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Abstract 

 

The zero field in-plane normal-state resistivity of the Ba(Fe1-xCox)As2 (x = 0.00.3) single 

crystal above Tc can be reproduced among other possibilities by  a very simple expression 

)
T

(aT+ρ=ρ(T)
2 Δ

exp
0

  and scaled thereby using the temperature independent energy scale Δ, 

resistivity ρΔ, and residual resistivity ρ0 as scaling parameters (E. Arushanov, et. al. Supercond. 

Sci. Technol., 24, 105004 (2011)). We show that this Δ is related to the inflection point Tip of 

dρ/dT,  Δ/Tip = 1.5.  

 

1. Introduction 

 

Recently, transition-metal oxypnictides composed by an alternate stacking of Ln2O2 layers 

and T2Pn2 layers (Ln:La, Pr, Ce, Sm, Nd; T: Fe, Co, Ni, Ru; Pn: P or As) have been identified as 

novel high-Tc materials [15]. The discovery of superconducting transition temperatures up to  

Tc = 26 K in LaFeAsO1−xFx with x = 0.11 [1] with a primitive tetragonal ZrCuSiAs-type  

(1111-type) structure has captured the imaginations of physicists and chemists worldwide. It has 

been found that the replacement of the nonmagnetic La by magnetic rare earth elements 

substantially increases Tc to its current record of 56.3 K [6] for this structure class. Subsequent 

works have led to the identification of superconductors with similar FeAs layers in the body-

centered-tetragonal ThCr2Si2-type (122-type) structure. To date, the maximum Tc value achieved 

for this structure class is 38 K for Ba0.6K 0.4Fe2As2 [7]. 

Attention has largely shifted from the 1111 to the 122- and 11-type compounds, even 

though they have lower Tc, mainly because of the possibility of growing large single crystals of 

the latter compounds providing more definitive characterizations of the properties, especially by 

neutron scattering [5]. 

The electronic phase diagrams of Ba(Fe1-xCox)As2 (x = 0.00.3) pnictide superconductors 

in the normal state based on the analysis of electrical resistivity have been reported for a wide 

range of doping [810]. Despite the similarity of the phase diagrams of cuprates and iron based 

pnictides, it has been well established that the underlying physics of these compounds is 

different. Cuprates are doped charge transfer insulators with properties tightly related to strong 
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electron correlations, while iron pnictides are less correlated metallic systems with a spin density 

wave (SDW) state at low doping [9] for most of the so-called parent compounds under certain 

circumstances (ignoring special pressure or strain effects as well as the special case of the so-

called codoping of electrons and holes). All Ba(Fe1-xCox)As2 phase diagrams [8-10] show an  

asymmetric shape of the superconducting dome with, however, some difference in compositions 

corresponding to maximum Tc and to the phase boundary (Tc vanishes at x ≤ 0.16 [9] or at  

x ≤ 0.180.2 [8, 10]). Thus, the shape of the superconducting dome is really different from that of 

the cuprates. 

It has been shown that the temperature-dependent resistivity ρ(T) of  several members of 

the iron-pnictide superconductor family  including Ba(Fe1-xCox)As2 can be scaled using energy 

scale Δ, resistivity ρΔ, and residual resistivity ρ0 as scaling parameters [1116]. In this study, 

based on our previous Ba(Fe1-xCox)As2 scaling data [13, 14], we show that Δ  is related to 

inflection point Tip of dρ/dT,  namely, Δ/Tip = 1.5 and Tsdw  ~ Tip in the underdoped regime. 

 

2. Results and discussion 

 

The scaling behavior of the normal state resistivity for Ba(Fe1-xCox)As2 (x = 0.000.30) 

was analyzed using the scaling methods reported in [1719] and experimental data presented in 

[9, 10]. Using the following astonishing simple expression for the scaling function of ρ 

                  )
T

(aT+ρ=ρ(T)
2 Δ

exp
0

  ,                             (1) 

(where ρ0  is the residual resistivity and 2Δ defines the energy scale controlling the linear and 

superlinear behavior) proposed by Moshchalkov [17] we have obtained a good fit for ρ(T) of 

Ba(Fe1-xCox)As2 samples with x ranging from 0.0 to 0.3 in a broad temperature region  

(see Fig. 1)  and the obtained nearly “universal” scaling-law  for 

r(t) = (-o)/(Δ-o)   with   t = T/2Δ ,                  (2) 

for all Co concentrations (see Fig. 2, note that ρΔ is the resistivity at t =1, i.e. at  T= 2Δ) .  
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Fig. 1. Temperature dependence of resistivity for Ba(Fe1-xCox)2As2 (x = 0.02, 0.075,  

and 0.30). The solid lines represent a fit using Eq. (1) (the figure is taken from [13]). 
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Fig. 2. Scaling analysis on the temperature dependence of the resistivity of various Ba(Fe1-

xCox)2As2 samples (0 ≤ x ≤ 0.3). The temperature is rescaled with Δ (an energy scale) and the 

resistivity is given by

ρ− ρ0

ρΔ− ρ0
 in which the extrapolated residual resistivity ρ0 has been 

subtracted and ρΔ is the resistivity at T= 2Δ. (the figure is taken from [13]). 

 

 

Thereby adopting the validity of Eq. (1), one arrives approximately at a “universal” quasi-

linear “scaling” function for a wide temperature region of 1.5 < t < 7, if the off-set --1.8 is 

ignored: 

                           r (t) = t exp (1-1/t )  -- 1.8 + 2.6 t ,                         (3) 

(see also Fig. 2). Empirically, we obtained a slightly different expression: 

                    r(t)   -1.8 + 2.426 t  .                                           (4)      

Thus, the two material and sample dependent parameters ρ0 and a that still appear in Eq. (1) are 

almost eliminated in Eqs. (3) and (4).            

       It should be noted that, in many cases, an alternative power-law fit  

                            (T) = o + AT + BT
2   

,                                              (5) 

including both a non-Fermi liquid linear term and a standard Fermi-liquid quadratic temperature 

term due to electronelectron interaction applied in [26] yields although a slightly worse but, in 

principle, quite similar accuracy compared to  Eq. (1). In [26], this behavior was dubbed as an 

argument for a “lacking” pseudo-gap. Anyhow, the weak point of both approaches ((1) and (5)) is 

the broad temperature region up to T = 300 K and above included in the fit because this way the 

improper inclusion of a region above T
*
 into the fit might strongly affect/falsify the analysis. This 

is especially dangerous in the overdoped region where the pseudo-gap phase is believed to 

vanish. Therefore, rigorously speaking, both approaches should be considered simply as a more 

or less convenient formal description of available resistivity data including only a few 

parameters.  

Within a consequent microscopic description of a pseudo-gap scenario, one would expect 

a dominant contribution to the total conductivity by the non-gapped fraction of “normal” quasi-

particles and a strongly temperature dependent one from the pseudo-gapped subsystem. Then, for 

a monotonously increasing or constant pseudo-gap at low-temperatures, the observed (fitted) 

residual and low-temperature resistivity should be determined, at first glance, only by the 
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“normal” quasi-particles. (In case of a non-Fermi liquid for the “normal” subsystem, the situation 

becomes even more unclear with respect to the origin of  ρ0 !). In this context, the success of both 

expressions is very surprising. Alternatively, the total conductivity should be determined by a 

small number of highly mobile quasi-particles in the pseudo-gap phase. To the best of our 

knowledge, a similar situation can take place only in an anisotropic nodal gapped phase. 

The obtained 2Δ  values presented in Table 1  show a minimum at about x = 0.070.08 

which corresponds to the highest Tc value, a strong enhancement with x decreasing down to 0, 

and a weaker one with increasing x in the optimal dopedoverdoped regimes (x = 0.080.3). It 

should be noted that, in the underdoped regime, the characteristic energy Δ almost linearly drops 

with increasing doping [13]. A similar variation of Δ and/or the characteristic temperature is 

observed in YBa2Cu3Ox [17] and La2−xSrxCuO4 [20] as well as in other members of the cuprate 

family (see, e.g., Fig. 11 in [19]); this is qualitatively consistent with the doping dependence of 

their pseudo-gap-values reported in the interpretations of ARPES, tunnelling, and other 

measurements [19]. In general, pseudogap related features have attracted considerable attention 

for several unconventional superconductors and correlated compounds including also reports for 

several iron pnictide superconductors studied by various experimental techniques, such as 

Knight-shift, anisotropic transport, NMR, and ARPES. Qualitatively, the pseudo-gap is generally 

understood as a partial gapping of the Fermi surface, while other parts remain metallic. 

 

Table 1. Scaling parameter Δ and deflection temperature Tip for Ba(Fe1-xCox)2As2  derived 

from the resistance and superconducting transition temperatures Tc data reported by Rollier-

Albenque et al. [9] and Fang et al. [10] .  Superconducting transition temperatures Tc are also 

taken from [9, 10]   

 

Ba(Fe1-xCox)2As2 

[10] 

2Δ 

(K) 

Tc 

(K) 

Tip 

(K) 

Ba(Fe1-xCox)2As2 

[9] 

2Δ 

(K) 

Tc 

(K) 

Tip 

(K) 

x = 0.00 469 
- 

156.3 x = 0 450 

 
 

128.3 

x = 0.02 303 - 101 x = 0.014 326  108.7 

x = 0.04 212 8 70.7 x = 0.02 289  96.3 

x = 0.05 195 11 65 x = 0.03 223 2 74.3 

x = 0.06 130 19 43.3 x = 0.04 173 8 57.7 

x = 0.07 137 22.5 45,7 x = 0.045 157 12 52.2 

x = 0.08 78 25 26 x = 0.055 134 19 44.7 

x = 0.10 89 24 29.7 x = 0.06 106 21 35.3 

x = 0.12 92 20 30.7 x = 0.07 72 25 23.9 

x = 0.15 156 11 52 x = 0.08 70 23 23.3 

x = 0.30 231  77 x = 0.12 101 16 33.6 

    x = 0.14 125 11  

    x = 0.20 208  69.3 

 

 Thus, the electronic density of states at the Fermi level decreases at low temperatures. 

However, on a quantitative level, there is a considerable scattering for various methods; in 

particular, this concerns energy scale  or 2  introduced above for the scaling of the resistivity 
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(see also some remarks given below).  However, in spite of a still missing proper microscopic 

understanding, there are several serious physical problems related to the pseudo-gap even on a 

phenomenological level. If the pseudo-gap characterizes the order parameter of a  special 

thermodynamic phase competing or sometimes coexisting with superconductivity, there should 

be a sizable temperature dependence at least in the vicinity of the corresponding phase boundary, 

in particular, at least close to its onset temperature usually denoted as T
*
. In cases of anisotropic 

pseudo-gaps, phases with nodes, such a temperature dependence, cannot be ignored at all!  Only 

in isotropic nodeless cases at T << T*, this scenario might be meaningful for the interpretation of 

experimental data. For a first estimate, ignoring strong coupling effects, the evaluation of T* by 

adopting the well-known BCS-relation 2 = 3.52 kBT* might be useful. Thus, for a derived 

pseudo-gap as small as 100 K, only a low-temperature fit of any quantity below 50 K makes 

sense. In the following, we will adopt this isotropic and temperature independent scenario for the 

sake of simplicity.  A detailed comparison with other approaches and analysis of other physical 

properties will be given elsewhere. Thereby, it should be borne in mind that, starting from a semi-

microscopic model for the pseudo-gapped and remaining unaffected electrons at the complex 

Fermi surfaces, one will come up with different pseudo-gap values because the weight of each 

point at the Fermi surface is certainly different for different physical properties affected, for 

instance, in the case of transport properties by the local Fermi velocities and the impurity 

dependent intra- and interband scattering rates.   All these subtle points are ignored in a formal 

comparison of different measurements without adopting a certain microscopic model for the 

underlying multiband electronic structure.  

It should be noted that, in cuprates, both Δ and scaling parameter T* show a strong 

decrease with increasing x in the underdoped regime [18, 20] and almost constant values in 

overdoped regime (La2-xSrx CuO4 , x = 0.220.34) [20]. The observed compositional dependence 

of Δ in Ba(Fe1-xCox)As2 (x = 0.00.3) in the overdoped regime is different from that reported for 

cuprates. 

The first and second derivatives of the temperature dependence of resistivity for the 

Ba(Fe1-xCox)As2 system reported by Rullier-Albenque et al. [9] and Fang et al. [10] were 

analyzed, and the value of inflection point Tip for d/dT was determined (see Fig. 3 and Table 1).  

It is shown in Fig. 3 for a representative (T) curve that inflection point Tip for d/dT is 

closely related to Δ, namely, Δ/Tip =1.5 for that scaling function (T) (Eq. 1). It is noteworthy 

that, in a formal sense, this is close to the well-known prediction of the BCS theory: Δ/T
*
=1.76, 

where the superconducting gap and the transition temperature have been replaced by their 

pseudo-gap related counter parts.  To avoid possible misunderstandings, we emphasize that, in 

the present context, there is no direct and obvious relation of the former to the corresponding 

“real” superconducting gap and/or the superconducting transition temperature Tc for the 

compounds under examination. The Ba(Fe1-xCox)As2 phase diagram is presented in Fig. 4.  

We can see a reasonable correlation between the TSDW values reported in [10] and our Tip 

data with Tsdw ~ Tip.in the underdoped regime. According to [21], the Ba-, Sr-, and Ca-122 

magnetic parent compounds with 2SDW/TN  5.3, 8.7, and even 12 exhibit large deviations from 

the BCS relation as  observed in recent optical measurements. In our opinion, this observation 

indicates the importance of strong coupling and retardation effects well beyond the validity of a 

weak coupling BCS-type description. The above suggests that, within our approach, a connection 

between the magnetic SDW-gap and the pseudo-gap is unlikely and/or the inflection point 

temperature Tip mentioned above might be of some other origin.  
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Fig. 3. Temperature dependence of the resistivity of Ba(Fe1-xCox)2As2 for x = 0.02 (black 

solid line). The data were fitted by (T) according to Eq. (1) (blue line). The first derivative 

d/dT (red line) with the inflection point at T = Tip and d
2/dT

2
 (green line) which is 10 times 

magnified are shown. 
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Fig. 4. Phase diagram of Ba(Fe1-xCox)2As2 systems (0 ≤ x ≤ 0.3). The Tip values were 

calculated using the resistivity data reported by Rullier-Albenque et al. [9] and Fang et al. 

[10]. The Tsdw and Tc values were taken from [10]. 

 



E. Arushanov, G. Fuchs, S. Levcenko, and S.-L. Drechsler 
 

11 

Following [22], we could say that our observation of a doping independent scaling law in 

the normal state of pnictide superconductors could be probably used as an indication that a 

pseudogap-like behavior is the reason for a predominant energy scale which controls the low 

energy excitations. The possible existence of a pseudo-gap in LaO1−xFxFeAs and SmFeAsO1-xFx 

compounds has been reported by Liu et al. [23], Jia et al. [24], and Ou et al. [25] on the base of 

high resolution photoemission measurements as well as for isomorphic Ca(Fe1-xCox)As2  [27] on 

the basis of NQR measurements with the electric field gradient along the c-axis. The reported 

pseudogap for x = 0 .063 of (88  6) K is comparable with that for x = 0.08  and 0.1 for the Ba 

counter part (see Table 1) with the data of [10] and x = 0.07 of [9]. However, the temperature 

dependent spin-latice relaxation rate 1/T1T cannot be attributed to an isotropic pseudo-gap.  For 

the isovalently doped BaFe2(As0.45P0.55)2 system [28], a similar value has been reported. 

However, at variance with our analysis, nothing could be observed in the overdoped regions. A 

pseudo-gap like behavior has been also derived from NMR spin relaxation rates and Co Knight-

shift as well as for interlayer resistivity measurements for Ba(Fe1-xCox)As2 [26] but not for the 

intralayer one. For completeness, note that no pseudo-gap behavior could be derived from STM-

measurements for the title compounds [29]. This lacking observation might be ascribed to 

specific surface properties, whereas bulk sensitive specific heat data for Ba(Fe1-xCox)As2  for  the 

linear electronic specific heat (Sommerfeld coefficient) [30] are in conflict by a factor of two 

with the presence of both usual high-energy and low-energy mass renormalizations and 

compatible with a reduced electronic density of states which might be caused  by a pseudo-gap 

for a subgroup of electrons. Similar problems for the empirical mass enhancement arise also for 

overdoped  BaFe2(As0.45P0.55)2 samples if the pure band mass scaling shown in Fig. 5 of [31] is 

adopted. In the context of the transport data reported here, one might suppose that only a 

subgroup of fast electrons is mainly affected by the pseudo-gap. Comparison of the  values for 

the two samples shown in Table 1 reveals some scattering for the latter. This might be ascribed to 

different amounts of disorder. Therefore, a systematic study of possible correlations and the 

amount of disorder as measured by the residual resistivity is of considerable general interest for 

the elucidation of the microscopic mechanism behind the pseudo-gap. 

The microscopic interpretation of the observed gap-like feature   is rather unclear at 

present. One option in connection with the pseudo-gap-like feature more pronounced in the 

interlayer direction at a significantly larger energy scale would be given by an extremely 

anisotropic pseudogap observed by our sensitive scaling method for the first time also in the 

planar direction. Alternatively, it might be related to a slight misorientation in the studied 

resistivity data taken from the literature and our scaling method could be used as an additional 

technique to detect it by measuring an angular-dependent admixed c-axis contribution. The 

presence of an inflection point might be also related to a starting saturation phenomena pointing 

to a lower limit of the mean free path like in the well-known Joffe-Regel scenario given by the 

interatomic distance. 

Among other possibilities for a pseudo-gap like scenario in general, at least three 

scenarios are worth studying theoretically in more detail: (i) a long-range Coulomb interaction 

disorder related feature; (ii) a pairing mechanism related pseudo-gap as discussed for the 

cuprates, and (iii) a band structure related feature from a band slightly below the Fermi energy 

whose excitations provide additional charge carriers at higher temperatures. A thermal 

delocalization of localized electrons would also add charge carriers In general,  a corresponding 

systematic study of other FeAs-based pnictides is of considerable interest and might be useful in 

discriminating between the proposed scenarios and elucidating the unclear nature of the pseudo-

gap. 
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3. Conclusions 

 

The zero-field normal-state resistivity for various levels of doping for Ba(Fe1-xCox)As2  

(x = 0.050.30) can be scaled onto a single universal curve. Energy scale Δ, resistivity ρΔ, and 

residual resistivity ρ0 are suitable scaling parameters for Ba(Fe1-xCox)As2 (x = 0.050.30). The 

existence of a universal metallic ρ(T) curve is interpreted as an indication of a single mechanism 

which dominates the scattering of the charge carriers in Ba(Fe1-xCox)As2 (x = 0.050.30) and/or 

changes in the number of available charge carriers due to a specific electronic structure. We have 

shown that Δ is related to inflection point Tip of dρ/dT,  Δ/Tip=1.5 with  TSDW ~ Tip in the 

underdoped regime. Further comprehensive studies are required to clarify the microscopic nature 

of the observed  and its possible relation to the pseudo-gap reported in numerous recent studies 

based on other experimental techniques. Regardless of the final applicability of certain pseudo-

gap scenarios to iron pnictides and related compounds, the empirical findings presented in  this 

study are expected to be useful for any sophisticated microscopic description hopefully achieved 

in the near future.   
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Abstract 

 

Co(II) coordination networks as an integral part of metal-organic materials have been in 

focus of materials scientists and crystal engineers for the last two decades. This interest stems not 

only from their reported fascinating architectures and remarkable adsorption properties being the 

inherent properties of the majority of the so far known metal-organic frameworks, but also from 

the unique place that Co(II) atom occupies among the transition metals due to its pronounced 

magnetic properties and colorimetric features. This review highlights the Co(II) mixed-ligand 

polymeric dicarboxylates built on two rigid dicarboxylic acids, the widely used  

1,4-benzenedicarboxylic acid (H2bdc) and its closest analogue, 4,4'-biphenyldicarboxylic acid 

(H2bpdc) that have been reported in the past 10 years. It is focused on: (1) the nature and 

coordination abilities of Co(II); (2) the synthetic pathways; (3) the impact of size and rigidity of 

the spacer ligands in the generated coordination networks; (4) examples of one-, two- and three-

dimensional coordination polymers; and (5) potential applications of Co(II) coordination 

polymers. 

 

1. Introduction 

 

Crystal engineering of transition metal complexes, especially coordination polymers (CPs), 

has been greatly developed in the past decade. Synthesis, characterization, and reactivity of CPs 

formulated as a coordination compound with repeating coordination entities extending in 1, 2, or 

3 dimensions [1], including metal-organic frameworks (MOFs) formulated as a coordination 

network with organic ligands containing potential voids [1], have been an active research field in 

recent years. Of great interest are not only the design and synthesis of CPs, but also their 

enormous variety of intriguing structural topologies, as well as their potential applications in gas 

sorption, catalysis, luminescence, magnetism, nonlinear optics, and medicine [2, 3]. The most 

powerful strategy for the architecture of diverse structural topologies in MOFs is the selection of 

an appropriate multidentate ligand as a linker in connecting metal ions to achieve one-, two-, or 

three-dimensional network structures [4, 5].  

Since 2005, when Co(II)-based MOF-71, Co(bdc)(dmf) and MOF-78, 

Co(Hpdc)(H2O)(dmf) (Hpdc=2,7-tetrahydropyrenedicarboxylate) were reported by Yaghi et al. 

[6], great attention has been paid to coordination chemistry of cobalt complexes with carboxylate 
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ligands, due to the fact that polynuclear cobalt carboxylates are suitable candidates for structural 

assembly of new coordination solids with diverse network architectures and useful properties [7]. 

Thus, in 2009, Zhou and et al. demonstrated that MOF-74-M (M=Mg, Mn, Co, Ni, Zn;  

MOF-74 = M2(dhbdc)(H2O)2(H2O)0.6(EtOH)1.6, dhbdc=2,5-dihydroxybenzenedicarboxylate), 

which possess a high concentration of metal open sites, yielded excess storage capacities [8], 

while among the five isostructural analogues, CoMOF-74 stands ahead for methane and acetylene 

uptake [9] and exhibits the highest thermodynamic propylene-propane selectivity [10]. Among 

the indisputable advantages of cobalt ion against other transition metals, stands its diverse 

coordination capacity with the range of geometries, including the octahedral, tetrahedral, square-

pyramidal, trigonal bipyramid, and square-planar ones [11], and its vapochromism [12] since the 

cobalt-containing MOFs can have a wide range of colors, which makes it easy, in many cases, to 

identify different phases [13].  

The most common intrinsic Co(II) colors are very light pink for octahedral coordination 

and intense blue for tetrahedral coordination [14]. For distorted octahedral coordination, the pink 

color can intensify to orange, dark-red, purple, and violet depending on the ligand and the type of 

distortions. For compounds having both tetrahedral and octahedral coordinated ions, the colors 

are usually from green to blue depending on the distortions and the ratio of cobalt atoms in the 

two coordination geometries [15]. This property makes Co(II) coordination networks attractive as 

chemical sensors [16]. 

Similar to other MOFs based on transition metals, nowadays the Co(II) coordination 

networks contain a great many of ligands and expand from the carboxylic networks, including the 

above-mentioned MOF-71, MOF-78, and CoMOF-74, to the mixed-ligand systems based on the 

combination of at least two ligands, for example, anionic dicarboxylate and neutral 

pyridine/bipyridine type ligands [17, 38, 59, 71] or combining both of these functions in one 

molecule [18]. Based on the information provided by the Cambridge Structural Database (CSD) 

that now contains data on nearly 700 000 crystal structures [19] it might be stated that carboxylic 

acids occupy a special place in the Co(II) MOF’s crystal engineering, and since it is hard to cover 

all of them, this overview will be restricted to the reported examples of Co(II) mixed-ligand CPs 

with two rigid aromatic dicarboxylic acids, 1,4-benzenedicarboxylic acid (H2bdc) and  

4,4̍-biphenyl-dicarboxylic acid (H2bpdc) (Scheme 1), in combination with the  neutral ligands 

summarized in Table 1.  

These two ligands, 1,4-benzenedicarboxylic acid (H2bdc) and 4,4'-biphenyl-dicarboxylic 

acid (H2bpdc) (Scheme 1) have been used in the synthetic schemes because they can exhibit a 

short bridge via one carboxylic group or a long one via the phenyl (biphenyl)  moiety which leads 

to varieties of multi-dimensional MOFs with different kinds of topologies [20].   

As bridging ligands, dicarboxylates are of immense interest in the construction of 

polymeric coordination architectures not only because these polymers have a wide range of 

structural diversities and potential applications as porous and magnetic materials, but also 

because dicarboxylates are capable of functioning as hydrogen bond donors and/or acceptors 

[21].  
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Scheme 1. Structural formulae for dicarboxylic acids with acronyms used in this study. 

 

In this overview, the attempt has been undertaken to summarize the recent progress in 

design, syntheses, and single crystal structural investigations of Co(II) coordination 

supramolecular networks based on dicarboxylate aromatic ligands with one and two aromatic 

rings. The overview covers the works published in  the last decade, 20052015.  

 

2. Mixed-ligand Co(II) CPs with rigid dicarboxylic acids 

 

Rigid ligands, such as benzene polycarboxylic acids and heterocyclic aromatic 

compounds, are known as good candidates for assembly in the form of CPs. Among them, 

historically first was H2bdc as one of the best spacers for design and construction of MOFs, 

due to the equally spaced carboxylate groups, rigidity of the phenyl skeleton and especially its 

various bridging abilities [22]. 

The statistical analysis of Co(II) CPs with aromatic dicarboxylic acids, such as phenyl 

and biphenyl dicarboxylic acids, has been undertaken based on the data extracted from the 

Cambridge Structural Database (CSD, version 1.17, 2015) and from the current scientific 

sources (Fig. 1). It has been revealed that Co(II) coordination networks only with H2bdc and 

H2bpdc have been reported so far. 

 

 

 

 

 
 

 H2bdc 

 H2bpdc 

Fig. 1. Histogram with distribution of Co(II) CPs with aromatic dicarboxylic ligands. 

 

 

2.1 Synthesis 

 

Four main synthetic strategies (saturation, diffusion, hydro(solvo)thermal, microwave 

and ultrasonic methods) for obtaining CPs are extracted from the literature [23] and 

summarized in Tables 2 and 3 for H2bdc and H2bpdc, respectively. Improvement of synthetic 

procedure is essential in order to obtain high-quality single crystals suitable for X-ray 

measurements. It is widely documented that the structure and topology of CPs generated from 

transition metals and organic ligands can be controlled by the selection of ligands, pH of the 
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reaction medium, solvents, metal ions, metal-to-ligand ratios, reaction temperature, 

counterions, and so forth [3, 5]. In particular, solvent nature is an important factor since its 

structure, as well as chemical properties, can influence the rate of crystal growth and the final 

structure. A large number of new MOFs have been constructed in the presence of the 

templating molecules showing unprecedented structural characteristics and, in some cases, 

solvent-induced properties, such as enhancement of porosity [24], electrochemical property 

[25], catalytic activity [26], and so forth. The CPs are generally synthesized in the liquid 

phase by using a solvent as a medium to induce the self-assembly of a regular framework. The 

reaction can be carried out by mixing a solution of metal ions with a solution of ligands at 

room temperature or under hydrothermal/solvothermal conditions (where one or all 

components are poor soluble compounds) [27]. For example, compounds [Co(bdc)(pyz)]n and 

{[Co(bpdc)(2,2'-bpy)(H2O)]n·nH2O}n (where pyz = pyrazine, 2,2'-bpy=2,2'-bipyridine) were 

prepared under hydrothermal conditions at high temperatures of 120200ºC in a neutral or 

slightly acid medium [28]. The {[Co2(bdc)2(ted)]·2dmf·3H2O}n compound (where 

ted=triethylenediamine) was prepared by the layered-solution method using CoCl2, 

triethylenediamine, and H2bdc in DMF and methanol solvents as starting materials [29]. The 

{[Zn2Co(bpdc)3(dmf)2]·4dmf}n complex was prepared via solvothermal synthesis from 

mixtures of the respective transition metal salts and H2bpdc [30]. 

 

2.2. Mode of coordination 

 

Dicarboxylates are widely used in the supramolecular assembly as mono-, bi- or multi-

dentate ligands because they can adopt a variety of coordination modes to the metal centers. 

The generalizations reported herein are made on the CSD statistics for the cobalt(II) ion 

coordination modes in the polymeric dicarboxylates and based on the Harris notation [31] 

(Scheme 2).  

 
 

Scheme 2. Crystallographically established modes of carboxylate coordination to the Co(II) metal 

atoms.  
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2.3. Dimensionality of polymeric Co(II) dicarboxylates 

 

The organization of the building blocks together can lead to CPs of different 

dimensionalities, such as one-, two-, or three-dimensional architectures. In order to illustrate 

the wide diversity of Co(II) CPs with dicarboxylic acids, some examples are given. They are 

classified along with their dimensionalities, and our retrieval of the CSD revealed 171 hits of 

H2bdc ligand  with Co(II) metal, 17 of which are one-dimensional (1D), 32 are two-

dimensional (2D), and 65 are three-dimensional (3D) networks, while of 35 hits with H2bpdc 

ligand 3 are 1D, 7 are 2D, and 25 are 3D CPs (Fig. 2). The CPs will be further discussed in 

the hierarchy of increase in their dimensionality (Tables 2, 3). The Figures were reproduced 

by Mercury facilities [32] using cif files extracted from CSD.  

 

 

 
 

 

 

 

 

 

H2bdc  H2bpdc 
               Fig. 2. Histograms with distribution of Co(II) CPs with aromatic dicarboxylic 

 ligands against dimensionalities. 

 

 

2.3.1. CPs of Co(II) with 1,4-benzenedicarboxylate 

 

2.3.1.1. One-dimensional motifs 

 

The selected 1D arrays are shown in Fig. 3. The crystals of [Co(bdc)(L6)2(H2O)2]n, were 

obtained by the hydrothermal synthesis. The compound crystallizes as the linear chain shown 

in Fig. 3a where the Co(II) atoms are bridged by the monodentate-coordinated bdc anions to 

form 1D benzenedicarboxylate-bridged polymeric chain structure. The Co(II) atoms are in 

N2O4 octahedral environment [33]. 

The formation of the zig-zag chains can be induced by the chelate mode of coordination 

of N-ligand molecules. The zig-zag structure of the [Co(bdc)(L3)]n compound, which is 

shown in Fig. 3b, is provided by the bulky [Co(II)(L3)]
2+ corner fragment; each cobalt atom 

adjusts the distorted N2O4-octahedral environment; both carboxylic groups of the bdc ligands 

act in a bidentate bridging mode [34]. 

From slow diffusion techniques in a water-methanol medium, crystals of 

{[Co(L1)(bdc)(H2O)2]·[Co(H2O)6]·(bdc)·(H2O)}n were obtained [35]. The polymeric chain is 

formed by almost collinear hexacoordinated Co(II) ions in the O6-octahedral environment   

doubly bridged by a bdc carboxylate group and a L1 oxygen. The crystal packing shows bdc 

dianions and water molecules inserted in between the ribbons (Fig. 3c). 

Ladder-like 1D motifs can also be formed. An example is shown in Fig. 3d. In the 

{[Co2Br2(bdc)(L2)2]·4dma·2H2O}n compound [36], the tetrahedral Co(II) ions are coordinated 

with three different ligand molecules. These Co2+ ions are connected by bidentate L2 ligands 

to form a 1D wavy chain. Two chains are bridged together by ditopic bdc2− ligands as rungs 

into a molecular ladder.  
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(a)  

 
(b)  

 
(c)  

 
(d)  

Fig. 3. 1D coordination arrays: linear chain in  

catena-[(μ2-terephthalato)-bis(2-(pyridin-3-yl)-1H-benzimidazole)-diaqua-cobalt(II)] (a) [33], zig-zag 

chain in catena-((μ2-terephthalato)-(2-(1,3-thiazol-4-yl)-1H-benzimidazole)-cobalt(II)) (b) [34], 

 ribbon in catena-((μ2-terephthalato-O,O')-(μ2-4,4'-bipyridine-N,N'-dioxide-O,O')-diaqua-cobalt(II) 

hexa-aqua-cobalt(II) terephthalate monohydrate) (c) [35],  

and ladder in catena-((μ2-terephthalato)-bis(μ2-4,4'-hydrazine-1, 2-diyldipyridine)-dibromo-di-

cobalt(II)) (d) [36]. 
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2.3.1.2. Two-dimensional motifs 

 

Square grid networks are the simplest examples of the 2D motifs. In these CPs, the 

metal to ligand proportion is usually 1 : 2. The metal centers are coordinated with four 

different ligand molecules, and the repetition of this unit allows the propagation of the 

structure in two dimensions. 

Thus, in compound [Co(bdc)(L17)(H2O)2]n, the metal ions have an octahedral 

environment: the equatorial positions are occupied by two bdc2− anions and two water oxygen 

atoms, and the axial positions are occupied by two nitrogen atoms from two L17 molecules 

[37]. Further expansion of the structure through the monodentate bridging bdc2− anions and 

L17 ligands creates a (4,4) rhomboidal layer grid (Fig. 4a).  

 

 

 
 

(a) (b) 

 

 
(c) 
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(d) 

Fig. 4. 2D CPs topology: square grid in catena-[(μ2-terephthalato)-(μ2-3,3'-(hydrazine-1,2-

diylidenedimethylylidene)dipyridine)-diaqua-cobalt(II)] (a) [37], rectangular grid in catena-((μ4-

benzene-1,4-dicarboxylato)-(μ2-benzene-1,4-dicarboxylato)-bis(1-benzyl-1H-imidazole)-di-cobalt(II)) 

(b) [38], wave-like layer in catena-[(μ2-benzene-1,4-dicarboxylato)-(μ2-1,2-bis[2-(1H-1,3-imidazol-1-

ylmethyl)phenoxy]ethane)-cobalt(II) dihydrate] (c) [39], and brick wall in catena-((μ2-terephthalato)-

bis(terephthalic acid)-bis(μ2-isonicotinohyrazide)-di-cobalt(II)) (d) [41]. 

 

The [Co2(bdc)2(L12)4]n crystals result from the reaction of L12, CoCl2, and H2bdc acid in 

the presence of Et3N in a dmf/CH3OH solution [38]. Analysis of the crystal structure reveals a 

2D network with rectangular cavities, as shown in Fig. 4b. The opposite sides of the 

rectangular cavity are formed by two crystallographically different  bdc anions acting in 

different coordination modes; the metal secondary building unit (SBU) represents the 

binuclear cluster, {Co2(COO)4}. 

In the extended structure of compound {[Co(bdc)(L11)]·2H2O}n obtained under 

hydrothermal reaction of L11 with Co(II), in the presence of H2bdc [39], the Co(II) cations are 

six-coordinated: each bdc2-dianion acts in a bis-bidentate chelating mode to bridge the 

adjacent Co(II) cations to form zig-zag one-dimensional chains. These chains are linked by 

L11 ligands into a two-dimensional wave-like sheet (Fig. 4c).  

If the metal ions are only coordinated with three ligand molecules giving a “T-shape” 

around the node, layers are formed and the motifs are referred to as honeycomb [40], brick 

wall [41], herringbone [42] (Fig. 4d), etc. 

 

2.3.1.3. Three-dimensional motifs 

 

The extension of the coordination complexes can occur in three dimensions from the 

nodes through the ligand connectors. The H2bdc acid is an example of a 2-connecting ligand. 

For example, it has been used in the 3D motifs such as a diamondoid network, where each 

node is connected to four bridging ligands in a tetrahedral way, reproducing a diamond-like 

network. This motif has been found in the structure obtained from Co(II) ions as nodes and 

the H2bdc acid, and 1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene (bmb)  as connectors 

[43]. The Co(II) ion is in a distorted tetrahedral geometry defined by two nitrogen atoms of 

two bmb ligands and two oxygen atoms from two separated bdc2− anions and the resulting 

structure is a threefold diamondoid framework (Fig. 5). 
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(a) (b) 

Fig. 5. Perspective view of the single diamondoid net in  

catena-(bis(μ2-terephthalato)-(μ2-1,1'-(1,4-phenylenebis(methylene))-bis(2-methyl-1H-

benzimidazole))-di-cobaltmonohydrate): (a) Schematic illustration of the 3D dia topology [43] (b). 

 

At higher temperatures or using a longer reaction time, it is possible to obtain 3D 

complexes with octahedral Co(II) nodes,  such as [Co(bdc)(pyz)]n (where pyz=pyrazine), 

where one (4,4) layer with the sql topology is formed with bdc dianions capping the cobalt 

binuclear unit, as shown in Fig. 6a (the carboxylate groups are coordinated to the cobalt ions 

in the equatorial sites). The pyrazine molecules are linked to the cobalt ions through the apical 

positions for the expansion of the structure in the third direction [44] (Fig. 6b). 

A number of other three-dimensional motifs with dicarboxylic acid have been observed 

with different net topologies: fcu [45], pcu [46], fsc [47], sra [48], and other motifs. All of 

these CPs show a high stability; they present more or less large cavities filled with non-

coordinating solvent molecules and/or similar networks by interpenetration. 

 

 

(a) (b) 

Fig. 6. 3D CP [Co(bdc)(pyz)]n: {Co(bdc)}n sheet (a)  and perspective view of the three-dimensional 

motif [44] (b). 
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2.3.2. CPs of Co(II) with 4,4'-biphenyldicarboxylate 

 

2.3.2.1. One-dimensional motifs 

 

From the CSD search, there are three 1D CPs with an H2bpdc ligand synthesized by the 

solvothermal [49] and hydrothermal [28] methods; all these compounds form a 1D zigzag 

chain (Table 3). 

The crystal structure of {[Co(bpdc)(L37)]·1.5H2O}n is formed by a neutral 1D zig-zag 

chain composed of [Co(bpdc)(L37)] entities and free solvent disordered water molecules. The 

cobalt atoms are six-coordinated in a distorted [CoN3O3] octahedral coordination environment 

with three carboxyl oxygen atoms from two bpdc ligands and a nitrogen atom of one L37 

located in the basal sites and the other two nitrogen atoms from the L37 taken on the apical 

positions, as depicted in Fig. 7 [49]. 

 

 
 

 

Fig. 7. 1D zig-zag polymeric chain of complex {[Co(bpdc)(L37)]·1.5H2O}n [49]. 

 

2.3.2.2. Two-dimensional motifs 

 

Figure 8 illustrates some of the 2D network motifs that have thus far been observed in 

Co(II) CPs with H2bpdc ligand. A polyrotaxane-like network is observed in compound 

[Co(bpdc)(L41)]n. This CP contains two functionally different ligands, one ligand, usually a 

conformationally N-donor flexible ligand, serves to assemble a molecular unit with loops, 

whereas the other ligand, typically a long rigid polycarboxylate, forms metal-polycarboxylate 

substructures (e.g.,  chains or sheets) and, more importantly, provides a linear rod to insert 

those loops [50]. The asymmetric unit of this compound consists of one Co(II) ion, one L41 

molecule, and one bpdc2- anion. Each Co(II) ion is four-coordinated with distorted tetrahedral 

geometry composed of two carboxylic O atoms from two bpdc2- anions and two N atoms 

from two L41 ligands. The extension of the structure into a 2D sheet is accomplished by linear 

bpdc2- anions (Fig. 8a). 

In the extended structure of compound {[Co(bpdc)(L43)1.5(H2O)](L43)}n obtained under 

hydrothermal reaction of CoCl2·6H2O, H2bpdc, and L43 in distilled water and DMF, each 

Co(II) ion exhibits a distorted octahedral environment composed of two carboxylic O atoms 

from three bpdc2- anions and three N atoms from three L43 ligands and one water molecule. 

Each octahedral Co atom coordinates to three L43 ligands to form a 2D brick wall network 

with a (6, 3) topology (Fig. 8b) [50]. 

Three other 2D motifs with H2bpdc have been observed with grid like [86, 55] and 

triangular grid [30] networks (Table 3). 
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(a) 

 
(b) 

Fig. 8. 2D polyrotaxane-like network in [Co(bpdc)(L41)]n [50] (a); 2D brick wall net constructed from 

Co(II) centers and L43 ligands in {[Co(bpdc)(L43)1.5(H2O)](L43)}n (b) [50]. 

 

2.3.2.3. Three-dimensional motifs 

 

A number of 3D motifs with H2bpdc ligand have been observed with different net 

topologies, pcu [51-53], rob [54], dia [55], seh [55], hxl [56], mok [57], hms [58] and other 

motifs. 

The ligands H2bpdc and L51 react with the Co(II) salt to form the {[Co2(bpdc)(HL51)2]}n 

compound [59]. The asymmetric unit of this compound contains one Co(II), one partially 

deprotonated HL-
51, and half the bpdc2- residue. The Co(II) ion is in a distorted tetrahedral 

coordination environment with three nitrogen atoms from three HL51 and one oxygen from 

one carboxylate group of bpdc2- ligand. Each HL-
51 coordinates with three Co(II) atoms to 

form a 2D network, which repeats in an ···ABAB··· stacking sequence and is further 

connected by bpdc2- ligands to form a 3D InS framework via Co(II)–O coordination 

interactions (Fig. 9a). 



D. Chisca 

29 

 

The {[Co(bpdc)(L53)]·0.5H2O}n compound shows a rob organisation [54]. Its 

asymmetric unit consists of one crystallographically independent Co(II) ion, one L53 ligand, 

one deprotonated bpdc ligand, and half the solvent water molecule. Two crystallographically 

equivalent Co(II) cations are bridged by two carboxylate groups adopting a bis-bidentate 

coordination mode to generate a dinuclear Co(II) secondary building unit. The ladder chains 

extend in the cross direction to form a 2D network, then combine the L53 ligands from vertical 

direction to construct a 3D rob framework (Fig. 9b). 

 
(a)  

   
(b) 

 
                                                                         (c) 
Fig. 9. 3D InS framework in {[Co2(bpdc)(HL51)2]}n (a) [59]; perspectives of 3D framework along the 

c axis in {[Co(bpdc)(L53)]·0.5H2O}n (b) [54];  the hxl net in {[Co3(bpdc)3(dma)2]∙4dma}n (c) [56]. 

 

The {[Co3(bpdc)3(dma)2]∙4dma}n compound contains trinuclear metal centers with six 

coordination points; the structure adopted an hxl net (Fig. 9c) being  assembled via the long 

ligand H2bpdc [56].  



Moldavian Journal of the Physical Sciences, Vol. 14, N1-2, 2015 

 

30 

 

3.  Potential applications 

 

The rapidly growing field of design and synthesis of CPs is attributed to their 

undisputable advantages as new multifunctional materials. Several examples in this part of the 

review reveal Co(II) MOFs with dicarboxylic ligands as promising materials for applications 

in gas storage, anion exchange (due to the porosity), luminescence, magnetism, and catalysis.  

Gas storage is one of the possible applications for these materials. The [Co2(bdc)2(L18)]n 

compound has a high specific micropore volume of 0.82 cm3g−1, a hydrogen storage capacity 

of 2.27 wt % at −196°C and 1 bar, and an excess methane adsorption of 14.0 wt % at 30C 

and 75 bar, and is a promising material for hydrogen and methane storage. The host 

framework shrinks upon inclusion of guest molecules and expands upon guest removal, a 

fascinating phenomenon in this class of materials [60]. Another example is 

{[Co6(L28)(SO4)(bdc)2]·(dmf)7}n [61], which has ultramicropores in its structure. The dmf 

molecules can be removed and substituted with H2O, methanol, and ethanol. The sorption 

behavior was studied for CO2, CH4, and N2.  The {[Co2(bpdc)(L50)]·dmf}n, [52], 

{[Co2(bpdc)2(H2L48)]∙2dmf}n, [53], {[Co2(bpdc)1.5(HL48)]·dmf·CH3CN·H2O}n [62], and other 

compounds [63-65] based on positional isomeric 4,4′-biphenyldicarboxylate ligand exhibit a 

distinct temperature-dependent gas (CH4, N2, CH4) sorption behavior.  

Nowadays, MOFs have already been used for new photocatalytic materials in view of 

their potential applications in the green degradation of organic pollutants [66]. For example, 

the {[Co2(bdc)(L8)2]·4nH2O}n compound is an active catalyst for the degradation of orange G, 

rhodamine B, methylene blue, and methyl violet [67]. 

From a magnetic perspective, Co(II) carboxylates have shown to be potential candidates 

to construct molecular magnets exhibiting various bulk magnetic behavior, such as 

antiferromagnetism, ferromagnetism, spin canting, ferrimagnetism, and so on [68, 14]. An 

example of the mixed-ligand CP that well illustrates the magnetic behavior of MOFs is the 

{[Co4(N3)4(bdc)3(L23)2]·nH2O}n complex [69], which reveals weak antiferromagnetic 

interactions between Co(II) centers. The [Co(bpdc)(HL38)(H2O)]n [70] and 

{[Co(bpdc)(L37)]·1.5H2O}n [70] complexes indicate weak antiferromagnetic interactions 

between the adjacent Co(II) (S =3/2) ions.  

The widely studied Co-based MIL-53 [104] analogues, [Co(bdc)(L25)]n and 

[Co(bdc)(L26)]n [72, 104] show the spin canting behavior, which is attributed to the existence 

of a highly symmetric trans-CoO4bdcO2L26 coordination core. There are other CPs of the 

Co(II) metal and an H2bpdc ligand with magnetic properties [70, 53, 71]. 

 

4. Conclusions 

 

Based on the data stored in the Cambridge Structural Database (CSD) and available 

literature sources, an attempt has been undertaken to generalize the Co(II) CPs based on two 

rigid dicarboxylic acid, 1,4-benzenedicarboxylic acid, and 4,4'-biphenyldicarboxylic acid. The 

overview covers the last-decade period of time-from 2005 to 2015-and shows how the Co(II) 

CP networks with dicarboxylic ligands can be built to have different dimensionalities using 

the rich variety of conditions and co-ligands with N-donor atoms. The extended species based 

on dicarboxylic aromatic acids show particularly intriguing structures for many reasons: they 

exhibit a large variety of distinct topologies and may serve as potentionally beneficial 

functional materials. The properties of these polymers range from optical to magnetic and 

reveal perspectives in many other fields.  
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Abstract 

 

The results of a study of the effect of the anisotropic elastic deformation up to 2% relative 

elongation on the change in the Fermi surface cross section of Sn-doped Bi wires in a glass 

envelope with the (1011) crystallographic orientation along the axis of elongation have been 

described. Changes in the Fermi surface cross section are recorded using Shubnikov-de Haas 

(ShdH) oscillations. It has been shown that the elastic deformation of Bi0.07at%Sn wires is 

accompanied by an electronic topological transition at which the carriers of two hole ellipsoids 

L2,3 that are equivalent with respect to the axis of elongation and exhibit high charge carrier 

mobilities flow into hole ellipsoid L1 with low carrier mobilities up to a topological transition at 

which the conductivity occurs only through the holes of hole ellipsoids L1 and T located at the L 

and T points of the Brillouin zone. The temperature and deformation dependences of resistance R 

and thermoelectric power α have been studied. It has been found that the size effect in the 

Bi0.07at%Sn wires is evident from the formation of a maximum in R(T) and the sign inversion 

in α(T) that linearly depend on the reciprocal of diameter 1/d. It has been shown that the 

deformation dependence of resistance and thermoelectric power represent the electronic 

topological transition that occurs during tensile deformation. 

 

1. Introduction 

 

The introduction of Sn impurities into Bi shifts the Fermi level of holes 
T

F
  at the T point 

down the energy scale and leads to a change in the number and nature of energy extremes. In 

studying the energy spectrum of metals and alloys, deformation effects play a decisive role, 

which is attributed to the fact that, unlike the doping method, elastic deformation is multiply 

implemented using the same sample. Doping is conducted using samples of different 

compositions; thus, there is some uncertainty associated with the replacement of the object of 

study. The action of deformation on the energy spectrum is more definite. The most spectacular 

phenomena for the observation of the qualitative restructuring of energy spectra are strong 

anisotropic elastic deformations [1, 2] which involve a continuous variation in the factor of action 

on the sample and provide a complete reproducibility of the results. It is significant that the 

method makes it possible to simultaneously observe the changes in the Fermi surface (FS) 

topology. 

It is known that the deformation of bismuth along different crystallographic directions 
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leads to changes in the FS of different signs [3, 4]. Any deformation, except for that along the 

(111) trigonal axis, leads to a decrease in the Bi lattice symmetry and different changes in the 

three equivalent FS "ellipsoids" differently arranged relative to the load application axis; that is, 

for each direction, there are at least two groups that differently change under deformation [24]. 

Quantum oscillation effects, such as Shubnikov-de Haas (ShdH) oscillations, are the most 

informative for studying the energy spectrum of charge carriers and the band structure in 

semimetals. 

Promising objects for the study of changes in the FS under uniaxial deformations are 

semimetal-based single-crystal wires in a glass envelope because the range of elastic deformation 

of these materials is about 22.5% relative elongation [57], which is an order of magnitude 

higher than the values in bulk samples. An advantage over whiskers lies in the fact that the 

studied wires are single crystals of a strictly cylindrical shape with the same orientation along the 

axis [7]. In addition, a glass envelope protects the wires against mechanical impacts during 

installation, contributes to the achievement of strong elastic deformations up to 2-3%, and blocks 

the occurrence of shear strains that decrease the limit of elasticity. 

This study is focused on the examination of ShdH oscillations in Bi0.07at%Sb wires in 

which the Fermi level lies in the zone of light L holes and heavy T holes of the Brillouin zone 

under the action of an elastic tensile deformation of up to 2% (Fig. 1). 

 

 

 
 

Fig. 1. Schematic representation of the band structure and the Fermi level position in Sn-doped Bi. 

 

Cyclotron masses, charge carrier concentration, Fermi level position, and Dingle 

temperature were estimated from ShdH oscillations. Deformation dependences of resistance R(ξ) 

and thermoelectric power α(ξ) at different temperatures were also studied. 

 

2. Materials and Methods 

 

Single-crystal wires in a glass envelope were prepared by liquid-phase casting by the 

Ulitovsky method [6, 7]. The starting material was a single-crystal ingot of the Bi0.07at%Sb 

alloy synthesized by zone recrystallization. Thin Bi0.07at%Sb wires in a glass envelope had 

diameters ranging from 200 nm to 1 m, a strictly cylindrical shape, and the same 

crystallographic orientation (1011) along the wire axis. 

The orientation of the samples was determined using angular rotation diagrams of transverse 

magnetoresistance (ВI) in magnetic fields of 014 T at temperatures of 3004.2 K (Fig. 2) and 

ShdH oscillations. Control measurements of the crystallographic orientation and analysis of the 

single-crystal pattern of the wires in a glass envelope were conducted by the X-ray diffraction 

method using individual samples. The use of angular rotation diagrams of transverse 
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magnetoresistance made it possible to orient the magnetic field in certain crystallographic 

directions (В || С2, В || С3) with respect to the wire axis. 
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Fig. 2. Angular rotation diagrams of transverse magnetoresistance R(Θ) of the Bi0.07at%Sn 

wire with d = 600 nm at T = 4.2 K and B = 0.5 T. The inset shows a schematic representation 

of the FS of bismuth in the (1011) direction along the wire axis. 

 

To study the wires under the action of elastic tensile deformation, the wire was fixed on a 

beryllium bronze ring with a diameter of about 5 mm (Fig. 3). 

 

 
 

Fig. 3. Image of the sample fixed on a beryllium bronze ring for the determination of the kinetic properties 

of wires in a glass envelope subjected to the action of elastic tensile deformation. 

 

The wire was fixed on two contact pads of copper-foil coated fiberglass with a size of  

2  1  0.5 mm that were fixed on the ring at a distance of 23 mm from each other. All the 

data—sample signal, temperature, and magnetic field—were transmitted on a computer and 
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displayed on a monitor during the measurements. The beryllium bronze ring with the sample was 

placed into a holder, and the entire system was immersed in a Dewar vessel filled with helium 

(Fig. 3). 

The ring extending under the action of an applied force was preliminarily calibrated at  

T = 300 K using a microscope. The above design provided a smooth stretching of the sample up 

to 23% relative elongation; %100
0








l

ll

l

l
  where l is the sample length before stretching in 

a temperature range of 2300 K. 

Particular attention was paid to compliance with the elastic stretching conditions. To this 

end, multiple stretching cycles were run and the reproducibility of the results was estimated. The 

temperature dependences of resistivity, magnetoresistance, and ShdH oscillations in the absence 

and presence of elastic tensile deformation were measured in an automatic mode on a computer-

aided installation in a temperature range of 4.2300 K at magnetic fields of up to 14 T at the 

International Laboratory of High Magnetic Fields and Low Temperatures (Wroclaw, Poland). 

 

3. Results and Discussion 

 

Temperature dependences of resistance R(T) and thermoelectric power α(T) of the 

Bi0.07at%Sn wires of different diameters in a temperature range of 4.2300 K (Fig. 4) and the 

field dependences of longitudinal (B  I) and transverse magnetoresistance R(B) (B  I, B  C2,  

B  I, B  C3)  in the magnetic field of a solenoid of up to 14 T in the absence of tensile 

deformation were studied (Fig. 5). Temperature dependences of resistance R(T) of the wires of 

different diameters exhibit a "metallic" behavior and are linear upon a shift of the size peak in 

R(T) to a high-temperature range and a decrease in the RТ/R300 ratio at 4.2 K with decreasing wire 

diameter d (inset in Fig. 4a). The "size" dependence of thermoelectric power is evident as a linear 

dependence of the sign inversion temperature in α(T) on the reciprocal of wire diameter (inset in 

Fig. 4b). 
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Fig. 4. Temperature dependences of (a) relative resistance RТ/R300(Т) and (b) thermoelectric power α(T) of 

the Bi0.07at%Sn wires of different diameters: d = (1) 0.2, (2) 0.3, and (3) 1.5 m. The insets show the 

dependence of (a) the peak temperature in R(Т) and (b) the sign inversion temperature in α(T) on the 

reciprocal of wire diameter 1/d. 

 

Figure 5 shows field dependences R(В) of the Bi0.07at%Sn wire in all the main 

crystallographic directions at 4.2 K. ShdH oscillations are particularly pronounced in derivatives 
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dR/dВ(В) (Fig. 5b). 
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Fig. 5. (a) Field dependences of (1) longitudinal (B  I) and transverse magnetoresistance (2) (B  I,  

B  C3) and (3) (B  I, B  C2) of the Bi0.07at%Sn wire with orientation (1011) along the wire axis at  

d = 600 nm and T = 2.1 K and (b) field dependences of longitudinal magnetoresistance R(В) (left scale) 

and derivatives dR/dВ(В) (right scale) of the Bi0.07at%Sn wire with d = 0.6 m at T = (1) 2.1 and  

(2) 4.2 K. 

 

The periods of the observed ShdH oscillations and the cyclotron masses calculated from 

the temperature dependences of the oscillation amplitude made it possible to determine the 

position of the Fermi level of holes at T according to the known relationships of charge carrier 

concentration and Dingle temperature TD [8]. 

It has been found that the Fermi level of T holes 
T

F
  is 104 meV as measured from the valence 

band top at T; that is, it is located in the region of light L holes (Fig. 1) [9], which is in good 

agreement with the data obtained in [8]. 

In the second set of measurements, deformation dependences of resistance R() at 4.2 K 

were recorded. After that, at fixed l/l values, field dependences of longitudinal 

magnetoresistance were measured. A successive increase in l/l made it possible to observe 

changes in the periods of quantum oscillations of the extreme sections of the L- and T-hole FSs 

during deformation. 

Figure 6 shows the field dependences of longitudinal magnetoresistance R(В) of the 

Bi0.07at%Sn wire with d = 600 nm and orientation (1011) at varying relative elongation ξ at a 

temperature of 4.2 K. 

It is evident from Fig. 5b that, in the absence of deformation (ξ = 0) at 4.2 K in initial 

magnetic fields up to 9 T, longitudinal magnetoresistance R(В) clearly exhibits oscillations of the 

FS cross sections of two hole ellipsoids L2,3 symmetrically arranged relative to the wire axis with 

a period of Δ(В
-1

) = 1.2  10
-5 
Ое

-1
. In the range of strong magnetic fields, oscillations of T holes 

with a period of Δ(В
-1

) = 0.048  10
-5 
Ое

-1
 are observed. The region of existence of oscillations of 

L and T holes at ξ = 0 is clearly bounded by a magnetic field of 8 T (Fig. 5b). 

With an increase in the load, field dependences R(В) exhibit a pronounced effect of 

negative magnetoresistance; the magnitude of it increases, while the region of existence expands 

and is shifted to weaker magnetic fields (Fig. 6). 

In the magnetic-field dependences of longitudinal magnetoresistance, ShdH oscillations are 

clearly observed against the background of the monotonic behavior of R(В) at all elastic 

deformations. 
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Fig. 6. ShdH oscillations in longitudinal magnetoresistance R(В) (В || I) of the Bi0.07at%Sn wire with 

orientation (1011) along the axis of the wire with d = 600 nm at fixed elastic stretching from ξ = 0 to  

ξ = 1.9% at T = 4.2 K. 

 

Figure 7 shows the dependences of quantum number n of ShdH oscillations under 

different elastic tensile deformations. 
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Fig. 7. (a). Dependences of conventional quantum number n of ShdH oscillations on reverse field В

-1
 of 

the Bi0.07at%Sn wire with orientation (1011) along the wire axis and d = 600 nm at fixed elastic 

stretching values ξ of (1) 0, (2) 1.16, and (3) 1.9% and T = 4.2 K and (b) deformation dependences of 

ShdH oscillations of FS cross sections of (f1) T holes and (f2) L1 and (f3) L2,3 hole ellipsoids at T = 4.2 K. 

 

The respective periods of ShdH oscillations for the different (L and T) FS cross sections 

calculated from linear dependences n(В
-1

) in Fig. 7 show the dependences of the ShdH oscillation 

frequency on the extreme sections of the FS at 4.2 K: 

 

 
1

1 /
e x

S c
f B

e h



   
 

                                                 (1) 
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It is evident that, as in the case of ξ = 1%, in the intermediate magnetic field range, a new 

ShdH oscillation frequency of f = 19.2 T (Δ(В
-1

) = 0.52  10
-5 
Ое

-1
) appears in dependences R(В) 

in a range of 0.25 T (Fig. 7); it increases with increasing load (stretching) and becomes 

dominant; that is, the region of existence of this frequency expands and is shifted to strong 

magnetic fields; this fact represents an increase in the minimum extreme cross section of the FS 

of L1 holes [10]. In this case, the period of ShdH oscillations of two hole ellipsoids L2,3 sharply 

increases to 4.4  10
-5 
Ое

-1 
at ξ = 1.8%, and the region of existence of ShdH oscillations of L2,3  

quasi-ellipsoids is shifted to weak magnetic fields; this fact indicates a sharp decrease in the 

volume thereof. At ξ = 1.8%, oscillations of the L2,3 hole ellipsoids vanish. 

Thus, unlike pure Bi wires, the elastic stretching of Bi0.07at%Sn wires with the same 

orientation is accompanied by the flow of carriers from two hole quasi-ellipsoids L2,3 

characterized by more mobile carriers into quasi-ellipsoid L1 that is extended along the wire axis 

and has less mobile carriers in the direction of the wire axis. At the same time, the period of 

oscillations of T holes at a strain of up to 1% varies only slightly; as the load increases to 2% 

relative elongation, the period increases by a factor of 1.4; this fact indicates a decrease in the 

volume of the hole ellipsoid at the T point of the Brillouin zone during elastic tensile deformation 

along the (1011) axis (Fig. 7). These changes in the FS topology are accompanied by an increase 

in the resistance of the wire by a factor of 1.4 at T = 4.2 K. 

For clarity, Fig. 7a shows the dependences of the ShdH oscillation periods at ξ = 0, 1.1, 

and 1.9%, while Fig. 7b shows the dependences of ShdH oscillation frequencies f = 1/Δ(В
-1

) for 

the different FS cross sections (L and T holes). 

Stretching of the Bi0.07at%Sn wires along the (1011) axis leads to a change in the 

symmetry of the lattice and violates the equivalence of L ellipsoids. Thus, the elastic tensile 

deformation of the Bi0.07at%Sn wires is accompanied by an electronic topological transition 

during which the FS composed of three L hole ellipsoids and one T hole ellipsoid changes and, 

under maximum tensile deformations, consists of one L hole ellipsoid extended along the (1011) 

axis and one T hole ellipsoid: 3 1 1 1
L T L T

h h h h
   . 
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Fig. 8. Deformation dependences of reduced resistance Rξ/R0(ξ) and thermoelectric power α(ξ) of the 

Bi0.07at%Sn wire at the different temperatures of T = (a) 4.2 and (b) 205 K. 

 

Figure 8a shows deformation dependences of resistance Rξ/R0(ξ) and thermoelectric 

power α(ξ) at a temperature of about 4.2 K. The increase in resistance Rξ/R0(ξ) by a factor of 1.3 

represents a decrease in the contribution of more mobile carriers of L2,3 holes during elastic 



Moldavian Journal of the Physical Sciences, Vol. 14, N1-2, 2015 
 

 42 

deformation. In this case, the thermoelectric power decreases with stretching; however, unlike 

pure Bi wires, the α value does not become negative; instead, it undergoes saturation; this fact 

indicates the disappearance of L2,3 hole ellipsoids at the transition 
3 1 1 1

L T L T

h h h h
  

 at ξ = 1.3%. 

 

             
 

                          (a)                                                                                        (b) 

 
Fig. 9. (a) Schematic representation of the band structure and the displacement of the 

ellipsoids and the Fermi level in the Bi0.07at%Sn wire with the standard (1011) orientation 

during stretching along the wire axis and (b) variation in the FS shape in the Bi0.07at%Sn 

wire with the standard (1011) orientation during stretching along the wire axis. 

 

At a temperature of 205 K, the thermoelectric power undergoes a sharp linear decrease 

and exhibits a tendency to change the sign at higher ξ values; this feature is attributed to the fact 

that, in this temperature range, the smearing of кТ leads to the partial involvement of the 

electrons from ellipsoids L2,3 that are shifted down the energy scale during tensile deformation 

(Fig. 9a). 

4. Conclusions 

 

The study of Bi wires doped with 0.07 at % Sn has shown that, in the wires with a 

thickness of up to 200 nm, the size effects are significantly weaker than in pure Bi with respect to 

both the resistance and the thermoelectric power. Cyclotron masses of L and T holes, 

concentrations, and the energy position of the Fermi level of T holes 
T

F
  have been calculated 

from ShdH oscillations. 

In studying ShdH oscillations, it has been shown that the uniaxial elastic deformation of 

the wires is accompanied by an electronic topological transition of 
3 1 1 1

L T L T

h h h h
  

, which leads 

to an increases in resistance R(ξ) and a decrease in the positive thermoelectric power value in the 

deformation curves in the entire temperature range. 
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Abstract 

 

XRD analysis and microstructure and DSC studies of GaSb-CrSb eutectic composite 

synthesized by the Bridgman method have been conducted. It has been shown that needle-

shaped CrSb inclusions oriented to the solidification direction take part in the GaSb matrix. The 

initial and final temperature and enthalpy of melting for this composite have been determined. 

The anisotropy observed in the temperature dependences of Hall coefficient, electrical 

conductivity, and thermoelectric power of the composite has been attributed to the sort-circuiting 

effect of metallic inclusions.  

   

1. Introduction 

 

Semimagnetic or diluted magnetic semiconductors are promising materials for the 

production of high-speed memory systems. It is well known that dilute magnetic semiconductors 

based on binary semiconductors doped with 3d-transition metals do not have stable 

characteristics. From this point of view, eutectic composites based on IIIV compounds and 3d-

transition metals (Fe, Mn, Co) have reproducible and stable characteristics and do not depend on 

external factors [14]. These composites are promising targets for researchers because of 

semiconductor and metal properties. These materials consist of a IIIV group semiconductor 

matrix and metal inclusions parallel oriented in the matrix. In these systems, the charge carriers 

are redistributed at semiconductormetal boundaries and structural and electronic energy states 

arise, the fact that is not characteristic of each phase individually. These semiconductormetal 

eutectic composites exhibit a behavior similar to that of nonuniform semiconductors. The 

physical properties of these materials strongly depend on the electronic configuration of  

3d-elements, geometry of inclusions, and the formation of interphase zones between the 

inclusions and the matrix [56]. 

Previously, we investigated the features of the electronphonon processes of the eutectic 

composites based on GaSb and InSb compounds with Fe, Co, and Mn [36]. The present work is 

focused on the synthesis, differential scanning calorimeter (DSC) analysis, and studies of the 

microstructure and electrophysical parameters of a GaSbCrSb composite in a temperature range 

of 80750 K as a continuation of a cycle of works of the preparation and investigation of eutectic 

composites.  
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2. Experimental 

 

The synthesis of GaSbCrSb eutectic composite was conducted in two stages. 

Semiconductor GaSb was prepared by alloying the related components in stoichiometric 

quantities and refining the alloy by horizontal recrystallization method.  The eutectic alloys of 

GaSbCrSb have been prepared by alloying GaSb and 13.5 wt% CrSb using the vertical 

Bridgman method. The rate of the crystallization front was set at about 0.3 mm/min. The 

resulting crystals exhibited p-type conductivity.  

XRD intensity data were collected on an Advance-D8 diffractometer using CuK 

radiation. The microstructure and elemental composition of the samples were studied using a FEI 

Quanta FEG electron microscope and an Oxford Inca X-act EDS system. 

The heat flow (DSC) and mass change (TG) were recorded on a PerkinElmer STA 6000 

instrument (United States) in a nitrogen atmosphere with a gas flow rate of 20 mL/min and at a 

heating rate of 10C/min. The sample with a weight of 123.547 mg was placed in a corundum 

crucible. The DTA curve was derived from DSC curve differentiation.   

The electrical properties of the composite were investigated by means of compensation in 

a temperature range of 80750 K and at a magnetic field of 1.3 T in the mutual directions of the 

electric current, crystallization, heat flow, and magnetic field. 

 

3. Results and discussion 

 

Diffraction patterns of eutectic composite GaSbCrSb are shown in Fig. 1. This figure 

also shows data on the diffraction patterns for GaSb and CrSb compounds. Analysis of XRD 

spectra using TOPAZ and EVA applications has confirmed that this system is diphasic: the most 

intense peaks corresponding to the (111), (200), (220), (311), (222), (400), (331), (420), and 

(422) Muller index are identical to the GaSb matrix, while the weak peaks found at 2 = 30, 

44.08, 52.12, and 54.13 coincide with the CrSb lines having a hexogonal structure with lattice 

parameters of a = 4.121, c = 5.467, c/a = 1.327, and the P63/mmc space group.  

 

 
Fig. 1. Comparative diffraction patterns of the GaSb and CrSb compounds and the GaSbCrSb 

eutectic composite. 
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Fig. 2. SEM image of the GaSbCrSb eutectic composite (magnification of 10000 times). 
 

The data on the microstructure and elemental composition are shown in Figs. 2 and 3. 

The needle-shaped metallic inclusions are uniformly and parallel distributed in the GaSb matrix. 

Based on SEM examinations, the oriented needles have a diameter of about 1.4 μm, a length of 

2050 μm, and a density of ~8 x 10
4 

mm
2

. The elemental composition data correspond to the 

GaSb matrix and the CrSb inclusions.  

DSC, TG, and DTA curves of the composite in a temperature range of 251000C are 

presented in Fig. 3. It is evident from the TG curve that the change in weight is 0.154%. The 

temperature range of 670700C, in which the endothermic process occurs and the weight 

remains unchanged, corresponds to the melting of the composite. It has been found that the 

initial and final melting temperatures are 670 and 692C, respectively, and the enthalpy of 

melting is 56.45808 J/g. The temperature range of 645670C, in which the endothermic process 

occurs and the weight increases, corresponds probably to the oxide process with an enthalpy of 

6.3335 J/g. 

The results of studies of the temperature dependences of the Hall coefficient R(T), 

electrical conductivity σ(T) and thermoelectric power α(T) measured at the different mutual 

directions of current (I), magnetic field (B), and crystallization direction are shown in Figs. 57. 

In the temperature dependence of the kinetic coefficients, anisotropy due to the presence of 

regular metal crystalline inclusions in the semiconductor matrix is observed. Due to shorting 

action by needle-shaped metallic inclusions, the electrical conductivity increases in the I || x 

direction and it is significantly different from σ(T) in the I x direction. The coefficient of 

conductivity anisotropy at 80 K is σ||/σ⊥ = 3.2 and decreases with increasing temperature: σ||/σ⊥ = 3 

at 300 K. The electrical conductivity decreases in a temperature range of 400560 K; however, 
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above 560 K, it greatly increases and anisotropy completely disappears. The decrease in the 

electrical conductivity is associated with the occurrence of a new flow of conduction electrons 

compensating for the hole conductivity. The electron contribution to conduction and to the total 

mobility increases above 560 K. The deviation on the σ(T) dependence observed  in a 

temperature range of 600650K is possible due to the magnetic phase transition of the CrSb 

inclusions [7, 8]. 

 

 
a) 

 

 
b) 

 
Fig. 3. Elemental compositions of the GaSb–CrSb composite obtained with SEM–EDX from  

(a) the matrix and (b) inclusion phases. 
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Fig.  5. Temperature dependence of electric conductivity for GaSb and the GaSbCrSb composite. 

 

As shown in our previous studies [3], the R value is maximum if the metallic needles in 

the matrix are oriented perpendicular to the current direction and parallel to the magnetic field  

(I  x || B) and the behavior of the R(T)  dependence is approximately the same as that for the 

matrix. The Hall coefficient drop along the sample in the case of I || x  B due to the short-

circuiting of the voltage and the Hall voltage in the case of IxB has a minimum value. The 

temperature dependence of the Hall coefficient R(T) measured in the case of Ix || B where there 

is no shorting of any current or potential Hall are plotted in Fig. 6. It is evident from the figure 

that the Hall coefficient remains unchanged in a temperature range of 80475 K. The sign of the 

Hall coefficient changes at temperatures between 490 and 515 K (the inversion point for GaSb  

is ~560 K).    

Strong anisotropy is also observed in the temperature dependence of the thermoelectric 

power (Fig. 7). The short-circuiting of V potential by metallic inclusions at T||x directions 

 

Fig. 4.  DSC, TG, and DTA curves of the GaSb–CrSb composite. 
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results from a decrease in the thermopower.   

 

 
 

Fig. 6. Temperature dependence of Hall coefficient for GaSbCrSb composite.  

The inset shows the (R(T) dependence for GaSb. 

 

 
Fig. 7. Temperature dependence of thermoelectric power for the GaSbCrSb composite. 

 

 

4. Conclusions 

 

The electron microscopy and XRD studies of GaSbCrSb have confirmed that the 

systems consist of a semiconductor matrix and oriented needle-shaped metal inclusions. The 

initial and final melting temperatures for this composite are 670 and 692C, respectively; the 

enthalpy of melting is 56.45808 J/g. The anisotropy observed in the temperature dependence of 

the kinetic parameters at different mutual directions of current, solidification, magnetic field, and 

heat flow are attributed to the short-circuiting effect of metallic inclusions. The sign of Hall 

coefficient of GaSbCrSb changes in a temperature range between of 490 and 515 K.  The 

deviation in electrical conductivity in a temperature range of 600650 K is associated with the 

magnetic phase transition of the CrSb inclusions.    
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Abstract 

 

A new composite material composed of GaSe and CdSe has been obtained by treatment of 

GaSe single-crystal lamellas in Cd vapors at temperatures of 773853 K and intercalation of Cd 

interlayers. The structure and optical properties of the GaSe-CdSe composite material have been 

studied. The content of CdSe crystallites was found to grow with increasing treatment 

temperature or with increasing duration of treatment at a constant temperature. Analysis of XRD, 

PL, XPS, AFM, and Raman patterns has  shown that the heterogeneous composite composed of 

micro and nanocrystallites of CdSe in GaSe can be obtained  by Cd intercalation in a temperature 

range of 753853 K. On the basis of Raman spectrum, the vibrational modes of the composite 

have been identified. The PL of these materials contains emission bands of free and bound 

excitons, donor-acceptor bands, and bands of recombination via impurity levels. The PL emission 

spectra measured at a temperature of 78 and 300 K for the composites result from the overlapping 

of the emission bands of the components of GaSe doped with Cd and the CdSe crystallites. 

 

1. Introduction 

 

Binary A
III

B
VI

 compounds, a typical representative of which is the GaSe lamellar 

semiconductor, exhibit a pronounced anisotropy of chemical bonds and optical properties [1]. An 

elementary lamella is composed of atomic planes arranged in the following sequence: 

SeGaGaSe. The bonds between the elementary lamellas in GaSe crystals are provided by 

Van der Waals polarization forces, while strong ionic-covalent forces act between the atomic 

planes within the packets [23]. Weak bonds between the packets, along with saturated valence 

bonds on the surface, lead to the formation of plane-parallel cracks between Se atomic planes 

with a width of ~0.3 nm [4]. Ions, atoms, and molecules can easily penetrate these cracks; this 

fact expands the range of applicability of layered semiconductors. By intercalation of GaSe 
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crystals with Li
+
 ions [5], it has been shown that this semiconductor can be applied as a solid 

electrolyte exhibiting characteristics superior to those of metal oxides 6]. By intercalation of 

GaSe single crystals with Ni, Fe, and Co, it is possible to prepare composite materials and 

structures with ferromagnetic properties that are promising for use in spintronics [7-9]. 

In this study, the structure and luminescent properties of GaSe crystals intercalated with 

Cd from the vapor phase have been examined. Analysis of XRD, PL, XPS, and Raman patterns 

has  shown that a composite composed of micro and nanocrystallites of CdSe in GaSe can be 

prepared by intercalation with Cd in a temperature range of 753823 K.  

 

2. Experimental and Crystalline Structure Properties 
 

The original material was p-GaSe single crystals grown by the BridgmanStockbarger 

method [10]. The GASe compound was synthesized from original elements Ga (5N) and Se (5N). 

Plane-parallel plates with smooth surfaces at an atomic level and a thickness of 20 μm to 5 mm 

were prepared by splitting the grown single crystals with the crystallographic C6 axis oriented 

perpendicular to the axis of the ingot. These plates were cut into rectangular samples with a 

surface area of 1020 mm
2
. The samples were selected with respect to thickness and placed into 

quartz tubes with an internal diameter of 1517 mm together with granules of Cd (5N) taken in 

an amount of 2 mg/cm
3
. After repeated evacuation (23 times) to a residual pressure of  

~5  10
5
 Torr and sealing, the containers were subjected to heat treatment at temperatures of 75 to 

823 K in an oven with a stable temperature for 624 h. In this temperature range, the Cd vapor 

pressure was in a range of 20560 mmHg. 

XRD patterns of the prepared composites were recorded on a DRON-4 diffractometer 

using CuKα  radiation ( = 1.5406 Å) in the range of diffraction angles 2Θ of 10°80° with a 

resolution of 0.050 at a rate of 10° min
-1

. Photoluminescence (PL) spectra of the composites 

prepared by heat treatment of GaSe single crystals in Cd vapors were excited with laser radiation 

with Nd
+3

 ( = 532 nm) with an average power of 100 mW. The PL in a temperature range of 

78300 K was analyzed using a monochromator with a diffraction grating of 600 and 1200 mm
-1

 

(an area of 180  130 mm
2
) and recorded using an electronic photomultiplier with a multialkali 

photocathode. The spectral resolution of measurements of PL and PC did not exceed 1 meV in 

the entire studied spectral range. Raman scattering spectra at T = 300 K were analyzed using a 

Raman microsystem. 

The crystal lattice of the GaSe compound is composed of layered packets, which in turn 

are formed by four atomic planes of Se and Ga (Fig. 1a). 

 The Cd atoms of the intercalation occupy positions between the Se planes of two 

elementary packets neighboring to four selenium atoms from the first configuration sphere in 

both packets. At fairly high temperatures of T  653 K, at which the SeGa bonds are fairly 

weak, the bonds between Ga and Se are broken and form new compounds of the CdSe type, 

which are much more energetically stable than GaSe. Thus, during a high-temperature heat 

treatment at 750830 K, CdSe clusters and condensation centers of Ga atoms are formed in the 

GaSe plates. Since the saturated valence bonds on the surface of the elementary packets 

(SeGaGaSe) (Fig. 1b), a long-term exposure (2430 days) to normal atmosphere leads to the 

formation of a nanostructured layer of oxides of the constituting elements on the outer surface of 

the GaSe plates [2]. 

Surface nanostructuring of the GaSe plates by treatment in Cd vapors at high temperatures 

is much more pronounced compared to a normal temperature. The surface of GaSe plates freshly 
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cleaved from perfect single crystals is smooth at an atomic level. The treatment in an atmosphere 

of Cd vapors at a temperature of T  593 K (at 593 K, the Cd vapor pressure is 0.1 mmHg), 

micrometer-sized regions of different shapes are formed on the surface of the plates.  

 

a)         b) 

Fig. 1. Arrangement of atomic planes in -GaSe crystals. 

 

 Atomic spectrum analysis of the points, which can be easily conducted at the surface of 

the GaSe plates, has shown that they represent clusters of metallic Ga, which are in a liquid state 

at a temperature of 303 K. As noted above, GaSe single-crystal lamellas are composed of planar 

packets of atoms so that the plane of Se atoms is located on the surface. They can easily be 

combined with Cd to form layers of CdSe on the surface. This transformation results in a loss of 

valence bonds between the Ga atoms in the two atomic planes in the packet ...SeGaGaSe... 

Figure 4 shows an AFM image of the surface of the GaSe plate subjected to heat treatment at a 

temperature of 833 K for 24 h. Under these conditions of formation of the composite, pyramidal 

and conical structures with base dimensions on the order of a few hundreds of nanometers are 

formed on the (001) face of the GaSe plates. The height of these structures is up to 1520 nm, 

which corresponds to more than ten layered packets of the SeGaGaSe type. 

 

 

Fig. 2. AFM image of the surface of the GaSe lamella subjected to heat treatment in Cd vapors at a 

temperature of 833 K for 24 h. 
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The crystalline structure of the new components of the composite prepared by heat treatment of 

GaSe single-crystal plates in Cd vapors was studied by X-ray diffraction and Raman scattering. 

Figure 3 shows XRD patterns of two samples prepared by treatment of GaSe plates with a 

thickness of 0.3 and 1.2 mm in Cd vapors at a temperature of 753 (Fig. 5a) and 833 K (Fig. 5b) 

for 24 h. 
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Fig. 3. XRD pattern of the GaSe lamella treated in Cd vapors at a temperature of  

(a) 753 and (b) 833 K for 24 h. 

 

Table 1 lists the 2θ diffraction angles corresponding to the diffraction lines, the intensity of the 

lines, the identification of a lot of the planes in which X-ray diffraction occurs, and the respective 
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compound. 

 

Table 1. Identification of the GaSe-CdSe composite according to XRD patterns 

No. 
753 K  

Identification  
833 K 

Identification  
2θ I (a.u.) 2θ I (a.u.) 

1 22.35 46.1 002 GaSe 20.96 51.7 002 GaSe 

2 25.56 100 101 CdGa2Se4 25.49 100 002 CdGa2Se4 

3 27.33 52.8  27.27 62.1  

4 42.17 75.3 004 GaSe 31.93 42.5 004 GaSe 

5 66.5 24.7  42.08 55.2  

6 8.93 59.65 002 CdSe 47.93 39.1 002 CdSe 

7 11.85 49.05 001 CdSe 9.05 66.48 101 CdSe 

8 17.34 42.25  16.97 46.24  

9 20.99 47.44 103 CdSe 22.46 44.23 103 GaSe 

10 22.32 45.43  57.91 17.80 110 CdSe 

11 29.53 32.24  76.93 19.19 222 CdGa2Se4 

12 39.39 31.22 210 GaSe   310 CdGa2Se4 

13 68.14 20.40    210 GaSe 

14 73.5 20.00     

15 76.93 20.00     

 

It is evident from Fig. 3 and Table 1 that the diffraction lines of the ensembles of planes 

of both the GaSe-based composite and the crystallites composed of CdSe are clearly detected. 

Along with XRD reflections of crystalline clusters of CdSe in GaSe, both at 753 and 833 K, 

reflections from the ensemble of the [101] plane of the CdGa2Se4 compound are clearly recorded. 

A change in the intensity ratio of the XRD reflections with an increase in the treatment 

temperature from 753 to 833 K (with a respective increase in the Cd vapor pressure) is indicative 

of an increase in the concentration of CdSe crystallites in the composite. Narrow contours of 

reflections of the ensembles of the [002], [101], and [110] planes can be used as a criterion of 

high perfection of CdSe crystallites, while a considerable broadening of the contour of the 

diffraction lines from the [004] and [210] atomic planes of the hexagonal network of gallium 

monoselenide is indicative of the degradation of the base material (GaSe single crystal). 

Comparison of Figs. 5a and 5b shows that an increase in the concentration of Cd atoms in the 

composite upon switching from 753 to 833 K leads to a significant increase in the content of both 

CdSe and CdGa2Se4. 

 

3. Optical Properties 

 

 The presence of micrometer-sized regions of different shapes on the surface of the plates 

in the form of circular dots with unordered areas is clearly evident in reflected light and much 

more pronounced in a polar field of monochrome light in reflection and luminescence (Fig. 4). 
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Fig. 4. Microscopic image in reflected light and luminescence on the surface of the GaSe lamella 

subjected to treatment in Cd vapors at a temperature of 823 K for 24 h.  

The recorded area is 193.3  193.3 μm
2
. 

 

Additional information about the nature of the structures formed on the surface of GaSe 

plates is provided by luminescent emission spectra measured at room temperature. Figure 5 

shows PL spectra recorded at T = 300 K in bright (point 1) and dark regions (point 3). It is 

evident from the comparison of these curves that the PL intensity at the bright points (1, 5) is 

about 56 times higher than at the dark points. However, at points 1 and 5, the PL band peak is 

shifted by ~20 meV to higher energies and is indicative of splitting into two subbands peaking at 

1.818 and 1.797 eV. 

It can be assumed that the PL bands of the GaSeCdSe composites prepared by heat 

treatment of GaSe crystals in Cd vapors are formed by overlapping of the respective bands of the 

constituting compounds GaSe and CdSe. 
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Fig. 5. PL spectra of the composite prepared by a heat treatment of GaSe crystals in Cd vapors  at a 

temperature of 773 K for 24 h: (curve 1) bright points on the surface (1, 5) and (curve 2) dark points (3, 4). 
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Figure 6 shows the Raman scattering spectrum of the GaSeCdSe composite prepared by 

heat treatment of GaSe single-crystal plates in Cd vapors at a temperature of 773 K for 6 h. The 

spectra exhibit vibration bands of the crystal lattice of the original material (GaSe) and the newly 

formed compound (CdSe). The wave numbers and intensities of the bands of Raman scattering in 

the GaSeCdSe compound are shown in Table 2. 
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Fig. 6. Raman spectrum of the GaSe lamella subjected to treatment in  

Cd vapors at a temperature of 773 K for 6 h. 

 

 

Table 2. Vibration modes of the crystal lattice of the GaSeCdSe composite obtained from the 

Raman spectrum 

No. , cm
-1 

Intensity (a.u.) Compound Vibration symmetry 

 135.0 3000 GaSe A1 

1 174.4 14000 CdSe E(TO) 

1a 188.9 >60000 GaSe  

2 217.5 25000 GaSe E(TO) 

3 256.8 8000 GaSe E'(LO) 

4 295.4 52000 GaSe  

5 329.9 6000 GaSe  

6 361.6 >60000   

6a 393.9 16000 CdSe  

7 426.8 12000 CdSe  

 

 It is evident from Table 2 that, along with the monophononic vibration modes in the GaSe 

crystals, the vibration bands of the crystal lattice of the CdSe compound are also clearly 

pronounced. The lower intensity of the diffusion bands in the CdSe crystallites compared to GaSe 

corresponds to the percentage composition of the composite prepared at a temperature of 733 K. 
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These results are consistent with the data on the intensity of the XRD reflections from the planar 

systems in the GaSe and CdSe crystals shown in Table 1. 

 Both the classification of vibration modes by the type of symmetry and the energy shifts of 

the Raman bands associated with combination of different vibration modes are well known for 

GaSe single crystals [1213]. The reduced intensity of resonance vibration modes  

E(TO) (267.5 cm
-1

) and E'(LO) (256.8 cm
-1

) compared to the bands (188.9 and 361.6 cm
-1

) can 

be attributed to the fact that the formation of the composite is accompanied by the degradation of 

the crystal lattice of the original GaSe compound. 

 The PL spectra of GaSe and CdSe crystals are also well known at low temperatures of  

T  78 K. The PL of these materials contains emission bands of free and bound excitons, 

donoracceptor bands, and bands of recombination via impurity levels [14]. Figure 7 shows the 

PL spectra of the GaSe and CdSe crystals measured at temperatures of 300 and 78 K and the 

spectra of the compounds prepared by heat treatment at temperatures of 753 and 833 K for 20 and 

24 h. The PL spectrum of the GaSe crystals at a temperature of 300 K exhibits a donoracceptor 

band peaking at 2.00 eV and an impurity band at 1.94 eV. At a temperature of 78 K, the PL 

spectrum exhibits an emission line of localized excitons (h = 2.092 eV), a donoracceptor 

emission band (h = 2.072 eV), and an intrinsic impurity band peaking at 1.920 eV. Figure 7 

(curves 5, 6) shows that the PL spectrum of the CdSe single-crystal compound at temperatures of 

300 and 78 K exhibits an emission band with a symmetrical contour peaking at 1.720 and  

1.790 eV, respectively. The PL spectra measured at T = 300 K for the GaSeCdSe composite 

prepared by treatment in Cd vapors at temperatures of 823 and 853 K exhibit a broad band 

without pronounced characteristic features with two low-intensity peaks at 1.78 and 1.72 eV, 

respectively. 
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Fig. 7. PL emission spectra of the -GaSe and CdSe crystals and the GaSeCdSe composite 

at temperatures of 78 and 300 K: (1, 2) the GaSe single crystal at temperatures of 300 and  

78 K; (3, 4) GaSe annealed in Cd vapors at a temperature of 823 K for 20 h; (5, 6) the CdSe 

single crystal at temperatures of 300 and 78 K; and (7, 8) GaSe annealed in Cd vapors at a 

temperature of 853 K for 24 h. 
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 An increase in the duration of intercalation from 20 to 24 h, along with an increase in 

temperature from 823 to 853 K, results in a shift of the emission peak to lower energies by  

~60 meV and, simultaneously, to an increase in the PL band intensity by about 2 times. 

Comparison of the PL spectra of GaSe subjected to intercalation with Cd (curve 1) and CdSe 

(curve 5) clearly shows close agreement between the peaks of the respective bands. The 

extension of the PL band contour to high energies results from the overlapping of the impurity PL 

bands of the GaSe lamellas and CdSe crystalline clusters of the composite. Note that a decrease 

in the temperature of the sample from 300 to 78 K results in a more than 200 times increase in the 

intensity of the PL spectrum of the GaSe lamellas, which leads to an increase in the fraction of 

GaSe crystals in the intensity distribution of the emission band of the GaSeCdSe composite. 

Figure 7 shows the PL emission spectra measured at a temperature of 78 (curves 4, 8) and 300 K 

(curves 3, 7) for the GaSe lamellas treated in Cd vapors at a temperature of 823 and 853 K, 

respectively. It is evident that the PL band contour has a complex structure, which probably 

results from the overlapping of the impurity emission band of GaSe with an absolute maximum at 

1.920 eV and the emission band of the CdSe compound peaking at 1.79 eV. Treatment of the 

GaSe single-crystal plates in Cd vapors at high temperatures, along with the intercalation of Cd 

atoms between the elementary packets and the formation of CdSe crystallites, leads to doping of 

the residue of GaSe with Cd, while the newly formed CdSe crystals are doped with Ga. The PL 

spectra of GaSe crystals doped with Cd in a concentration of 0.010.1 at % that were measured at 

a temperature of 78 K have been thoroughly studied in [15]. The Cd concentrations in GaSe 

higher than 0.01 at % lead to the formation of defects and screening in the exciton binding and, 

simultaneously, to the formation of a dominant emission band with a weak peak shifted to lower 

energies: 1.95 eV at C = 0.01 at % and 1.75 eV at C = 0.05 at %. Therefore, we can assume that 

the PL spectra shown in Fig. 6 by curves 4 and 6 at T = 78 K and by curves 3 and 7 at T = 300 K 

are the result of the overlapping of the PL bands of the GaSe compound doped with Cd in 

concentrations of less than 0.05 at % and the CdSe crystallites formed during intercalation at 

temperatures of T  753 K. 

 

4. Conclusions 

 

(i) A new composite material composed of GaSe and CdSe microcrystals has been prepared by 

treatment of GaSe single-crystal lamellas in Cd vapors at temperatures of 773853 K. The 

content of the CdSe crystallites increases with increasing treatment temperature or with 

increasing duration of treatment at a constant temperature. 

(ii) XRD patterns and Raman spectra have shown that the CdSe crystallites of the composite are 

fairly perfect, while the remaining GaSe is composed of strongly deformed and structurally 

imperfect crystals. 

(iii) New micro- and nanostructures composed of GaSe and CdSe crystallites are formed on the 

surface of the GaSe lamellas subjected to treatment at 833 K for 24 h. 

(iv) The PL emission spectra measured at a temperature of 78 and 300 K for the composite 

prepared by the intercalation of Cd atoms in GaSe at a temperature of 773823 K result from the 

overlapping of the emission bands of the components of GaSe doped with Cd and the CdSe 

crystallites. 
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Abstract 

 

 ZnSeGaSe nanocomposite plates photoluminescent in a photon energy range of 

1.80−2.64 eV were obtained via exposing GaSe single-crystal plates to a Zn-vapor heat treatment 

at temperatures of 673−873 K. The photoluminescence spectrum is dominated by the self-

activated emission band of ZnSe with a maximum at 2.04 eV. The average size of the ZnSe 

crystallites is ~45 nm. The absorption spectrum of the composite consists of two regions 

characteristic of direct optical transitions in GaSe crystals with a band gap of 1.99 eV and ZnSe 

crystallites with a band gap of 2.56 eV at room temperature. 

 

1. Introduction 

 

Layered III−VI group semiconductors, in particular of GaSe, have been intensively 

studied in recent years because of promising application in optoelectronics (visible region), 

nonlinear optical devices, and radiation generation/detection in THz domain [1−4]. 

GaSe single crystals are composed of flat SeGaGaSe elementary packages perpendicular to 

its C6 crystallographic axis [5]. 

The links between the packages are of Van der Waals type, much weaker than those between four 

monoatomic sheets inside a package, accomplished by ionic-covalent (predominant) forces. This 

feature results in a marked anisotropy of mechanical properties (facilitating intercalation) and 

electric, optical, and photoelectric characteristics. 

At the same time, the valence bonds of chalcogen atoms at the interface between stratified 

packages are almost closed; the relative arrangement of elementary packages provides the 

formation of a subnanometric (0.3 nm) gap between the neighboring packages favoring the 

intercalation of diverse atomic (molecular) ions between chalcogen planes [6−8]. 

GaSe intercalation may lead to new physical properties of the material, such as ferromagnetism 

and magnetoresistivity. 

Owing to compensated valence bonds at the surface of stratified packages, gallium 

monoselenide intercalated with Li and H also displays marked solid electrolyte properties [9, 10]. 

The presence of Se atomic planes at the surface of GaSe plates enables obtaining 
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heterojunctions exhibiting visible photosensitivity by heat treatment under normal atmosphere or 

metal vapor atmosphere [11]. 

By metal vapor-heat treatment of layered GaSe single crystals, a metal-chalcogen 

compound layer is formed at the GaSe surface, together with intercalation of metal atoms 

between stratified packages to form lamellar nanocomposites. 

In this work, the composition and optical properties of the composite obtained by Zn vapor-phase 

intercalation of GaSe single-crystal plates are studied. 

 

2. Experimental 

 

p-GaSe single crystals, which were used as starting materials, were grown by the 

Bridgman technique from their component elements (Ga and Se, both of 5N purity) taken in 

stoichiometric portions. 

Hole concentration and mobility at room temperature were about 4  10
14

 cm
-3

 and  

35 cm
2
/(V∙s), respectively. 

GaSe plates with a thickness of 100−300 μm obtained by splitting single crystalline ingots 

along the (0001) atomic planes were used for the preparation of the composite. They exhibited 

mirror-like surfaces showing no defects visible at 600 magnification. 

Selected GaSe single-crystal plates were placed, together with 5% Zn, in quartz ampoules with an 

internal diameter of 1012 mm; the ampoules were evacuated to 5 × 10
-5

 Torr, tightly closed, and 

placed in an electric oven with stabilized temperature for heat treatment at 833 K for 3−24 h. As 

a result of the heat treatment, the surface of the GaSe plate was covered by an orange granular 

layer with a micrometer size. The surfaces of the freshly split plates also exhibited a granular 

microstructure. 

The crystal structure and composition of the as obtained material were analyzed by X-ray 

diffraction (XRD) technique using a DRON-4 diffractometer (CuK radiation, λ = 0.154182 nm). 

Measurements were conducted in an angular range of 10° < 2θ < 80° with a peak resolution of 

0.05° and 10° min
-1

scan speed. 

Diffuse reflectance spectra were registered using an M-40 spectrophotometer equipped with an 

integrating sphere. A pressed BaSO4 powder was used as a white reference standard. 

Low-temperature photoluminescence (PL) measurements were conducted using a cryostat with 

quartz windows in a temperature range of 78−300 K. The PL of the GaSe-based samples was 

excited using a N2 laser (λ = 337.4 nm) with an average power of 100 mW. The PL spectral 

characteristics of as obtained samples at 78 K were recorded on a spectrophotometric setup 

including a monochromator with a diffraction grating (600 and 1200 mm
-1

) and a photomultiplier 

with a multi-alkaline Na2KSb:Cs photocathode. The energy resolution was up to 2 meV over the 

entire measuring range. 

 

 

3. Experimental results and interpretation 

 

Fig. 1 shows the X-ray diffraction pattern of the primary GaSe single crystal. 
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Fig. 1. XRD patterns of the primary GaSe single crystals. 

 

2θ angular positions of diffraction lines and their relative intensities, along with respective Miller 

indices, are listed in Table 1. 

 

Table 1 Structural parameters of primary GaSe single crystals 

Experimental 

Values 
ICDD-JCPDS cards 

2 (
o
) I (a. u.) PDF 2 (

o
) I h k l 

11.24 10.1 GaSe/37-0931(hex) 11.10 62 0 0 2 

22.43 100 GaSe/37-0931(hex) 22.27 100 0 0 4 

45.58 7 GaSe/37-0931(hex) 45.66 10 0 0 8 

57.89 12.4 GaSe/37-0931(hex) 57.97 27 2 0 2 

70.85 14 GaSe/37-0931(hex) 71.08 17 0 0 12 

 

 

X-ray diffraction patterns of GaSe exhibit the intense characteristic (004) diffraction line 

and four low-intensity peaks labeled as (0 0 2), (0 0 8), (2 0 2), and (0 0 12). From the XRD 

patterns, hexagonal lattice parameters were found to be a=3.75 Å and c=15.85 Å and correspond 

to ε-GaSe modification.  

Fig. 2 shows the XRD patterns of the composite obtained by a 24-h heat treatment of 

GaSe plates at 833 K in a Zn vapor atmosphere. 
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Fig. 2. X-ray diffraction pattern of the composite obtained by Zn-vapor heat treatment of the 

GaSe plates at 833 K for 24 h. Inset 1 shows the XRD line contour with 2θ = 45.36° from the 

planes with Miller indexes (2 2 0) of the ZnSe lattice. Inset 2 shows the XRD line contour 

with 2θ = 57.88° from the planes with Miller indexes (2 0 2) of the GaSe lattice. 

 

It is evident from Fig. 2 that the XRD patterns of the composite (24-h heat treatment of 

GaSe plates in Zn vapors at 833 K) contains, in addition to characteristic lines of GaSe, a series 

of supplementary reflections, which are listed in Table 2. 

Fig. 2 and Table 2 suggest that the supplementary XRD lines can be attributed to the (1 1 

1), (2 2 0), (3 1 1), and (3 3 1) lattice planes of ZnSe formed by reaction of Zn atoms with Se 

atoms from the outer atomic planes of SeGaGaSe packages. The (3 1 1) and (3 3 1) lines 

display a relatively wide contour (Fig. 2, insets 1 and 2), which indicates small sizes of the 

diffracting crystallites. 

Crystallite mean size (D) was estimated by means of the DebyeScherrer formula [12] 

 

       (1) 

 

where  is X-ray wavelength,  represents the Bragg diffraction angle, and  denotes the angular 

full width at half maximum (FWHM) intensity. For  = 4.55  10
-3

 and 2θ = 45.36°, from the 

above formula, an average ZnSe crystallite size of ~45 nm was found. By using the same relation 

for the line located at 2θ = 57.88°, a value of ~63 nm is obtained for the crystallite size of GaSe 

from the composite. 

Microcrystallites on the outer surface of the ZnSeGaSe composite act as light diffusion 

centers, which do not allow direct measurement of linear reflectance and optical transmittance of 

the composite plates. 

The spectral dependence of absorption coefficient for the ZnSeGaSe composite plates was 

determined from diffuse reflection measurements using the Kubelka –Munk function [13]: 
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where α is the absorption coefficient, S is the light diffusion coefficient (depends on wavelength 

and size of diffusing particles), and R∞ is the diffuse reflection coefficient. 

The optical transition type and associated band gap of the semiconductor material can be 

determined via analyzing the following function [14]: 

 

.     (3) 

 

where n = 2 and 1/2 for indirect and direct allowed optical transitions, respectively. 

 

 

Table 2 Structural parameters of GaSe plate, heat treated for 24 h in Zn vapors, at 833 K. 

 

Experimental 

Values 
ICDD-JCPDS cards 

No. 2 (
o
) I (a. u.) PDF 2 (

o
) I h k l Compound 

1 22.44 4558 PDF 811971 22.338 99.9 0 0 6 GaSe 

2 27.38 556 PCPDFWINv.2.3 27.223 100 1 1 1 ZnSe 

3 28.02 182 PDF 781927 28.013 6.5 1 0 1 GaSe 

4 32.34 160 PDF 370931 32.328 5 1 0 3 GaSe 

5 45.36 392 PCPDFWINv.2.3 45.231 7.0 2 2 0 ZnSe 

6 48.56 292 PDF 370931 48.583 17 1 1 0 GaSe 

7 49.12 172      

8 53.72 262 PCPDFWINv.2.3 53.645 44 3 1 1 ZnSe 

9 53.86 194 PDF 781927 53.969 28.0 1 1 4 GaSe 

10 57.88 384 PDF 811971 57.725 4.8 2 0 2 GaSe 

11 66.02 94      

12 70.96 238 PDF 781927 70.961 7.4 1 0 11 GaSe 

13 71.18 170 PDF 370931 71.088 17 0 0 12 GaSe 

14 72.80 128 PCPDFWINv.2.3 72.731 13 3 3 1 ZnSe 

15 78.72 90 PDF 811971 78.722 3.2 1 2 2 GaSe 

 

Fig. 3 shows the  dependence on the photon energy for the as prepared composite. 

 

It is evident from this figure that two linear portions are clearly pronounced: one is 

located in the region of 1.9−2.2 eV, while the other lies in a range of 2.5−3.0 eV. 

By extrapolating these linear parts to , the optical band gap of semiconductor 

material for respective spectral domains can be determined according to Eq. (3); in this way, a 

value of 1.99 eV, which corresponds to GaSe single crystals, and 2.56 eV, which is in good 

agreement with the band gap of ZnSe in thin films [15, 16], have been found. 

 



Moldavian Journal of the Physical Sciences, Vol. 14, N1-2, 2015 
 

 66 

 
Fig. 3.  dependence on photon energy for the as prepared composite material. 

 

Fig. 4 shows the PL spectrum recorded at T = 80 K from the (0001) surface of the heat-

treated GaSe single-crystal plate. 

 

 
Fig. 4. PL spectrum recorded at 80 K from the (0 0 0 1) GaSe surface heat-treated in Zn vapors at 

873 K for 3 h. 

 

It is known that the PL spectrum recorded at 80 K corresponding to the (0 0 0 1) natural 

surface of GaSe single crystals contains the emission line of bound direct excitons, with a 

maximum at 2.098 eV, and two low intensity emission bands of indirect excitons, at 2.04 eV, as 

well as phononic repetitions of the bound exciton lines [17, 18]. 

At the same time, (Zn, Cd) doping concentrations up to 0.5 at % are known to produce PL 

quenching and create PL impurity bands in a photon energy region of 1.25−1.80 eV [19−21]. 

It is evident from Fig. 4 that the PL spectrum from the (0 0 0 1) surface of the GaSe plates 

covers a wide range of photon energies, from 1.80 eV to 2.64 eV, with a predominant maximum 

at 2.04 eV and three low intensity bands localized at 1.92, 2.26, and 2.55 eV. This structure can 
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be explained if we assume that a polycrystalline ZnSe layer is formed at the surface of the heat-

treated GaSe plate in Zn vapors, which is capable of producing a PL emission. Taking into 

account that the energy gap of ZnSe at 78 K is Eg = 2.812 eV, from the PL spectrum (Fig. 4), it 

can be assumed that the PL emission of the ZnSe layer formed on the GaSe surface is determined 

by deep recombination levels. The PL bands with a maximum at 2.26 eV (green) and 2.042 eV 

(orange) are well known as characteristic emission bands of ZnSe single crystals at 78 K. 

Fig. 4 shows that the PL spectrum is dominated by the emission band with a maximum at 

2.042 eV, which is considered [22, 23] as a self-activated band. In this spectral region, a low 

intensity emission band of GaSe indirect excitons is also present [17], which is preceded by an 

intense PL band of direct localized excitons, with a maximum at 2.098 eV. The absence of a 

direct exciton emission line in the composite material (Fig. 4) indicates the presence of structural 

defects in GaSe crystals from the composite, which effectively shield the electronhole bonds. It 

is evident from Fig. 4 that FWHM of the PL band with a maximum at 2.042 eV is ~0.12 eV; 

therefore, it cannot be associated with the excitonic emission in GaSe crystals from the 

composite.  

It is also known that low Cu and Cd impurity concentrations (≤0.01at %) in GaSe lead to 

the formation of a PL band at 1.90 eV, which allows us to state that the impurity PL band with a 

maximum at 1.92 eV can be attributed to the luminescent emission of the ZnSeGaSe composite. 

 

4. Conclusions 
 

Heat treatment of single crystalline GaSe plates in Zn vapors leads to the formation of a 

ZnSe layer on the outer surface of GaSe, while Zn intercalated atoms between the Se atomic 

planes of layered SeGaGaSe packages give rise to nanocrystalline ZnSe layers inside the 

GaSe plates. 

 GaSe and ZnSe micro- and nanocrystallites act as light diffusion centers for the spectral 

region from the vicinity of the fundamental absorption threshold of these materials. The 

absorption spectrum from this spectral range was calculated using the empiric Kubelka-Munk 

formula. Analysis of the absorption spectrum of the composite reveals two major contributions—

of the ZnSe (Eg = 2.56 eV) and GaSe (Eg = 1.99 eV) crystallites—at room temperature. 

The PL spectrum of the ZnSeGaSe composite surface is determined by the luminescent 

emission of the ZnSe layer from the outer surface of plates, in which, together with characteristic 

ZnSe bands (2.26 and 2.042 eV), an impurity band of the GaSe crystals with a maximum at  

1.92 eV is observed. 
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Abstract 

 

A brief review of nanowires used in electronic and optoelectronic devices that could 

enable diverse applications is given. Nanowire field-effect transistors, nanowire lasers, as well as 

crossed nanowire structures and nanowire heterostructures, are discussed. Due to the possibility 

of controlling the key parameters (chemical composition, structure, size, doping, etc.) on a 

nanoscale, these devices exhibit new or enhanced functions crucial to many areas of technology. 

1. Semiconductor nanowires 

 

There is growing interest in the development of nanoscale devices that could enable new 

functions and/or greatly enhanced performance. Semiconductor nanowires are a powerful class of 

materials that, through controlled growth and organization, are opening up substantial 

opportunities for nanoscale electronic and optoelectronic devices [1].  

Semiconductor nanowires [2], nanocrystals [3], and carbon nanotubes [4] offer many 

opportunities for the assembly of nanoscale devices. The rational control of key nanomaterial 

parameters, such as chemical composition, structure, size, and doping is central to implement 

applications on a nanoscale. These parameters determine the electronic and optoelectronic 

properties of device function. Moreover, semiconductor nanowires represent a nanomaterial 

system where these key parameters have been best controlled to date. 

Another critical point in the development of nanowire building blocks is the recently 

demonstrated controlled growth of axial and radial heterostructures [5], where the composition 

and/or doping is modulated down to the atomic level along or perpendicular to the axes of 

nanowires, respectively. The ability to prepare controlled and diverse axial and radial 

heterostructures sets nanowires apart from other nanomaterials, such as carbon nanotubes, and, as 

discussed below, represents a substantial advantage for the development of increasingly powerful 

and unique nanoscale electronic and optoelectronic devices crucial to future applications. 

2. Nanowire field-effect transistors 

Investigations of nanowire field-effect transistors show that theirs performance level can 

be compared with respective planar devices [1]. Studies have also demonstrated the high electron 

mobility of epitaxial InAs nanowire field-effect transistors with a wrap-around gate structure. 

This conclusion is significant since the nanowire field-effect transistors are fabricated using 

unconventional methods, which opens up opportunities that are not possible in areas with 

conventional single-crystal wafer-based electronics and optoelectronics. 

In addition, nanowire field-effect transistors can be used as extremely powerful sensors 

for ultrasensitive detection of biological and chemical species [6]. Binding to the surface of an 
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nanowire field-effect transistor is analogous to applying a gate voltage, which leads to the 

depletion or accumulation of carriers which led to a change in the nanowire conductance.  

3. Crossed nanowire structures 

Nanowire building blocks and device architectures can open up new opportunities in 

electronics and optoelectronics. For example, crossed nanowire field-effect transistors can be 

configured from one nanowire as the active channel and another crossed nanowire as the gate 

electrode separated by a thin SiO2 dielectric shell on the Si nanowire surface [1]. This concept 

has been first demonstrated using Si nanowires as the channel and GaN nanowires as the gate 

electrodes for NOR logic-gate structures (Fig. 1a) [7].  The idea of crossed nanowires 

demonstrates a general approach for uniquely addressing a large array of nanowire devices. 

Selective chemical modification is used to differentiate specific cross points in a four-by-four 

crossed Si nanowire field-effect transistor array (Fig. 1b), which allow selecting the necessary 

address of the four individual outputs (Fig. 1c). Thus, crossed nanowire arrays can serve as the 

basis for addressable integrated nanosystems. 

 

 

Fig. 1. Crossed nanowire electronic devices. 

 

The crossed nanowire concept has also been used to create nanoscale p-n diodes by 

crossing p- and n-type nanowires [7]. It is significant that the capability to assemble a wide range 

of different n-type direct band-gap nanowires, including GaN (ultraviolet), CdS (green), and 
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CdSe (near infrared), with p-type Si nanowires can simplify the design of multicolor light-

emitting diodes on a single substrate which is not possible with planar technology. Crossed 

nanowire p-n junctions can also be configured as photodetectors critical for integrated photonics.  

4. Nanowire heterostructures 

The cylindrical symmetry of nanowires permits two types of heterostructure: axial and 

radial (Fig. 2). Varying the composition and/or doping during axial elongation, we can obtain 

axial junctions with a controlled nanoscale device function without the need for lithography. A 

representative example is a GaAs/GaP compositionally modulated axial heterostructures [8]. 

These nanowire heterostructures can emit light and be used as light-emitting diodes. 

 Radial composition and doping modulation in nanowire structures represent another 

approach for enhancing performance through synthesis versus lithography [5]. Radial 

heterostructure nanowires are also known as coreshell nanowires. The radial nanowire concept 

also offers substantial opportunities for nanowire optoelectronics since the required n- and p-type 

active materials can be incorporated as a core and a shell, which enables carrier injection or 

collection over a much larger area than in crossed nanowire devices.  
 

 

 

Fig. 2. Semiconductor nanowires and nanowire heterostructures. 
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5. Nanowire lasers 

 

About 15 years ago, the authors of [9] first introduced the idea of semiconductor nanowire 

nanolasers. Using ZnO nanowires as a model system, it has been shown that lasing is possible for 

nanostructures with subwavelength cross sections. Later, the idea was applied to various 

semiconductors with different emission wavelengths covering from ultraviolet all the way to 

infrared. The development of a nanoscopic coherent light source with an extremely small 

footprint has many important implications. It can be used in integrated photonic circuits, in 

miniaturized sensor platforms with low-power consumption, and as imaging probes with high 

spatial resolution. These lasing studies on one-dimensional nanoscale cavities have led to recent 

efforts on plasmonic assisted nanowires where optical modes can be further compressed at the 

metal-semiconductor interface, and nanoscopic lasers with all three dimensions less than one 

wavelength are well on the horizon. 
 

6. Conclusions 
 

It has been shown that semiconductor nanowires offer many opportunities for the 

assembly of nanoscale electronic and optoelectronic devices. Central point for progress in the 

field is control of key nanowire parameters during growth, including chemical composition, 

structure, size, morphology, and doping, since it is these parameters that determine the 

predictable device function. The examples described here illustrate advantages of nanowires in 

electronics and optoelectronics compared with conventional technologies. Continued advances in 

capability of controlling the structural/compositional complexity of nanowires during growth, 

which accordingly determines the functional complexity of the building blocks, together with 

advances in organizing them into larger integrated arrays, will lead to increasingly unique 

nanoelectronic and optoelectronic circuits and systems that will create the technologies of the 

future. 
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Abstract 

 

 The properties of two-dimensional (2D) cavity polaritons subjected to the action of  

strong perpendicular magnetic and electric fields giving rise to the Landau quantization (LQ) of 

the 2D electrons and holes accompanied by the Rashba spin-orbit coupling (RSOC) and by the 

Zeeman splitting (ZS) have been investigated. A strong magnetic field, where the electron and 

the hole cyclotron energy frequencies are greater than the binding energy of the 2D  

Wannier-Mott excitons, completely reconstructs it transforming into a magnetoexciton, the 

structure of which is determined by the Lorentz force rather than by the Coulomb electronhole 

(eh) interaction. 

 We predict drastic changes in the optical properties of the cavity polaritons including 

those in the state of Bose-Einstein condensation. The main of them is the existence of a multitude 

of the polariton energy levels closely adjacent on the energy scale, their origin being related with 

the LQ of the electrons and holes. Most of these levels exhibit nonmonotonous dependences on 

magnetic field strength B with overlapping and intersections. More so, the selection rules for the 

band-to-band optical quantum transitions, as well as the quantum transitions from the ground 

state of the crystal to the magnetoexciton states, essentially depend on numbers ne and nh of the 

LQ levels of the eh pair forming the magnetoexciton. By slowly changing the external magnetic 

and electric fields, it is possible to change the lowest polariton energy level, its oscillator 

strength, the probability of the quantum transition, and the Rabi frequency of the polariton 

dispersion law. They depend on the relation between numbers ne and nh and can lead to  

dipole-active, quadrupole-active, or forbidden optical transitions. Our results are based on the 

exact solutions for the eigenfunctions and the eigenvalues of the Pauli-type Hamilonian with 

third order chirality terms and a nonparabolic dispersion law for heavy-holes and with first order 

chirality terms for electrons. They were obtained using the method proposed by Rashba [1]. 

 We expect that these results will also determine the collective behavior of the cavity 

polaritons, for example, in the GaAs-type quantum wells embedded into a microcavity, which 

have recently revealed the phenomenon of the Bose-Einstein condensation in the state of the 

thermodynamic quasi-equilibrium but in the absence of a strong perpendicular magnetic field. 

 

1. Introduction 

 

 The aim of this study is to determine the properties of the two-dimensional (2D) 

polaritons arising in the frame of a quantum well (QW) embedded into a microcavity and 
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subjected to the action of a strong perpendicular magnetic field, giving rise to the Landau 

quantization (LQ) of the 2D electrons and holes accompanied by the Rashba spinorbit coupling 

(RSOC) and Zeeman splitting (ZS) effect. In the case of free electronhole (eh) pairs and a 

band-to-band quantum transition, the magnetic and electric fields with arbitrary intensities were 

considered; these aspects are discussed in the second section of this paper. The properties of 2D 

magnetoexcitons are investigated under the condition of a strong magnetic field when cyclotron 

energies frequencies 
c i

  with ,i e h  are greater than the binding energy of the 2D 

WannierMott excitons and magnetic length 
0

l  is smaller than the exciton Bohr radius. The 

binding energy of the 2D magnetoexcitons is obtainer taking into account the ionization potential 

determined by the Coulomb interaction in the frame of the eh pair.  

 In section two of our paper, the wave functions and the energy levels of the 2D electrons 

and heavy-holes are discussed. The calculations of the electronelectron Coulomb interaction are 

conducted in the third section using the spinor-type conduction and valence electron wave 

functions describing the LQ accompanied by the RSOC and by the ZS effects. The 

magnetoexciton energy levels arising from different combinations of the electron and hole states 

are investigated. 

 The fourth section is focused on the electronradiation interaction in the frame of the eh 

system confined on the 2D layer and the electromagnetic field arbitrarily propagating in the 

three-dimensional (3D) space as regards the 2D layer. The corresponding Hamiltonian describing 

the magnetoexciton-photon interaction is deduced. The formation of magnetoexciton-polaritons 

in a microcavity is discussed. It is the main goal of our paper. The conclusions are made in the 

fifth section.  

 

2. 2D electrons and holes under the influence of the perpendicular magnetic and  

electric fields. 

 

The Hamiltonians describing the LQ, RSOC, and ZS effect involving 2D electrons and 

holes were deduced in [16]. They have the form 

 
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 (1) 

Here, Bose-type operators ,a a


 generating Fock states m  were introduced and the 

following notation was used: 
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where 
c i

  are the cyclotron frequencies, 
i

Z  are the Zeeman parameters proportional to g -factors 

i
g  and to effective masses 

i
m  of the electrons and  holes, whereas 

0
m  is the bare electron mass; 

  is the nonparabolicity (NP) of the heavy-hole dispersion law,  a n d    are the parameters of 

the chirality terms, which are of the first order in the case of electrons [1] and of the third order in 

the case of heavy holes [78]. 

 The solutions of these equations were chosen in the dimensionless forms. For the electron 

case, we have  

1

2

2 2

1 2
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;  ;  1

e

e e e e e

c e

n n n n

n n n n

fH

f

f a n f b n a b

   


  

      

H H

    (3) 

In the coordinate representation, the wave functions are as follows:  

 
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where 
x

L  is the length of the layer. These states were obtained firstly by Rashba [1] and are 

repeated here including Zeeman coefficient 
e

Z . 

Along with the solutions 
m


  with 0m  , there exists another solution with 

0
1b   of the type  

 
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which is orthogonal to any solutions (4). 

In energy units, the energy spectrum is as follows:  

0 0

,  0 ,
m c e m

c e

E m

E

 

 

 
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

       (6) 

Below, we will consider only two lowest Landau levels (LLs) for conduction electrons, namely 

state 
0


  (4) and 

0
  (5).  

 The heavy-hole Hamiltonian in a dimensionless form has the form 
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The respective wave functions have the form 
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They obey the normalization and orthogonality  conditions  
2
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Along with solutions (8), there exist three other solutions with 0 1 2m , , .  They are: 
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All of them are orthogonal to previous solutions (8). 

  

3. The Coulomb electronelectron interaction and magnetoexcitons 

 

The three LLLs for 2D heavy-holes    w i t h  1 2 3
j

h , R j , ,  were combined with two LLLs 

for 2D conduction electrons    w i t h  1 2
i

e , R i ,  giving rise to six 2D magnetoexciton states 
n

F  

with 1 2 6n , . . .  [3, 4]. To calculate their ionization potentials, the Hamiltonian of the Coulomb 

electronelectron interaction under the conditions of LQ, RRSOC, and ZS is required. It was 

deduced in [3, 4] taking into account only the first two conditions, namely LQ and RSOC. Below, 

we will generalize those results adding the third condition, namely the ZS effects. The more so, it 

can be done because the Pauli Hamiltonians containing the Zeeman effects are represented by 
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operators  w h e re  
2

B

i z z

B
ˆ ˆg ,


   have only diagonal matrix elements. For the electronhole 

(eh) pair in the concrete combination  i m
R ,

  the Hamiltonian of the Coulomb interaction has 

the form 
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a

h h m h h m h h m h h m

e h i m e i h h m

ˆˆ ˆH R , W R ; Q R ; Q R , Q N R

ˆˆ ˆW ; Q M , ; Q M , ; Q N M ,

ˆ ˆW R , ; Q R ; Q M , ; Q

  

     

   





   



 



   
 

  
 

 



   

 (11) 

Here, the electron and hole density operators are:  

 

 

2

0

2

0

2 2

2 2

y

x x

i i

y

x x

h m h m

iQ t l

e i Q Q
R ,t R ,t

t

iQ t l

h h m Q Q
M , ,t M , ,t

t

ˆ R ; Q e a a

ˆ M , ; Q e b b
 



 
 



 

 

 









     (12) 

       0  0
e i e i h h m h h m

ˆ ˆˆ ˆN R R , ; N M , M , ;   
 

         

 Coefficients  
i j

W Q


 in the case of the electron state 
1

R  described by formula (4) with 

coefficients 
0

a
  and 

1
b

  and the hole states  h m
M ,

  were deduced in [4]: 

        

        

        

    

2
2 2

1 0 0 0 1 1 1

2
2 2

3 3 3

2 2

0 0 0 1 1 1

2 2

3 3 3

 m 3

1

 3

e e , ,

h h m m m ,m m m ,m

e h m , ,

m m ,m m m ,m

W R ; Q W Q a A Q b A Q

W ; Q W Q d A Q c A Q ,

W R , ; Q W Q a A Q b A Q

d A Q c A Q , m





 



  

   

  



 

  

 

  

  

  

    (13) 

with the normalization conditions 
2 2 2 2

0 1 3
1   1    3

m m
a b d c m

   


          (14) 

The first five functions  m ,m
A Q  with 4m   are: 

   

 

 

 

2 2

0

0 0 1 1

4 4

2 2 0

2 2 0

2 2 4 4 6 6

3 3 0 0 0

6 6 8 8

2 2 4 4 0 0

4 4 0 0

1  1
2

1
8

3 3 1
1

2 8 4 8

3
1 2

4 1 2 3 8 4

, ,

,

,

,

Q l
A Q ; A Q ,

Q l
A Q Q l ,

A Q Q l Q l Q l ,

Q l Q l
A Q Q l Q l

  

  

   

    

     (15) 

Along with the electron state 
1

R ,  we will consider state 
2

R  described by formulas (5). 
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The combination of electron state 
2

R  with hole states 
m


  gives rise to the eh states  2 m

e R , h ,
 . 

Coefficients  2i j m
W R , ; Q




 can be obtained from coefficients  1i j m

W R , ; Q



 putting 

1
0b


  in 

them as follows:  

   2 1

1
0

i j m i j m
W R , ; Q W R , ; Q ,

b

i , j e , h

 
 

  






    (16) 

The terms proportional to 
1

ˆ ( )
e

N R  and ˆ ( , )
h h m

N M 


 in (11) have coefficients 
1

( )
e

I R  and 

( )
h m

I 
  describing the Coulomb self-actions of the electrons and holes. They are as follows:  

       

     

1 1

1 1

1 1
 

2 2
e e e h m h h m

Q Q

s m e h m

I R W R ,Q ; I W ; Q

I R , I R I

 

 

 

 

 

 

 

 
   (17) 

To determine the binding energy of the magnetoexciton, its wave functions  e x i
F , K  

were obtained acting on vacuum state 0  by magnetoexciton creation operator 
†

| |
( , , , )

e x h i
k M R   

constructed from electron and hole creation operators 
†

,
i

R t
a  and 

†

, ,
h

M t
b


, respectively, as follows:  

 

   

2

0

 
2 2

1

0

y

x x

i h

i k t l† † †

e x | | i h k k
R ,t M , ; t

t

†

e x i h | | e x | | i h

k , R , M , e a b ,

N

R ; M , ; k k , R , M ,



 

   

  






     (18) 

The vacuum state is determined by the equalities  

0 0 0
,t ,t

a b
 

  .       (19) 

Below, a concrete composition  1
, ,

i h m
F R M 


  with 3m   of the electron and hole states will 

be considered. 

The binding energy of the magnetoexciton is determined by the diagonal matrix element 

of Hamiltonian (11) calculated with wave function  e x i
F , k : 

       

     

     

   

1 1

2

0
2

1 1

1 1

2
2

e x i c o u l e x i e x i i

e x i e x m e h m

Q

z

i m e h m

Q

m e x m
k

F , k H F , k I F E F , k

I F I R , W R ; ; Q

k Q l

E F , k E R ; ; k W R ; ; Q s in

l im E R ; ; k I R ;

 

 

 

 

 



 



 

 

  

 

  
   

 

 







   (20) 

The binding energy of the magnetoexciton and its ionization potential, which has the 

opposite sign as compared with the binding energy, tend to zero if the wave vector k  tends to 

infinity and the magnetoexciton is transformed into a free eh pair. 
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4. Interaction of magnetoexcitons with the electromagnetic radiation and the formation of 

cavity polaritons 

 

 In [912], the Hamiltonians describing, using different approximations, the electron-

radiation interaction in the system of two-dimensional coplanar electrons and holes accumulated 

in the semiconductor QW and subjected to the action of a strong perpendicular magnetic field 

giving rise to the LQ of their energy levels were deduced. Only the case of the interband optical 

quantum transitions with the creation or annihilation of one electronhole pair in [9-12] was 

considered. The intraband quantum transitions were discussed in [13]. In [9], the exciton-

cyclotron resonance and the optical orientation phenomena [14] arising under the influence of the 

circularly polarized laser radiation were studied without taking into account the RSOC. The 

Hamiltonian deduced in [9] in the eh representation was transcribed in [10] so as to describe the 

magnetoexciton-photon interaction for the light arbitrarily propagating in the three-dimensional 

(3D) space as well as being confined in the microcavity. The dispersion law of the 

magnetoexciton-polariton in a microcavity was deduced. The dependence of the Rabi frequency 

on the magnetic field strength and the selection rule concerning the numbers of the LQ levels of 

the eh pair engaged in the dipole-active and quadrupole-active transitions were determined [10]. 

The influence on the optical properties of the magnetoexcitons on the band-to-band quantum 

transitions of the RSOC arising due to the action of a supplementary electric field perpendicular 

to the plane of the QW was investigated in  [3, 4, 11, 12]. The third order chirality terms in 

Hamiltonian (1) of the heavy hole induced by the electric field obliged one to introduce an 

additional  NP term of the same origin in the heavy-hole dispersion law. The NP term, together 

with the chirality terms, essentially changes the dependence of the energy levels on the magnetic 

field strength. The role of the NP term is to prevent the unlimited deep penetration of the energy 

levels of the 2D heavy-hole, as well as of the eh pair and the magnetoexciton, inside the energy 

band gap and contribute to the stability of the semiconductor band structure. In [3, 4, 11, 12], the 

effects related with the ZS were not discussed. This shortage is pieced out below. We will discuss 

the properties of magnetoexcitons and magnetoexciton polaritons taking into account the 

influence of a full set of four factors, such as LQ, RSOC, ZS, and NP. The Hamiltonian 

describing the magnetoexcitonphoton interaction including the ZS effects has exactly the same 

form as in [11] with only one difference that coefficients 
0

a
 , 

1
b

 , 
m

c
 , and 

3m
d




 with 3m   must 

be determined in [13] by the expressions containing nonzero Zeeman coefficients 
e

Z  and 
h

Z . In 

previous papers [3, 4, 11, 12], these coefficients were absent. 

 Following formula (41) of [11], the Hamiltonian of the magnetoexcitonphoton 

interaction has the form 

 

     

| |
1 1 , 2( , ) ,0 0

* - * †

| | | |, - ,

† †
* *

| | , ,

ˆ

ˆ, , · · ( , , )

ˆ, , · ·

( 0 ) ,

( 0 ) (

{ [ ( ) ( ) ]

[ ( ) ( ) ]

hz m m

h h

h h

e r a d

M ik k k z k

c v i M M e x h ik k k k

c v i M M e xk k k k

e
H

m l L

P T R k C C k M R

P T R k C C

  


     

    





   







 



 
   

 

  

  

   



     

 

| |

† †
†

| | | |, ,

* *

| | | |, ,

, , )

ˆ, , · · ( , , )

ˆ, , · · ( , , )

,

( 0 ) ,

( 0 ) , }

[ ( ) ( ) ]

[ ( ) ( ) ]

h h

h h

h i

c v i M M e x h ik k k k

c v i M M e x h ik k k k

k M R

P T R k C C k M R

P T R k C C k M R



     

     

 

 

 



 





     

    

  (21) 
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It differs from Hamiltonian (9) of [10] by the more complicate coefficients  | |
, ,

i
T R k , which in 

turn now contain generalized coefficients 
0

a
 , 

1
b

 , 
m

c
 , and 

3m
d




 given by the expressions 

determined in [13]. 

Hamiltonian (21) contains the creation and annihilation operators of magnetoexcitons 
†

| |

ˆ ( , , ),
e x h i

k M R  , 
| |
,ˆ ( , , )

e x h i
k M R   and photons †

,k
C


, 

,k
C


. The former were determined by 

formula (18) and are characterized by in-plane wave vectors 
| |

k  by orbital projection 
h

M  of the 

hole state in the frame of the p-type valence band and by quantum states 
i

R  and   of the electron 

and hole under the conditions of the LQ accompanied by the RSOC, ZS, and NP. Instead of 

quantum number 
h

M , circular polarization vector 
h

M
  will be introduced. The photon operators 

depend on wave vectors 
3 | |z

k a k k   arbitrary oriented in the 3D space, where 
3

a  is an unit 

vector perpendicular to the layer, and on polarization label  , which takes two values—1 and 

2—in the case of the light with linear polarizations 
,k i

e  or the signs   in the case of circular 

polarizations 
k




. The required denotations are: 

     

   

     

†
† †

, ,1 , 2 , ,1 , 2

,1 , 2 ,1

2

, , , ,

1

2
† † †

, , , ,

1

1 2 | | 1

1 1
,  ,

2 2

1
,  0 ,  1, 2 ,

2

,

,

1
( ) ,  

2
h

k k k k k k

k k k k

k i k i k k k k

i

k k i k k k k

i

M x

C C iC C C iC

e i e e k i

C e C C

C e C C

a ia k k a



 

 



 



 

 



 

  



  

    

 

 

   





 

2

3

,

0 ,  1,
h

y

M h

k a

a M    

   (22) 

Here 
1

a  and 
2

a  are the in-plane orthogonal unit vectors. The scalar products  
*

h
Mk

 

  

appearing in Hamiltonian (22) determine the ability of photon circular polarization 
k




 to create 

circular polarization 
h

M
  with probability  

2
*

h
Mk

 

 . It can be denoted as a geometrical 

selection rule. This probability is the same for any in-plane wave vector 
| |

k k  and equals to 1/4. 

If incident wave vector k  is perpendicular to layer 
3 z

k a k , the light with circular polarization 

k




 excites the magnetoexciton with the same circular polarization 
h

M k
 


  with the probability 

equal to unity. Another spinorbital selection rule is determined by coefficients  | |
, ,

i
T R k , 

which are expressed by formulas (36) of [11] as follows: 
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     

   

   

   

* * * *

1 | | 0 3 | | 1 | |

*

1 | | 1 | |

*

2 | | | |

2 | | | |

, ; 0 , 3 ; 1, ; ,  3 ,

, ; 1, ; ,  0 , 1, 2 ,

, ; 0 , ; ,  3 ,

, ; 0 , ; ,  0 , 1, 2

m m m

m

m m

m

T R k a d m k b c m k m

T R k b m k m

T R k c m k m

T R k m k m

  

 

 

 

    





 

   

  

  

  

  (23) 

Integrals  | |
, ;

e h
n n k  were introduces by formulas (32) of [11]. They have a general form and 

some particular values given below  

 

 

 
 

2 2

0 0

| |

2 2

2 0

| |

0

| |

, ; ,
2 2

0 , 0 ; 1 ,
2 4

0 , 1;

2

y

e h

i k yx x

e h n n

x

y

x y

k l k l
n n k d y y y e

k l
k k

k i k l

k

  







 

   
     

   

 
   

 







   (24) 

At point 
| |

0k  , they coincide with the normalization and the orthogonality conditions for wave 

functions ( )
n

y , which have real values. 

 Integrals (24) play the role of the orbital selection rules for the quantum transitions from 

the ground state of the crystal to the magnetoexciton states as well as for the band-to-band optical 

transitions. Following them in the case of the dipole-active transitions with 
| |

0k  , the selection 

rule is 
e h

n n .  

 

The zeroth order Hamiltonian describing the free 2D magnetoexcitons, the cavity photons, and 

their interaction has a quadratic form and consists of three parts  
0 0

2 m e x p h m e x p h
H H H H


         (25) 

For simplicity, denotation (18) of the magnetoexciton creation operators will be shortened as 

follows: 

   

   

   

   

   

   

1 1 3

2 2 3

3 1 0

4 2 0

5 1 4

6 2 4

, , , 1,

, , , 1,

, , , 1,

, , , 1,

, , , 1,

, , , 1,

e x e x

e x e x

e x e x

e x e x

e x e x

e x e x

F k k R

F k k R

F k k R

F k k R

F k k R

F k k R

  

  

  

  

  

  

  

  

 

 

  

  

 

 





 

 

     (26) 

In Hamiltonian 
2

H , only dipole-active magnetoexciton states 
1

F  and 
4

F  and quadrupole-active 

states 
3

F  and 
5

F  were included:  
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     
0

1 ,3 , 4 ,5

, , ,
m e x e x n e x n e x n

n

H E F k F k F k 




      (27) 

The remaining two states 
2 6

 a n d  F F  were excluded because they are forbidden in both 

approximations. 

The cavity photons have wave vectors 
3 z

k a k k   consisting of two parts. The longitudinal 

component is oriented along the axis of the resonator determined by unit vector 
3

a  perpendicular 

to the surface of the QW embedded inside a microcavity. It has a well-defined value of 
z

c

k
L


 

, where 
c

L is the cavity length. Transverse component 
1 2x y

k a k a k  is a 2D vector oriented in-

plane with respect to the QW and determined by two in-plane unit vectors 
1 2

 a n d  a a . Vectors 
k




 

of the light circular polarizations can be constructed introducing two unit vectors s  a n d  t  

perpendicular to light wave vector k  and to each other as follows:  

 

  3

1 2

3

1
;  ;  

2

;  

z zk

c

y xz

s i t k a k k k
L

k a k a kk k
s a t

k k k k





     


  

     (28) 

 They obey the orthogonality and normalization conditions  

     

 

   

0 ;  1

;  1

0 ;  1

k k k

k k k k

k t s k t s s t

  

   
 


  

  

       

 

   

     (29) 

and have the form 

    

 

2

3 1 2

1 1 2

1
;

2

1

2

x z y y z xk
a k a k k ik k a k k ik k

k k

a ia









     

 

  (30) 

 Here, magnetoexciton circular polarization vectors 
1




 determined by formula (22) are 

mentioned. The required scalar products of the photon and magnetoexciton circular polarization 

vectors are listed below: 

 

 

2 4 4
2

1

2 4 4
2

1

2
2

2

2

1
1 1 ,

2 2 2 1 6

1
1 1 ,

2 2 2 1 6

1 .

z z

k

z z

z z

k

z z

c

k kx x x

k k

k kx x x

k k

k L

x

 

 



 

 



   
         

  

   
         

  

 

    (31) 
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 In the case 0
z

c

k
L


  , we obtain the expression  

   

 

2
2 2

4

1 1

4
2 2

1 1

7
1 ,

2 1 6

,
1 6

k k

k k

x
x

x

   

   

   



   



 
      

 

   

   (32) 

 whereas in the opposite case 0
z

c

k
L


    they are  

   

   

4
2 2

*

1 1

2
2 2

4

1 1

1 6

7
1

2 1 6

k k

k k

x

x
x

   

   

  



   



   

 
      

 

     

 The zeroth order Hamiltonian of the cavity photons with wave vectors k   and circular 

polarizations 
k




 described in (28) has the form 

     
0

, , , ,

,
z

C

p h k k k k k

k k
L

H C C C C




 

   

 

 
 

  
      (33) 

 The creation and annihilation operators of the photons with circular polarizations 
k




  and 

with linear polarizations s  and t  are related as follows: 

 

   

   

, , ,

, , ,

, , , ,

, , , ,

1

2

1

2

k k s k t

k k s k t

k s k t k k k k

kk s k t k k k

C C iC

C C iC

s C tC C C

s C tC C C

 

 




 



 

 

 
   

 

 



  

  

    (34) 

 The Hamiltonian describing the magnetoexcitonphoton interaction including only the 

resonance terms and taking into account the two photon circular polarizations has the form   

 

 

       

       

       

 

1 1 1 1, ,

,

4 1 1 4, ,

3 1 1 3, ,

5 ,

, ,

, ,

, ,

,

z

c

m e x p h e xk k k k

k k
L

e xk k k k

e xk k k k

k k

H F k C C F F

F k C C F k

F k C C F k

F k C



     

     

     

 

    

   

 

   

 

   

 





     
 

     
 

     
 

 



      
1 1 5,

, . .
e xk k

C F k H C   
   

 

   
 

   (35) 

Coefficients  ,
n

F k  and their square moduli are: 
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   

   

   

   

2 2 22

1 0 0 1 0 0

2
2

4 4

2
2

2 2 02

3 1 0 3 1

2
2

2 2 2 02

5 0 0 0 5 0 0

, ;  ,

, ;  ,

, ;  ,
22

, ;  ,
22

c v c v

c v c v

x y

c v c v

x y

c v c v

c v

F k a d F k a d

F k F k

k lk i k
F k b l F k b

k lk i k
F k a d l F k a d

e

m

   

   

   

   



     

  

     

  

 

 
   

 

 
    

 

  
   

2 22

2

0 0 0 0 0 0

0 0
0 ;  ;  

c v c vc c c v c

c v c v o s c

c c

e P e Pn n n
P f

l c c m l c m l




    

 
    
 

   (36) 

 Below, the dimensionless value of 

2

e v

o s c

c

f



  playing the role of the oscillator strength 

will be used. Looking at those expressions, one can observe that the probabilities of the dipole-

active quantum transitions in magnetoexciton states 
1 4

 a n d  F F  determined by expressions 

 
2

1
,F k  and  

2

4
,F k   are proportional to 

2 2

0c v
l B


   and exhibit an increasing linear 

dependence on magnetic field strength B. In contrast, the probabilities of the quadrupole-active 

quantum transitions in magnetoexciton states 
3 5

 a n d  F F  are proportional to expression 
2 2

0c v
l  , 

which does not depend on magnetic field strength B at all. 

The equations of motion for four magnetoexciton annihilation operators  ,
e x n

F k  with 

1, 3 , 4 , 5n   as well as for the similar photon operators 
,k

C


 under the stationary conditions have 

the form 

     2

2, , ,

ˆ, , , ,

ˆ,

e x n e x n e x n

k k k

d
i F k F k H F k

d t

d
i C C H C

d t

   


  

  
 

  
 

    (37) 

Their particular expressions are: 

          

          

 

1 1, ,

1 1, ,

,

, , ,

                   1, 5

, , ,

                   3 , 4

e x i e x i ik k k k

e x j e x j jk k k k

k k k

E F k F k C C F k

i

E F k F k C C F k

j

C

      

      

   

   

  

   

 





     
 



     
 



       

           

     

1 1 1

1 4 4 1 3 3

1 5 5

, ,

, , , ,

, ,

e x

e xk k

e xk

F k F k

F k F k F k F k

F k F k

 

       

   



   

 





    

 

   (38) 
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Dipole-active state 
1

F  and quadrupole-active state 
5

F  can be preferentially excited by the light 

with circular polarization 
k




 propagating with 0
z

c

k
L


  , whereas dipole-active state 

4
F  and 

the quadrupole-active state 
3

F  mainly react to the light with circular polarization 
k




 propagating 

in the same direction with 0
z

c

k
L


  . In the case where Hamiltonians (33) and (35) contain 

photons only with one circular polarization—either 
k




 or 
k




— equations (38) give rise to the 

relations 

 
   

 

 
   

 

1

,

1

,

,

,

,

     1, 5

,

,

,

      3 , 4

ik

i k

e x i

jk

j k

e x j

F k

F k C

E F k

i

F k

F k C

E F k

j

  





  































     (39) 

Substituting these relations into equations of motion (38) for photon operators 
,k

C


, we will find 

two dispersion equations describing five branches of the energy spectrum of two different 

systems. One of them concerns the photons with circular polarization 
k




 propagating with 

0
z

c

k
L


   and exciting mainly magnetoexciton state 

1
F  as well as other states 

3 4 5
, ,F F F  with 

smaller oscillator strengths. The second system consists of magnetoexcitons in the same four 

states 
1 3 4 5
, , ,F F F F  existing in the frame of a microcavity filled by the photons with circular 

polarization 
k




 propagating with 0
z

c

k
L


  . These fifth order algebraic dispersion equations 

are 

 
   

 

   

 

   

 

   

 

2 22 2

1 1 1 4

1 4

2 22 2

1 3 1 5

3 5

,

, ,

,

, ,

k k

k

e x e x

k k

e x e x

F k F k

E F k E F k

F k F k

E F k E F k

     

 

 

     

 

 



 



 

   

 

 

 

 

   (40) 

They describe four magnetoexciton branches and one photon branch with a given circular 

polarization—either  o r  
k k

 
 

—where the photons propagate with 0
z

c

k
L


  . 

Now we will consider a particular case of cavity photons with circular polarization 
k




 

propagating in the direction with 0

c

k
L


   in the frame of a microcavity with cavity mode 

c
  
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tuned so as to coincide with the magnetoexciton level in state 
1

F  with wave vector 0k   at a 

given values of magnetic field ,  o f  t h e  e le c t r i c  f i e ld  
z

B E , with the parameter of the NP 

 a n d  w i th  f a c to r s   a n d  .
e h

C g g g  In this case, we can put  
1
, , 0

c e x
E F B  . To simplify the 

dispersion equation, we will use the dimensionless values introduced as follows:  

   1 1

;  1 ;  =
, , 0 , , 0

c

c e x c c e x

E E E

E F B E F B

  
 

  

 

  


    (41) 

 

The fifth order dispersion equation has the form 

 

 

 

 

 

 

 

 

2
2

0 0 1

2
42 2

0 0

2 22 2

1 4 1

2 2

1 1 4

2
6

2
0

1

3

1

2 , , 0

1
2 1 6

, , 0 , , 0 , , 0
1

, 2 , , 0 , 2

3 2

, , 0
1

, ,

c c v

e x

c e x e x c e x

e x

c

e x

e x

n e Px

c m l E F B

x x
a d

n E F B E F B n E F Bx x

M F B c E F B M F B c

l x
b

L

E F B

E F B




 





 



   
     

  

  
  

  
  

   


        

   

 

 

 


 

 

 

 

 

 

 

 

2
2 2

2 2
0

0 0

2 22 2

1 5 1

2 2

3 1 5

1
2 2

, , 0 , , 0 , , 0
1

0 , 2 , , 0 , 2

c

c e x e x c e x

e x

l x x
a d

L

n E F B E F B n E F Bx x

M F B c E F B M F B c





 

   
   
  

 
   


        


    

(42) 

  

 

 

In another special case, the cavity photons have circular polarization 
k




 and propagate in the 

direction with 0
z

c

k
L


  . Cavity mode energy 

c
  is tuned to magnetoexciton energy 

 
4

, , 0
e x

E F B . In this case, the energy is accounted from energy level  
4

, , 0
e x

E F B  as follows: 

 
 

 

4

4

4

, , 0 ;  1
, , 0

, , 0

e x

e x

e x

E F B E
E F B

E

E F B


 



   



    (43) 

 

The dispersion equation in the dimensionless variables has the form 
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 

 

 

 

 

 

 

2
2

0 0 4

2
4

2 2

0 0

2 22 2

4 1 4

2 2

4 4 1

2
2 2

2
0

1

3

2 , , 0

1
2 1 6

, , 0 , , 0 , , 0
1

, 2 , , 0 , 2

1
2 2

, ,
1

c c v

e x

c e x e x c e x

e x

c

e x

n e Px

c m l E F B

x x
a d

n E F B E F B n E F Bx x

M F B c E F B M F B c

l x x
b

L

E F B




 





 



   
     

  

  
  

  
 

   


        

   

   
   

  


 
 

 

 

 

 

 

 

 

2
6

2 2
0

0 0

2 22 2

4 5 4

2 2

4 3 4 5

2

3 2

0 , , 0 , , 0 , , 0
1

, , 0 , 2 , , 0 , 2

c

c e x e x c e x

e x e x

l x
a d

L

n E F B E F B n E F Bx x

E F B M F B c E F B M F B c





 

 
 
 

 
   


        


      

 

 

 

 

 

Figure 1 shows five dimensionless polariton energy branches as a function of dimensionless 

wave vector x  in the absence of RSOC. They correspond to two different values of magnetic 

field strength 2 0  a n d  4 0  B    as well as to two different values of heavy-hole g -factor  

5
h

g   . The electron  g -factor is assumed to be 1
e

g  . Figures 1a and 1b suggest that a change 

in magnetic field strength B  does not have a considerable effect on the resulting pattern. 

Nevertheless, it should be borne in mind that the dimensionless values of  
p c

E x   were 

calculated with different values of cavity mode  
4

, , 0
c e x

E F B   depending on B . Figures 2 

and 3 show the influence of the RSOC with third order chirality terms and NP parameter C. The 

main effect consists in the transposition of the magnetoexciton energy levels on the energy scale 

in comparison with their position in the absence of RSOC. 

(44) 
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Fig. 1. Dimensionless polariton energy branches as a function of dimensionless wave vector x  in the 

absence of RSOC  0 ;  0
z

E C   at different values of magnetic field strength B, two values of the 

heavy-hole f a c t o r  5
h

g g    and at a given value of the electron g - factor 1
e

g  , as follows: 

 2 0  ,  5 ;
h

a B g     4 0  ,  5 ;
h

b B g     2 0  ,  5 ;
h

c B g      4 0  ,  5
h

d B g    .  

The magnetoexciton energy levels are denoted by 
1 3 4 5
, , ,F F F F , whereas the cavity mode by Cavity 

 
4

, , 0
c e x

E F B  . 
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Fig. 2. Dimensionless polariton energy branches as a function of dimensionless wave vector x  in the 

presence of the RSOC with electric field strength 
k V

3 0
c m

z
E   and the parameter of the NP 2 0C   at 

different values of magnetic field strength B , two values of the heavy-hole f a c t o r  5
h

g g    and 

electron f a c t o r  1
e

g g  , as  follows:  2 0  ,  5 ;
h

a B g     4 0  ,  5 ;
h

b B g    

 2 0  ,  5 ;
h

c B g      4 0  ,  a n d  5
h

d B g    . The magnetoexciton energy levels are denoted by 

1 3 4 5
, , ,F F F F , whereas the cavity mode by Cavity.  

4
, , 0

c e x
E F B  . 
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Fig. 3. Dimensionless polariton energy branches as a function of dimensionless wave vector x  in the 

presence of the RSOC with electric field strength 
k V

3 0
c m

z
E   and the parameter of the NP 3 0C   at 

different values of magnetic field strength B , two values of the heavy-hole f a c t o r  5
h

g g    and 

electron f a c t o r  1
e

g g  , as follows:  2 0 ,  5 ;
h

a B g     4 0 ,  5 ;
h

b B g    

 2 0 ,  5 ;
h

c B g      4 0 ,  a n d  5 
h

d B g    . The magnetoexciton energy levels are denoted by 

1 3 4 5
, , ,F F F F , whereas the cavity mode by Cavity.  

4
, , 0

c e x
E F B   
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 The following three figures show the case where the cavity mode is tuned to magnetoexciton 

energy level 
1

( , , 0 )
e x

E F B  rather than to level 
4

( , , 0 )
e x

E F B  as was supposed in the previous three 

ones. The three variants at a given energy level 
1

( , , 0 )
e x

E F B  are related with the absence (Fig. 4) 

and presence (Figs. 5, 6) of the RSOC with two different values of NP constant C = 20 and 30. 

 

 

 
Fig. 4. Dimensionless polariton energy branches in circular polarization    as a function of dimensionless 

wave vector x in the absence of the RSOC ( 0
z

E  , 0C  ) at the two different values of the magnetic field 

strength, at two values of the heavy-hole g-factor 5
h

g    and at a given value of the electron g-factor 

1
e

g   as follows: (a) B = 20 T, gh = 5; (b) B = 40 T, gh = 5; (c) B = 20 T, gh = -5; (d) B = 40 T, gh = -5. 

The magnetoexciton energy levels are denoted by F1, F3, F4, F5, whereas the cavity mode by Cavity. 

1
( , , 0 )

c e x
E F B  . 
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Fig. 5. Dimensionless polariton energy in circular polarization    as a function of dimensionless wave 

vector x in the presence of the RSOC with electric field strength 3 0 k V / c m
z

E   and the parameter of NP  

C = 20 at different values of magnetic field strength B, at two values of the heavy-hole g-factor 5
h

g    

and at the electron g-actor 1
e

g   as follows: (a) B = 20 T, gh = 5; (b) B = 40 T, gh = 5; (c) B = 20 T,  

gh = -5; (d) B = 40 T, gh = -5. The magnetoexciton energy levels are denoted by F1, F3, F4, F5, whereas the 

cavity mode by Cavity. 
1

( , , 0 )
c e x

E F B  . 



S. A. Moskalenko, I. V. Podlesny, E. V. Dumanov, L. Shutova, and I. Leleacov 
 

93 

 
Fig. 6. Dimensionless polariton energy in circular polarization    as a function of dimensionless wave 

vector x in the presence of the RSOC with electric field strength 3 0 k V / c m
z

E   and the parameter of NP  

C = 30 at different values of magnetic field strength B, at two values of the heavy-hole g-factor 5
h

g    

and at the electron g-actor 1
e

g   as follows: (a) B = 20 T, gh = 5; (b) B = 40 T, gh = 5; (c) B = 20 T,  

gh = -5; (d) B = 40 T, gh = -5. The magnetoexciton energy levels are denoted by F1, F3, F4, F5, whereas the 

cavity mode by Cavity. 
1

( , , 0 )
c e x

E F B  . 

 

 

5. Conclusions 

 

 The properties of the 2D cavity polaritons subjected to the action of strong perpendicular 

magnetic and electric fields have been studied. To this end, the exact solutions of the LQ of the 

2D heavy-holes accompanied by the RSOC with third order chirality terms, by the ZS effects as 
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well as by the nonparabolicity of their dispersion law have been obtained following the method 

proposed by Rashba [1]. His results concerning the conduction electrons have been supplemented 

taking into account the ZS effects. Using the mentioned wave functions for the 2D electrons and 

holes, the Hamiltonians describing the Coulomb electron-electron and the electron-radiation 

interactions in the second quantization representation have been deduced. In turn, the electron-

radiation interaction Hamiltonian has made it possible to construct another Hamiltonian 

describing the magnetoexcitonphoton interaction and begin the development of the theory of 

magnetoexciton-polaritons. To do this, the wave functions of the 2D magnetoexcitons are 

required. The six magnetoexciton states arising due to the composition of two LLLs for 

conduction electrons with three LLLs for heavy-holes have been taken into consideration. 

Between them, two states—
1

F  and 
4

F —are dipole-active, other two—
3

F  and 
5

F —are 

quadrupole-active, and the last two—
2

F  and 
6

F —are forbidden in the inter-band optical 

quantum transitions as well as from the ground state of the crystal to the magnetoexciton states in 

the GaAs-type QWs. The dispersion equation describing the magnetoexciton-polariton energy 

spectrum includes the first four states 
1 3 4 5
, ,  a n d  F F F F  interacting with the cavity photons in two 

selections of the cavity mode. These four magnetoexciton degrees of freedom together with the 

branch of the cavity photons give rise to five order dispersion equation with five polariton-type 

renormalized energy branches. They are represented in six figures. Three of them show the case 

of cavity mode energy 
c

  tuned exactly to the magnetoexciton dipole-active level energy 

4
( , , 0 )

e x
E F B , whereas the other three figure show the polariton pictures where the cavity mode 

energy is tuned exactly to the other dipole-active magnetoexciton level energy 
1

( , , 0 )
e x

E F B . In 

both cases, a multitude of the polariton energy branches has been obtained. 
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Abstract 

 

The Peierls structural transition in quasi-one-dimensional (Q1D) TTF-TCNQ organic 

crystals of is studied in the 3D approximation. Two the most important electronphonon 

interactions are considered. The analytic expression for the phonon polarization operator is 

obtained in the random phase approximation. The polarization operator as a function of 

temperature is determined for different values of dimensionless Fermi momentum kF. Different 

cases are analyzed: kF = 0.59/2 and where the carrier concentration varies and kF = 0.59/2 ± δ, 

where δ represents the variation of Fermi momentum kF. In all cases, Peierls critical temperature 

Tp is determined.  

 

Introduction 

 

Organic materials represent an important research direction, because it is assumed that 

they may have much better properties than inorganic materials known so far. The most 

extensively studied Q1D organic crystals include those of the tetrathiofulvalinium 

tetracyanoquinodimethane (TTF-TCNQ) type. For a complete description of the crystal model, it 

is necessary to determine the parameters of these crystals. In this paper, we propose to use the 

Peierls structural transition for this aim. According to this phenomenon, which has been 

theoretically predicted by Rudolf Peierls, at some lowered temperatures, the one-dimensional 

metallic crystal has to pass in a dielectric state. This temperature is referred to as Peierls critical 

temperature Tp. The Peierls transition has been studied by many authors (see [13] and references 

therein). 

In previous papers [4, 5], the 1D physical model of the TTF-TCNQ crystals has been 

investigated. The renormalized phonon spectrum has been calculated for different temperatures in 

two cases: where the conduction band is half filled and the Fermi dimensionless quasi momentum 

kF = /2 and where the concentration of conduction electrons is reduced and the band is filled up 

to a quarter of the Brillouin zone, kF = /4, [5]. The Peierls critical temperature was established 

in the both cases. 

The 2D physical model for the same crystals has been investigated in [68]. The 

polarization operator as a function of temperature was numerically calculated for different values 

of parameters d and δ, where d is the ratio of the electron transfer energy in the transversal 

direction to conductive chains to the transfer energy along the conductive chains and δ represents 

the increase in Fermi momentum kF determined by an increase in the carrier concentration. In all 

cases, the transition temperature has been determined. 

In [9], a 3D physical model of the crystal has been studied. The structural transition has 
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been investigated in the case where the conduction band is filled up to a quarter of the Brillouin 

zone and the dimensionless Fermi momentum kF = /4 and in the case where the carrier 

concentration varies and kF = /4 ± δ, where δ represents the variation in Fermi momentum kF. 

The critical temperature transition has been determined. 

In this paper, we also investigate the 3D physical model of the crystal, but in a more 

realistic aspect. Computer modeling is performed and the Peierls transition is investigated for the 

case where the dimensionless Fermi momentum is kF = 0.59/2 for different values of parameters 

d1 and d2 which represents the ratio of the transfer energy in the transversal y and z directions to 

the transfer energy along the x direction of conductive chains. Note that this value of kF is 

estimated for real crystals of TTF-TCNQ. The polarization operator as a function of temperature 

is also calculated for different values of increase or decrease δ in Fermi momentum kF determined 

by an increase or decrease in the carrier concentration. For a complete description, two electron-

phonon interactions are considered. The first is of deformation potential type and the second one 

is similar to that of the polaron. The analytic expression for the phonon polarization operator is 

obtained in the random phase approximation. Peierls critical temperature Tp is determined for 

different values of dimensionless Fermi momentum kF ± δ. The results obtained in the 3D 

physical model are analyzed and commented in detail. 

 

1. Three-dimensional crystal model 

 

The compound of TTF-TCNQ forms quasi-one-dimensional organic crystals composed of 

TCNQ and TTF linear segregated chains. The TCNQ molecules are strong acceptors, and the 

TTF molecules are donors. The conductivity of TTF chains is much lower than that of TCNQ 

chains, and can be neglected in the first approximation. Thus, in this approximation, the crystal is 

composed of strictly one-dimensional chains of TCNQ that are packed in a three-dimensional 

crystal structure. The crystal lattice constants are a = 12.30 Å, b = 3.82 Å, c = 18.47 Å, b is in the 

chains directions. 

The Hamiltonian of the crystal was described in [6, 8] for the 2D physical model. Now it 

has the form: 

( ) ( , ) ( )

,

H a a b b A a a b b    
      

k k qq q q q qk k k k qqk k q

,                           (1) 

 

In expression (1), ( ) k represents the energy of a conduction electron with 3D quasi-wave vector 

k and projections (kx, ky, kz). 

  1 2 3
2 c o s ( ) 2 c o s ( ) 2 c o s ( )w k b w k a w k czx y   k ,                                        (2) 

where w1, w2 and w3 are the transfer energies of a carrier from one molecule to another along the 

chain (with lattice constant b, x direction) and in a perpendicular direction (with lattice constant a 

in y direction and c in z direction). In (1) ak
+
, ak are the creation and annihilation operators of a 

conduction electron. 

The second term in Eq. (1) is the energy of longitudinal acoustic phonons with three-

dimensional wave vector q and  projections (qx, qy, qz) and with frequency ωq: 

2 2 2 2 2 2 2

1 2 3
s i n ( / 2 ) s i n ( / 2 ) s i n ( / 2 ) ,

q x y z
q b q a q c                                    (3) 

where ω1, ω2 and ω3 are the limit frequencies in the x, y and z directions. In (1) bq
+
, bq are the 
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creation and annihilation operators of an acoustic phonon.  

The third term in Eq. (1) describes the electron-phonon interaction. It contains two 

important mechanisms. The first one is of the deformation potential type; it is determined by the 

fluctuations of energy transfer w1, w2 and w3, due to the intermolecular vibrations (acoustic 

phonons). The coupling constants are proportional to derivatives 
1

w  , 
2

w  , and 
3

w   of w1, w2, and 

w3 with respect to intermolecular distances, 0
1
w , 0

2
w , 

3
0w  . The second mechanism is 

similar to that of polaron. 
 

The square module of matrix element of electronphonon interaction is represented in the 

following form: 

 
2 2 2

1 1
( , ) 2 / ( ) { [ s i n ( ) s i n ( , ) s i n ( ) ]A N M w k b k q b q bx x x x      k q q

                     
(4) 

2 2 2 2

2 2 3 3
[ s i n ( ) s i n ( , ) s i n ( ) ] [ s i n ( ) s i n ( , ) s i n ( ) ] } ,w k a k q a q a w k c k q c q cz z z zy y y y           

 

In Eq. (4), M  is the mass of the molecule, N  is the number of molecules in the basic region of 

the crystal; parameters γ1, γ2, and γ3 describe the ratio of amplitudes of polaron-type interaction to 

the deformation potential one in the x, y and z directions: 

 
2 5 2 5 2 5

1 0 1 2 0 2 3 0 3
γ 2 α / ; 2 / ; 2 / ,e b w e a w e c w                                        (5) 

 

The analytic expression for the phonon polarization operator is obtained in the random 

phase approximation. The real part of the polarization operator is presented in the form: 

 

 

2
R e ( , ) ( , ) ,

3 ( ) ( )2

N
n n

d k d k d k Azx y

q

  

     




       
     

k k q
q k q

k k q
          (6) 

Here, N is the number of elementary cells in the basic region of the crystal, N = r N , where r is 

the number of molecules in the elementary cell, r = 2. In (6) A(k,-q) is the matrix element of 

electronphonon interaction presented in Eq. (2), ε(k)  is the carrier energy, ħ is the Planck 

constant, n
k

 is the Fermi distribution function, and Ω(q) is the renormalized phonon frequency. 

The critical temperature of Peierls transition is determined from the condition that the 

renormalized phonon frequency Ω(q) is diminished to zero at this temperature, i.e. Ω(q) = 0. It 

means that 

          1 R e ( , ) 0 .   q            (7) 

where R e ( , ) q  was represented in Eq. (6). 

 

2. Results and discussion 

 

Expression (7) shows that the critical temperature of Peierls transition is determined when 

Ω = 0, and qx = 2kF, qy = 2kF, qz = 2kF. The polarization operator as a function of temperature was 

calculated for different values of parameters d1 and d2, where     

d1 = w2/ w1 = 
2

w  /
1

w  , and d2 = w3/w1 = 
3

w  /
1

w  . The polarization operator as a function of 

temperature was determined for different values of kF. Different cases when  
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kF = 0.59/2 and when kF = 0.59/2 ± δ 

were analyzed. 

Numerical modeling was performed 

for the following parameters: M = 

3.74·10
5
me (me is the electron rest mass), 

w1= 0.125 eV, 
1

w   = 0.22 eVÅ
-1

, a = 12.30 

Å, b = 3.82 Å, c = 18.47 Å. The sound 

velocity at low temperatures is vs1 = 3.4 ·10
5
 

cm/s along chains, vs2 = 5.25·10
5
 cm/s in a 

direction and vs3 = 5.25·10
5
 cm/s in c 

direction [10]. γ1 = 1.6, γ2 and γ3 are 

determined from the relations: γ2 = 

32γ1b
5
/(a

5
d1) and γ3 = 32γ1b

5
/(c

5
d2). 

Figures 14 show the calculation 

results (the polarization operator is denoted 

by Polar). From all figures, one can 

determine the transition temperatures from 

the intersections of the calculated curves 

with the horizontal line at 1.0. 

Figures 1 and 2 shows the 

calculations for d1 = 0.015 and d2 = 0.01 and 

different values of the dimensionless Fermi 

momentum kF. The solid, dashed, dotted, 

and dash-dotted lines correspond to δ = 0 (kF 

= 0.59/2), δ = 0.031 (~ 3.35 % variation of 

kF), δ = 0.063 (~ 6.8% variation of kF), and     

δ = 0.094 (~10.15% variation of kF), 

respectively. Figure 1 shows the case where 

the Fermi momentum increase with δ, so  

kF = 0.59/2 + δ. It is evident that Tp 

decreases with an increase in parameter δ. 

For δ = 0, Tp  59 K; for δ = 0.031, Tp  43 

K; for δ = 0.063, Tp  26 K and for δ = 0.094 

Peierls transition does not take place.  

Figure 2 shows the case where the 

Fermi momentum decrease with δ and kF = 

0.59/2 - δ. In this case, for δ = 0, Tp  59K; 

for δ = 0.031, Tp  75 K; for δ = 0.063, Tp  

93 K and for δ = 0.094, Tp  114 K. It is 

observed that the Peierls critical temperature 

considerably increases with decreasing 

carrier concentration. 

 Figure 3 shows the case where  

kF = 0.59/2, d2 = 0.01 and d1 takes different 

values. The solid, dashed, dotted, and dash-

dotted lines correspond to d1 = 0.015, 0.025, 

Fig. 1. Polarization operator as a function of 

temperature for different values of δ and  

d1 = 0.015; d2 = 0.01; kF = 0.59/2+ δ. 

 

Fig. 2. Polarization operator as a function of 

temperature for different values of δ and  

d1 = 0.015; d2 = 0.01; kF = 0.59/2- δ. 

 

Fig. 3. Polarization operator as a function of 

temperature for different values of d1 and  

d2 = 0.01 and kF = 0.59/2. 
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0.035, and 0.045, respectively. The value  

d1 = 0.015 is estimated for real crystals of TTF-TCNQ. 

This graph shows that Tp strongly decreases with increasing parameter d1,. For d1 = 0.015,          

Tp  59 K, as it was obtained experimentally. 

For d1 = 0.025, Tp  50 K; for d1 = 0.035,  

Tp  30 K; and for d1 = 0.045, the Peierls 

transition disappears.  

Figure 4 corresponds to the case where  

kF = 0.59/2 and parameters d1 and d2 vary. In 

this graph the solid, dashed, dotted, and dash-

dotted lines correspond to d1 = 0.015, 0.025, 

0.035, and 0.045 and d2 = 0.01, 0.013, 0.015, 

and 0.017, respectively. In this case, Tp 

decreases faster. For d1 = 0.015 and d2 = 0.01, 

Tp  59 K; for d1 = 0.025 and d2 = 0.013, Tp  

46 K. In the other two cases, i.e., for d1 = 0.035, 

d2 = 0.015 and d1 = 0.045, d2 = 0.017, the 

Peierls transition will not take place. 

From Figs. 3 and 4, one can observe 

that even a small increase in three-dimensionality leads to a considerable decrease in the 

transition temperature. This feature is attributed to the fact that the Peierls structural transition is 

characteristic of crystals with pronounced quasi-one-dimensional properties. 

 

4. Conclusions 

 

The Peierls transition has been studied in quasi-one-dimensional organic crystals of the 

TTF-TCNQ type in the 3D approximation. The polarization operator as a function of temperature 

has been calculated in the random phase approximation for different values of parameters d1 and 

d2, where d1 and d2 are the ratio of the transfer energy in the transversal y and z directions to the 

transfer energy along the x direction of conductive chains. For a more complete description of the 

crystal model, two the most important electronphonon interactions were considered. The first is 

of the deformation potential type and the second one is similar to that of a polaron. The amplitude 

ratios between the second and first interactions are characterized by parameters γ1, γ2, and γ3, 

respectively. Peierls transition temperature Tp has been determined. In this paper, the behavior of 

Peierls structural transition where the carrier concentration varies has been studied. We have 

investigated the cases where the dimensionless Fermi momentum kF = 0.59/2 and  

kF = 0.59/2  δ, where δ represents the variation in the Fermi momentum determined by a 

variation in carrier concentration n. It has been established that, with an increase in carrier 

concentration, the Tp value decreases and vice versa. 

In addition, it has been shown that, with an increase in three-dimensionality, the transition 

temperature considerably decreases, and for some values of parameters d1 and d2 the Peierls 

structural transition will not occur. This feature is attributed to the fact that the Peierls structural 

transition is characteristic only of crystals with pronounced quasi-one-dimensional properties.  

 

Acknowledgments. The author expresses gratitude to Prof. A. Casian for the guidance in this 

Fig. 4. Polarization operator as a function of 

temperature for different values of d1 and d2 

and kF = 0.59/2. 
 



S. Andronic 
 

101 

study and acknowledges the support of the scientific program of the Academy of Sciences of 

Moldova under project no. 14.02.116F. 

References 

 

[1] L. N. Bulaevskii, Usp. Fiz. Nauk 115, 263, (1975). 

[2] M. Hohenadler, H. Fehske, and F.F. Assaad, Phys. Rev. B, 83, 115105, (2011). 

[3] V. Solovyeva et al., J. Phys. D: Appl. Phys. 44, 385301, (2011).  

[4] A. Casian and S. Andronic, Proc. 4th Int. Conf. on Telecommun., Electron. Inf., ICTEI 2012, 

vol. 1, pp. 258261, (2012). 

[5] S. Andronic and A. Casian, Mold. J. Phys. Sci. 12, 34, 192, (2013). 

[6] S. Andronic, Mold. J. Phys. Sci. 13, 34, (2014). 

[7] S. Andronic, A. Casian, and V. Dusciac, Abstr. 10th Int. Conf. on Phys. Adv. Mater., 

ICPAM-10, pp.95, (2014). 

[8] S. Andronic, I. Balmus, and A. Casian, 8th Int. Conf. on Microelectron. Comp. Sci., pp. 

1619, (2014). 

[9] S. Andronic, I. Balmus, and A. Casian, Proc. 5th Int. Conf. on Telecommun., Electron. Inf., 

ICTEI 2015, pp. 201203, (2015). 

[10] T. Tiedje and R. R. Haering, Solid State Commun., 23, 713, (1977). 

 

 
 



 

 

LANCED MULTI-PORT ELECTRIC NETWORK AND ITS PROJECTIVE 

COORDINATES                    

 

A. Penin and A. Sidorenko 

 

 Gitsu Institute of Electronic Engineering and Nanotechnologies, 

 Academy of Sciences of Moldova 

E-mails: aapenin@mail.ru; anatoli.sidorenko@kit.edu 

 

(Received April 10, 2015) 

 

 Abstract 

 

For an active multi-port network of direct current, as a model of distributed power supply 

system,   the problem of recalculation of the changeable load currents is considered.  Conditions 

of utilization of projective coordinates for the interpretation of changes or   "kinematics" of 

regime parameters of the network are determined. Therefore, changes in regime parameters are 

introduced by the cross ratio of four points. Easy-to-use formulas of the recalculation of the 

currents, which possess the group properties at a change in the conductivity of the loads, are 

obtained to express the final values of currents through the intermediate changes in the load 

currents and conductivities. The obtained results contribute to the development of the basics of 

the electric circuit theory.   

 

1. Introduction 

 

In the electric circuit theory, attention is given to the networks with variable parameters of 

elements. In particular, a new method, which can determine the functional dependence of any 

circuit variable with respect to any set of design variables, is presented in [1]. 

At present, special consideration is given to distributed renewable power supply systems 

with a lot of loads and voltage sources [2–5].  In turn, a particular problem of convenient 

recalculation of changeable load currents is raised.      The conventional approach uses the 

changes in load conductivities in the form of increments. Recalculation of currents leads to the 

solution of a system of algebraic equations of a corresponding order.   Therefore, for a number or 

group of changes in these conductivities, these increments should be counted concerning an 

initial circuit and the solution of the equations system is repeated. So, this nonfulfilment of group 

properties (when the final result should be obtained through intermediate results) complicates 

recalculation and limits the capabilities of this approach. 

An approach for the interpretation of changes or "kinematics" of the circuit regimes on the 

basis of projective geometry is represented in [6]. The changes in regime parameters are 

introduced otherwise. Therefore, as if obvious changes in the form of increments are formal and 

do not reflect the substantial aspect of the mutual influences: conductivities → currents. The 

offered approach allows obtaining the convenient formulas of recalculation of load currents. In 

particular, a network with a common node for a lot of loads is also shown [7, 8]. In this context, it 

is important to consider the general structure of the network.  
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2. Projective coordinates of an active two-port network 

 

Consider an active two-port with changeable load conductivities 
21

,
LL

YY  in Fig. 1a.   

 

          
a                                                                  b 

Fig. 1.    Active two-port (a) and active two-port regime with the second load base parameters (b). 
          

 

Let us give the necessary relationships for this circuit [7]. The circuit is described by the 

following system of the Y - parameters equations 
































































SC

SC

I

I

V

V

YY

YY

I

I

2

1

2

1

2212

1211

2

1

,                                                           (1)                                                

where SCSC
II

21
,  are the short circuit SC currents.         

Taking into account the voltages 
111

/
L

YIV  ,  
222

/
L

YIV  ,  two bunches of load straight 

lines   with parameters 
21

,
LL

YY are shown  in Fig. 2.   

The bunch center, point 
2

G , corresponds to the bunch  with parameter
1L

Y  .  The bunch 

center corresponds to such a regime of the load 
1L

Y  that does not depend on its values.   It is 

carried out for 0,0
11
 VI   at the expense of the characteristic regime parameter of the second 

load in Fig. 1b:  

2

22

G
II  ,   2

22

G
VV  ,  

2

2

2

2

2

G

LL
Y

V

I
Y   .                                                     (2) 

The parameters of the center 
1

G  of bunch 
2L

Y have the similar form.   Another form of the 

characteristic regime is the short circuit regime of both loads ( 
1L

Y , 
2L

Y ) that is presented 

by point SC . The open circuit regime of both loads is also characteristic and corresponds to the 

origin of coordinates, point 0 .            

Let the initial or running regime correspond to point 
1

M , which is set by the values of 

conductivities 1

2

1

1
,

LL
YY  or currents 1

2

1

1
, II  of the loads. Also, this point is defined by the 

projective non-uniform 1

2

1

1
, mm  and homogeneous

1

3

1

2

1

1
,,   coordinates which are set by a 

reference triangle 
21

0 GG and a unit point SC  [7, 9]. Point 0  is the origin of coordinates and 

straight line 
21

GG  is the line of infinity .                                                                                                                                                                                                                                                                                                                                                          
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Fig. 2. Two bunches of load straight lines with the parameters 

21
,

LL
YY . 

 

The non-uniform projective coordinate 1

1
m  is set by a cross ratio of four points, three of 

them correspond to the points of the characteristic regimes, and the fourth corresponds to the 

point of the running regime  

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

0
)0(

G

LL

L

G

L

G

LL

LG

LL

YY

Y

YYY

Y
YYm












 .                                     (3)                                                                                                                                  

Here, the points 1

111
,0

G

LLL
YYY   correspond to the extreme or base values. The point of


1L

Y  is a unit point. These values of 
1

m are also shown in Fig. 2. For the point 1

1

1

1

G

LL
YY  , the 

projective coordinate 
1

m   defines the sense of line of infinity
21

GG . The cross ratio for the 

projective coordinate 1

2
m  is expressed similarly. The homogeneous projective coordinates

321
,,   set the non-uniform coordinates as follows: 

    ,

3

1

3

1

1








m

3

2

3

2

2








m ,                                                 (4)                                                                                                                                                                            

where   is a coefficient of proportionality. 

The homogeneous coordinates are defined by the ratio of the distances of the points

SCM ,
1  to the sides of the reference triangle:  

SCSC
I

I

1

1

1

1

1

11

1





  ,  ,

2

1

21

2 SC
I

I
    

SC

3

1

31

3




  . 

For finding distances 
SC

3

1

3
,  to straight line

21
GG  , the equation of this straight line is 
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used. Then 

1

332

2

1

2

1

1

1

1
1 















GG
I

I

I

I
,          SC

G

SC

G
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I

I

I

I

332

2

2

1

1

1
1 













 , 

where 
3

  is a normalizing factor. 

The homogeneous coordinates have a matrix form 

][][][
11

IC  ,                                                       (5)                 

where matrix and vectors 
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
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


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1

2

1

1

1
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I
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


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

















1

3

1

2

1

1

1
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





 . 

 

From here, we may pass to the non-uniform coordinates  

SC

GG
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I

I

I

I

II
m
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1

1

1

1

1
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1

3

1

11

1

1

/








 , SC

GG

SC

I

I

I

I

II
m

33

2

2

1

2

1

1

1

1

2

1

2

1

3

1

21

2

1

/

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



 .                           (6) 

 

The inverse transformation of (5)  

][][][
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 
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From here, we pass to the currents 
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(8)    
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Obtained transformation allows finding currents 
21

, II for the preset values of 

conductivities 
21

,
LL

YY by using coordinates
21

, mm .  Furthermore, we note these expressions (6) 

and (8) have the common form, which is convenient for practice.                                                                                                                                                                                                    
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We consider now the recalculation of the load currents.   Let a subsequent regime 

correspond to point 
2

M  with load parameters 2

2

2

1
,

LL
YY , 2

2

2

1
, II . 

The non-uniform 2

2

2

1
, mm coordinates are defined similarly to (3). Therefore,   the regime 

changes 21

1
m  , 21

2
m  are naturally expressed through the cross ratio 

1

1

2

1

1

1

1

1

2

1

21

1
)0( mmYYYm

G

LLL
 , 1

2

2

2

21

2
mmm  .                                                                                                      

We also define the homogeneous coordinates of the point 2
M  and represent nonuniform 

coordinates 2

1
m  and 2

2
m  in the form 

1

3

1

121

1

2

1




mm  , 

1

3

1

221

2

2

2




mm  . 

 

Using (7) and (8), we  immediately obtain the required currents                                                                                                       
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 .                   (9)                                                                                                      

                                                                                                                                

The obtained relationships carry out the recalculation of currents at a respective change in 

load conductivities. These relations are the projective transformations and possess group 

properties. 

 

3. Active multi-port network with a common node for loads 

 

Consider the active multi-port network in Fig. 3 with given elements and a common node 

N  for load conductivities
321

,,
LLL

YYY . In particular, internal conductance 
N

y
0

 of voltage source 

0
V  defines the mutual influence of the loads. 

A circuit is described by the following system of the Y -parameters equation 

































































































SC

SC

SC

I

I

I

V

V

V

YYY

YYY

YYY

I

I

I

3

2

1

3

2

1

332313

232212

131211

3

2

1

,                                        (10)                                          

   

where SC
I

1
, SC

I
2

 , and 
SC

I
3

are the short circuit SC  currents of all the loads.  

Similarly to the above, let us give the necessary relationships and geometrical 

interpretation for this active multi-port. We accept that coordinate axes 
321

,, III  determine the 

three-dimensional Cartesian coordinate system ),,(
321

III  in Fig. 4. 

Taking into account voltages 
111

/
L

YIV  ,
222

/
L

YIV  , and 
323

/
L

YIV    , the equations 

of  three bunches of planes are obtained in the form 

0),,,(
1321


L

YIII , 0),,,(
2321


L

YIII , 0),,,(
3321


L

YIII . 

Crossing of the planes of one bunch among themselves defines a bunch axis. The equation 

of the axis of bunch 
1L

Y  corresponds to the condition 0
1
I , 0

1
V  and to equation 0),(

32
II . 

Therefore, this axis is located in the plane of 
32

, II  in Fig. 4 and determines the points of 
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intersection or the base values of 2

2

G
I ,

3

3

G
I . Similarly, we get the base value of 1

1

G
I . 

Thus, we accept the 
321

GGG  plane, which passes through these three points 1

1

G
I , 2

2

G
I , and

3

3

G
I , as 

the plane of infinity  . So, we get the coordinate tetrahedron
321

0 GGG . 

 

 
Fig. 3. Active multi-port with a common node N . 

 

 
Fig. 4. Cartesian coordinate system ),,(

321
III  and projective coordinate 

321
0 GGG . 

 

Let the initial or running regime correspond to point 
1

M , which is set by load 

conductivities 
1

3

1

2

1

1
,,

LLL
YYY  and currents 

1

3

1

2

1

1
,, III .  Then, the running value

1

3L
Y  corresponds to the 

plane which passes through point 
1

M and straight line
21

GG . This line corresponds to the 
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intersection of the 
321

GGG ,
21

0 GG  planes. 

Similarly, the 1

2L
Y  value agrees with the plane that passes through point 1

M and straight 

line
31

GG . 

In addition, the 1

1L
Y  value matches point 1

M and straight line
32

GG . We recall that this 

line is the axis of bunch plane
1L

Y . In turn, the values of 0
1


L
Y , 

1L
Y , and 1

1

G

L
Y are the 

characteristic values of 
1L

Y . Therefore, the running value 1

1L
Y corresponds to the non-uniform 

coordinate 1

1
m in the form of cross ratio of four points: 

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

0
)0(

G

LL

L

G

L

G

LL

LG

LL

YY

Y

YYY

Y
YYm










 .                               

There, points 1

111
,0

G

LLL
YYY  are the base points and 

1L
Y is a unit point. 

The cross ratio for 
1

3

1

2
, mm  is expressed similarly: 
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For points 1

1

G

L
Y , 2

2

G

L
Y , and

3

3

G

L
Y , the coordinates 

321
mmm  define the sense of the 

plane of infinity
321

GGG  .  

In addition to nonuniform coordinates 
1

3

1

2

1

1
,, mmm of a point 1

M  , there are homogeneous 

projective coordinates
1

4

1

3

1

2

1

1
,,,  , which are set by a coordinate tetrahedron and a unit point 

SC . These homogeneous coordinates are defined as the ratio of the distances 
4

1

3

1

2

1

1
,,,  for the 

point 1
M and distances

SCSCSCSC

4321
,,,   for a unit point SC  to the planes of the coordinate 

tetrahedron
321

0 GGG .  

Then, the distances 1

1
 , SC

1
 correspond to the 

32
0 GG  plane; therefore, 1

1

1

1
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SCSC
I
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 . Similarly, 1

2
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2
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2

1

2
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I
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1

3
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3
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1

3

1
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4
 , SC

4
 agree with the plane 
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Therefore, we obtain 
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where  is a coefficient of proportionality. 

For finding the distances 1

4
 , SC

4
 , the equation of 

321
GGG  is used 
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Then,  
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 where 
4

 is a normalizing factor. 

Similarly to (5), (7), and (8), we immediately obtain 
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The regime change has the form  
1

1

2

1

21

1
mmm  ,       1

2

2

2

21

2
mmm    ,     

1

3

2

3

21

3
mmm   .                                

   

Similarly to (9) we get the subsequent currents                                                                                                                                           
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The obtained relationships are directly generalized to any number of loads and possess a 

group property. 

4.  General case of an active multi-port 

 

Let us consider the general case of an active multi-port in Fig. 5. The circuit is also described by 

system of equations (10).      Similarly to the above, we get the equations of three bunches of 

planes. Crossing of the planes of one bunch among themselves defines a bunch axis.                                               
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Fig. 5.  General case of an active multi-port. 

 

The equation of the axis of bunch 
1L

Y corresponds to the condition of 0
1
I , 0

1
V  and to 

equation 0),(
32

II . Therefore, this axis is located in the 
32

, II  plane in Fig. 6a. 

 
a                                                                                                       b 

 
Fig. 6.  Points of intersection do not coincide (a).     

Points of intersection coincide and form the plane of infinity  (b). 
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We should determine requirements for Y -parameters. To this end, let us consider the base 
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From here, the requirements have the form 
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We consider that 
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The obtained requirements or base points (2)(5) are formally generalized to any number 

of loads. 

 

We will identify this distributed network as a balanced network for output terminals. 

 

The obtained conductivity values do not limit especially the functional possibility of these 

circuits, but allow essentially simplifying the calculation and recalculation of currents, as shown 

above.  

Using the network in Fig. 3, we obtain an example of the general case of multi- port in 

Fig. 7.  

If we choose the values of conductivities 
231312

,, yyy  by the required conditions, the 

balanced network is obtained. 
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Fig. 7. Example of the general case of multi-port. 

 

5. Conclusions 

 

1. Active two-ports are always the balanced networks. 

2. Active multi-ports with any number of loads can be balanced. 

3. Application of projective coordinates allows obtaining convenience formulas for the 

recalculation of load currents. 
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This paper reports the numerical results of the dynamical behavior of an integrated 

semiconductor laser subject to multiple optical feedback loops. The laser setup consists of a 

distributed feedback active section coupled to multi section cavities. It has been found that, due to 

the multiple feedback loops and under certain operating conditions, the laser displays chaotic 

behaviors appropriate for chaos-based communications. The optimal conditions and suitable 

parameters for chaos generation have been identified. The synchronization of two unidirectional-

coupled (master–slave) systems has been studied. Finally, examples of high bit rate message 

encoding and decoding have been described and discussed. 

1. Introduction 

During the last years, the dynamics of semiconductor lasers has become the subject of 

various investigations due to the interest in the prediction of the evolution of laser setups. 

Distributed feedback (DFB) lasers with multi sections are the key element for various devices 

used in the optical communication system. It is well known that, in semiconductor laser 

applications, the presence of an optical feedback is inevitable. The external mirrors of the laser 

setup or the connection to other optical components of the system can create this feedback. A 

small amount of the optical feedback created by a plane mirror can cause the system 

destabilization and the appearance of instabilities. Thus, optical feedback can have a significant 

effect on the dynamic behavior of the semiconductor laser (for details see [1]). Even simple 

reflections from the exterior mirrors might cause different phenomena, such as coherent collapse, 

frequency fluctuations, self-pulsations, chaos, etc. The presence of periodical or chaotic 

oscillations is a well-known fact in semiconductor lasers with optical feedback. The chaotic 

behavior can be both useful, for example, in the case of chaos-based communication systems and 

undesired, and should rather be avoided or fixed in other applications. 

In this paper, we analyze the way for the laser to be destabilized by external cavities. 

Using the chaotic oscillations produced by multi-sections laser setup in a chaos-based 

communicational system is the main aim of present paper. Chaos-based communication becomes 

more attractive because it allows a further security improvement of the optical data transmission. 

Interest in this domain has considerably increased after the practical prove of the optical 

communication based on chaos in the network of optical fibers in Athens [2]. Different optical 

feedbacks are usually used in chaos-based communication optical systems: complete optical  

[3, 4] or electro-optical [5, 6]. Typically, to generate chaos, delay time must be longer than a few 

hundred picoseconds. The purpose of this paper is to present results related to chaos-based 
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communication using semiconductor lasers with optical feedback from multi cavities, one being air. 

Appropriate conditions for the chaotic evolution of the system due to the influence of this feedback 

have been obtained. We have studied the phenomenon of synchronization of two such systems and 

determined the regions of synchronization for two identical lasers. Finally, examples of message 

encoding and decoding have been presented in the chaotic modulation method. 

2. Laser Model and Equations 

We consider a device shown in Fig. 1; it consists of a semiconductor laser operating under 

the influence of a multiple optical feedback from an external cavity similar to that described in 

[7]. For modeling the scheme shown 

in Fig. 1, we use a single mode 

model of a laser operating in a 

continuous wave mode. Phases   

and   can be easily controlled by a 

low injected current applied to the 

phase sections. 

We apply the approximation 

of a single loop and neglect the 

multi-reflections within cavities. 

Note that, this approximation is used 

just for simplifying our numerical 

calculations. Thus, the system 

dynamics is analyzed in the 

framework of the extended Lang-Kobayashi model [8] for the complex amplitude of electric field 

E and carrier density N 
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Subscripts t and r refer to transmitting and receiving lasers, respectively. The last term in (1) 

is present only in the receiving laser and describes the unidirectional coupling between the 

transmitter and the receiver. Parameter kr is the laser field intensity injected into the secondary laser. 

τ1, τ2, and τ3 are the delays of the external cavities. γt1,r1, γt2,r2 and γt3,r3 are the feedback strengths 

governed by reflectivity R1, R2 and R3, respectively. Other parameters have values: Henry factor  = 5, 

differential gain coefficient 
8 1

1, 5 1 0 p sg
 

  , and saturation of the gain coefficient is 
7

5 1 0


  . The 

lifetimes of photons and charge carriers are 3  p s
p h

   and 2  n s
e

  . The parameter values are 

used for the calculated results that are shown in all figures of the paper. 

 

Fig. 1. Scheme of a semiconductor laser with optical 

feedback from multi section cavities. 
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3. Numerical Results 

For a relatively low optical feedback signal intensity, the laser emits in a continuous wave 

mode or a periodic oscillation mode. Figure 2 shows the pulse traces for (a) output power and (b) 

carrier density for the periodic behavior. The phase portrait shown in Fig. 2c represents a limit 

cycle. The chaotic regime appears only when the returned signal intensity is high enough. Figure 

3 shows the time evolution of (a) output power and (b) carrier density of a semiconductor laser 

under the influence of optical feedback from multi cavity in the chaotic regime. Figure 3c shows 

the appearance of a strange attractor in the plane of two parameters. Thus, due to the influence of 

the multiple feedbacks, the laser behavior has been found to be chaotic for a large range of 

parameters and laser bias currents. Even both experiments and theoretical calculations for these 

lasers demonstrate the presence of chaotic behaviors in the laser dynamics [7]. By acting on the 

bias of the phase sections, the chaos amplitude and bandwidth could also be tuned.  

Figure 4 displays typical bifurcation diagrams of a semiconductor laser under the 

influence of multi section optical feedback, where feedback strengths γ1 and γ2 act as bifurcation 

 

Fig. 2. Periodic behavior. Pulse trace of (a) output power and (b) carrier density. The phase portrait 

of semiconductor laser under the influence of multiple cavity optical feedback in the plane of two 

parameters (P – N). The other parameters are α = 5, γ
1
 = 5, γ

2
 = 5, γ

3
 = 5, φ = π/2, ψ = 0. 

 

Fig. 3. Chaotic behavior. Pulse trace of (a) output power and (b) carrier density. The phase portrait 

of semiconductor laser under the influence of multiple cavity optical feedback in the plane of 

two parameters (P – N). The other parameters are α = 5, γ
1
 = 5, γ

2
 = 10, γ

3
 = 15, φ = π/2,  

ψ = 0.11 
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parameters. For each value of the feedback strength, the figure displays the values of the 

maxima (black) and minima (red) of the time traces of the emitted power. Figure 4 shows that  

 

even for low values of feedback strength γ1, the dynamics of the laser is already chaotic due to 

the influence of the feedback of other sections. It is evident from the figure that the amplitude of 

the chaotic oscillations slightly increases with increasing feedback strengths γ1 and γ2. When both 

feedback strengths are fixed to γ1 = 20 ns
-1 

and γ2 = 15 ns
-1

, as shown in Fig. 5, fully developed 

chaotic dynamics is found for any value of phases ψ and ϕ.  

We have clarified 

different aspects of the 

dynamics of a 

semiconductor laser with 

integrated multi-section 

feedback for obtaining 

chaotic behaviors. In what 

follows, we are interested 

in the transmitter–receiver 

configuration (see Fig. 6) 

and in the evaluation of its 

synchronization 

properties. Figure 7 shows 

the synchronization diagram in the place of different parameters. One can see the wide region of 

perfect synchronization (grey region) with the cross correlation coefficient higher than 0.99.  

 

Fig. 5. Bifurcation diagram for ψ/2π (top) and 

ϕ/2π (bottom) as bifurcation parameters. 

Other parameters are: φ = π/2. 

 

Fig. 4. Bifurcation diagram for γ
1
 (top) 

and γ
2
 (bottom) as bifurcation 

parameters. Other parameters are:  

φ = π/2, ψ = 0, ϕ = 3π/2. 

 

Fig. 6. Transmitter–receiver configuration. 
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The level of the coupling parameter is k = 100 ns
-1

. Thus, for this set of parameters and coupling 

coefficient, the synchronization 

map shows a clear 

synchronization process.  

Further on, we study the 

transmissionreception 

configuration and evaluate the 

synchronization properties of the 

two lasers. We examine the 

encrypting and decrypting of a 

digital message in the optical 

communication systems based on 

chaos. In the specialized 

literature, various methods of 

chaotic encryption have been 

proposed, such as modulation 

chaos [3], chaotic switch of the 

key [9], chaotic masking [10], 

etc. We analyze in detail only the 

case where the informational 

message is included as a chaotic 

modulation amplitude, i.e., the 

so-called chaotic modulation. 

Figure 8 illustrates the 

transmission of a digital signal. 

Panel (a) shows the shape of an 

incident 5Gb/s signal, i.e., the signal that should be sent. Panels (b) and (c) show the output 

power of the master laser without and with a message, respectively. Panel (d) is the decoded and 

recovered message after filtering the information signal (solid line) and the incident signal (dotted 

line). This figure shows that, for an ideal case where the parameters of both lasers coincide, the 

message is fully recovered. Thus, we have shown theoretically that the chaotic modulation 

 

Fig. 7. Synchronization diagram in the  plane for the level of the coupling parameter of  

k = 100 ns
-1

 and different values of parameter . 

 

 

Fig. 8. Numerical results of a 5-Gbit/s digital message 

encryption obtained with chaotic lasers. 
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method can be easily implemented in optical communication systems based on chaos. 

4. Conclusions 

In the limits of LangKobayashi equations, the dynamics of a single mode semiconductor laser 

with optical feedback that comes from multi cavities has been studied. The presence of several 

sections results in a complication of system oscillations. An advantage of the proposed system 

compared with that of conventional optical feedback is that the chaotic behavior occurs for short 

lengths of cavities, which makes a more compact device. On the other hand, under certain 

conditions, two such laser systems could be synchronized when they operate under chaotic 

emitterreceiver configuration. For the parameter values, the perfect synchronization has been 

obtained, the possibility of encryption and decryption of the message by chaotic modulation 

method has been demonstrated. The message can be adequately restored by the receiver even at 

high speed information transmission. 
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Abstract 

 

 The conditions for obtaining an electrical discharge plasma in a gaseous media, as well as 

its application in different fields of nanotechnology, are analyzed in this paper. Plasma 

production under the investigated conditions avoids the use of auxiliary equipment for the 

preventive ionization of the active media, which does not require synchronization between the 

base discharge and the moment at which the ionization in the gap is maximal. As a result of the 

interaction of the produced plasma with different material surfaces, structures of nanometer order 

were obtained, and the plasma itself can be applied at the construction of quantum generators in 

non-aggressive gaseous media as well as at the sterilization of objects in medicine. 

Keywords: plasma, ionization, biomedicine, nanostructures 

 

Introduction 

 

Plasma of gaseous media is a completely or partially ionized gas consisting of neutral 

atoms or molecules and charged particles (ions and electrons). A basic characteristic of the 

plasma is quasi-neutrality, which means that the density of positively and negatively charged 

particles that form the plasma in a unit volume is approximately the same. The gas is transformed 

into the plasma state when some of its components, atoms or molecules, in any case have lost or 

added one or several electrons and thus have been transformed into positive ions; in some cases, 

as a result of the electrons’ "add" by neutral atoms, negative ions can appear too. If there are no 

neutral particles and free electrons in the gas, then the plasma consists of positive and negative 

ions. If neutral particles are not presented in the gas, then the plasma is referred to as the 

completely ionized plasma. Free electrons and ions can be responsible for the appearance of an 

electric current; therefore, the plasma is a conductor of electricity. 

  

1. Theoretical premises on plasma production in gaseous media 

 

One of the methods of plasma production is the substance heating. To provide the 

complete plasma ionization thermally, it is necessary to heat the gaseous media to tens or 

hundreds of thousands of degrees. In a gas at high temperatures, the number of particles whose 

energy exceeds the ionization limit provides the possibility of the plasma production in partially 

ionized media. For this reason, to obtain the plasma under laboratory conditions, electrical 

discharges in gases are used. In order to obtain an electric discharge in a gas, it is necessary to 

apply a potential difference in the gap between two electrodes in which the studied gaseous 

medium is included. The charged particles that move in the electric field are formed in this gap; 

as a result, an electric current appears. In order to sustain the current in the plasma, the negative 
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electrode (cathode) must emit electrons. The electron emission from the cathode may be provided 

by various methods, such as the heating of the cathode to a high temperature (thermo-emission) 

or exposure of the cathode to X-ray or γ radiation, which is capable of tearing out the electrons 

from the cathode surface. This type of discharge generated by an external source is referred to as 

the induced discharge [1, 2]. 

Induced discharges can be spark, arc, and glow discharges. They differ fundamentally one 

from another in the mechanism of formation of electrons from the cathode or in the interelectrode 

gap. 

A glow discharge is formed in tubes with a low-pressure gaseous active medium at the 

ends of which the electrodes are placed to which a high voltage is applied. In this case, the 

cathode emits electrons (through the electronic autoemission mechanism) that are torn out from 

the metal surface (cathode) under the action of the electric field. The electrical discharge plasma 

is comprised between the cathode and the anode to form dark zones (near the cathode and the 

anode) and a glow zone, which is referred to as the "positive" zone, for which the electric field 

intensity is approximately constant value. A glow discharge in a molecular gas plasma is widely 

applied as an active medium for the construction of lasers at the oscillator-rotational transitions of 

the molecules. The ionization process in the electrical discharge plasma is accompanied by the 

current passing through the active gaseous medium and has the nature of an avalanche with the 

ionizing effect. It follows that the occurrence of free electrons in the gap is caused by the fact 

that, at free pass of electrons accelerated by the electric field, they accumulate a sufficient energy 

to ionize neutral gas particles, which produce the avalanche multiplication of electrons and ions 

capable of maintaining a steady current in the gap [1, 2]. 

Quasi-neutrality is the one of the most important features of plasma and lies in the fact 

that the negative charge of the electrons neutralizes the positive charge of the ions. In any type of 

action on the gaseous medium placed between the electrodes, the plasma tends to keep its quasi-

neutrality. If there is a movement of a group of electrons in some place of the medium between 

the electrodes (e.g., owing to density fluctuation), where an excess of electrons is identified (and 

an electron deficiency (in terms of concentration) in another place), a strong electric field arises 

in the plasma and annihilates the electric charge concentration and immediately restores its quasi-

neutrality. 

If in a plasma layer of thickness Δx, a volume of charge of the same density q is formed, 

then, in accordance with the laws of electrostatics, an electric field of E = 4πqΔx arises on this 

length. If Δne electrons are in a volume of 1 cm
3
, more in number than those that neutralize the 

ions charge, then the volumetric density of the charge will be: q = eΔne, where e = 1.6 ∙ 10
-19

 C is 

the electron charge. 

The electric field that arises as a result of the charge separation is E = 1.8 ∙ 10
-6

Δx V/cm. 

For air, n = 2.7 ∙ 10
19 

molecules/cm
3 

are contained at the Earth's surface. If we suppose that, as a 

result of ionization, all the molecules become ionized, then the concentration of electrons in the 

plasma will be ne = 2.7 ∙1 0
19

 electrons/cm
3
. If we assume that the electron concentration has 

varied by 1% at the gap length of 1 cm, then the charge density will be Δne = 2.7 ∙ 10
19

 

electrons/cm
3
, and it will generate an electric field of intensity of E ≈ 10

12
 V/cm [1]. 

In order to generate this strong electric field, it would require a very high energy; 

therefore, we can affirm that the formation of a high-density plasma takes place at very short 

distances. 

The space dimensions of the charge separation can be appreciated by a work that must be 

done for the charge separation at distance d that is performed by the forces occurring on the 

distance x out of the electric field intensity E = 4πneex. Taking into account the fact that F = eE, 
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this work can be calculated by the relationship [1]: 

 
This work cannot exceed the kinetic energy of the thermal movement of the particles in 

the plasma and, for the one-dimensional case of the particle movement, it will be as follows: 

 
where k is the Boltzmann constant and T is the absolute temperature, then 

. 

Using this relationship, the maximal dimension of the charge separation can be estimated 

[1, 2]: 

 
This measure is referred to as the Debye length. For air plasma under ordinary condition 

ne = 2.7 ∙ 10
19

 cm
-3

, T = 273 K, k = 1.38 ∙ 10
-23

 J/K,  

 

 
 

. 

Length d (or Debye radius      
 

  
)  represents a basic characteristic of the plasma; in 

particular, the electric field generated by each of the charged particles from the plasma is 

screened by the field generated by the particle charge of the opposite sign. On the other hand, 

measure d determines the depth of penetration of the external electric field in the plasma. Under 

ordinary conditions, any volume of the gas comprises a certain number of electrons and ions. On 

the average ~1000 of positive and negative ions are contained in the air under ordinary condition 

that results from the interaction of the medium with ultraviolet and other types of radiation, 

including cosmic. Due to these conditions, a certain number of electrons are torn from the 

electrode surface. The rate of gas ionization and electron emission from the electrode can be 

increased under laboratory conditions by the application of additional radiation sources. If a 

potential difference is applied to the gap, the current (whose density j is proportional to applied 

electric field intensity E) will pass through the gaseous medium. For the electric field values of 

about 1020 V/cm, the current intensity will be j ≈ 10
-9

 A/cm
2
 [3]. For these conditions, the 

gaseous medium is in balance; therefore, the recombination and formation of charged particles 

occur (electron and ion mobilities are almost equal). With an increase in electric field intensity E 

and current density j, the balance is violated, which increases the recombination coefficient and 

decreases the number of charged particles, and, as a result, leads to an increase in the gap 

resistance and a decrease in the current. In this case, the current density on the electrode surface 

will be [3, 4]: 

 
 

where S is the gap size; e is the electron charge;      is the overall speed of generation of charged 

particles in a unit of volume. 

Therefore, the current density does not depend either on electric field intensity or on the 
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mobility of charged particles; in this case, the situation leads to the current density saturation. 

If the potential difference between the electrodes increases further after the achievement 

of current density saturation, then it will be a moment when the current will increase again. The 

pattern of the current growth will depend on the gas pressure. With an increase in electric field 

intensity E, the electrons near the cathode are accelerated stronger and the energy that they 

acquire exceeds the ionization energy, which leads to the formation of a greater number of 

electrons; accordingly, the current will rise again. To explain the current increase, Townsend 

introduced measure α, which is referred to as the first ionization coefficient, which determines the 

number of collisions with ionizing effect per centimeter of the path in the direction of the electric 

field force lines. 

The number of electrons that cross the surface located in the immediate vicinity of the 

cathode surface at distance dx in the direction of the electric field force lines will be [3, 4]: 

dn = α∙n∙dx. 

Taking into account the distance between the cathode to the elementary surface which is 

located at distance dx, by integrating this relationship over x, we obtain [3, 4] 

 
Considering that α does not depend on x, in accordance with the authors of [3, 4], we 

obtain 

, 

where n0 is the number of electrons that leave the cathode per second. 

Taking into account the fact that the distance between the electrodes (the gap size) is S, 

for the current intensity, the following relationships are derived [3, 4]: 

, 

where is the photoelectric current near the cathode caused by the external radiation. 

Difference i–i0 represents the current caused by the positive ions in the immediate vicinity 

of the cathode surface. 

The increase in dn caused by the ionization of collision with electrons in interval dx (n per 

second), as well as those of photoionization along the same interval dx, will be [3, 4]: 

dn = α∙n∙dx+ni∙dx. 

Using the method of separation of variables, from the above relationship for the electron 

concentration, we obtain 

 

 
  

      
     

 

 

 

 

 

                   

  
  

 
              

or for the current [3, 4]: 
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                . 

 

The last relationship suggests that the total current in the gap depends on values of α and 

S. If the free path length until the collision is λ, then the average energy that the electrons 

accumulate between two consecutive collisions will be [3, 4]: 

W = e ∙ E ∙ λ. 

However, the length of free path is inversely proportional to the pressure of the active 

medium [3, 4]: 

 
Townsend coefficient α is proportional to electric field intensity E and gas pressure p and 

can be expressed by the function: 

 
or 

                                                                                   
where F is the function of the same type as f.  Because e is a constant, according to the authors of 

[3, 4], we obtain 

 
 

 

2. Experimental 

 

The circuit of the experimental setup shown in Fig. 1 consists of the following elements 

[5, 6]: a DC power supply operating at voltage U = 25 kV, discharger (Ecl), condenser battery 

(C), ballast resistor R, special electrode 1, and counter-electrode 2. The special electrode 

consisting of multiple wires with the clearly defined active resistance causes the division of the 

discharge current through all the formed channels. This facilitates the deployment of pulsed 

discharge in several channels simultaneously leading to the formation of high current densities 

and thereby to an increase in the efficiency of the energy used for discharge and plasma 

homogenization in the gap. 

The gap size is S = 7 mm. The area of the cross-section of the special electrode is  

17 × 7 mm, where about 600 copper wires of 0.35-mm diameter isolated one from another are 

located. The measurement and observation of current pulses (duration, shape, and amplitude) [5, 

6] are conducted through an oscilloscope with memory Osc (C8-13) shunted by resistance  

Rs = 0.003 Ω. The circuit is grounded to protect the setup and the oscilloscope and eliminate the 

effects of reactive elements on the discharge process. 

The shape and duration of current pulses of the discharges obtained in the investigations 

are shown in Fig. 2. It is evident that the pulse shape directly depends on the value of the ballast 

resistance and capacity, which, with a special electrode, form an RLC-type generator. In Fig. 2 

the AB curve corresponds to auto-ionization (in this case, the special electrode functions as an 

electron gun); the BC curve corresponds to the base discharge (plasma production); the CD curve 

corresponds to the relaxation process (the gaseous media properties return to the original state); 

after that, the process repeats from one discharge to another with the frequency required by the 

control electrical circuit. 
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Fig. 1. Circuit schematic of the experimental setup and measurement of discharge impulse parameters  

[5, 6]: Ecl, discharger; Osc, oscilloscope with memory; RS, shunt resistance; 1, special electrode; and 2, 

counter-electrode. 

 

 

 
 

Fig. 2. General view of the current pulses for capacity C = 1/12 μF and ballast resistance 

R = 8.2 MΩ [57]; the size of time divisions is 0.2μs/div; the size of voltage divisions is 100 V/div. 

 

The characteristics of electrical discharge pulses of the used experimental setup are as 

follows: the capacity of the condenser battery, C = 1/12 μF; the energy accumulated on the 

condenser battery, WC = 26 J; the pulse duration, τimp=0.15 μs; the pulse amplitude on the 

oscilloscope, Uosc= 350 V; the current pulse amplitude, Is= 100 kA; and the current intensity in 

the gap,  



0

50dti
s

kA·s. The energy accumulated on the condenser battery (Wc= 
2

2
CU

) is 

approximately equal to 26 J. Since the used circuit is unipolar and taking into account the losses 

that occur on the electrical circuit elements, as low as about 8 J is transformed to thermal energy. 

 

3. Experimental results 

 

Owing to the use of a unipolar circuit of the experimental setup (Fig. 1), the stability of 

plasma formation was reached under laboratory conditions without preventive ionization of the 
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active media. The AB curve in Fig. 2  represents the intense ionization of the active media.  

 
 

Fig. 3. Plasma of pulse electrical discharges obtained under laboratory conditions.  

 

Auto-ionization occurs owing to the design of special electrode 1 in Fig. 1 and an increase 

in the electric field inhomogeneity in the space between the electrodes and consumes about 57% 

of the total energy stored in the condenser battery. 

 

 
a)                                                                                             b) 

   
c)                                                                          d) 

 

Fig. 4. Morphology of the surface layer of counter-electrode 2 in Fig. 1 formed as a result of  

plasma interaction: 
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(a) steel 45, (b) titanium alloy BT8, (c) aluminum alloy D16, and (d) bronze BrA5 

The base discharge (the BC sector, Fig. 2) occurs within 0.15 mS with the pulse discharge 

current amplitude of Is = 100 kA. A portion of the energy released in the gap is transformed into 

luminescent radiation of intensity L = 10
8
10

9
 W/cm

2
. These types of discharges can be applied 

in the construction of quantum generators, which operate in non-aggressive active media. The 

general view of a pulse of the electric discharge plasma produced on the developed experimental 

setup is shown in Fig. 3. It is evident that the amount of energy released on the electrode surfaces 

and in the gap is different. 

Counter-electrode 2 in the circuit in Fig. 1 was made of different materials (steel 45, 

titanium alloy BT8, duralumin D16, and bronze BrA5) of a flat shape. Electron microscope 

studies of the surfaces showed that the interaction of these electrodes with the obtained plasma 

resulted in the formation of nanostructures on the surfaces that have different shapes and 

properties depending on the type of the material. The morphology of the surface layer of the 

samples processed via applying the obtained plasma using the experimental setup is shown in 

Fig. 4. 

Since the temperature of the plasma obtained on the developed experimental setup reaches 

values higher than 10
4
 K with its duration of existence of hundreds of nanoseconds, it can be 

applied for the formation of nanostructures on metal surfaces and for the destruction of 

microorganisms in biomedicine. 

 

 

4. Conclusions 

 

Based on theoretical and experimental analysis of the plasma formation by electrical 

discharges under laboratory conditions, we can make the following conclusions: 

(i) The electrical discharge plasma was producted under laboratory conditions without the use of 

special devices for the preventive ionization of the active media and did not require 

synchronization between the connection of these devices and base discharge. 

(ii) The experimental setup provide the energy emission in pulses capable of forming the 

volumetric plasma in air under ordinary pressure. 

(iii) The pulsed electrical discharge plasma obtained with the developed experimental setup 

provides the formation of nanostructures on metal surfaces, such as clusters, nanotubes, 

nanowires, etc. 
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IN MEMORIAM NICOLAE POPOVICI 

 

 
 

(December 19, 1943  March 7, 2015) 

 

Nicolae Popovici was born on December 19, 1943 in the Sarateni village, Telenesti 

district. In 19621967, he was a student of the Faculty of Physics and Mathematics of the A. 

Russo State University. N. Popovich began his academic activity as a physics teacher in a 

secondary school in the BratuseniiVech village, Edinet district in 1967. In 19701974, he was a 

post-graduate student at the Institute of Applied Physics of the Academy of Sciences of Moldova. 

N. Popovich defended his candidate's dissertation in 1976 and his doctoral dissertation in 

1986 (both on physics and mathematics); in 1990 he became Professor in physics of 

semiconductors and dielectrics. After post-graduate courses at the Institute of Applied Physics of 

the Academy of Sciences of Moldova, N. Popovici worked at the same institute as an inferior 

researcher (19741978),  a senior researcher (19781986), a leading researcher (19861988), 

head of the Laboratory for physics of anisotropic semiconductors (19882006), and a principal 

researcher (19962006). Since 2006, he was principal researcher at the Gitsu Institute of 

Electronic Engineering and Nanotechnologies of the Academy of Sciences of Moldova. 

As a result of scientific activity for more than four decades, Prof. Popovici has laid the 

foundation of a new scientific direction in condensed matter physics—physics of A
III

B
V
C2

VI
 

semiconductors and alloys thereof with A
IV

B
VI

. 

The basic developments that have determined the success of research in this field 

primarily include the growth technology for A
III

B
V
C2

VI
 semiconductors and alloys thereof, which 

was developed in strict accordance with respective state diagrams. The high quality of the 

crystals obtained by Prof. Popovich during these years was repeatedly confirmed at various 

scientific centers in Russia, Ukraine, Lithuania, Germany, the Czech Republic, and other 

countries. A particularly convincing evidence of the high quality of TlSbTe2 and TlBiS2 crystals 

is the Shubnicov-de Haas oscillations, which have been first detected in crystals of this type. 
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Of particular interest are the results of Prof. Popovich in the study of the optical and 

photoelectric properties of layered TlSbTe2 and TlBiS2 semiconductors, (TlSbS2)1-x (TlSbSe2)x 

solid solutions, and electronic devices based on these crystals. In recent years, physics of layered 

semiconductors has become a separate scientific direction; we believe that an important role in 

the formation of this research trend rightfully belongs to Prof. Popovici and his disciples. 

Another area of research of Nicolae Popovici is related to studying the electrophysical 

properties of rhombohedral A
III

B
V
C2

VI
 crystals and (A

III
B

V
C2

VI
)1-x (2A

IV
B

VI
)x solid solutions, in 

particular under extreme conditions (high hydrostatic pressures of ~300 kbar and low 

temperatures of ~0.05 K). As a result of these studies, the basic kinetic parameters and the model 

(shape) of the charge carrier bands for these semiconductors have been first determined. 

Of primary concern are the results of Prof. Popovich in the study of the specific features 

of heat transfer and the thermoelectric efficiency of (A
III

B
V
C2

VI
)1-x (2A

IV
B

VI
)х solid solutions. In 

studies of the (TlBiS2)1-x (2PbS)x system, Prof. Popovici found that the thermal conductivity of 

the lattice of these alloys  achieves extremely low values (KL ~ 0.26 W/mK), which almost 

achieves the lower limit of parameter KL theoretically determined for crystalline semiconductors, 

and, therefore, leads to a significant increase in thermoelectric efficiency Z in these materials. 

The new systems of (A
III

B
V
C2

VI
)1-x (2A

IV
B

VI
)х solid solutions discovered by Prof. Popovici open 

the way to the implementation of a new strategy in the field of engineering of thermoelectric 

materials. 

It should be noted that a large portion of the research of Prof. Popovici were completed 

with specific developments, which were protected by patents and subsequently implemented in 

actual practice in various research centers and specialized technical offices. These developments 

include TlSbSe2 temperature-sensitive resistors; Au-n–TlSbSe2 broadband diodes (0.61.4 m); 

TlSbS2 photoresistors (τ ~ 10
-8

 s, ρd /ρf ~ 10
7
, I ~ 10

25 
photon/cm

2 
s) for the generation of giant 

ruby laser pulses; a device for measuring the electric conductivity and thermopower of 

semiconductor materials in a temperature range of 3001200 K; and a device for measuring the 

thermal conductivity of thermoelectric materials using the Peltier effect. 

The results of Prof. Popovici have been appreciated by experts in the field. This is 

confirmed by the fact that, in recent years, he was repeatedly invited to the United States 

(Ferrotec Corporation) as scientific consultant in the field of engineering of thermoelectric 

materials. 

Professor Nicolae Popovici has made a considerable contribution to the training of highly 

skilled scientific personnel. He was a research supervisor of seven doctors in physics and 

mathematics. 

In 19691972, N. Popovich worked as a lecturer at the Department of Physics at the Ion 

Creanga Pedagogical University and the Department of Physics at the N. Testemitanu University 

of Medicine and Pharmacy. He delivered lectures on physics and engineering of semiconductor 

materials and energy-converting electronic devices and master class courses at the Technical 

University of Moldova (19771985), Tiraspol University located in Chisinau (20032009), and 

Al. Russo State University of Balti (2006). 

Professor Nicolae Popovici will be remembered by his disciples and colleagues as a 

recognized expert in condensed matter physics and a highly skilled specialist in semiconductor 

material technology. 

 

Academician Valeriu Kantser 

Dr. Sofia Donu 
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