости соответствующих спектральных задач, приводящим к существенному расширению динамического метода  анализа упругой устойчивости. В частности, показывается, что как статический, так и динамический методы в теории устойчивости приводят к критериям потери устойчивости по Ляпунову. В качестве модельной задачи, допускающей решение в замкнутой аналитической форме, рассматривается задача  о свободных гармонических колебаниях  движущейся с постоянной скоростью V и шарнирно закрепленной на концах панели (1D Модель). В общепринятых обозначениях и в безразмерных переменных математическая формулировка этой спектральной краевой задачи записывается в виде 02 22 0 2 u VuiuVVu x xxxxxx ,          0)1()0( uu , 0 )1()0( xxxx uu .                     (1) Решение задачи (1)  может быть получено стандартными вычислениями. Приведем решение (1) для случая  0 0V , что отвечает движению панели без осевых  усилий, для которого решение имеет наиболее простой вид.  Уравнением (2) определяются зависимости ) (V частот гармонических колебаний  панели от ее скорости перемещения V , а график этих зависимостей для первых трех ветвей представлен ниже.Потеря устойчивости панели как по статическим, так и по динамическим формам происходит при значениях параметров  и VV , являющихся одновременно и точками бифуркации  решений уравнения   0 ),( V (2) и определяемых из решения системы  нелинейных уравнений 0),( V , 0 ),( V .        (3) Пусть ( 1 1 ,V ), ( 2 2,V ), ... – решения  системы нелинейных уравнений  (3). В малой окрестности каждой из бифуркационных точек ( k k V , ) асимптотическое поведение зависимостей  ) ( Vi описывается выражениями kkki VVV )( , 1 kVV ,                     (4) где  при выполнении условия  0 /),( V Vkk 22 2 /),( /),( 2 kk kk k V VV . Таким образом, коэффициент k в (4) может принимать либо вещественные, либо чисто мнимые значения Из представления зависимости  ) (Vi в форме (4) следует, что в малой окрестности точки бифуркации ( k k V , ) частота гармонических колебаний всегда принимает комплексные значения, при этом для вещественных значений коэффициента k частота становится комплексной при k VV ,  в то  время как при мнимых значениях  – при k VV . Появление комплексных значений частот (и одновременно комплексно сопряженных к ними)  приводит к экспоненциальному росту перемещений системы, что соответствует определению неустойчивости по Ляпунову. Отметим, что определяемая выражением (2)  зависимость ) ,( V представляет собой четную функцию переменной  и в силу этого имеем 0 /),( V при  0 и таким образом часть бифуркационных точек находится на оси  V . Бифуркационные значения  V для этого класса точек даются выражениями 2 22 kV k , 3,2,1k .