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Abstract 

 
The collective elementary excitations of a system of Bose-Einstein condensed two-

dimensional magnetoexcitons interacting with electron-hole(e-h) plasma in a strong 
perpendicular magnetic field are studied. The breaking of the gauge symmetry is introduced 
into the Hamiltonian following the Bogoliubov`s theory of quasiaverages. 

The motion equations for the summary operators describing the creation and 
annihilation of magnetoexcitons as well as the density fluctuations of the electron-hole(e-h) 
plasma were derived. They suggest the existence of magneto-exciton-plasmon complexes, the 
energies of which differ by the energies of one or two plasmon quanta. 

Starting with these motion equations one can study the Bose-Einstein Condensation 
(BEC) of different magneto-exciton-plasmon complexes introducing different constants of the 
broken symmetry correlated with their energies. The Green`s functions constructed from these 
summary operators are two-particle Green`s functions. They obey the chains of equations 
expressing the two-particle Green`s functions through the four-particle and six-particle 
Green`s functions. These chains were truncated in such a way that the six-particle Green`s 
functions, were expressed through the two-particle ones. At the same time the elementary 
excitations with different wave vectors were decoupled. As a result of these simplifications 
the Dyson-type equation in a matrix form for the two-particle Green`s functions was obtained. 

The  determinant constructed from the self-energy part 4 4× ( , )ij P ω∑
G

 gives rise to 
dispersion equation. The dispersion relations were obtained in analytical form, when in the 
self-energy parts ( , )ij P ω∑

G
 only the terms linear in Coulomb interaction were kept. Taking 

into account also the terms quadratic in Coulomb interaction the dispersion equation becomes 
cumbersome and it can be solved only numerically.     

 
1.Introduction. 

 
In previous papers [1-5] the coherent pairing of two-dimensional electrons and holes in 

a strong perpendicular magnetic field was studied. In last papers [4,5] it was shown, that the 
Bose-Einstein Condensation (BEC) of magnetoexcitons with different from zero wave vector 

and motional dipole moments essentially differs from the case k
G

0k = . The supplementary 
attraction between the parallel aligned in-plane motional dipole moments gives rise to the 
metastable dielectric liquid phase. Its chemical potential reaches the minimal value at some 
filling factor of the lowest Landau level (LLL) and lies on the energy scale below or in the 
vicinity of the  chemical potential of the degenerate Bose gas of  magnetoexcitons with 0k = . 
In these conditions the drops of the dielectric liquid phase are surrounded by the degenerate 
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Bose gas and the coexistence of two BEC-tes is possible. The correlation energy due to 
coherent excited states of BEC-ed magnetoexcitons becomes important at significant values 
of wave vectors and vanishes in the point 0k = . On the contrary the influence of the excited 
Landau levels is especially efficient on the BECed magnetoexcitons with the wave vector 

and rapidly decreases with the increasing of k . In difference on the chemical potential 
the collective elementary excitations of the BEC-ed magnetoexcitons practically were not 
studied. Some preliminary remarks were made in [3]. This question happens to be unusual 
and our paper completely is devoted to it. We realized that in two-dimensional electron-hole 
system in a strong perpendicular magnetic field the role of plasmon oscillations is similar with 
the role of magnetic flux quanta in the case of 2D electron gas in the condition of the 
fractional quantum Hall effect (FQHE) [6]. The magnetic flux quanta induce the vortices 
formation in the electron gas. The electron being accompanied by a few vortices forms a 
composite particle of a fermion or boson types. 

0k =

One can also remember the case of electron gas in the field of laser radiation. The 
electron state accompanied by a photon gives rise to quasi – energy states [7]. Returning to 
the case of collective elementary excitations in the system of BEC-ed two-dimensional 
magnetoexcitons we must remark that they are inseparable from the plasma oscillations. They 
are strongly interconnected and must be considered simultaneously. The same happens with 
the exciton gas interacting with phonons in deformable lattices. But there are some more 
unusual properties. The motion equations for the exciton creation and annihilation operators 
as well for the density fluctuation operators, as we will see below contain free terms and 
terms describing the nonlinearity in the system due to the Coulomb interaction in the two-
dimensional e-h system. The dispersion relation for the free excitons looks as 

 where ( ) ( )ex lE P I E P= − +
G G

lI  is the ionization potential of the magnetoexciton with two-

dimensional wave vector  and 0P =
G

( )E P
G

is the proper dispersion relation, which changes 
quadratically in the range of small wave vectors P

G
 and tends to the finite value lI  when  

tends to infinite, so as  tend to zero. 
P

( )exE P

The free energy for the plasmon looks as ( )E P
G

 and coincide exactly with the second 
term in the dispersion relation of magneto-exciton. The magneto-exciton with wave vector P

G
 

can be regarded as magnetoexciton with wave vector 0P =
G

 and a plasmon with wave vector 
. The magnetoexciton can be regarded as a simple quasiparticle and at the same time as a 

complex consisting of an exciton and a plasmon, when the part depending on the wave vector 
 is determined by the plasmon. Such interpretation follows from the properties of the 

motion equations. They will be analyzed in detail below. In contrast to the 2D e-h gas the 3D 
electron plasma has plasmon oscillations with a energy gap [8], whereas the collective 
elementary excitations of a 3D Bose-gas have gapless energy spectrum. By this reason the 
interconnection of the exciton and plasmon elementary excitation in 3D system does not 
appear.  

P
G

P
G

Below we will study this interconnection in 2D-e-h system in a strong magnetic field in 
detail. But for the beginning a short review of the papers dedicated to the study of the 
collective elementary excitations in the system of 2D two-component electron-electron and 
electron-hole gases is presented. 

As one remember [8] the plasma oscillations in three-dimensional (3D) crystals are 
determined by the frequency pω  satisfying the relation  
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Where  is the number of electrons, V  is the volume of the crystal,  is the bulk 
electron density,  is the effective electron mass and 

eN en
m 0ε  is the dielectric constant of the 

crystal. In the two-dimensional ideal monolayer with the surface area S in the similar way one 
can derive the dispersion relation 
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2( ) ;s
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e n qq
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=                  ( ) ;p q qω ∼                         ;e
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=                            (2) 

Here  is the surface electron density. The differentce between two expressions (1) 
and (2) is due to the change of the role of Coulomb interaction in two different 
dimensionalities. Two Fourier transforms 

Sn

KV  of the Coulomb potential and the kinetic energy 

KT  of the electron have the forms 

                         
2

3
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4 ;D
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=                     
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=              
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=
=                          (3) 

It is recognized in literature that the role of Coulomb interaction is enhanced in 2D 
structure in comparison with the bulk crystals, whereas the kinetic energy remains with the 
same quadratic dependence on wave vector k

G
 in the absence of the strong magnetic field.  

The both expressions (1) and (2) can be join by a formula  
                                                                                                                 (4) 2 2 ( ) 2p ek N T Vω == K K

Q

Das Sarma and Madhukar [9] have investigated theoretically the longitudinal collective 
modes of spatially separated two-component two-dimensional plasma in solids using the 
generalized random phase approximation. It can be realized in semiconductor heterojunctions 
and superlattices. The two-layer structure with two-component plasma is discussed below. It 
has long been known that two-component plasma has two branches to its  longitudinal 
oscillations. The higher frequency branch is named as optical plasmon (OP). Here the two 
carrier densities of the same signs oscillate in-phase and their density fluctuation operators 

 and  form an in-phase superposition  ,1ˆ ( )e Qρ
G

,2ˆ ( )e Qρ
G

                                                    ,1 ,2ˆ ˆ ˆ( ) ( ) ( )OP e eQ Qρ ρ ρ= +
G G G

                                                  (5) 
In the case of opposite signs electron and hole charges they oscillate out-of-phase and 

their charge density fluctuation operators ˆ ( )e Qρ
G

 and ˆ ( )h Qρ
G

 combine in out-of-phase manner 

                                                    ˆ ˆ ˆ( ) ( ) ( )OP e hQ Qρ ρ ρ Q= − −
G G G

                                                   (6) 
The lower frequency branch is named as acoustical plasmon (AP). Now the carriers of 

different signs oscillate in-phase, whereas the carriers of the same signs oscillate out-of-phase. 
Their charge density fluctuation operators combine in the form 
                            ,1 ,2ˆ ˆ ˆ( ) ( ) ( );AP e eQ Qρ ρ ρ= − Q

G G G
         ˆ ˆ ˆ( ) ( ) ( )AP e hQ Qρ ρ ρ Q= + −

G G G
                      (7) 

The optical and acoustical branches have the dispersion relations in the long wavelength 
region as follows  
                           ( ) ;OP qω ∼ q                ( ) ;AP q qω ∼                                                    (8) 0q →

By virtue of spatial separation z between the two components of the 2D plasma the AP 
branch becomes with a greater slope of the linear q dependence, because this slope is 
proportional to z, when z is of the order of Bohr radius . At small  the AP branch Ba 0z →
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lies inside the single-particle excitation spectrum of the faster moving charged carriers. They 
leave the corresponding Fermi seas crossing the Fermi energies of the degenerate Fermi 
gases. This single-particle spectrum is severely Landau damped. At larges values  the 
Coulomb interaction between charges in different layers can be neglected and each layer 
supports an ordinary 2D plasma oscillations with a dispersion  [9].  

Bz a>

1/ 2( )P q qω ∼
They have been thoroughly studied experimentally In the absence of a magnetic field, 

but have not so far been addressed in the presence of an external magnetic field. The 
transformation of the optical and acoustical plasma excitations under the influence of an 
external perpendicular to the layer magnetic field was studied experimentally by the authors 
of paper [10], using the AlGaAs/GaAs double quantum well (DQW) and magnetic fields up 
till 10T.  

As was mentioned in this paper in a perpendicular magnetic field many –body 
interactions become relevant as the electron kinetic energy is completely quenched and the 
strong Coulomb interaction drives the two-dimensional electron system (2DES) into new 
phases of matter such as incompressible fractional quantum Hall liquid or Wigner crystal.  

In paper [10] the acoustical and optical plasmons at zero field were investigated first. 
The dispersion relation of the AP was measured in the whole range of accessible in-plane 
momenta and it was found to be a nearly linear dependence in agreement with the theory. 

The entire H field range covered was cut into two parts. In one range the influence of 
the Bernstein modes (BM) on to the principal plasmons AP and OP can be neglected. The 
Bernstein modes are charge-density magnetoexcitons having energies cn ω= ,  at 

, where 
2n ≥

0ql → cω  is the cyclotron frequency and l  is the magnetic length  

                                     ;c
eH
mc

ω =                                     2 cl
eH

=
=                                           (9) 

In another range of magnetic field the APS and OPS resonate with BMS.  
When the BMS can be neglected the energies of the principal plasmons are 

monotonically increasing functions of H field, slowly covering to the cyclotron energy. In the 
limit  the both plasmon excitations can be approximated 0H →
                                    2 2( | 0) ( | 0) cq H q H 2ω ω≠ = = +ω                                                     (10) 

The complex anticrossing behavior close to the resonances between AP and OP with 
BMS was observed.  

The plasmon oscillations in one-component system on the monolayer in a strong 
perpendicular magnetic field were studied by Girvin, MacDonald and Platzman [11], who 
proposed the magnetoroton theory of collective excitations in the conditions of the fractional 
quantum Hall effect (FQHE). The FQHE occurs in low-disorder, high-mobility samples with 

partially filled Landau levels with filling factor of the form 1
m

ν = , where m is an integer, for 

which there is no single-particle gap. In this case the excitation is a collective effect arising 
from many-body correlations due to the Coulomb interaction. Considerable progress has 
recently been achieved toward understanding the nature of the many-body ground state well 
described by Laughlin variational wave function [12]. The theory of the collective excitation 
spectrum proposed by [11] is closely analogous to Feynman`s theory of superfluid helium 
[13]. The main Feynman`s arguments lead to the conclusions that on general grounds the low 
lying excitations of any system will include density waves. As regards the 2D system the 
perpendicular magnetic field quenches the single particle continuum of kinetic energy leaving 
a series of discrete highly degenerate Landau levels spaced in energy at intervals cω= . In the 
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case of filled Landau level 1ν =  because of Pauli exclusion principle the lowest excitation is 
necessarily the cyclotron mode in which particles are excited into the next Landau level. In 
the case of FQHE the lowest Landau level (LLL) is fractionally filled. The Pauli principle no 
longer excludes low-energy intra-Landau-level excitations. For the FQHE case the low-lying 
excitations have the primary importance rather than the high-energy inter-Landau-level 
cyclotron modes [11]. The spectrum has a relatively large excitation gap at zero wave vector 

 and in addition it exhibits a deep magneto-roton minimum at  quite analogous to 
the roton minimum in helium. The magneto-roton minimum becomes deeper and deeper at 
the decreasing of the filling factor 

0kl = 1kl ∼

ν  in the row 1  and is the precursor to the gap 

collapse associated with the Wigner crystallization which occurs at 

/ 3,1/ 5,1/ 7
1
7

ν = . For larges wave 

vectors the low lying mode crosses over from being a density wave to becoming a 
quasiparticle excitation [11]. The Wigner crystal transition occurs slightly before the roton 
mode goes completely soft. The magnitude of the primitive reciprocal lattice vector for the 
crystal lies close to the position of the magneto-roton minimum. The authors of [11] 
suggested also the possibility of pairing of two rotons of opposite momenta leading to the 
bound two-roton state with small total momentum, as it is known to occur in helium. In 
contrast to the case of fractional filling factor, the excitations from a filled Landau level in the 
2DEG were studied by Kallin and Halperin [14]. They considered an interacting two-
dimensional electron system with a uniform positive background in a strong perpendicular 
magnetic field at zero temperatures. It was supposed that an integral number of Landau levels 

is filled and the Coulomb energy 
2

0

e
lε

 is smaller than the cyclotron energy cω= .   

The elementary neutral excitations may be described alternatively as magnetoplasma 
modes or as magnetoexcitons formed by a hole in a filled Landau level and an electron in an 
empty level. In contrast to the hole in the valence band, which takes part in the formation of 
the usual magnetoexciton, we deal with the hole in the conduction band, namely in its filled 
Landau level. It can be denoted as (c,n,h). Its bound state with the electron in the empty 

Landau level with number  in the same conduction band denoted as ( ) gives rise to 
the magnetoexciton named as integer quantum Hall exciton. It is characterized by a conserved 
wave vector k

G
 in Landau gauge. The dispersion relation may be calculated exactly to first 

order in 

'n ', ,c n e

l

c

I
ω= , where lI  is the ionization potential of magnetoexciton with  and equals 

to 

0k =

2

0 2
e

l
π

ε
. 

The lowest magnetoplasmon band comes in to the cyclotron frequency cm ω=  at 0k = , 

where , if the Coulomb electron-electron interaction is neglected. If the Coulomb 
interaction is included, then the energy of neutral plasmon will come to the value 

'm n n= −
c lm Iω −= . 

Excitation modes with  do not exist if the initial state has an integer occupation 
numbers of the Landau levels of both spins. In the ferromagnetic ground state the 

0m =
0m =  

excitations are spin waves. 
Apal’kov and Rashba[15] considered a case of an electron-hole pair in the presence of 

an incompressible liquid formed by electrons in the condition of the fractional quantum Hall 
effect (FQHE). The magnetoplasmons have a dispersion law similar to the rotons in liquid 
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helium and are named as magnerotons. They play the role of phonons in the incompressible 
liquid and influence on the state of exciton interacting with plasmons. This influence is 
analogous with the influence of the phonons on the states of electrons or excitons interacting 
with crystal lattice oscillations in bulk semiconductors and is named as polaron effect. The 
authors of [15]  arrived to the conclusion that the influence of magnetorotons, leads to a giant 
suppression of the magnetoexciton dispersion in symmetric case. There is a region in the 
momentum space, where the elementary excitations are interpreted as bound states of a 
phonon (magnetoroton) with a slow magnetoexciton. As was mentioned the interaction of the 
exciton with the fluid can be treated as a polaron effect resulting from a dressing by 
magnetorotons. The polaron shift is zero at 0k = in symmetric systems. When the 
confinement planes for electrons and hole have a distance z different from zero (asymmetric 
case), the polaron shift of the exciton level is positive, what is determined in an asymmetric 
system by the influence of the Pauli exclusion principle which is not compensated by the 
ordinary polaron effect. 

Fertig [16] investigated the excitation spectrum of two-layer and three-layer electron 
systems. In particular case the two-layer system in a strong perpendicular magnetic field with 

filling factor 1
2

ν =  of the lowest Landau level (LLL) in the conduction band of each layer 

was considered. Inter-layer separation z was introduced. The spontaneous coherence of two-
component two-dimensional (2D) electron gas was introduced constructing the function 

       ( v )k k
k

na b+ +Ψ = +∏ 0  ;  2 2 1v 2u = =   ,              (11) 

where ,  are the creation and annihilation operators of spin polarized electrons on the 
LLL of the layer a and ,  play the same role for the electrons resided on the layer b. 

ka +
ka

kb +
kb

 Here the vacuum state 0  was introduced  

    0 0k ka b= = 0                               (12) 
Both half filled layers a  and b are accompanied by a substrate with positive charge 

guaranteeing the electrical neutrality of the system.  The half filled layer a can be considered 
as a full filled with electrons in the LLL of the conduction band and a half filled by holes in 
the LLL of the same conduction band. The wave function of the full filled LLL of the layer a  
can be written as  
     0 0k

k

a +Ψ =∏                      (13) 

The hole creation operator in the conduction band of the layer a can be introduced  
k kd a+

−=                             (14) 
The electrons of the full filled conduction band are compensated by the charge of the 

substrate and we can only consider the electrons on the layer b and the holes on the layer a. 
Then the wave function (11) of the coherent two-layer electron system can be rewritten 

in the form 
   0( v )k k

k

u b d+ +
−Ψ = + Ψ∏    ,                       (15) 

which coincides with the BCS-type wave function of the superconductor. It represents the 
coherent pairing of the conduction electrons on the LLL of the layer b with the holes in the 
LLL of the conduction band of the layer a and describes the BEC of such unusual excitons 
named as FQHE excitons, because they appear in the conditions proper to the observation of 
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the fractional quantum Hall effect. Here only the BEC on the single exciton state with wave 
vector  is considered. 0k =

G

Fertig has determined the energy spectrum of the elementary excitations in the frame of 
this ground state. In the case of z=0 the lowest-lying excitations of the system are the higher 
energy excitons. 

Because of the neutral nature of the 0k =
G

 excitons the dispersion relation of these 
excitations is given in a good approximation by  
   ( ) ( ) (0)ex exk E k Eω = −= ,                          (16) 

where  is the energy of exciton with wave vector ( )exE k k
G

. This result was first obtained by 
Paquet, Rice and Ueda [3,17] using a random phase approximation [RPA]. In the case z=0 the 
dispersion relation ( )kω vanishes as  for , as one expect for Goldstone modes. 2k 0k →

For z>0 ( )kω  behaves as an acoustical mode ( )k kω ∼  in the range of small , 
whereas in the limit  ( )

k
k →∞ kω  tends to the ionization potential ( )zΔ  in the form  

    
2

2
0

( ) ( ) ek z
kl

ω
ε

= Δ −=                             (17) 

In the region of intermediate values of , when , the dispersion relation develops 
the dips as z is increased. At certain critical value of  the modes in the vicinity of the 
minima become equal to zero and are named as soft modes. Their appearance testifies that the 
two-layer system undergo a phase transition to the Wigner crystal state. 

k 1kl ∼
erz=z

The similar results concerning the linear and quadratic dependences of the dispersion 
relations in the range of small wave vectors q  were obtained by Kuramoto and Horie [18], 
who studied the coherent pairing of electrons and holes spatially separated by the insulator 
barrier in the structure of the type coupled double quantum wells (CDQW). 

The magnetic field is sufficiently strong, so that the carriers populate only their lowest 
Landau levels (LLL) in the conduction and valence bands. Apparently the electron-hole 
interaction becomes less important than the repulsive electron-electron and hole-hole 
interactions as the separation d increases. However at low densities the ground state of the 
system will be the excitonic phase, instead of the Wigner lattice, for which the repulsive 
interaction is responsible. The reason is that the energy per electron-hole pair in the excitonic 
phase is lower than in Wigner crystal. The BEC of magnetoexcitons in the state with zero 
total momentum was considered and the dispersion relation of the collective excitation modes 
was derived. In the case the lowest excitation branch has a linear dispersion relation in 
the region of small wave vectors  

0d ≠
q ( )q qlω ∼ ; whereas at d=0 it transforms in the quadratic 

dependence ; Kuramoto and Horie mentioned that the linear dispersion relation 
originates in the fact that at  the repulsive Coulomb interaction prevails and the carriers 
feel this resulting repulsive long-range force [18]. As in the Bogoliubov theory of weakly 
interacting Bose gas the repulsive interaction leads to the transformation of the quadratic 
dispersion relation into another one with the linear dependence at small wave vectors.  

2( ) ( )q qlω ∼
0d ≠

Spontaneous Coherence in a two-component electron gas  created in bilayer quantum 
well structure in a strong perpendicular magnetic field was recently studied experimentally by 
Eisenstein [19] and theoretically by MacDonald [20]. 

The bilayer electron-electron system is much easy to realize in experiment than e-h 
bilayer, when the holes are created in the valence band and are spatially separated from the 
electrons in the conduction band. The experimental indications of spontaneous coherence 
have been seen first in e-e bilayer, which is analogous to Josephson junction. When the two 
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2D electron layers each at half-filling of the lowest Landau level (LLL) are sufficiently close 
together, then the ground state of the system possesses interlayer phase coherence. The 
ground state can be considered as an equilibrium Bose-Einstein condensate of excitons 
formed by the electrons on the LLL in the conduction band with the residence on one layer 
and the holes on the LLL of the conduction band with the residence on another layer. This 
collective state exhibits the quantum Hall effect when electrical currents are driven in parallel 
through two layers [19]. Counterflow transport experiments were realized. The oppositely 
directed currents were driven through the two layers. The counterflow proceeds via the 
collective transport of neutral particles, i.e. interlayer excitons. The Hall resistance of the 
individual layer vanishes at  in the collective phase. A weak dissipation is present at 
finite temperatures. The free vortices are present at all temperatures being induced by the 
disorders. The existence of the anticipated Goldstone mode linearly dispersing was confirmed 
experimentally [19]. This mode is the consequence of a spontaneously broken symmetry 
in the bilayer system. Measurements of the tunneling conductance between the layers have 
shown that the tunneling conductance at zero bias grows explosively, when the separation 
between the layers is brought below a critical value [19].  

0T →

(1)U

The counterflow conductivity and inter-layer tunneling experiments both suggest that 
the system does not have long range order because of the presence of the unbound vortices 
nucleated by disorder. The finite phase coherence length appears [20]. 

The appearance of the soft modes in the spectrum of the collective elementary 
excitations may signalize not only about the possible phase transition of the two-layer system 
to the Wigner crystal state or to the charge-density-wave (CDW) of a 2D electron system, but 
also to another variant of the excitonic charge-density-wave (ECDW) state. This new state 
was revealed theoretically by Chen and Quinn [21,22], who studied the ground state and the 
collective elementary excitations of a system consisting of spatially separated electron and 
hole layers in strong magnetic field. When the interlayer Coulomb attraction in strong 
electrons and holes pair together to form excitons. Excitonically condensed state of e-h pairs 
is the preferable ground state. If the layer separation is larger than a critical value, a novel 
excitonic-density-wave state is found to have a lower energy than either a homogeneous 
exciton fluid or a double charge-density-wave state in 2D electron system. 
All these details and information will permit to better understand the results of our paper, 
which is organized as follows. 

In section two the breaking of the gauge symmetry of the initial Hamiltonian is 
introduced by an alternative method following the idea proposed by Bogoliubov in his theory 
of quasiaverages [23]. The equivalence with another Bogoliubov u-v transformation method 
is revealed.  

In section three the motion equations for the operators were obtained, whereas in 
section four on their base the main equations determining the many-particle Green`s functions 
were deduced.  

Section five is devoted to the discussion of the used approximations. One of them 
corresponds to the Hartree-Fock-Bogoliubov approximation (HFBA) and the second one to 
the calculations of the correlation energy [4,5]. The energy spectrum in HFBA is represented 
in section six. The more complete results are discussed in the seventh section.            
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2. The breaking of the gauge symmetry of the initial Hamiltonian. Two equivalent 
representations 

 
For the very beginning we will introduce the operators describing the magneto-excitons 

and plasmons, and their commutation relations. 
The creation and annihilation operators of magnetoexcitons are two-particle operators 

reflecting the electron-hole (e-h) structure of the excitons. They are denoted below as † ( )d pG  
and , where ( )d pG ( , )x yp p pG  is the two-dimensional wave vector. There are also the density 

fluctuation operators for electrons ˆ ( )e Qρ
G

and for holes ˆ ( )h Qρ
G

 as well as their linear 

combinations  and . They are determined below ˆ ( )Qρ
G ˆ ( )D Q

G
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e e

h h
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and are expressed through the Fermi creation and annihilation operators  for electrons 

and  for holes. The e-h Fermi operators depend on two quantum numbers. In Landau 
gauge one of them is the wave number p and the second one is the quantum number n of the 
Landau level. In the lowest Landau level (LLL) approximation n has only the value zero and 
its notation is dropped. The wave number p enumerates the N-fold degenerate states of the 2D 
electrons in a strong magnetic field. N can be expressed through the layer surface area S and 
the magnetic length l as follows 

† ,p pa a
† ,p pb b

                     2 ;
2

SN
lπ

=     2 cl
eH

=
=    ,                                                                (19) 

where H is the magnetic field strength. The operators (18) obey the following commutation 
relations, most of which being for the first time established by Apal`kov and Rashba [15] 
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2

2

2

ˆ ˆ ˆ( ), ( ) 2 ( )
2

ˆ ˆ ˆ( ), ( ) 2 ( )
2

ˆ ˆˆ ( ), ( ) 2 ( )
2

z

z

z

P Q l
Q P iSin P Q

P Q l
D Q D P iSin P Q

P Q l
Q D P iSin D P Q

ρ ρ ρ

ρ

ρ

⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = − +⎣ ⎦ ⎜ ⎟
⎝ ⎠
⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = − +⎣ ⎦ ⎜ ⎟
⎝ ⎠
⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = − +⎣ ⎦ ⎜ ⎟
⎝ ⎠

GG
G GG G

GG
G GG G

GG
G GG G

           (20) 

                     ( ) ( )
2 2

( ), ( ) ( , )

1 ˆˆsin cos
2 2

kr

z z

d p d Q P Q

P Q l P Q l
i P Q D

N

δ

ρ

+⎡ ⎤ = −⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤× ×⎣ ⎦ ⎣ ⎦⎢ ⎥⎜ ⎟ ⎜ ⎟− − +
⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
P Q−

GG

G GG G
G GG G  

                       ( ) ( ) ( )
2

ˆ , 2 sin
2

z
P Q l

P d Q i d P Qρ
⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = +⎣ ⎦ ⎜ ⎟
⎝ ⎠

GG
G GG G

 

                 ( ) ( ) ( )
2

ˆ , 2 sin
2

z
P Q l

P d Q i d P Qρ + +
⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = − − +⎣ ⎦ ⎜ ⎟
⎝ ⎠

GG
G GG G

 

                   ( ) ( ) ( )
2

ˆ , 2cos
2

z
P Q l

D P d Q d Q P+ +
⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = −⎣ ⎦ ⎜ ⎟
⎝ ⎠

GG
G GG G

 

                              ( ) ( ) ( )
2

ˆ , 2cos
2

z
P Q l

D P d Q d P Q
⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = − +⎣ ⎦ ⎜ ⎟
⎝ ⎠

GG
G GG G

 

One can observe that the density fluctuation operators (18) with different wave vectors 
 and Q

G
 do not commute. Their non-commutativity is related with the vorticity which 

accompanies the presence of the strong magnetic field and depends on the vector-product of 
two wave vectors  and  and its projection on the direction of the magnetic field [ ]

P
G

P
G

Q
G

zP Q×
GG

. 
These properties considerably influence the structure of the motion equations for the operators 
(1) and determine new aspect of the magneto-exciton-plasmon physics. Indeed in the case of 
3D e-h plasma in the absence of the external magnetic field the density fluctuation operators 
do commute [8]. The magneto-exciton  creation  and annihilation operators  and † ( )d pG ( )d Q

G
 

as in general case do not obey exactly the Bose commutation rule. Their deviation from it is 
proportional to the density fluctuation operators ˆ (P Qρ )−

GG
 and ˆ (D P Q−

G
)

G
. The discussed 

above operators determine the structure of the 2D e-h system Hamiltonian in the LLL 
approximation. In previous papers [1,2,3,4,5] the initial Hamiltonian was gauge-invariant.  

It has the form  
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                         1ˆ ˆ ˆˆ ˆ( ) ( )
2 e h e e hQ

Q

H W Q Q N N Nρ ρ μ μ⎡ ⎤= − − − −⎣ ⎦∑ G
G

G G ˆ ˆ
hN−  ,                              (21) 

where 

     
2 2 2

0

2
2Q

e Q lW Exp
S Q
π

ε
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

G G e h;    μ μ μ= +

l wave vector  and forms a ban

                                                         (22) 

The energy of the two-dimensional magnetoexciton  depends on the two-

dimensiona d with the dependence  

( )exE P

 P
G

  2 2 2 2
2

0

( ) ( ) ( );

( ) ( );
2

ex ex l

P l

ex l

E P I P I E P

P lI P I e I
−

= − = − +

=

G G G

         
2

0

;
2l

eI
l

π
ε

=                                                       (23) G

The ionization potential ( )exI P  is expressed through the modified Bessel function 

0 ( )I z , which has the limiting expressions [10]. 

      
2

0
0

( ) 1 ...;
4z

zI z
→

= + + 0 ( )
2

z

z

eI z
zπ→∞

=                                                      (24) 

It means that the function  can be approximated as follows ( )E P

 
2 2

0
( ) ;

2P

PE P
M→

=
G =       

2
0

2

2(0) 2 ;M M
e l
ε

π
= =

=            

                                                  (25) 
2

( ) (1 );l
P

E P I
Pl
π

→∞
= −     2 ;cl

eH
=
=  

Instead of the chemical potential μ  (22) we will use the value μ  accounted from the 
bottom of the exciton band  
       (0) ;ex lE Iμ μ μ= − = +                                                                              (26) 

In the case of BEC of the magnetoexcitons on the state with  the chemical 
potential accounted from the exciton level  will lead to the expression  

0k ≠
( )exE k

       ( ) ( );exE K E Kμ μ− = −
G G

                                                                            (27) 
For introduction of the phenomenon of Bose-Einstein condensation (BEC) of excitons 

the gauge symmetry of the initial Hamiltonian was broken by the help of the unitary 
transformation ˆ ( exD N )  following the Keldysh-Kozlov-Kopaev method [24]. We can shortly 
remember the main outlines of the Keldysh-Kozlov-Kopaev method [24], [25] as it was 
realized in papers [4,5]. The unitary transformation ˆ ( exD N )  was determined by the formula 
(25) [4]. Here  is the number of condensed excitons. It transforms the operators  to 
another ones 

exN ,p pa b
,p pα β , as is shown in formulas (30), (31) [4], and gives rise to the BCS-type 

wave function ( )g kψ  of the new coherent macroscopic state represented by expression (27) 
[4]. These results are summarized below  
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†

† †

†

†

†

ˆ ( ) exp[ ( ( ) ( ))]
ˆ( ) ( ) 0

ˆ ˆ v( )
2

ˆ ˆ +v( )
2

v( )
2

v( )
2

x

x

x

x

ex ex

g ex

x
p p p k p

x
p p p k p

x
p p k p

x
p p k p

D N N d k d k

k D N

kDa D ua p b

kDb D ub p a

ka u p

kb u p

ψ

α

β

α β

β α

−

−

−

−

= −

=

= = − −

= = −

= + −

= − −

†                        (28) 

 
                         0 0p pa b= = 0;      ( ) ( ) 0p g p gk kα ψ β ψ= =   

cos ;u g=  v sin ;g=                 (29) 
2

v( ) v yik tlt e−=

22 ;exg l nπ=   
2

2

v
2

ex
ex

Nn
S lπ

= =   v;g =       v=Sinv;

 
The developed theory [4,5] is true in the limit , what means the 

restriction . In the frame of this approach the collective elementary excitations can be 
studied constructing the Green’s functions on the base of operators 

2 2v Sin≈ v
12v <

,p pα β  and dealing with 

the transformed cumbersome Hamiltonian †ˆ ˆ( ) ( )ex exD N HD N=�H .  
We propose another way, which is supplementary but completely equivalent to the 

previous one and is based on the idea suggested by Bogoliubov in his theory of 
quasiaverages [23]. Considering the case of a 3D ideal Bose gas with the Hamiltonian  

2 2
†( )

2 p p
p

pH
m

μ= −∑ a aG G
G

=       ,                                                             (30) 

where  are Bose operators and ,pa a+
p μ  is the chemical potential, Bogoliubov added a term  

    0 0( iV a e a e )iϕ ϕν −− +                                                                     (31) 
breaking the gauge symmetry and proposed to consider the BEC on the state with p=0 in the 
frame of the Hamiltonian  

    
2 2

† †
0 0

ˆ (
2

i
p p

p

p a a V a e a e
m

)iϕ ϕμ ν −⎛ ⎞
= − − +⎜ ⎟

⎝ ⎠
∑ =H     ,                                         (32) 

where 

    0
0 ;N n

V
ν μ μ= − = −          0 ;nν

μ
− =                            (33) 

We will name the Hamiltonian of the type (32) as the Hamiltonian of the theory of 
quasiaverages. It is written in the frame of the operators  of the initial 
Hamiltonian (30). 

,pa a+
p

Our intention is to apply this idea to the case of BEC of interacting 2D magnetoexcitons 
and to deduce explicitly the Hamiltonian of the type (32) with the finite parameters μ  and ν  
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but with the relation of the type (33). We intend to formulate the new Hamiltonian with 
broken symmetry in the terms of the operators  avoiding the obligatory crossing to the 
operators 

,p pa b
,p pα β  (28) at least at some stages of the investigation where the representation in 

the  operators remains preferential. ,p pa b
Of course the two representations are completely equivalent and complimentary each 

other. We will follow the quasiaverage variant  (32) instead of  variant (29), because it 
opens some new possibilities, which were not studied up till now to the best of our 
knowledge. For example the Hamiltonian of the type (32) is simpler than the Hamiltonian 

u,v

†ˆ ˆ( ) (ex exD N HD N=�H )  in the ,p pα β  representation and the deduction of the motion 
equation for the operators (18) and for the many-particle Green’s functions constructed on 
their base is also much simple. We will profit by this advantage at some stages of 
investigation. On the contrary, when we will deal with the calculations of the average values 
of different operators on the base of the ground coherent macroscopic state (28) or using the 
coherent excited states, as we have done in papers [4,5 ], the most convenient way is to use 
the ,p pα β  representation. We will use in the wide manner the both representations. The new 
variant in the style of the theory of quasiaverages can be realized rewriting the transformed 
Hamiltonian †ˆ( ) (ex exD N HD N )  in the  representation as follows below. To 
demonstrate it we will represent the unitary transformation  

,p pa b

ˆ

0
ˆ†

ˆˆ ( )
!

( )

n
X

ex
n

X
ex

;XD N e
n

D N e

∞

=

−

= =

=

∑            ,                                                       (34) 

where 

       
†

†

ˆ ( ( ) ( )
ˆ ˆ ;

i i
ex );X N e d K e d K

X X

ϕ ϕ−= −

= −
                                                           (35) 

The creation and annihilation operators  (18) are written in the Landau 
gauge when the electrons and holes forming the magnetoexcitons are situated on their lowest 
Landau levels (LLL). Only this variant is considered here without taking into account the 
excited Landau levels (ELL) , as it was done in [4 ]. The BEC of 2D magnetoexcitons is 
considered on the single-exciton state characterized by two-dimensional wave vector 

( ), ( )d k d k+

k
G

. 
Expanding in series the unitary operators †( ), (ex exD N D N )  we will find the transformed 

operator  in the form �̂H

    ˆ ˆ 1 1 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ...
1! 2! 3!

X Xe He H X H X X H X X X H− ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ′= = + + + + = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
�H H H    (36) 

Here the Hamiltonian  contains the main contributions of the first three terms in the 
series expansion (36), whereas the operator 

Ĥ
ˆ ′H  gathers the all remaining terms.  

As one can see looking at formulas (35) operator X̂  is proportional to the square root of 
the exciton concentration exN , which is proportional to the filling number . One can see 

that the contributions arising from the first commutator 

v
ˆ ˆ,X H⎡ ⎤⎣ ⎦  are proportional to , the 

contributions arising from the second commutator 

v

ˆ ˆ ˆ, ,X X H⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦  are proportional to  and so 2v
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)
on. Following the Bogoliubov’s theory of quasiaverages only the linear terms of the type 
( ( ) ( )i id k e e d kϕ ϕ ν+ −+  arising from the first commutator ˆ ˆ,X H⎡ ⎤⎣ ⎦  must be included into . 

But taking into account the deviation of the exciton creation and annihilation operators from 
the pure Bose statistics, we will take into account also the term proportional to  from 
the second commutator. 

Ĥ

(0)exN D

We will show below, that such foresight permits to obtain a Hamiltonian which will 
generate the motion equation of the exciton creation and annihilation operators in 
concordance with the basic suppositions concerning their BEC. Such supplimentary term in 
the Hamiltonian  introduces the needed corrections related with the deviation of the 
exciton operators from the true Bose statistics. The commutations were effectuated using the 
commutation relations (20). 

Ĥ

Ĥ

The Hamiltonian  with the broken gauge symmetry describing the BEC of 2D 
magnetoexcitons on the state with wave vector 

Ĥ
0k ≠  being written in the style of the 

Bogoliubov’s theory of quasiaverages has the form  
†

ˆ (0)ˆ ˆ ( ( ))( ( ) ( )) ( ( ) )(1 );

ˆ ˆ ˆ(0) ;

i i
ex ex

e h

DH N E K e d K e d K N E K
N

D N N

ϕ ϕμ μ−= + − + + − −

= +

G G G G
H

         (37) 

For the case of an ideal 2D Bose gas we can rewrite the coefficient Vν−  in the 
Hamiltonian (32), in the form Nν−  and comparing it with the deduced expression (37), we 
will find 
    ( ( ) vE k )ν μ= − ,                                                                     (38) 
where  and the filling number  are determined by expressions (19) and (23). Relation 
(38) coincides exactly with relation (33) of the Bogoliubov’s theory of quasiaverages. In the 
case of ideal Bose gas 

N v

ν  and ( ( )E k )μ−  both tend to zero, whereas the filling number is real 

and different from zero. In the interacting exciton gas the parameter ν  and ( )( )E k μ−  are 

both different from zero. But we kept in the expression for  else the last term proportional 
to 

Ĥ
( ) (2( ) v ( )exN E k N E k )μ μ− = − , which was absent in the theory of quasiaverages for the 

ideal Bose gas. It reflects, as was mentioned above, the deviation of the exciton creation and 
annihilation operators from the true Bose operators. The influence of the last term will be 
discussed below writing the motion equations for the exciton operators. 

Now the remaining terms gathered in ˆ ′H  will be written. They contain the 
contributions proportional to  and so on. There is also one term proportional to , but it 
is nonlinear containing the products of the exciton and plasmon operators. We suppose that 
their influence on the BEC of magnetoexcitons is less in comparison with the second term in 
expression (37). The first terms included in 

2 3v , v v

ˆ ′H  are  
 

( )
2

†ˆ ˆ ˆ(2 ) ( ) ( ) ( ) ( )
2

i iz
ex Q

Q

K Q l
i N W Sin e d K Q Q e Q d K Qϕ ϕρ ρ−

⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟′ = − − − − − +
⎜ ⎟
⎝ ⎠

∑ G
G

GG
G G G GG G

H  
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2
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∑
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G
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G

GG

+ − +

−

G G GG G G G

G G G GG G

G GG G
G G G ˆ ( )) ...D Q− +

G

G

        (39) 

Below we will construct the motion equations for the operators (18) on the base of the 
Hamiltonian (37) in the quasiaverages theory approximation (QTA).  

 
3. The motion equations for operators. Magneto-exciton-plasmon complexes.  
 

The starting Hamiltonian  of the variant developed below has the form Ĥ

†

1ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( )
2

ˆ (0)( ( ))( ( ) ( )) ( ( )) 1

e h e e h hQ
Q

i i
ex ex

W Q Q N N N N

DN E k e d k e d k N E k
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μ μ−
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⎛ ⎞
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⎝ ⎠

∑ G
G

G G

G G G G
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                         (40) 

The motion equations for the operators (18) are obtained using the commutation 
relations (20). They are 

      
2

2 2
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Moldavian Journal of the Physical Sciences, Vol.4, N2, 2005 
 

 157
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Here ν  and ~μ  are determined by the expressions 

2

2 2~ (1 ) ( );
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    2v ;exN
N

=                                                      (42)   

The expression for ν  was deduced in the previous section. The last term in the 
Hamiltonian  (37) gives rise to the shift of the all exiton levels in the motion equations by 

the same value, what leads to the difference between 

Ĥ

μ  and ~μ .             
Now we must pay attention to one important aspect of the derived motion equations, 

which is closely related with the noncommutativity of the operators (18) expressed by 
formulas (20). Applying them one can prove, for example, the equalities  
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                      (43) 

They can be verified taking into account that  
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                        (44) 

The quantum energy  is related with the vorticity of the strong magnetic field. 
These quanta can be added in different combinations to the free energies of the exciton or of 
the plasmon, which in their turn themselves also are determined by these quanta. 

( )E P

The quantum energy  is due to Coulomb interaction of electrons in the presence of 
a strong magnetic field and can be named as a plasmon quantum. 

( )E P

The possibility to add or to subtract a photon quantum from the electron energy in the 
presence of laser radiation gives rise to the notion of quasi – energy [7], which reflects the 
possibility of formation of electron – photon replicas. 

In the same way one can understand the appearance of the different “free” magneto-
exciton energies in three variants of the motion equations (43) as a result of formation of three 

different magneto-exciton-plasmon complexes: one with the “free” energy ~( ( ) )E P μ− , the 

second with the “free” energy - ~( ( ) )E P μ+  and the third with the “free” energy - ~μ . Starting 
with different “free” energies we will deal with the BEC of different magneto-exciton-
plasmon complexes. In these three variants the constant ν of the broken gauge symmetry as 

well as ~μ  will be also different being conjugated with different  “free” energies of the 
condensed particles. One can conclude that in the case of 2D e-h system in a strong 
perpendicular magnetic field the plasmon quanta (44) can accompany and influence the 
exciton quantum – statistical phenomena. In the case of the fractional quantum Hall effect 

(FQHE) discussed in [6], there are N magnetic flux quanta 0
c
e

φ =
= accompanying the 

transport phenomena. The flux quanta enforce the formation of vortices in the 2D electron 
gas. The electrons and the vortices form composite particles and determine the properties of 
the electron liquid [6]. 

Instead of photons in the case of laser radiation and instead of magnetic flux quanta 0φ  
and vortices in the electron medium, which appear in the case of FQHE, in our case of 2D–e-
h system in a strong magnetic field we deal with plasmon quanta . Instead of electron – 
vortex composite particles we meet with the magneto-exciton-plasmon complexes. Equations 
(41) for four concrete interconnected operators and 

have the forms  
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On the base of these equations the Green’s functions will be introduced and the chains 
of equations will be developed. Only one variant between many ones reflected by equations 
(43) will be considered. 
 

4. Many – operator many – particle Green’s functions. 
 

Following the motion equations (45) we will introduce four interconnected retarded 
Green’s functions at T=0  [26, 27] 

  

† ( , ); ( ,0) ;
ˆ ( , ) ; ( ,0) ;

d P t d P

K P t d P
N

ρ

〈〈 〉〉

−
〈〈 〉〉
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〉

〈〈 〉〉
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and their Fourier – transforms 
†
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G G G
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G   (47) 

They are determined by the relations 

ˆ ˆˆ ˆ( ); (0) ( ) ( ), (0) ;A t B i t A t B⎡ ⎤〈〈 〉〉 = − Θ 〈 〉⎣ ⎦  
ˆ ˆ

( ) ;
i t i t

A t e Ae
−

= = =
H H

       (48) ˆ ˆˆ ˆ ˆ, ,A B AB BA⎡ ⎤ = −⎣ ⎦
ˆ

where is the Hamiltonian (40). Ĥ
The average  is calculated at T=0 using the ground state wave function 〈〉 ( )g Kψ

G
 (28) 

as well as, if needed, the coherent excited states (46)-(56) [4,5]. 
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The time derivative of the Green’s function is calculated as follows  

           ˆ ˆ

ˆ ˆ ˆˆ ˆ( ); (0) ( ) , ( ); (0) ;
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⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
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=
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ˆ

〉

                              (49) 

The term  and other  similar ones will be denoted by constant C. The Fourier 

representation is introduced by 

ˆ ˆ,A B⎡ ⎤〈⎣ ⎦
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∫

∫

∫= =

                          (50) 

Calculating the Fourier transform of the retarded Green’s function one needs to 
guarantee the convergence of the time integral. It is achieved by introducing an infinitesimal 
value 0δ → +  in the form 

        
0

ˆ ˆ ˆˆ ˆ( ); (0) ( ); (0)i t i t tA B dte A t B dte A t Bω ω δ
ω

∞ ∞
−

−∞

〈〈 〉〉 = 〈〈 〉〉 = 〈〈 〉〉∫ ∫ ˆ                               (51) 

By this reason in the resonance denominators containing ω  we will substitute ω=  by 
( )iω δ+= .  

The Green’s  function (47) as well as (46) will be named as one – operator Green’s  
functions because they contain in the left hand side of the vertical line only one summary 

operator of the type † ˆ ( )( ), (2 ), K Pd P d K P
N

ρ −
−

G GG G G
and 

ˆ (D K P
N

)−
G G

. At the same time these 

Green’s functions are two – particle Green’s  functions because the summary operators (18) 
are expressed through the products of two Fermi operators.  

In this sense the Green’s  functions (47) are equivalent to the two – particle Green’s  
functions introduced by Keldysh-Kozlov in their theory of the collective elementary 
excitations in bulk crystals in the absence of the external magnetic field [24]. 

The exact equations determining the one operator, two – particle Green’s  functions (47) 
in the frame of the quasi-average variant of the theory of BEC of magnetoexcitons follow 
directly from the motion equations (45) 
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The constants , where depend on 1iC 1,2,3,4i = P
G

 and ω . But they are not needed in an 
explicit form, because we are interested only in the energy spectrum of the collective 
elementary excitations and it is determined only by the self – energy parts of the Green’s 
functions. All constants, which will appear in the equations for any Green’s functions will be 
denoted by C capital, without detalization. 

Equations (52) for one-operator Green`s functions (47) contain in their componence the 
two-operator (four-particle) Green`s functions generated by the nonlinear terms in motion 
equations (41), (45) for the operators (18). These two-operator (four-particle) Green`s 
function will be determined below. They will obey to new exact equations in the frame of 
Hamiltonian (40) containing new three-operator (six-particle) Green`s functions. And this 
process is infinite giving rise to infinite chains of equations with n-operator (2n-particle) 
Green`s functions, where n increases by one at each new step in the chains evolution. As 
usual such chains are truncated, what leads to concrete approximate solutions [27]. Below we 
will obtain the exact equations in the frame of Hamiltonian (40) for four two-operator Green`s 
functions appeared in the first-step equations (35). These second step equations will contain 
new three-operators (six-particle) Grenn`s functions. They are 
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As one can see, the second step equations (53)-(56) for the two-operator (four-particle) 
Green`s functions are exact what is the advantage of this method. They contain side by side 
with the three-operator Green`s functions other two-operator Greeen`s functions, for which in 
their turn the new equations must be deduced. It is one usual situation in the case of Green`s  
function method [13]. If one substitutes, for example, expression (53) for the two-operator 
Green`s function † ˆ( ) ( ) | ( )d P Q Q d P
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 into the first equation (52) its contribution will 

be equal to 
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(57)   

The-two operator Green’s function (54) gives rise to the contribution to the second 
equation (52) in the form 
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The contribution of the Green`s functions (55) and  (56) to the third and fourth 
equations (52) are correspondingly  
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5. Decoupling of the elementary excitations. Shrinkage of the six-particle Green`s 
functions. 

 
Expressions (57),(58),(59),(60) are too cumbersome to be prolonged in the same way 

because the three-operator Green`s functions will be expressed through the four-operator 
Green`s functions and so on. The shrinkage of the chains of  Green`s functions can be 
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method of factorization elaborated in [27]. Another important simplification is the separation 
or the decoupling of the elementary excitations with different wave vectors as was proposed 
in [27, 28]. In the equations for the Green`s functions (30) only the terms containing the same 
Green`s functions are kept. The one-operator Green`s functions with other wave vectors 
different from , (2 )P K P−

G G G
 and ( )K P−

G G
 are neglected. The two-operator  Green`s functions 

will be expressed through the three-operator Green`s functions and the last will be 
approximatively expressed through the one-operator Green`s function multiplied by the 
average values of the remaining two operators. These approximations lead to the expressions:  

†

†

† †

†

ˆ ˆ( ) ( ) ( ) ( ) ( , )

ˆ ( )ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( , ) ( ) ( ) ( , ) ( ) ( ) ;

ˆ ˆ( ) ( ) ( ) ( )

kr

kr kr

d P Q R R Q d P R Q

K Pd P d P Q Q d P
N

R P K d K Q Q Q P K d K R R N

d P Q R Q R d P

ω

ω ω

ρ ρ δ

ρρ ρ

δ ρ δ ρ

ρ ρ

〈〈 − − − − 〉〉 ≈ − ×

−
×〈〈 〉〉 − + 〈〈 〉〉 ×

⎡ ⎤× − − − + − − −⎣ ⎦

〈〈 − − − 〉

G G GG G G G G

G GG GG G G

G G GG G G G G G G G G

G GG G G G
†

†

†

( ,0) ( ) ( )

ˆ ( )ˆ ˆ( ) ( ) ( )

ˆ( , ) ( , ) ( ) ( ) ;

ˆ ˆ( ) ( ) (2 ) ( ) ( ,0) (2 ) ( )

ˆ ˆ( )

kr

kr kr

kr

Q d P d P

K PR R d P
N

R K P R P K Q d P Q P K Q N

R Q R d K P Q d P Q d K P d P

R

ω ω

ω

ω ω

δ

ρρ ρ

δ δ ρ

ρ ρ δ

ρ ρ

〉 ≈ 〈〈 〉〉 ×

−
× − + 〈〈 〉〉 ×

⎡ ⎤× − + − − − − −⎣ ⎦

〈〈 − − − 〉〉 ≈ 〈〈 − 〉〉 ×

×

G G G

G GG G G

G G GG G G G G G G G G

G G GG G G G G G G G

G

†

ˆ ( )( ) ( )

ˆ( , ) ( , ) ( ) (2 ) ;

ˆ ˆ( ) ( ) (2 ) ( ) ( , ) (2 ) ( )

ˆ ( )ˆ ˆ( ) ( ) ( ) ( ,

kr kr

kr

kr

K PR d P
N

R K P R P Q K P Q K d K P Q N

Q R d K P Q R d P R Q d K P d P

K PQ Q d P Q
N

ω

ω ω

ω

ρ

δ δ ρ

ρ ρ δ

ρρ ρ δ

−
− + 〈〈 〉〉 ×

⎡ ⎤× − + + − + − − −⎣ ⎦

〈〈 − − − 〉〉 ≈ − 〈〈 − 〉〉 ×

−
× − + 〈〈 〉〉

G GG G

G G GG G G G G G G G G G

G G GG G G G G G G G G

G GG G GG
ˆ) ( ) ( )

ˆ( , ) ( ) ( ) .kr

K P R d K R

R K P Q d K Q N

ρ

δ ρ

⎡ − −⎣

⎤+ − − ⎦

G G G G G

G GG G G G

+               (61) 

The decoupled and shrinked three-operator Green`s functions (61) being substituted into 
expressions (57) and (58) correspondingly will generate the following contributions to the 
desirable closed equations  
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  (65) 

The contributions (62)-(65) are proportional to Coulomb interaction in power two of the 
type . Formulas (57) and (58) contain side by side with the three-operator Green`s 
functions also the two-operator Green`s functions. The latter are incorporated into the terms 
proportional to 

RQW WG G

QWν G . After their expression through the three-operator Green`s functions and 
the following transformation into the one-operator Green`s functions their contribution will be 
proportional to . 2

QWν G
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The constant ν  and its dependence on μ  in our case was determined above. It is of the 
same type as (33) and its dependence on the Coulomb interaction originates from the 
dependence of μ , which was determined in [4]. In the Hartree-Fock-Bogoliubov 
approximation the chemical potential has the value [4] 

2( ) 2 ( )
HF

E K E Kμ ν− − =  
and depends linearly on the constant of the Coulomb interaction, whereas its correlation 
corrections are quadratic on this interaction. In all our next calculations we will confine 
ourselves to the self-energy parts linear and quadratic in Coulomb interaction. In these 
restrictions one can neglect all the terms containing two-operator Green`s functions in 
formulas (57)-(60) because their investements will be of the order 2

QWν G . By the same reason 

we will neglect the terms proportional to 2
QWν G . 

As a result in our present variant of the paper we will take into account the terms 
proportional to  ν , QW G , QWν G and  and will neglect  the terms proportional to ,2

QW G 3
QW G 2

QWν G  

and . In this approximation the nonlinear terms of the first and second equations (52) are   2
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Now the two first equations (52) can be written in the forms 
11 11 12 21 13 31

14 41 11
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11 12 12 22 13 32 14 42 12( , ) ( , ) ( , ) ( , )G P G P G P G P Cω ω ω ωΣ + Σ + Σ + Σ =
G G G G

ω +

                                            (68) 
Their self-energy parts are determined by the following expressions: 

2
2

2
11

[ ]
2~ ˆ ˆ( , ) ( ) 4 ( ) ( ) ;

~[ ( ) ( ) ]

z

Q
Q

P Q lSin
P E P W Q

E P Q E Q i

ω ω μ ρ ρ

ω μ δ

⎛ ⎞×
⎜ ⎟
⎝ ⎠Σ = − + − −

− + − − − +
∑ G
G

Q

GG

G GG G
=

G GG
=

 

21( , ) 0;P ωΣ =
G

 

2

31

2 2

†

2[ ]( , ) 1
2 ~[ ( ) ( ) ]

[ ] [( ) ( )]
2 2

ˆ4 (
~[ ( ) ( ) ]

4

i z P K

z z

P KQ
Q

P K

W NP K lP i e Sin

E K E K P i

P Q l P Q P K lSin Sin
W W d K Q Q N

E P Q E Q i

S
W

ϕω ν

ω μ δ

ρ

ω μ δ

− −

−

−

⎡ ⎤
⎛ ⎞× ⎢ ⎥Σ = − + +⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎢ ⎥− + − − +⎣ ⎦

⎛ ⎞ ⎛ ⎞× − × −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+ −

− + − − − +

−

∑

G G

G G G
G

G G

G GG
G G G

=
G GG G G G

G GG
G GG

=
) ( )− −

( )

2

2
†

2 2

†

[ ]
2 [ ] ˆ( ) ( )

2~[ ( ) ( ) ]

[ ] [ ( )]
2 2

ˆ4 (
~[ ( ) ( ) ]

z

z
R

R

z z
K P P K Q

Q
Q

P K lin
K R lW Sin d K R R N

E K E K P i

P Q l Q K P lW W Sin Sin
W d P Q P Q

E P Q E Q i

ρ

ω μ δ

ρ

ω μ δ

− − −

⎛ ⎞×
⎜ ⎟ ⎛ ⎞×⎝ ⎠ − − −⎜ ⎟

⎝ ⎠− + − − +

⎛ ⎞ ⎛ ⎞× × −
− ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠− −

− + − − − +

∑

∑

G
G

G G GG G

G
G

G G
G G G G G

G G G
=

G GG G G

G GG G
G GG

=
) ( − ) ;K N−

G

(69) 

2

41
[ ]( , )

2
i zP K lP e Cosϕω ν − ⎛ ⎞×

Σ = ⎜ ⎟
⎝ ⎠

G GG
. 
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 determine the coefficients of the first equation (68). The 
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Now the remaining two equations (52) will be considered. The reduction of three-
operator Green`s functions encountered in the nonlinear terms (59) and (60) is made as 
follows 
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ˆˆ ˆ( , )) ( ) ( ) ( , ) ( ,0) ( ) ( )

kr

kr kr

D K P QR Q R d P G P R K P
N

ˆR Q P K Q P K D K P Q G P Q R R
ω

ρ ρ ω δ

δ ρ ω δ ρ

− −
− −

+ + − + − − − + −

GG GGG G G G G G G
�

G G G GG G G G G G G G G G
ρ

+
         (71) 

 

  
13

14

ˆ ( ) ˆˆ ˆ ˆ( ) ( ) | ( ) ( , )[( ( , ) ( ) ( )

ˆˆ ˆ ˆ( , )) ( ) ( ) ] ( , ) ( , ) ( ) ( ) .

kr

kr kr

D K P QQ R d P G P Q K P R D R
N

R K P Q D Q G P R Q Q Q
ω

ρ ρ ω δ ρ

δ ρ ω δ ρ ρ

− −
− − +

+ − − + − −

GG GG GG G G G G G
�

G G G G GG G G G G

G

 

 
They lead to approximate expression of two main components of (42)  
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2 2

2
2

13

ˆ ˆ ˆ( ) ( ) ( ) | ( )[( ) ] [ ]4
2 2 [ ( ) ( ) ]

[( ) ] ˆ ˆ( ) ( ) (
2

( , )4

z z
RQ

RQ

z
K PQ P K

Q
Q

R Q R K P Q d PK P Q l Q R lW W Sin Sin
E Q E K P Q i N

K P Q lW W Sin Q P K K P
G P W

ρ ρ ρ

ω δ

ρ ρ
ω

−+ −

− − −⎛ ⎞ ⎛ ⎞− × ×
≈⎜ ⎟ ⎜ ⎟

− − − − +⎝ ⎠ ⎝ ⎠
⎛ ⎞− ×

− + −⎜ ⎟
⎝ ⎠≈

∑∑

∑

G G
G G

G G GG G

G
G

− −

G GG G G G GG GG G G
G GG G

=
GG G G G G G G

G )
;

[ ( ) ( ) ]

Q

E Q E K P Q iω δ− − − − +

G

G GG G
=

(72) 

2 2

2
2

13

ˆ ˆ ˆ( ) ( ) ( ) | ( )[( ) ] [( ) ]4
2 2 [ ( ) ( ) ]

[( ) ] ˆ ˆ( , )4 ( ) ( ) ( ) .
2

z z
RQ

RQ

z
K PQ Q

Q

Q R K P Q R d PK P Q l K P Q R lW W Sin Sin
E Q E K P Q i N

K P Q lG P W W W Sin Q Q

ρ ρ ρ

ω δ

ω ρ ρ− −

− − −⎛ ⎞ ⎛ ⎞− × − − ×
≈⎜ ⎟ ⎜ ⎟

− − − − +⎝ ⎠ ⎝ ⎠
⎛ ⎞− ×

≈ − −⎜ ⎟
⎝ ⎠

∑∑

∑

G G
G G

G G G G
G

G GG G G G GG GG G G G G
G GG G

=
GG G G GG

 
Taking into account only the terms proportional to RQW WG G  and neglecting the last two 

terms in (59) because they give the contributions to the one-operator Green`s functions 

1( , )iG P ω
G

 proportional to  one will obtain 2
QWν G

2

2
2

13

ˆ[( ) ] ( )ˆ2 ( ) | ( )
2

[( ) ]( , )4
2

ˆ ˆ ˆ ˆ[( ) ( ) ( ) ( ) ( ) ( ) ]

[ ( ) ( )

z
Q

Q

z
Q

Q

K P K PQ Q P K

K P Q l K P Qi W Sin Q d P
N

K P Q lC G P W Sin

W W Q Q W W Q P K K P Q

E Q E K P Q

ω

ρρ

ω

ρ ρ ρ ρ

ω
− −− + −

⎛ ⎞− × − −
≈⎜ ⎟

⎝ ⎠

⎛ ⎞− ×
≈ + ×⎜ ⎟

⎝ ⎠

− − + − + − − −
×

− − − − +

∑

∑

G
G

G
G

G G G G G GG G

G GG G G GG G

GG GG

G G G GG G G G

G GG G
=

.
]iδ

                        (73) 

The same processing will be made with the contribution (60). Here we have obtained 

 

2 2

2
2

13

ˆˆ ˆ( ) ( ) ( ) | ( )[( ) ] [ ]4
2 2 [ ( ) ( ) ]

[( ) ]( , )4 ( )
2

ˆˆ ( ) (

z z
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z
K PQ Q P K

Q

R Q R D K P Q d PK P Q l Q R lW W Sin Sin
E K P Q E Q i N

K P Q lG P W W W Sin

Q P K D K

ω
ρ ρ

ω δ

ω

ρ

−+ −

− − −⎛ ⎞ ⎛ ⎞− × ×
≈⎜ ⎟ ⎜ ⎟

− − − − +⎝ ⎠ ⎝ ⎠
⎛ ⎞− ×

≈ − ×⎜ ⎟
⎝ ⎠

+ − −
×

∑∑

∑

G G
G G

G G G GG G
G

G GG G G G GG GG G G
G GG G

=
GG GG

G G G G
)

;
[ ( ) ( ) ]

P Q

E K P Q E Q iω δ

−

− − − − +

GG

G GG G
=

 

2 2

2
2 2

13

ˆˆ ˆ( ) ( ) ( ) | ( )[( ) ] [( ) ]4
2 2 [ ( ) ( ) ]

ˆˆ ( ) ( )][( ) ]( , )4
2 [ ( ) (

z z
RQ

RQ

z
Q

Q

Q R D K P Q R d PK P Q l K P Q R lW W Sin Sin
E Q E K P Q i N

Q D QK P Q lG P W Sin
E Q E K

ω
ρ ρ

ω δ

ρ
ω

ω

− − −⎛ ⎞ ⎛ ⎞− × − − ×
≈⎜ ⎟ ⎜ ⎟

− − − − +⎝ ⎠ ⎝ ⎠

−⎛ ⎞− ×
≈ ⎜ ⎟

− − −⎝ ⎠

∑∑

∑

G G
G G

G
G

G GG G G G GG GG G G G G
G GG G

=
G GGG GG

G G
=

2
2 2

14

) ]

ˆ ˆ( ) ( )][( ) ]( , )4 .
2 [ ( ) ( ) ]

z
Q

Q

P Q i

Q QK P Q lG P W Sin
E Q E K P Q i

δ

ρ ρ
ω

ω δ

−
− +

−⎛ ⎞− ×
− ⎜ ⎟

− − − − +⎝ ⎠
∑ G
G

GG

G GGG GG
G GG G

=

(74) 

In the same approximation as was applied to (59), the nonlinear term will be determined 
as equal to 



Moldavian Journal of the Physical Sciences, Vol.4, N2, 2005 
 

 175
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2
2

13

14

ˆ[( ) ] ( )ˆ2 ( ) | (
2

[( ) ]( ) ( , )4
2

ˆ ˆˆ ˆ[( ) ( ) ( ) ( ) ( ) ]
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z
Q

Q

z
Q

Q

K PQ P K Q

K P Q l D K P Qi W Sin Q d P
N

K P Q lC G P W Sin

W W Q P K D K P Q W Q D Q

E Q E K P Q i

G

ω

ρ

ω ω

ρ ρ

ω δ
−+ −

⎛ ⎞− × − −
≈⎜ ⎟

⎝ ⎠

⎛ ⎞− ×
≈ + ×⎜ ⎟

⎝ ⎠

− + − − − + −
× −

− − − − +

∑

∑

G
G

G
G

G G G GG G

G
)

GG G G GG G

GG GG

G G GG G G G

G GG G
=

G

2
2 2

ˆ ˆ( ) ( )[( ) ]( , )4 .
2 [ ( ) ( )

z
Q

Q

Q QK P Q lP W Sin
E Q E K P Q i

ρ ρ
ω

]ω δ

−⎛ ⎞− ×
⎜ ⎟

− − − − +⎝ ⎠
∑ G
G

G GGG GG
G GG G

=

                        (75) 

Now we will substitute the nonlinear terms (74) and (75) into the third and fourth 
equations (52) correspondingly. These two equations can be written in the forms 

11 13 12 23 13 33

14 43 13

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )

G P P G P P G P P

G P P C

ω ω ω ω ω

ω ω

Σ + Σ + Σ

+ Σ =

G G G G G G

G G
ω +

+

                                          (76) 

     11 14 12 24 13 34

14 44 14

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )

G P P G P P G P P

G P P C

ω ω ω ω ω ω

ω ω

Σ + Σ + Σ

+ Σ =

G G G G G G

G G

Their self-energy parts are: 
2

13

2

23

2
2

33

[ ]( , ) 2 ;
2

[ ]( , ) 2 ;
2

[( ) ]( , ) ( ) 4
2

ˆ ˆ ˆ ˆ[( ) ( ) ( ) ( ) ( ) (

i z

i z

z
Q

Q

K P K PQ Q P K
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P K lP i e Sin

K P Q lP E K P W Sin

W W Q Q W W Q P K K P

ϕ

ϕ
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ω ν

ω ω
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−

− −− + −

⎛ ⎞×
Σ = ⎜ ⎟

⎝ ⎠
⎛ ⎞×

Σ = − ⎜ ⎟
⎝ ⎠

⎛ ⎞− ×
Σ = − − + ×⎜ ⎟

⎝ ⎠

− − + − + − − −
×

∑ G
G

G G G G G GG G

G GG

G GG

GG GG G G
=

G G G G G G G
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;
[ ( ) ( ) ]

Q

E Q E K P Q iω δ− − − − +

G

G GG G
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2
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2

24

(0) 0;

[ ]( , ) 2 ;
2

[ ]( , ) 2 ;
2

i z

i z
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P K lP e Cos

ϕ

ϕ
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ω ν −

Σ =

⎛ ⎞×
Σ = ⎜

⎝ ⎠
⎛ ⎞×
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⎝ ⎠

G GG

G GG

⎟                                                 (77) 
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×
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Σ = − − − ×⎜ ⎟
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−
×

∑

∑

G
G
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G
G
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G G GG G G G

G GG G
=

GG GG G G
=

G

G

)
.

[ ( ) ( ) ]

Q

E Q E K P Q iω δ− − − − +

G

G GG G
=

 

The self-energy part (69) and (77) determine the full set of self-energy parts in the 
approximation which is equivalent to the taking into account of the correlation energy in the 
frame of coherent excited states discussed in [4,5] beyond the Hartree-Fock-Bogoliubov 
(HFB) approximation. But before we will study the energy spectrum in a simpler approach.    
 

6. Energy spectrum in the Hartree-Fock-Bogoliubov approximation. 
 

The exact equations for the Green`s functions (47) following expressions (52), (57)-(60) 
contains terms of type  linear in the Coulomb interaction ( )E p QW G , the terms of the type 

 quadratic in the Coulomb interaction as well as the mixed terms RQW WG G
QWν G , where the 

constant ν  characterizing the broken symmetry is proportional to 
_

( ( ) )E k μ− , if the BEC of 
magnetoexcitons takes place on the state with 0k ≠

G
. The last relation was established in (42). 

The chemical potential μ  was deduced in [4,5] and it also contains terms proportional to QW G  

and . In the Hartree-Fock-Bogoliubov (HFB) approximation we will confine ourselves 

only with the terms linear in Coulomb interaction 

2
QW G

QW G . The possibility of such approach must 
be verified posteriory. If so, equation (52) for the Green`s functions (47) will take the simple 
forms of Dyson equations with zeroth-order, or (HFB) self-energy parts ( , )HF

ij P ω∑  as 

follows  
( , ) ( , ) ( , )
11 1 12 2 13 3

( , )
14 4 1

( , ) ( , ) ( , )

( , ) ;

P HF P HF P HF
i i i

P HF
i i

G P G P G P

G P C

ω ω ω

ω

ω ω ω

ω

+ + +

=

∑ ∑ ∑

∑
                                  (78) 

1, 2,3, 4i =                   
 

If one will introduce the Green`s functions and self-energy parts in the matrix forms and 
if we will add a matrix formed by the coefficients  ijC

ˆ ( , ) ( , ) ;ijG P G Pω ω=
G G

 ˆ ( , ) ( , )HFHF
ij

P Pω ω∑ = ∑
G G

 ˆ
ijC C=                      (79) 

it will permit to write the Dyson equation in a matrix form 
ˆˆ ˆ( , ) ( , )HFG P P Cω ω∑ =

G G
                                (80) 
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Equations (68) coincide with one part of equations (80). The other part is not needed 
because they lead to the same dispersion equation as equations (52) do. The self-energy parts 

( , )HF

ij
P ω∑
G

 introduced into formulas (54), (55), (56) are listed below   

11
~( , ) ( ) ;

HF
HF P E Pω ω μ= + −∑
G G

=                         21 ( , ) 0;HF P ω =∑
G

 

2

31
[ ]( , ) ;

2
HF HF i zP K lP i e Sinϕω ν − ⎛ ⎞×

= − ⎜ ⎟
⎝ ⎠

∑
G GG

      
2

41
[ ]( , ) ;

2
HF HF i zP K lP e Cosϕω ν − ⎛ ⎞×

= ⎜ ⎟
⎝ ⎠

∑
G GG

 

12 ( , ) 0;HF P ω =∑
G

                                          22
~( , ) (2 );

HF
HF P Eω ω μ= + − −∑ K P
G G G

=               (81) 

2
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⎝ ⎠
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G GG
      

2
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2
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⎛ ⎞×
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⎝ ⎠
∑

G GG
 

2
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[ ]( , ) 2 ;

2
HF HF i zP K lP i e Sinϕω ν

⎛ ⎞×
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⎝ ⎠
∑

G GG
    

2

23
[ ]( , ) 2 ;

2
HF HF i zP K lP i e Sinϕω ν − ⎛ ⎞×

= − ⎜ ⎟
⎝ ⎠

∑
G GG

 

33 ( , ) ( );HF P E Kω ω= − −∑
G G

= P
G

                      43 ( , ) 0;HF P ω =∑
G

 

2
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[ ]( , ) 2 ;

2
HF HF i zP K lP e Cosϕω ν

⎛ ⎞×
= ⎜ ⎟

⎝ ⎠
∑

G GG
      

2

24
[ ]( , ) 2 ;

2
HF HF i zP K lP e Cosϕω ν − ⎛ ⎞×

= − ⎜ ⎟
⎝ ⎠

∑
G GG

 

44 ( , ) ( );HF P E Kω ω= − −∑
G G

= P
G

                        34 ( , ) 0.HF P ω =∑
G

 

The values ~μ  and ν  of the zeroth order are denoted by ~ HF
μ and HFν . It corresponds 

to the Hartree-Fock-Bogoliubov (HFB) approximation. Following formula (42) [4] 

  2
_

( ) 2 ( )
HF

E k E kμ ν− = −
The energy spectrum is determined by the solution of the determinant equation 

det ( , ) 0HF
ij P ω =∑                                              (82) 

which has the form 
11 31 41

22 32 42

13 23 33

14 24 44

( , ) 0 ( , ) ( , )

0 ( , ) ( , ) ( , )
0

( , ) ( , ) ( , ) 0

( , ) ( , ) 0 ( , )

HF HF HF

HF HF HF

HF HF HF

HF HF HF

P P

P P P

P P P

P P P

ω ω

ω ω ω

ω ω ω

ω ω ω

P ω

=

∑ ∑ ∑
∑ ∑ ∑

∑ ∑ ∑
∑ ∑ ∑

                    (83) 

The expressions ( , )HF
ij P ω∑

G
 obey one exact relation 

31 13 42 24 32 23 41 14

31 23 42 14 32 13 41 24

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

HF HF HF HF HF HF HF HF

HF HF HF HF HF HF HF HF

P P P P P P P P

P P P P P P P P

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω

+ −

− −

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 0=
(84) 
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ω =

P

It leads to simplification of the dispersion relation (83), which will take the form 

                                      (85) 
11 22 33 44

2
11 33 22 44

( , ) ( , ) ( , ) ( , )

2( ) ( , ) ( , ) ( , ) ( , ) 0

HF HF HF HF

HF HF HF HF HF

P P P P

P P P P

ω ω ω ω

ν ω ω ω

−

⎛ ⎞− +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
Due to the equality 33 44( , ) ( , )HF HFP ω ω=∑ ∑ , this dispersion relation can be factorized 

and two relations can be written. One of them describes the simple plasmon solution 
        33 ( ) 0;HF P =∑ ( )E K Pω = −

G G
=                                                  (86) 

The other one is the third order equation 
2

11 22 44 11 22( , ) ( , ) ( , ) 2( ) ( , ) ( , ) 0HF HF HF HF HF HFP P P P Pω ω ω ν ω ω⎛ ⎞− +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑ =

×

2 =

                  (87) 

which takes the form 

2 2

2

~ ~( ) ( ) ( ) (2 ) ( ( ) (2 )) ( ( ) (2 ))

( ( )) 2( ) (2 ( ) (2 )) 0

HF HF

HF

E P E K P E P E K P E P E K P

E K P E P E K P

ω μ ω μ

ω ν ω

⎡ ⎤
⎢ ⎥− − − + − − + + −
⎢ ⎥
⎣ ⎦
× − − − + − − =

G G G G G G G G G
= =

G G G G G
= =

 (88)   

In the special case  it looks as P K=
G G

3 2~( ) ( ( ) ) 4( ) 0
HF

HFE Kω ω μ ν
⎡ ⎤
⎢ ⎥− − +
⎢ ⎥
⎣ ⎦

G
= =  

and has three solutions 
1

2 2
2,3

( ) 0

~( ) ( ( ) ) 4(
HF

Hf

P K

P K E K

ω

ω μ

= =

= = ± − +

G G
=

G G G
= )ν

                                     (89) 

Now the more general case will be considered introducing the small deviation of the 
vector  from the condensate wave vector P

G
K
G

 in the form P K q= +
G G G  and using the series 

expansions on the small wave vector qG  as follows  
2 2

g( ) ( ) ( ) v ( )
2 ( )

qE P E K q E K K q
M K

= + = + +
G G G G =G G G G=  

g
( )v ( ) ;E KK
K

∂
=

∂

GGG G           
2

2

2

( ) ;
( )

( )

M K
E K
K

=
∂
∂

G = G                                   (90) 

( ) (E K P E q− =
G G

);G         (2 ) ( )E K P E K q− = −
G G G G  

Here the group velocity  and the magnetic mass gv ( )K
GG ( )M K

G
 at the condensate wave 

vector  are introduced.  K
G

Then the coefficients of equation (88) will become  
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(

( )

g

2
2 2 2

g

g

( ) (2 ) 2 v ( )

~ ~ ~( ) (2 ) ( ) v ( )
2 ( )

( ) ( ) (2 ) 2 ( ) v ( )

HF HF HF

E P E K P K q

qE P E K P E K K q
M K

E K P E P E K P E q K q

μ μ μ

− − =

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− − − = − + −
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

− − − =

G G G GG G=

G G G G = G GG =

G G G G G GG G G=

)G
 ;       (91) 

The third order dispersion equation (88) looks as complete cubic equation  

( ) ( ) ( ) ( )

( ) ( )

2
2 2 223 2

g g

2
2 2 22

g g

~2 v ( ) ( ) v 2 ( ) v 4
2 ( )

~( ) ( ) v 4 v 0
2 ( )

HF
HF

HF
HF

qq E q E K q E q q
M K

qE q E K q q
M K

ω ω ω μ ν

μ ν

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎡ ⎤+ − − − + − + +⎣ ⎦ ⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟− + − − =⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

G =G G G G G GG= = = = = =

= G G G GG = =

g +

 (92) 

It can be transformed by the substitution  

( g
1( ) ( ) ( ) 2 v
3

q y q E q qω = + −
G G= = )                     (93) 

into the incomplete cubic equation  
3 0y py g+ + =                        (94) 

with  the coefficients ( )p q and  ( )g q

( ) ( )
2

2 2 2 2

g
1~( ) ( ) 4 v ( ) 0
32 ( )

HF
HFqp q E K q E q

M K
μ ν

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − + + + + <⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

G = G GG =                               (95) 

( ) ( ) (
2

2 2 2 2

g g
2 1~( ) ( ) v ( ) 2 ( ) v
3 92 ( )

HF
HFqg q E q q E K E q q

M K
μ ν

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + − + − − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

G =G G G GG= = )             (96) 

Because , the value ( ) 0p q <
3 2

3 2
p qQ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
can be negative, if 

3 2

3 2
p q⎛ ⎞ ⎛ ⎞− >⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. In 

this irreducible case there are trigonometric solutions for three real roots of equation (94). 
They are [29]  

( )

1

2,3

3

( )( )( ) 2 3 3
( ) 2( )2 3 3 3

( )( ) ;
( )2 3

qp qy q Cos

qp qy Cos

g qCos q
p q

α

α π

α

= −

⎛= − − ±⎜
⎝ ⎠

= −

−

⎞
⎟                                                 (97)  

    ( ) 1.Cos qα <         
The final solutions for the dispersion relations are  
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( )

1 g

2,3 g

3

1 2 ( )( )( ) ( ) v 2 33 3 3
1 2 ( ) 2( )( ) ( ) v 2 33 3 3

( )( ) ;
( )2 3

qp qq E q q Cos

qp qq E q q Cos

g qCos q
p q

αω

3
α πω

α

= − + −

⎛ ⎞= − + − ±⎜ ⎟
⎝ ⎠

= −

−

G G= =

G G= = ;      
3 2

3 2
p g⎛ ⎞ ⎛ ⎞− >⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
            (98) 

4 ( ) ( )q E qω ==      
In the limit  0q →

( )
2

2~(0) ( ) 4 ;
HF

HFp E K μ ν
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

G
  3(0) 0, (0)

2
g πα= =  

(0) ;
3 2

α π
=    (0) 2 2 3

3 3 2 3 2
Cos Cosα π π π⎛ ⎞ ⎛ ⎞± = ± =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∓                (99) 

1 4(0) (0) 0;ω ω= == =   ( )
2

2

2,3
~(0) ( ) 4

HF
HFE Kω μ

⎛ ⎞
⎜ ⎟= ± − +
⎜ ⎟
⎝ ⎠

G
= ν  

what coincides with formula (89). The fourth solution (86) ( )E K P−
G G

 equals  and also 
tends to zero when .   

( )E q
0q →

Now the value ν  and its relation with chemical potential μ  will be confirmed from 
another side. To do it, we will start with motion equation (41) for the macroscopical large 
amplitude of the coherent magnetoexcitons with  wave vector K

G
neglecting the influence on it 

of the noncoherent quasiparticles. It has the form   

( )2~( ) ( ) ( ) 1 2vidi d K E K d K Ne
dt

ϕμ ν
⎛ ⎞
⎜ ⎟= − − −
⎜ ⎟
⎝ ⎠

G
= ;              (100) 

( )( )2~( ) ( ) 1 2vE K E Kμ μ
⎛ ⎞
⎜ ⎟− = − −
⎜ ⎟
⎝ ⎠

 

where we have put approximatively  
ˆ (0) 0;e hN Nρ ≅ − =        2ˆ (0) 2 2 ve h exD N N N N≈ + ≈ =                                        (101) 

where is the filling factor of the LLL. Equation (100) has the form, as it was discussed by 
Khadzhi in this theory of coherent nonlinear light propagation in the exciton range of 
spectrum [30]. The time-dependent solution of equation (100) was find [30] in the form  

2v

( )

~( )

0
( , )

( )

i E K t
i tNed K t Ce

E K

μ
ϕ δ

δ

ν
μ

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠− −

→+
= +

−
=                         (102) 

In the limit  the damped oscillatory term vanishes and the stationary solution is 
established. It was determined in [4] as equal to  

t →∞

( ) vi i
exd K N e e Nϕ ϕ= =   
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Substituting it in equation (102) we will find in full accordance with (42) 
( ( ) vE K )ν μ= −                           (103) 

It differs from expression (33) by the term , which is due to BEC on the state with 
. It is a general relation, which is true also for 

( )E K
0K ≠ HFν and HFμ . 

 In such a way we have all necessary parameters to investigate and calculate numerically 
the desirable dispersion relations on the base of analytical solutions (98)  
obtained in the HFB approximation. The group velocity  is represented in fig.1, whereas 
the dispersion relations are drawn in plots 2-5, which correspond to condensate wave vectors 

, 1;3,6 and 4,6. They are represented in three observation geometries when the wave 
vector  of the elementary excitation is parallel, anti parallel or perpendicular to the 
condensate wave vectors . There are four branches of the energy spectrum, two of which 
correspond to acoustical and optical plasmon branches. Other two branches belong to BEC-ed 
magnetoexcitons. One of them is named as quasienergy branch. Mathematically they appear 
due to the fact that in Bogoliubov theory of BEC side by side with the exciton annihilation 
operator  one must take also into account the complex of three operators 

( )gV k

0kl =
qG

k
G

( )d P 2 †(0) ( )d d P− . 
The states described by these operators have the bare energies  and 

 correspondingly. Side by side with the branch  another 
branch  also appears, what is named as quasienergy branch. 

( ) ( )ex lE P I E P= − +
2 (0) ( ) (ex ex lE E P I E− − = − − − )P ( )E P

( )E P− −
From the physical point of view the BEC-te is nothing but an unlimited source of 

energy without a definite number of quanta, which permits to add or to substract to the energy 
quantum of any quasiparticle some energy quanta of the condensate. Just these four branches 
can be observed in fig.1. There are threefold degenerate branch  describing the two 
plasma branches and one energy branch of the BEC-ed magnetoexcitons. The fourth branch is 
a quasienergy branch and has a dispersion with the sign minus in comparison with the exciton 
energy branch. In the case  the two-dimensional magnetoexcitons form an ideal 
degenerate Bose gas because the interaction between the excitons without the motional dipole 
moments exactly equals zero. By this reason the energy branches of elementary excitations 
coincide with the energy spectrum of the bare noninteracting particles. The exciton-type 
branches of the collective elementary excitations do not contain the ionization potential 

( )E P

0k =

lI . It 
happens because in order to excite one exciton already existing in the componence of the 
condensate with wave vector  it is necessary to change the initial exciton energy 0k = lI−  so 
as to transfer it in the state with wave vector q  and final state energy ( )lI E q− + . The 
excitation energy is equal only to . This fact was mentioned first in [3]. ( )E q

When the condensate wave vector k increases so as kl equals 1;3,6 and 4,6 the attractive 
interaction between the magnetoexcitons appears, what makes the state of BEC-ed 
magnetoexcitons unstable. One can observe that in the next three figures one branch remains 
the same. It is not affected by the changes arised in other three branches. Only the acoustical 
plasmon branch is interconnected with two BEC-ed exciton branches. It results from the 
factorization of the fourth order determinant equation (66) and from subsequent equations 
(69), (71) and (77). Three remaining branches are interconnected and influence each other. 
When the condensate wave vector k

G
 increases it leads to the appearance of the growing 

attractive interaction in the system and to instabilities of the energy spectrum of the 
elementary excitations deduced in the frame of the HFBA. As was observed in the 
Introduction, the lowering of the positive energy spectrum of any branch in dependence on 
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the wave vector means the appearing of the soft mode. It testifies that the system tends to pass 
in another phase.  
  Dispersion relations (98) for 1 2 3, ,ω ω ω  depend on the group velocity , in the form ( )gV k

GG

2 ( )
3 gV k q−

GG G= , what is proportional to ( )k q−
G Gi , because ( )gV k

GG
 following (90) is proportional to 

. Due to such structure of expressions (98) there is a supplementary negative term in one 
geometry, when  is parallel to . This term becomes positive in the antiparallel orientation 
of   and  and turns to be zero when 

k
G

qG k
G

qG k
G

qG  is perpendicular to k
G

.  The negative term leads to 
negative values of one branch of the energy spectrum of the elementary excitations and such 
behavior takes place at all three values of the condensate dimensionless wave number 

 1;3,6;4,6.kl =
In fig.1 the group velocity ( )gV k

GG
 in dependence on  is represented. It has a maximum 

in the region of   
kl

1.kl ≅
In the next four figures the energy spectra for different values of  as well as for 

different geometries of observation are drawn. One can conclude that in the HFBA all energy 
spectra at kl  different from zero and reveal the instabilities of the system due to the 
attractive exciton-exciton interaction.           

kl

2v 0.3= 2

 
                                             

                            

( ) / l
g

I lV k
=

  

Fig.1. The group velocity V  of the magnetoexciton in units equal to ( )g k lI l
=

. 
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Fig.2.The energy spectrum of elementary excitations in the case when kl equals 0. 
The upper branch is threefold degenerate. 

 

   

a) qG  parallel to  k
G

  

b) qG  perpendicular to  k
G
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c) qG  antiparallel to k  
G

  
Fig.3. The energy spectrum of elementary excitations in the case when kl equals 1 for three different 

geometries of the observation: 

 

a) qG  parallel to  k
G

 

b) qG  perpendicular to  k
G
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c) qG  antiparallel to k
G

 

Fig.4. The energy spectrum of elementary excitations in the case when kl equals 3,6 for three different 
geometries of observation. 

 

a)  parallel to  qG k
G

 

 

b) qG  perpendicular to  k
G



Moldavian Journal of the Physical Sciences, Vol.4, N2, 2005 
 

 186

 

c) qG  antiparallel to k
G

 

Fig.5. The energy spectrum of elementary excitations in the case when kl equals 4,6 for three 
different geometries of observation. 

 
7. Self-energy parts in more complex expressions 

 
The self-energy parts (69), (70) and (77) contain the average values of the types 

†ˆˆ ˆ ˆ ˆ ˆ, ,D d and dρρ ρ ρ ρ . They may be calculated in different approximations. Because 

the more important averages happened to be of the type ˆ ˆρρ , we will discuss below the 
different approximations on the base of this example. The simpler way is to use the ground 
state wave function ( )g kψ  (28) of the BEC-ed magnetoexcitons and to calculate the 

averages in this approximation using the ,p pα β  representation instead of  

representation because the function 

,p pa b

( )g kψ  plays the role of vacuum state for the ,p pα β  
operators. 
Transforming the operators  and  in †ˆ ( ), ( ), ( )Q D Q d Pρ

G G
( )d P ,p pα β  representation and using 

the Wick theorem [26] we have found 

       

( )

2
2 2 2

2
2 2 2

2 2 2

[ ]ˆ ˆ( ) | ( ) ( ) | ( ) 4
2

[ ( )]ˆ ˆ( ) | ( ) ( ) | ( ) 4
2

ˆˆ( ) | ( ) ( ) | ( ) 2 [ ]

z
g g

z
g g

g g z

K Q lk Q Q k u v NSin

K Q P lk Q P K K P Q k u v NSin

k Q D Q k iu v NSin K Q l

ψ ρ ρ ψ

ψ ρ ρ ψ

ψ ρ ψ

⎛ ⎞×
− = ⎜ ⎟

⎝ ⎠
⎛ ⎞× +

+ − − − = ⎜ ⎟
⎝ ⎠

− = ×

GGG G

GG GG GG G G G

G G GG

    

      
( )2 2 2

2
† 3

ˆˆ( ) | ( ) ( ) | ( ) 2 [ ( )]

[ ]ˆ( ) | ( ) ( ) | ( ) 2
2

g g

z
g g

k Q P K D K P Q k iu v NSin K P Q l

K Q lk d K Q Q k N iuv NSin

ψ ρ ψ

ψ ρ ψ

+ − − − = × +

⎛ ⎞×
− − = ⎜ ⎟

⎝ ⎠

G GG G G G G G

GGG GG
z

G
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2
† 3

2
3

2
3

[ ( )]ˆ( ) | ( ) ( ) | ( ) 2
2

[ ]ˆ( ) | ( ) ( ) | ( ) 2
2

[ ( )]ˆ( ) | ( ) (2 ) | ( ) 2
2

z
g g

z
g g

z
g g

K P Q lk d P Q P Q K k N iuv NSin

K Q lk Q d K Q k N iuv NSin

K P Q lk P Q K d K P Q k N iuv NSin

ψ ρ ψ

ψ ρ ψ

ψ ρ ψ

⎛ ⎞× −
− − − = ⎜ ⎟

⎝ ⎠
⎛ ⎞×

− = − ⎜ ⎟
⎝ ⎠

⎛ ⎞× +
+ − − − = − ⎜ ⎟

⎝ ⎠

GG GG GG G G

GGG GG

GG GG GG G G G

   (104) 

The first two averages contain the coherence factor 
2

2 [ ]
2

zK Q lSin
⎛ ⎞×
⎜
⎝ ⎠

⎟

GG
, which is sign 

well determined and positive function at any values of wave vector Q
G

, whereas the another 
averages are represented by sign variable dependences and this fact will diminish significantly 
in some cases their contributions to the self-energy parts. The calculation of the average ˆ ˆρρ  
is in strong relation with the determination of the ground state energy and of correlation 
energy in papers [4,5]. 

The starting expression in these papers is 

                          ( )
2

†

0

1 1ˆ ˆ ˆ0 | ( ) ( ) | 0 ( )
2 2Q Q n

n
W Q Q W Qρ ρ ρ− = ∑G G

G G G
    ,                                  (105) 

where 0  denotes the ground state wave function and n  represents the wave function of the 

excited states. When the ground state wave function 0  was chosen in the form ( )g kψ  and 
the coherent excited states (46)-(56) [4] were used, they led to the expression 

                     ( )
2

†

0
0

1 ( ) Im
2 2 ( )Q HFn

n

dW Q
Q

ωρ
π

1
ε ω

∞ ⎛ ⎞
= − ⎜

⎝ ⎠
∑ ∫G

G = G ⎟              ,                                (106) 

which contains dielectric function of the system ( , )HF Qε ω
G

 in the HF approximation. The 
idea suggested by Nozieres and Comte [31] and the method proposed by them is based on the 
affirmation that the more exact value of expression (105) can be obtained if the dielectric 
constant ( , )RPA Qε ω

G
 in the random phase approximation (RPA) will be substituted in formula 

(106) instead of the value ( , )HF Qε ω
G

. 
This idea was applied when instead of approximation (82) in [4] the more exact 

expression (83) was used.  
The possible ground in favour of this method is the supposition that the ground state 

wave function 0  of the BEC-ed magnetoexcitons in not exactly equal to ( )g kψ  but 
contains some superposition with other states, which make the variational wave function more 
flexible with lower energy of the ground state. As one can see from expression (2.154) [25] 
between new states engaged in this contribution there are the excited states with two free e-h 
pairs outside the condensate. On the same grounds we can expect that the more exact value of 
the chosen expression will be 

              
0

1 ˆ ˆ( ) ( ) Im
2 2 ( , )Q RPA

dW Q Q
Q

ωρ ρ
π

1
ε ω

∞ ⎛ ⎞
− = − ⎜

⎝ ⎠
∫G

G G = G ⎟                                                     (107) 

The both expressions of the dielectric constants ( , )HF Qε ω
G

 and ( , )RPA Qε ω
G

 differ by 
their dependences on the polarizability of the system 04 ( ,HF Q )πα ω

G
, as follows 
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0

0

( , ) 1 4 ( , )
1 1 4 ( , )
( , )

RPA HF

HF
HF

Q Q

Q
Q

ε ω πα ω

πα ω
ε ω

= +

= −

G G

G
G

                                                                        (108) 

In the case of BEC-ed magnetoexcitons their polarizability due to the coherent excited 
states in the frame of LLL approximation, without taking into account of the excited Landau 
levels (ELL) was deduced in [4] and has the form 

2
2 2 2

0
[ ] 1 14 ( , ) 4

2 ( ) ( )
HF z

Q
ex ex

K Q lQ u v NW Sin
I k i I k i

πα ω
ω δ ω δ

⎛ ⎞ ⎡ ⎤×
= − −⎜ ⎟

G

⎢ ⎥− + + +⎣ ⎦⎝ ⎠
G

GG
= =

0; →   (109) δ

It contains in the first fraction a resonant denominator, when ω=  equals the ionization 
potential ( )exI k  of the magnetoexciton with wave vector k

G
. The singularity of expression 

(109) resulted in the case of correlation energy in its singular dependence of the type 1
( )exI k

 

when ( )exI k  tends to zero in the limit . To avoid both singularities in paper [5] instead 
of the infinitesimal value 

k →∞
0δ →  a finite value of the exciton level damping rate γ  was 

introduced, which transforms expression (109) and its real and imaginary parts as follows 

             
( )

0 0,1 0,2

2
2 2 2

4 ( , ) 4 ( , ) 4 ( , )

[ ]4 ( ,
2

HF HF HF

z
Q

Q Q i Q

K Q lu v NW Sin k i k

πα ω πα ω πα ω

ω ω

= + =

⎛ ⎞×
= − ∑ + Γ⎜ ⎟

⎝ ⎠
G

G G G

GG
) ( , ) ,
G G                                            (110) 

where 

          
( ) ( )

( ) ( )

2 22 2

2 22 2

( ) ( )( , ) ,
( ) ( )

1 1( , )
( ) ( )

ex ex

ex ex

ex ex

I k I kk
I k I k

k
I k I k

ω ωω
ω γ ω γ

ω γ
ω γ ω γ

− +
∑ = −

− + + +

⎡ ⎤
Γ = −⎢ ⎥

+ + − +⎢ ⎥⎣ ⎦

G = =
= =

G

= =

                                           (111) 

The needed imaginary part approximately equals 

           0,2 0,1 0,2
1Im 4 ( , ) 2 4 ( , ) 4 ( , )
( , )

HF HF HF
RPA Q Q

Q
Qπα ω πα ω πα

ε ω
⎛ ⎞

= − + ∗ ∗⎜ ⎟
⎝ ⎠

G G
G ω

G
                       (112) 

 
It leads to the desirable average value 

0

2 24 4 2
2 2 2 4

1ˆ ˆ( ) ( ) Im
( , )

16 v ( )
4 v ( )

2 ( ) 2

Q RPA

Qz z
Q

ex

dW Q Q
Q

K Q l K Q lu W N
u NW Sin Sin

I k

ωρ ρ
π ωε

∞ ⎛ ⎞
− = − =⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤× ×⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟= −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝

∫G

G
G

G G = G

G GG G

⎠                    (113) 
if the infinitesimal damping rate 0δ → +  is used. The first term of (113) coincides exactly 
with the result (104) obtained in the HFA. The second term of (113) corresponds to 
correlation energy corrections, when the ground state energy is calculated. It contains the 
singular dependence on ( )exI k  discussed above. Taking into account the finite exciton 
damping rate γ and calculating the integral 
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0

2 2

2 2

1( ) ( , ) ( , )
2 2

( )1
2 ( ) 2 ( ) ( )

ex

ex

ex ex ex

dS k k k
4 ( )I k

I karctg
I k I k I k

ω πω ω
π π

γ γ
γ γ

∞ ⎡
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⎣
⎤⎛ ⎞−

− −

−

⎥⎜ ⎟ +⎝ ⎠ ⎦

∑∫
=

                (114) 
we will obtain the chosen expression without singularity 

( )

( )

2
2 2 2

24 4 2
4

ˆ ˆ( ) ( ) 4 v
2

16 v ( )
( ) 2

z
Q Q

z
Q

ex
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K Q lu T k W N Sin
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⎝ ⎠

⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟−
⎜ ⎟
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−

GG
G G
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 ,                       (115) 
where  has the limiting expressions ( ) 4 ( ) ( )exT k S k I k=

( ) 1

0
( )ex

T k

I k
γ

=

→
 ; 

3
( )2( )

3
( ) 0

ex

ex

I kT k

I k
π γ

γ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

→
              (116) 

Now the more complete expressions for the self - energy parts will be calculated. They 
are listed below. 

The diagonal self - energy parts ( , )
ii

P ω∑
G

 were calculated taking also into account the 

terms proportional to  side by side with 4 4 3v Qu W G 2 2 2v Qu W G . 
2 2

2 2

2 2 2
11

2 2
2 4

4 4
3 2

2 2~( , ) ( ) 16 v
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z z
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G GG G G

.
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G GG G

=

  (117) 

 
The nondiagonal self - energy parts ( , )

ij
P ω∑
G

 with i j≠  do not contain the average 

ˆ ˆ( ) ( )Q Qρ ρ −
G G

 and in their expressions there are no terms proportional to  :  3
QW G
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            (118) 

First of all we are interested to determine the energy spectrum of the collective 
elementary excitations with the wave vectors P

G
 not so far from the condensate wave vector 

, so that . There are seven more cumbersome expressions K
G

P K q= +
G G G ( , )

ij
P ω∑
G

 (117) and 

(118) and the remaining other simpler expressions ( , )
ij

P ω∑
G

 (69), (70) and (77), which in 

dependence on  and qG ω  have the forms ( , )
ij

q ω∑ G  
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Three nondiagonal self-energy parts 
31

( , )q ω∑ G , 
32

( , )q ω∑ G  and 
34

( , )q ω∑ G  look as 
follows 
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The remaining nine self-energy parts containing only the terms proportional to the 
parameter ν  are  
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The full set of self-energy parts ( , )ij q ω∑

G  will be used below for the calculation of the 
energy spectrum of the collective excitations beyond the HFBA. 
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8. Energy spectrum beyond the HFBA in collinear geometry 
 

The cumbersome dispersion equation in the form of fourth order determinant can be 
essentially simplified in collinear geometry when the vector product projection [ ] . It 

takes place, when  is parallel as well is as antiparallel to condensate wave vector . At this 
condition two self-energy parts vanish 

zq k× =
GG

qG k
G

                             13 23( , ) ( , ) 0q qω ω∑ = ∑ =
G G                                                                       (122) 

whereas other four self-energy parts equal to  

                        14

41
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q
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∑ =
∑ =

G
G            24

42

( , ) 2 ;
( , ) ;
q
q
ω ν
ω ν

∑ = −
∑ = −

G
G                                                     (123) 

The fourth order determinant becomes factorized in the form 

                 
11

33 22

44

( , ) 0
( , ) 0 ( , ) 0

2 2 ( , )

q
q q

q

ω ν
ω ω

ν ν ω

∑
∑ ∑ −

− ∑

G
G G

G
ν =       ,                                        (124) 

what leads to two dispersion equations. One of them is the separate equation determining the 
energy spectrum of an optical plasmon in the BEC-ed electron-hole system 
                                    33 ( , ) 0q ω∑ =

G                                                                                   (125) 
and another equation 
                                          (126) 2

11 22 44 11 22( , ) ( , ) ( , ) 2 ( ( , ) ( , )) 0q q q q qω ω ω ν ω ω∑ ∑ ∑ − ∑ +∑
G G G G G

=
determines the three interconnected branches. Two of them describe the collective elementary 
excitations of BEC-ed magnetoexcitons and the third branch describes the acoustical plasmon 
spectrum. Equation (126) is similar with equation (87) obtained in the HFBA, but their 
similitude is only apparent. Due to the chosen geometry the considerable simplification of the 
dispersion equation occurred. Below only the diagonal self-energy parts ( , )ii q ω∑

G  with 
 will be used, avoiding the more cumbersome components such as 1,2, 4i = 31( , )q ω∑

G  and 

32 ( , )q ω∑
G . 

In spite of the condition [ ]  equation (126) is not invariant under the inversion 
operation when q  is substituted by 

0zq k× =
GG

G q− G , because in the system there is a well selected 
direction determined by the BEC-ed wave vector k

G
. By this reason the elementary excitations 

with wave vectors  and  have different energies.  qG q− G

The investigations in this direction are in progress. 
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TEMPERATURE ANOMALIES OF OPTICAL PROPERTIES IN CADMIUM 
DIPHOSPHIDE CRYSTAL 
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The temperature dependence of refractive indices of ordinary and extraordinary rays (no, 
n e) in the temperature region 20-110°C for different directions in cadmium diphosphide 
crystal are presented in the given work. It is obtained that no and n increase with temperature 
growth. It is shown the thermooptical coefficient for ne depends on direction of laser beam 
relatively optical axis of the crystal and for no it doesn’t depend. Several anomalies in the 
form of steps and bends are revealed on the curves of the temperature dependence of 
refractive indices. The detected features are connected with the transitions between 
commensurate and incommensurate phases. 

 
Crystals of the tetragonal modification cadmium diphosphide belong to the А2B5 group 

and are a promising material to be used in the quantum electronics and laser techniques. 
Owing to large value of birefringence CdP2 can be used as active elements in optoelectronics. 
Strong dependence of refractive indices on temperature and low heat conduction allow to 
produce deflectors of laser beam on the basis of CdP2 single crystal. Placing a plate from the 
CdP2 crystal into resonator of the ruby or neodim laser, it can be possible to change smoothly 
length of impulse from 20-25ns to 150-300ns with keeping of the impulse shape [1]. 

CdP2 crystals have complex structure [2] and thus possess interesting optical properties. 
The crystal is of a dark red color, transparent in a limited range of wave’s lengths in the 
visible spectrum part, optically negative and optically active. 

The work aimed at determining temperature dependence differences of the refractive 
indices depending on the crystal orientation.  

The temperature dependence of the ordinary and extraordinary ray refractive indices [3] 
in the region of 20-110°C for the red laser line is presented in the given work. The 
measurements were carried out by means of the least deviation method using five prisms of 
the same size but different orientation as the samples. The prisms with sizes of 10x10x5x3 
mm were cut from the transparent crystal of high quality. Refractive angle of each of them 
was equal to 18°. 

Laser beam propagates through investigated prisms under next angles to the optical axis 
of the crystal: ~90° (prisms 1 and 2, for vertical and horizontal plains), ~16°, ~28° and 50° 
(prisms 3, 4 and 5). 

The prisms were placed into the optical furnace with two windows for the falling and 
refracted rays. Temperature measurements were carried out in regime of continuous heating 
or cooling which rate can be varied.  

It is established that the refractive indices increase along with the temperature growth 
both for the ordinary and extraordinary rays. Beginning with 70°С the crystal gets darker and 
then it becomes black and nontransparent by the temperature of 100-110°С owing to the shift 
of the absorption line. Temperature dependence of refractive indices of ordinary and 
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extraordinary rays in direction perpendicular to the optical axis for the red laser line with 
wavelength 632,8 nm is shown in Fig.1. 

Values no, ne и Δn are equal to 3,4225; 3,2814 and -0,14 at room temperature in this 
direction. Temperature dependence no and ne for the direction of laser beam in the crystal 
under the angle ∼ 16° to the optical axis is presented in Fig.2. As one can see both curves are 
almost parallel. It means that thermooptical coefficients of both refractive indices are 
practically the same at comparatively small deflection of laser beam of the optical axis. 

The temperature dependence of the ordinary ray is the same for all directions of the 
laser beam propagation within the crystal, and its thermooptical coefficient, dno/dt, is constant 
value. 
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Fig.1. Temperature dependence of ordinary and extraordinary rays
refracive indices measured in direction perpendicular to the 
optical axis. 
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The temperature dependence of extraordinary refractive index is not usual. It is revealed 
that not only the value of the extraordinary refractive index depends on the direction of light 
propagation within the crystal but also its thermooptical coefficient also depends on the 
direction. Therefore thermooptical coefficient dno/dt is constant and does not depend on 
direction of laser beam in the crystal and dne/dt is variable and depends on direction of laser 
beam in the crystal. 

The increasing of deviation of laser beam of the optical axis results in decreasing of 
dne/dt. Two waves ordinary and extraordinary with reciprocally orthogonal polarization 
propagate along the optical axis with rate of ordinary wave, i.e. no = ne in the temperature 
region 20-110°С, and their thermooptical coefficients are equal in this direction too. These 
two waves have not only different refractive indices in direction perpendicular to the optical 
axis, but also different thermooptical coefficients. 
Fig. 3 shows dependence of thermooptical coefficient of extraordinary beam dne/dt on the 
angle between the optical axis of the crystal and direction of laser beam. It is seen that 
increasing of laser beam deflection of the optical axis results in decreasing dne/dt. 

10 20 30 40 50 60 70 80 90 100
3,6

3,8

4,0

4,2

4,4
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4,8

Fig.3. Dependence of thermooptical coefficient of extraordinary ray
refractive index on the angle between direction of laser beam and 
optica axis.

dne/dt

 x
 1

0-4

α, grades 

From the Fig.3 it follows also that the smaller angle of deflection of laser beam of 
optical axis the nearer value dne/dt to dno/dt.  

It means that thermooptical coefficients of both ordinary and extraordinary rays along 
the optical axis of CdP2 crystal are equal in the whole temperature region 20-110°C, dne/dt = 
dno/dt ≈ 4,7⋅10-4. 

At small ″steps″ of temperature measurements equal to 2-3°, there is a succession of 
anomalies on all curves no,e =f(t). Sections of the curves between the anomalies are rectilinear. 
The revealed anomalies take place nearly at the same temperatures for all investigated 
samples: 20°C, 35°C, 50°- 55°C°, 70°- 75°C, 85°- 90°C. 

The temperature dependence of the extraordinary ray refractive index for two samples 
(1,2) in direction perpendicular to the optical axis, but in reciprocally perpendicular planes, is 
presented in Fig.4. 

At the same time temperature behavior of refractive indices for each direction in CdP2 
crystal is specific. 
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The bend point at 20° is clearly seen in the graphs obtained at measuring of refractive 
indices of prisms 1,2 and 3. The bend point at 35-37°C is observed on every curve no,e = f(t), 
but it reveals especially distinctly in shape of “step” at propagation of light through the prism 

4 under the angle 28° to the optical axis. The bend at 50°C is good seen at the measurements 
of the prisms 2 and 3, and for the other ones it is smoothed. Transition in the temperature 
region 85-87°C is revealed on every curve, and for the prisms 2 and 5 it presents in the shape 
of “step”. At frequent measurements the steps can be smoothed, but the bends and change of 
the slope angle of the rectilinear sections are kept. 
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Fig.4.Temperature dependence of refractive index of extraordinary ray
for the prisms 1 and 2 measured in direction perpendicular to the optical
axis but in two perpendicular planes. Arrows show bend points on the curves.
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We suggest that pointed anomalies are connected with phase transitions between 
incommensurate phases of type of ″devils staircase″ [4]. 
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The study of dielectric and elastic properties of CdP2, ZnP2, ZnAs2 single crystals was 

carried out at frequencies 102, 103, 104, 106 Hz and 107 Hz relatively over the temperature 
range 78-400 К. Dielectric constant has values (ε = 102 – 103) over a wide temperature range 
between 150 K and 400 K. Lower than 150 K the value drops abruptly by almost two orders 
of magnitude and the dielectric constant is about 9-14 over a temperature range 78-100K. 
Conductivity σ of materials is composed of two parts: frequency-dependent (hopping) σh part 
and typical for semiconductors σs part. Hopping conductivity σh ∼ ωα is described by 
sublinear (α < 1) and superlinear (α > 1) power laws at low and high temperatures 
respectively. The sound velocities of single crystals were measured over temperature range of 
78 - 400 K and elastic constants were calculated. Elastic properties show anomalous softening 
at small ranges about ΔT = 10-20 K with the following change of curve slope to the 
temperature axis.  

 
1. Introduction 

 
AIIBV compounds attract special attention due to such phenomena as the 

incommensurate phases, polytypicism and "devil's staircase", which are observed in CdP2 and 
ZnP2 representatives of this family. The compounds crystallize to isomorphous tetragonal α-
ZnP2 and β-CdP2 crystals and to isomorphous monoclinic β-ZnP2 and ZnAs2 crystals with 
tetrahedral atomic coordination, implicit layer structure and anion chains penetrating over the 
crystal. ZnAs2 is relatively weakly studied in consequence of the difficulties of growing 
perfect single crystals, and large structurally perfect crystals were obtained only during the 
latest years.  

The semiconductors of АIIВV group in technical applied aspect are represented as 
functional materials owing to prospects to use them as working elements of optical, electronic 
and thermal detectors, photovoltaic cells, solar batteries and thermal radiation receivers. At 
the same time AIIBV compounds have the complex phase diagrams that are reflected in 
existence of several compounds in systems in polymorphism of a line of compounds, 
available of metastable and amorphous phases and wide areas of homogeneity [1]. The 
distortions of structures and characteristic structural transformations, connected to them 
concern also to features of AIIBV compounds. The special place among semiconductors of 
АIIВV group is occupied by cadmium and zinc diphosphides intensively investigated last 
years.  

The interest to study of properties and structural transformations in crystals of AIIBV 
compounds is connected to features of their crystal structure. The crystals are tetrahedral 
coordinated mainly with covalent bond of the uncentral character and share of ionic bond. The 
tetrahedrons, forming a continuous grid, are strongly deformed, that entails the instability of a 
lattice in relation to structural transformations and formation of various superstructures. In 
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diphosphide crystals, in which at the simple chemical formula the elementary cell consists of 
24 atoms and the zigzag chains of atoms of phosphorus pass through all crystal, forming huge 
molecules, it is possible to expect presence of strong nonlinear effects and anharmonic 
instability [2]. And, though the structure distortions and characteristic transformations, 
connected to them, concern to features of AIIBV compounds, the mechanisms of lattice 
distortions formation and of structural transformations in crystals are not clear enough. The 
electronic subsystem in semiconductors also rather strongly influences structural properties 
and the interaction of phonon (lattice) and electronic subsystems can cause the shift of phase 
transition temperature, the thermal memory effects and occurrence of metastable states with 
phase transitions. 

Under the formula АIIВV
2 in zinc - phosphorus, cadmium - phosphorus, zinc - arsenic 

systems two modifications of CdP2 (orthorhombic α-CdP2 and tetragonal β-CdP2), two 
modifications of ZnP2 (tetragonal α-ZnP2 and monoclinic β-ZnP2) and monoclinic ZnAs2 are 
formed. The structure of crystals is characterized by tetrahedral coordination of atoms. Each 
atom of metal M (M ≡ Cd, Zn) is surrounded with four atoms of anion A (A ≡ As, P) and each 
atom A is surrounded with two atoms M and two atoms A. Atomic radius A is about 0.1 nm 
and, as A-A distance is 0.21 nm approximately, the chemical bond between anions is rather 
strong. In structures of diphosphides the atoms of anions form the zigzag chains which are 
penetrating through over the crystal [1]. The atoms of metal М are at the centre of deformed 
tetrahedron and connect the chains of anions in 3D structure. In compounds the complex 
character of chemical bond is observed; phosphorus - phosphorus and arsenic - arsenic bond 
carries covalent character, in metal-anion bond the certain share of ionic bond (from 16 up to 
54 % by different estimations) is present [3]. 

Elementary cell consists of four layers revolved from each other on 90 degrees. The 
sequence of packing of layers is frequently broken and instead of four it is possible to observe 
the multiplets of six, less often five layers. The infringements of a sequence of packing are 
entailed with formation of polytypes in a crystal [4]. The transformations of polytypes carry 
thermoactivated character and have served as an explanation of observed in [5] an unusual 
sequence of structural phase transitions existing in a wide temperature range from 80 K to 400 
К. The temperature dependences of lattice parameters have anomalous areas about ΔТ ≈ 20 K 
with thermal expansion near zero. The superstructure with period from 60 nm at 80 K to 20 
nm at 400 K, quickly changes in area of “plateau” and remains almost constant in areas with 
usual thermal expansion. It has given the basis to determine the existence of incommensurate 
phase and “incomplete devil’s staircase” [6-9] in α-ZnP2 crystal [5]. In β-ZnP2 [10] crystals 
the incommensurate phase has not been observed, however there is an original superstructure 
formed by the microtwins with the sizes of the twins about several elementary cells [4]. 
Structure and the properties of crystals have not brightly expressed anisotropy, which is 
peculiar to layered crystals [11]. However, rather large deviations of lengths and corners of 
chemical bonds in deformed tetrahedrons result in various local distortions in a crystal.  

 
2. Experimental procedures 

 
Single crystals of β-CdP2, α-ZnP2, β-ZnP2 and ZnAs2 were grown from gas phase, 

where cut parallel to the (001), (100), (010), (110) planes and polished to the desired 
thickness.  

Dielectric measurements were performed using a parallel-plate capacitor arrangement. 
The samples were formed into thin plates with smooth polished faces onto which aquadag 
electrodes were painted. Samples were placed among polish brass electrodes. Stray 
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capacitance of holder with 
conductors was at most 0.7 pF. 
Data were taken with E8-14 type 
digital LCR meter operating at 100 
Hz, 1 kHz, 10 kHz and E8-12 type 
LCR meter operating at 1MHz. It is 
assumed that the loss component of 
the impedance is in parallel with 
the capacitive component in all of 
the dielectric measurements.  

Elastic properties of 
compounds have been studied with 
ultrasonic echo-pulse technique at 
10 MHz frequency. Samples for 
ultrasonic measurements were 
formed into parallelepipeds with 
polished faces. Longitudinal and 
shear sound velocities were 
measured i) along a, c 
crystallographic axes of β-CdP2, α-
ZnP2 and along a, b, c axes of β-
ZnP2 ii) longitudinal sound 
velocities along a, b, c axes of 
ZnAs2. 

The dielectric and ultrasound 
measurements were carried out in 
78-400 K temperature range in a 

mode of slow heating/cooling with velocity 0.1 - 0.05 K/min. Accuracy of dielectric 
measurements and of relative measurements of sound velocity was not worse 0,1 %, of 
temperature - 0.1 К. 
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Fig. 1. Temperature-dependence of the dielectric
constant ε(T) and tan δ(T) along [001] axis at the
different frequencies of single crystal β-CdP2. 

 
3. Experimental results 

3.1. Dielectric properties and conductivity 
 

In Fig. 1 typical temperature dependence of the dielectric constant ε(T) and the loss 
component tan δ(T) along c axis of β-CdP2 and α-ZnP2 samples for different (f = 102, 103, 
104, 106 Hz) frequencies is shown. The low temperature values εc ≈ 7 – 8 along c and εa,b ≈ 12 
– 13 along a, b axes agree with those obtained from optical measurements [3].  

Over the temperature range of 150–350 K, ε(T) is large (ε ~ 102 - 103) and only weakly 
temperature dependent. However, on cooling below 150 K, ε(T) drops by a factor of 100. This 
drop in ε(T) is accompanied by a peak in tanδ(T). It is seen that the temperature of the sharp 
anomaly in ε(T) is strongly affected by f measuring frequency, increasing from 150 to 250 K 
between 102 and 106 Hz. The temperature-frequency dependence of the dielectric constant (ε) 
and the loss component (tan δ) along a axis (for β-CdP2 and α-ZnP2 samples) is qualitatively 
similar. Peak values of tan δ(T) increase when the measuring frequency increases that 
possible to describe tanδmax=0.332+0.144·lgf dependence. At the temperature above 350 K the 
growth of tan δ due to through conductivity is observed. The characteristic frequency f0, 
extracted from the peak in the loss data, as a function of temperature is shown in the inset of 
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Fig.1. The large change in f0 with temperature is unusual for a thermally driven phase 
transition and rather points to a relaxation process. 
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Fig. 2. The temperature dependence of Davidson-
Cole diagram of β-CdP2 crystal along [001] axis at 
the frequencies: 1 – 100 Hz; 2 – 1 kHz; 3 – 10 
kHz; 4 – 1 MHz. 

Fig. 3. The temperature dependence of 
conductivity of β-CdP2 crystal along [001] 
axis at the frequencies: 1 – 100 Hz; 2 – 1 
kHz; 3 – 10 kHz; 4 – 1 MHz. 

 
The imaginary part of the dielectric constant ε″ of β-CdP2 is shown in Fig. 2 as a 

function of the real part ε′, namely Davidson-Cole [12-13] plot. 
In Fig. 3 the experimental dependence of conductivity on temperatures measured at the 

frequencies f = 102, 103, 104, 106 Hz is submitted. The conductivity has the brightly expressed 
frequency dependence, which is caused by imposing of conductivity of usual semiconductor 
character and hopping conductivity. 

 
3.2. Elastic properties β-CdP2, α-ZnP2, β-ZnP2 and ZnAs2 single crystals 

 
The elastic properties of zinc and cadmium diphosphides were investigated by 

measurements of ultrasound velocities along [001], [100] and [110] crystallographic 
directions of single crystal samples. Elastic properties of zinc arsenide were investigated by 
measurements of ultrasound velocities along [100], [010] and [001] crystallographic 
directions of single crystal samples. The results of measurements of ultrasound velocities in 
researched compounds and literature data are given in Table 1.  

 
Table 1. Ultrasound velocities of β-CdP2, α-ZnP2, β-ZnP2 and ZnAs2 at room 

temperature (T

lmn
ijkV

r = 300 K). The subscript means a direction of a wave vector of an elastic wave, 
superscript - direction of polarization vector. 

 
lmn

ijkV , m/s 
Compound 

100
100V  010

010V  001
001V  010

001V  010
110V  110

110V  110
110V  V110

001  References 

4340  4878 2506 2699 - 4671   β-CdP2
4415  4735 2539 2906  4705  [14] 
5394  5742 3494 3852 2780 5811   α−ZnP2
6433  6017 3544   5820  [15] 

β-ZnP2   6337    6264 4355  
ZnAs2 4147 4050 4417       
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The measured values of ultrasound velocities are a basis for calculation of elastic 

modules (Сij components of elastic constant tensor) at room temperature under the formula 
C=ρV2, where ρ is density of a crystal, which for β-CdP2 is 4.18·103 kg/m3, α-ZnP2 - 3.51·103 
kg/m3, ZnAs2 - 5.245·103 kg/m3 (Table 2). 

 
Table 2. Elastic constants Сij of β-CdP2, α-ZnP2 and ZnAs2 single crystals at room 

temperature (Тr = 300 К). 
 

Cij, GPa 
Compound 

С11 C22 С33 С44 С66 С12 С’ C” ΘD, K Refere
nces 

78.7  99.5 26.25 30.45 42.79 91.21 32.73 198.2  β-CdP2
91.6  109.7 30.0 39 52   206 [16] 
102.1  115.7 42.85 52.08 30.76 118.5 27.13 280.2  α−ZnP2
144.2  126.1 43.8 31.2 29.4 118  432 [15] 
95.63 102.5 112.7 20.76 40.45 31.47    [17] ZnAs2

 86.04         
 
Temperature dependence of the elasticity tensor components C11, C33, C44, C66, 

С'=1/2(C11+C12+2C66) and С"=1/2(С11-С12) of the tetragonal modifications of cadmium and 
zinc diphosphide β-CdP2 and α-ZnP2 was calculated from the measured values of velocities 
of longitudinal and shear elastic waves along the crystallographic directions [001], [010] and 
[110]. Typical temperature dependence of the elastic module Cij(T) of tetragonal 
modifications of single crystals coincides with x-ray diffraction measurements of 
corresponding parameter of lattice (Fig. 4).  
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 Fig. 4. The temperature dependence of elastic constant C33(T) and of c(T) lattice 
parameter of β-CdP2 single crystal. 
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Fig.5. Temperature dependence of the
longitudinal sound velocity Vlong(T)
along a, b and c axes of ZnAs2 single
crystal. 
 

The temperature dependence of the longitudinal ultrasonic velocities in ZnAs2 measured 
along axes a, b, c in the temperature range of 78-400 K are shown in Fig.5. The arrows 
indicate the temperature regions of anomalies of ultrasonic velocities, where the slope of 
curves is breaking. In inset in Fig. 5 the temperature range of anomalous changes of sound 
velocity is shown. 

 
4. Discussion 

 
4.1. Dielectric properties and conductivity. 

 
Cadmium and zinc diphosphide and zinc arsenide crystals are wide-band gap 

semiconductors with p-type of conductivity and the band gap width is Eg ≅ 2.03 eV, Eg ≅ 
2.05-2.22 eV in tetragonal β-CdP2 and α-ZnP2 accordingly, and the band gap width is Eg ≅ 
1.44 - 1.602eV, Eg ≅ 0.89eV in the monoclinic β-ZnP2. and ZnAs2 accordingly [15, 18 - 20]. 

Temperature-frequency dependence of the complex dielectric constant ε*(ω, Т) points 
dielectric relaxation of orientation type. As from the experimental data on AIIBV it is possible 
to make a conclusion about the absence of structural transition of ferroelectric type, obtained 
values of dielectric constant are caused by mechanisms of dielectric relaxation. Let us 
consider several possible models. 

Maxwell-Wagner mechanism describes strong dielectric relaxation in the ceramic 
semiconductors [21]. In our case researched samples are practically perfect single crystals 
with a small concentration of defects, in which there are no the areas acting in a role of grains. 
If we consider all crystal as the grain, the Maxwell-Wagner relaxation can be caused by the 
air capacity between electrode and a crystal surface. Semi-insulating graphite layer between 
sample surface and electrodes has been used to avoid this. Hence, relaxation of Maxwell- 
Wagner in this case is improbable.  
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The model of charge exchange was proposed for explaining the thermally activated 
growth of dielectric constant in the ternary semiconductor compounds Cd1-xMnxTe (0 ≤ x ≤ 
0.7) [22]. According to this model the charge exchange of multicharged defects, contributing 
the deep levels into the band gap, in the presence of external electric field must lead to the 
dielectric constant increase. However such mechanism is poorly probable in our case, because 
for the ε increase to values ε ≈ 200 defect concentration about 1019–1020 sm-3 is necessary, i.e. 
the sample must be strongly defective, but used single crystals are much more perfect and 
defect concentration in them does not exceed 1013–1017 sm-3. 

Model, proposed by Ramirez A.P. [23] for explaining the high values of the dielectric 
constant in CaCu3Ti4O12, gives the most probable description of processes, occurring in 
researched materials. In this case Р-vacancies (VP), which disrupt the initial crystal structure, 
can play a role of isolated defects. Under action of an external variable electric field the 
defective areas are exposed to distortions and relax between the alternative equivalent 
configurations preserving, on the average, crystal structure. This model describes well the 
obtained results. Typical experimental temperature dependence of conductivity of sample β-
CdP2 in the form lnσ (1/Т) at frequencies of 102, 103, 104, 106 Hz is represented in Fig. 3. The 
kind of a curve is similar for all experimental dependences of conductivity. The curves of 
temperature dependence of conductivity lnσ versus (1/Т) have characteristic of 
semiconductors type. Different sections of curve correspond to different conductivity types. It 
is possible to calculate activation energy ΔEa of carriers for the certain frequency from the 
formula of conductivity for semiconductors σ=σ0*exp (-ΔEa/2kT) by lnσ (1/T) line slope. The 
calculated values are given in Table 3.  

Table 3. Activation energy ΔEa (eV) in various sections at the certain frequency 
 

Frequency, Hz 
ΔT, K 102 103 104 106

80÷130 – – 0,01 0.003 
130 ÷ 260 0.6546 0.7305 0.5916 0.5889 
260 ÷ 350 0.04 0.0016 0.001 0.12 
350 ÷ 400 1.2 0.38 - - 

 
The values of the activation energy differ for the different frequency that is connected 

with the frequency dependence, characteristic of the hopping conductivity. Conductivity 
possesses strongly pronounced frequency dependence, which is caused by imposing of usual 
conductivity and hopping conductivity. At low temperatures σ (f) ~ f α (α ≈ 0,75 - 0,85), at 
high temperatures σ(f)~f β (β> 1). 

 
4.2. Elastic properties and structural distortions 

 
There is the only one possible orientation of layers in the tetragonal crystals – 

perpendicular to the symmetry axis of higher order. C11, С12 and C66 elastic modules 
characterize binding forces inside layer (intra-layer modules) and С33, С13 and С44 elastic 
constants substantially characterize binding forces between the layers (interlayer 
constants).The anisotropy of elastic properties in tetragonal β-CdP2 and α-ZnP2 is unusual - 
although "interlayer" and "intra-layer" shear elastic modules correspond to layered crystal 
structure and С44<С66, however, the value of "interlayer" longitudinal elastic module C33 is 
higher than the "intra-layer" elastic module С11. This fact was observed by many researchers 
and deviation falls outside the experiment errors. The elastic module decrease along layers 
can be partly caused by the dislocation mechanism (on 1-2 %), since the dislocation 
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concentration in the direction of c axis is by an order below in the value of the dislocation 
concentration in the direction, perpendicular to c axis. However, the value of C11 module is 
lower than the value of C33 module by 10-20 %, what is anomalous and testifies, in our 
opinion, to the softening of the corresponding phonon modes and tendency toward the 
structural distortions in the plane of layers (in the plane, perpendicular axis c). Anisotropy of 
elastic properties in crystals is characterized by coefficient of anisotropy A=2C44 /(C11-C12) 
and deviations from ratio of Cauchy Gkk=Cij-C9-i-j, 9-i-j, where (i ≠ j ≠ k; i, j, k = 1, 2, 3), caused 
by noncentral character of atom interaction. Elastic anisotropy in β-CdP2 is higher, than 
elastic anisotropy into α-ZnP2 that, apparently, is connected with the fact that Cd ionic radius 
is more than the Zn ionic radius and distortion of tetrahedrons in β-CdP2 is more than in α-
ZnP2 (Table 4). Deviations from ratio of Cauchy speak that the model of the central forces in 
the cadmium and zinc diphosphide crystals is not carried out.  

 
Table 4. Parameter of the elastic anisotropy A, Gkk and δ deviations from the ratio of Cauchy 

for the β-CdP2 and α-ZnP2 crystals at room temperature 
 

Anisotropy α−ZnP2 β-CdP2

A = 2C44/(C11 - C12) 1.2 1.46 
δ = (C44 - C12)/C11 0.12 - 0.21 

G11 = C23 - C44, GPa 6.5 32 
G33 = C12 - C66, GPa -21.4 12.4 

C11/ C33 0,88 0,79 
C11/ C44 2,4 3 
C66/ C44 1,22 1,16 

 
Gruneisen's parameters are the important characteristics of solids and determine 

nonlinear (anharmonic) properties of crystals. Gruneisen's constant s
ijklkl

p
ij c

c
M α
ρ

γ =  where M 

is molecular weight, ρ is density, α is thermal-expansion coefficient, сp is specific heat, cs
ijkl is 

adiabatic elastic constants. Gruneisen's parameters characterize anharmonicity of thermal 
fluctuations and for tetragonal crystals have two components - along and perpendicular to axis 
of symmetry of 4-th order:  

( )11 12 1333 13( 2 ) , ,
S S SS S

IIII
II

p p

C C C MC C M
c c

α αα αγ γ
ρ ρ
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where α⎢⎢ и α⊥ are thermal expansion coefficients along and perpendicular to axes of 
symmetry of 4-th order (Table 5). 
 

Table 5. Debye temperatures Θ, the value of the average ultrasonic velocity Vm, volume K 
and shear G modules and Gruneisen's constants γ. 

 
Compoun

d Θ, K Vm, m/s K, GPa G, GPa γII γ⊥ γ⊥/γII

α-ZnP2 280.2 3708.1 63.6 39.3 0.632 0.723 1.144 
β-CdP2 198.2 2603.3 64.2 22.1 0.449 0.46 1.024 

 
Gruneisen's parameters and anharmonicity in α-ZnP2 are above in comparison with β-

CdP2. The anharmonicity of the thermal atom oscillations in cadmium and zinc diphosphide 
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of tetragonal modification is higher in the layer plane than along the axis of the 4th degree of 
symmetry.The tetragonal modifications of cadmium and zinc diphosphides have implicitly 
expressed layered structure and their elastic and dielectric properties are characterized by the 
anisotropy of elastic modules and of static dielectric constant ε0(E ⊥ с) > ε0(E // с) along and 
perpendicular to layers. Anions in the layers are asymmetric coordinated and dipoles formed 
on the anions are oriented perpendicular to layers what leads to the softening of lattice modes. 
As a result of the rigidity of phosphorus atom sublattice, displacements of cations will play 
main role in the spontaneous distortion of lattice and structural distortions acquire the 
complex character of incommensurate superstructure modulation. 

In Fig. 4 temperature dependence of elastic modules Сij(T) is shown. Temperature 
dependences of elastic constant crystals, in general, are sufficiently monotonic and linear, 
describing by a sufficiently simple equation such as Сij(Т)=Co

ij + AijT. However, at the certain 
temperatures linear dependences are interrupted by areas of width ΔТ ≅ 10 -20 К with 
anomalous behavior of modules. These regions change a curve slope and value of a derivative 
dCij/dT. In the investigated temperature range of 78–410 K the elastic modules have abnormal 
changes in the form of the small minima with the amount of deviation 0,1-0,4%. On curves of 
temperature dependence of longitudinal ultrasonic velocity in monoclinic ZnAs2 (Fig. 5)  
sections of width of ΔТ ≅ 20 К with the anomalous behavior of ultrasonic velocity are 
observed. 

 
5. Conclusions 

 
Dielectric properties of β-CdP2, α-ZnP2, β-ZnP2 and ZnAs2 single crystals - dielectric 

constant ε, tan δ and conductivity σ are investigated depending on temperature and frequency 
of an external field. Dielectric constant grows up from values ε ≈ 7-13 at low temperatures to 
values ε = 103 at high temperatures (T = 400 K) without structural transition. Conductivity is 
composed of usual conductivity, characteristic of semiconductors, and hopping conductivity. 
Activation energies are calculated and Davidson - Cole's diagrams are constructed. 

Ultrasonic velocities in the basic crystallographic directions of β-CdP2, α-ZnP2, β-ZnP2 
and ZnAs2 single crystals are measured and their temperature dependences are investigated. 
Elastic properties of single crystals over 78 – 400 K temperature range are studied and their 
elastic characteristics in the basic crystallographic directions are calculated.  
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The anisotropy of absorption spectra in the range of the margin of fundamental band of 

the crystals GaSe and InSe doped with Cu in the percentage quantities up to 0.5 % at. from 
which the implementation mechanism of the impurity atoms of Cu in the hexagonal crystal 
grating of the GaSe and InSe crystals and the localization energy of the impurity levels in the 
forbidden energetic band is studied. 

 
Introduction 

 
The compounds GaSe and β-InSe are crystallized in the stratified structure (symmetric 

spatial group D6h). The crystalline grating of the compounds belonging to this structural type 
is formed by four stratified packages of X-M-M-X type. Each atom of Ga (In) belongs to the 
tetrahedral neighbor of the Se atoms and one atom of Ga (In) [1]. In the internal part of 
stratified package the ionic-covalent preponderant bonds are active, but the bonds between 
package are realized by polarization forces [2]. The presence of weak bonds between layers 
leads to the anisotropy of electronic states. 

The impurity atoms in the stratified structures of AIIIBVI type are localized in the space 
between stratified packages, modifying so the character of chemical bonds between layers. 
But the presence of impurity atoms in the space between the planes of halogen atoms (Se) 
leads also to the modification of energetic spectrum especially on the axis direction with the 
high symmetry C6. 

The presence of vibration modes at low frequencies is among characteristic 
peculiarities of weak interaction, which correspond to the removing of atomic layers one with 
respect to another. The atoms from the interior of the stratified package at vibration do not 
remove one with respect to another. The presence of impurity atoms of Cu in the crystals 
GaSe and InSe with the modification of vibration spectrum of the crystalline grating leads to 
the formation of new energetic states in the forbidden energetic band. 

Application in practice of GaSe and InSe crystals is determined by solution of the 
preparation problem of crystals with the electrical conductivity and energetic level diagram 
that will assure this. 

The small mechanical deformations of the monocrystals lead to the increasing of the 
concentration of surface states. The energy of capture levels which are localized at ~ 
0.18÷0.05 eV from the top of valence band modifies the character of absorption and 
photoconductivity in the range of absorption band margin. 

 
Method of experiment 

 
The crystals of GaSe and InSe were grown by Bridgman method from the elementary 

components Ga, In and Se which are pure spectral. The doping of the crystals GaSe and InSe 
with the Cu atoms in the concentrations from 0.01 up to 0.5% at was effected in the process 
of synthesis of the respective compounds. The samples of researches were obtained by 
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cleaving from the massive crystals and had the thickness in the limits from 0.1 up to 15 mm 
and the area 250÷350 mm2. The cleaving is made in the direction perpendicular to the axis 
C6. As the result of cleaving the plan parallel surfaces at the atomic level are obtained. 

In order to obtain the information about the absorption of linear light polarization on 
the direction CIIE , the light beam falls on the surface of crystal under the angle 45o. 

The absorption spectra and reflection ones at the temperature of 78K and 293 K were 
recorded on the spectrophotometer installation with the monochromator MDR-2 with the 
energetic resolution of about 0.5 meV. 

 
Experimental results and their explanation 

 
The spectral dependence of absorption coefficient in the range of fundamental band 

margin of the crystals ε-GaSe special non-doped is presented in fig.1. The margin of 
absorption band is formed by excitonic absorption both in the polarization CIIE  (curve 1) 
and CE ⊥  (curve 2). The states n=1 and n=2 are underlined clearly in both polarizations at 
the temperature of 78 K. The maxima of absorption excitonic lines n=1 and n=2 are localized 
at 2.105 and 2.106 eV. 
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The ration between the absorption coefficient in the maximum of excitonic line n=1 for 
the polarization CIIE CE ⊥ and respectively  is equal to 17 which is the value that 
correlates better with the coefficient of anisotropy calculated from the effective mass equal to 
16 [3]. This ratio for the line n=2 is greater by 1.7 times than for the line n=1. Such an 
increasing of anisotropy of absorption coefficient in the range of the line n=2 is possible 
because in this field the absorption for the lines n≥2 is add and also it is necessary to take 
into consideration that the optical transitions in the polarization CIIE  are permitted, but for 

CE ⊥  are forbidden [2]. Also, the margin of absorption band of the crystals InSe special 
non doped is described by an exponential decreasing of the absorption coefficient with the 
energy of incident photons on the sample. The background absorption in the polarization 

-1CE ⊥ CIIE is ~ 0.75 cm . In the polarization at the energies ћω<1.29 eV, the absorption 
coefficient α decreases at ~ 5.5 cm-1 up to 2.5 cm-1 at the energy ћω<1.24 eV. Two maxima a 
and b (fig.2) are distinguished in this spectral domain respectively at 1.278 eV and 1.264 eV 
and the presence of these peculiarities is probably determined by the surface states, their 
concentration is considerable in the samples of GaSe and InSe which are studied in this 
polarization. The energetic levels of the surface states are localized at ~ 42 meV and 56 meV 
from the minimum of conduction band of the crystals InSe. 

CIIEThe absorption of light in the range ћω<1.26 eV in the polarization  (in the 
crystals InSe (see fig.2, curve 1) can be interpreted as the process determined by indirect 
optical transitions, permitted by this polarization). 

The doping of the crystals GaSe with the impurity atoms of Cu in the quantities up to 
0.04% at. leads to the liquidation of the proper defects in the sub grating of metal which is 
the process that is manifested by the increasing of the intensity of excitonic line n=1 by 1.2 
times, but for the line n=2 by ~ 3 times in the absorption spectra (fig.3) and 1.6 times for the 
line n=1 and 2.1 times for the line n=2 in the luminescence spectra. The intensity of impurity 
band in the absorption spectra is increased rapidly at the continuing increasing of the 
concentration of impurity atoms of Cu from 0.05 up to 0.1% at.  
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The impurity absorption reaches the value of about 12 cm-1 at the concentration of Cu 
of the order 0.08% at. Although the mechanism of electrical conductivity and the type of 
majority charge carriers in the process of doping of the crystals of ε-GaSe is not changed we 
can consider that the impurity atoms of Cu create in the forbidden band of the gallium 
monosellenium the acceptor levels. So, the impurity level that forms the threshold A* (fig.4b) 
is localized at ~ 50 meV from the top of the valence band. 

The impurity copper of InSe as in the GaSe leads to the liquidation of the defects in the 
sub grating of the metal for small concentrations (x<0.06 % at.). As we can see from fig.3 
(curve 2) the absorption coefficient in the center of exitonic line slowly increases with the 
increasing of doping concentration, although the variation of absorption coefficient with the 
concentration is distinguished more weakly than in the GaSe (curve 1). 

The light absorption spectra of the InSe crystals special non doped (curve 1) and doped 
with Cu up to 0.06% at. (curve 2) are presented in fig.4a. The presence of impurity atoms of 
Cu leads to the decreasing of absorption coefficient in the field of excitonic line n=1, 
modifies the character of dependence α(ћω) on the band of small energies of the excitonic 
line and forms a supplemental band of absorption in the range 1.26÷1.30 eV. The absorption 
coefficient in the impurity band of the crystals InSe (Cu) is of the same order of value 
(18÷20) cm-1 as for the crystals GaSe for which the atoms of Cu consist ~ 0.08% at. (fig.4b). 
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The copper in the quantities greater than 0.05% at. both in the crystals GaSe and InSe 

screens the hole-electron bonds  leading so to the liquidation of the line n=2. But a weak 
increasing of the absorption coefficient of the light at the energies from the fundamental 
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absorption band is determined by band – band optical transitions and the impurity levels of 
Cu localized at ~58 meV from the top of valence band in the crystals ε-GaSe. 

The impurity absorption band in the crystals InSe (Cu) does not differ from those of 
GaSe by the form. The absorption coefficient in the field of energies 1.25 eV is increased by 
~1.3 times with the increasing of the concentrations of Cu atoms from 0.05% at. up to 0.1% 
at. Though, for the quantities of Cu atoms included in the limits from 0.01% up to 0.1% at. 
the type of major charge carriers is not changed, the character of absorption of the light in the 
range of the margin of fundamental band allows to suppose that in the same time with the 
creation of the supplemental donor levels the atoms of Cu create also the acceptor levels in 
the forbidden band of the compound InSe localized at ~ 0.07 eV from the top of the valence 
band. 
 

Conclusions 
 

The value of the absorption coefficient in the center of excitonic line at the temperature 
of 78K and the influence of incident light polarization on the dependence α(ћω) in the range 
of fundamental band absorption band margin was established from the analysis of absorption 
spectra of the crystals ε-GaSe special non doped with Cu. The increasing of absorption 
coefficient in the range ћω>2.1 eV in the polarization CIIE CE ⊥ with respect to  
polarization is influenced by the increasing of the probability of respective optical transitions. 

The impurity atoms of Cu at small concentrations (Cu<0.04% at.) in the GaSe and 
<0.06% at. in the InSe liquidate the defects in the sub grating of the metal, and so that the 
intensity of excitonic absorption is increased. At bigger concentrations, both in the GaSe and 
InSe the impurity atoms of Cu screen the hole-electron interaction contributing so to the 
decreasing of absorption coefficient in the excitonic line. The process of screening of the 
excitonic bonds by impurity atoms of Cu both in the GaSe and InSe has the tendency to 
saturation. 

The dissolved copper in the GaSe crystals creates the acceptor levels, the average 
energy of which is ~ 58 meV, but in the crystals InSe the acceptor levels are formed with the 
donor levels, average energy of which is about 70 meV. 
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The energetic diagram of the localized states in the forbidden band energy of the 
crystals ε-GaSe doped with Cu, Cd and Sn is determined from the analysis of absorption 
spectra in the field of impurity band, luminescent emissive spectra and thermo luminescent 
ones. 

 
Introduction 

 
The stratified crystals of GaSe type serve as the basic element in different 

optoelectronic devices such as the micro lasers (the excitation with the electron beam), 
optoelectronic modulators for a large domain of wavelengths [1]. In order to enlarge the 
domain of application of gallium monoselenium and of analogical compounds by the structure 
and physical mechanical properties (GaS and InSe) it is necessary to increase the variety of 
characteristic physical properties of these compounds. 

The studies of optical properties and photoelectrical ones of the crystals GaS, GaSe and 
InSe pure nondoped prove that on their base the optoelectronic devices can be elaborated for 
the visible range and the near IR. In order to reach the conquerable parameters with the 
existent elaborations (on the base of semiconductors AIIBVI, AIIIBVI) it is necessary to vary 
controllably with the diagram of localized states in the forbidden band of these crystals. 

It is known [2] that the impurity atoms in the crystals of GaSe type, after the liquidation 
of structural defects in the sub grid of the metal from the interior of stratified packages Hal-
M-M-Hal are localized in the space among the planes of the neighbor packages contributing 
so to the increasing of cohesion force among packages. These atoms will be situated on the 
surface of cleaving on the direction perpendicular to C contributing so to the formation of the 
ionized surface states. The physical properties of the extra fine monocrystalline films are 
modified by the surface states in which the characteristic properties of the structures with the 
reduced sizes are manifested.  

 
The method of experiment and the technology of preparation of the samples 

 
The absorption coefficient of the light in the field of impurity bands of the crystals GaSe 

and GaS is of order 10 cm-1 [2]., so in order that the error in the optical determinations does 
not exceed the order of 5% it is necessary to have the homogenous samples with the thickness 
of 1 cm. The necessary samples were prepared by cleaving from the homogenous optical 
monocrystals which were grown by Bridgman-Stockbarger method. The doping of the 
crystals GaSe with Cu, Cd and Sn was performed in the process of synthesis of the respective 
chemical compound. The distribution of impurity atoms in the volume of the crystal was 
established by the method of emission spectral analysis after the characteristic last lines of the 
respective atoms. The analytical spectra were registered by the spectrograph DFS-8 with the 
diffraction grating 600 mm-1. 
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The absorption coefficient α was determined from measurements of spectral 
dependences of the transmission and reflection of the light from the natural mirror surfaces. 

The emissive luminescent spectra and of thermoluminescence were recorded at the 
combined installation on the base of monochromator MDR-2 with the diffraction grating of 
600 mm-1 and 1200 mm-1. The luminescence of crystals GaSe was excited with the radiation 
of laser He-Ne  (λ=0.6328 μm, P≈40 mWt), but in the case of thermo luminescence  the light 
source was of Hg steam with the spectrum from the UV domain. The necessary spectral 
domain for the excitation of luminescence was selected with a set of optical filters. 

 
Experimental results and their explanation 

 
The spectral dependence of absorption coefficient is strongly emphasized by the shape. 

In the case of transitions valence band – ionized donor at the energies ћω ≈ E d i
g  – Ed  (Ed

i is 
the energy of ionization of the donor) a line is formed, but in the case of transitions acceptor 
level with small energy to conduction band the absorption coefficient α(ћω) is described with 
the analogical function for the direct optical transitions 

d 1/2 α(ћω) = A(ћω-E +Eg A)    (1) 
where the coefficient A receives the value smaller than the respective coefficient in the case 
of band – band transition, EA is the energy of respective acceptor level. 

The absorption spectra in the coordinates α1/2=f(ћω) are presented in fig.1 for the 
crystals ε-GaSe doped with Cu, Cd and Sn at two temperatures: 78 and 293 K.  
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As we can easily observe the experimental points are arranged on the segments of 
straight line in accordance with the function (1). Extrapolating the segments of straight line to 
the value α=0 the energetic interval was determined between the minimum of conduction 
band and the acceptor level. Knowing the width of forbidden energy band of the crystals ε-
GaSe special nondoped and equal to 2.132 eV and 2.037 eV respectively at the temperature 
78 K and 293 K the average energy of ionization of the acceptor levels was determined 
created with Cu, Cd, and Sn, which are values introduced in table 1. As we can see from the 
table with the increasing of the Cu quantity in GaSe the ionization energy of the respective 
acceptor is decreased. 

 
 Table 1.   
  

GaSe: Cu GaSe: Cd GaSe: Sn Chemical 
compound, E / E% at. A, eV E / E

(T=78K) 
A, eV E / E

(T=300K)
A, eV E / E

(T=78K) 
A, eV E / E

(T=300K)
A, eV E / EA, eV

(T=78K) (T=300K)
0.05 2.061 / 71 1.927 / 110 2.081/ 51 1.957 / 80 2.073 / 59 1.947 / 90 
0.10 2.063 / 69 1.930 / 107 2.066 / 56 1.927 / 110 2.068 / 64 1.945 / 92 
0.20 2.070 / 62 1.943 / 94 2.073 / 53 1.942 / 95 2.080 / 52 1.955 / 82 
0.50 2.077 / 55 1.948 / 90 2.078 / 58 1.951 / 86 2.060 / 72 1.942 / 95 

 
The photoluminescence spectra of the crystals GaSe doped with Cu, Cd and Sn are 

presented in fig.2.  
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The luminescence is initiated in the field of excitonic line n=1 and for all types of 
samples is composed of two intensive bands localized at red frontier of fundamental band of 
absorption. The energies of maximal intensity are introduced in tab.2. The excitonic 
luminescence (n=1) is emphasized clearly in the compounds GaSe with the impurity atoms of 
Cu in the quantities up to 0.2% at. with a maximum at 2.101 eV. The intensity of this line is in 
increasing from 0.05% at. of Cu up to 0.1% and further is rapidly decreased which is the fact 
that allows us to suppose that at small concentrations Cu compensates the structural defects in 
the subgrid of the metal from the interior of stratified packages. At the concentrations bigger 
than 0.2% at. copper creates the acceptor levels by which the luminescence band is formed 
with the maximum at 2.06 2.08 eV that correlates better with the impurity absorption spectra 
(tab.1). 

÷

 
 Table 2.   
 

Concentration of the doped 
substance, % at. E , eV E , eV E , eV E , eV 1 2 3 4

0.05 2.060 2.088 2.098 2.101 
0.10 2.073 2.092 2.098 2.100 
0.20 2.065 2.089 2.098 2.105 GaSe: Cu 

0.50 2.055 2.080 2.086 - 
0.05 2.042 2.08 2.09 - 
0.20 1.990 2.04 2.09 - GaSe: Cd 
0.50 2.060 - - - 
0.05 - - 2.100 - 
0.10 2.04 - 2.098 - 
0.20 2.05 - 2.100 - GaSe: Sn 

0.50 2.05 - 2.095 - 
 

The doping of GaSe crystals with Cd in quantities from 0.05% at. up to 0.5% at. leads to 
the formation both of bond centers of excitons which their irradiative annihilation forms the 
luminescent band with the maximum at 2.08÷2.09 eV and acceptor levels by which the 
maximum bands at 2.04 2.06 eV are created. ÷

The photoluminescence spectra of the crystals GaSe doped with Sn in quantities up to 
0.5% are composed of two localized bands at the margin of absorption band. The presence of 
excitonic line indicates us that the Sn in the small concentrations as Cu liquidates the defects 
of Ga and forms the acceptor levels localized at ~ 60 meV from the top of valence band. 

The energetical diagram of the surface states (capture) in the crystals GaSe doped with 
Cu, Cd and Sn was established from the thermoluminescent analysis in the interval of 
temperatures from 78K up to 250 K. 

The TLS spectra recorded from researched crystals contain a series of bands, their 
shapes are in the function of kinetic of TLS [3], of the speed of heating, the number of charge 
carriers captured on the capturing centers etc. We will take into consideration two limit cases 
of capturing of nonequilibrium charge carriers and especially: 

rtt PN γ<<γa) the linear kinetic of TLS, for which , where γt is the capture coefficient 
of the electrons on the capturing centers; γ is the recombination coefficient; Nt is 
concentration of capturing centers; Pr is the concentration of holes on the 
recombination centers.  
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b) the square kinetic of TLS, so when the probability of secondary capture of the 
electrons on the capturing centers is greater than the probability of  their 
recombination on luminescent centers: 

rtt PN γ>>γ  
The theoretical shapes were calculated in paper [4] of TLS spectra for the types of linear 

and square kinetics. For the linear kinetic the straight of the shape from the domain of low 
temperatures has a large “stretching “with respect to the domain of high temperatures, but for 
square kinetic has the inversed symmetry.  

The respective temperature is determined by the shape of TLS, its intensity of the band 
is maximal (Tm); the half-length of the shape of TLS (δ) equal with the temperature 
differences T -T2 1 for which the intensity of TLS is ½ from its maximal intensity; the surface 
(S) margined by the shape of TLS – I(T) and the axis of temperatures. 

It is necessary to take into consideration that the form of the shape and the position of 
the maxima of TLS on the axis of temperatures is influenced both by the kinetic of TLS and 
the speed of releasing (β0) of charge carriers from the capture centers at the determination of 
energy of surface states.  

The energies of capture levels determined from the analysis of thermal stimulated 
luminescence are presented in table 3. 

 
Table 3.   
 

Concentration of the doped 
substance, % at. E , eV t

0.05 0.161; 0.236 
0.10 0.145; 0.148; 0.163; 0.185 
0.20 0.189; 0.337 

GaSe: Cu 

0.50 0.147; 0.150; 0.178; 0.228 
0.05 0.189; 0.196; 0.516; 0.541; 0.604; 0.710 
0.10 0.185; 0.218; 0.509; 0.544; 0.654 
0.20 0.189; 0.561; 0.601; 0.633; 0.676 

GaSe: Cd 

0.50 0.204; 0.246 
0.05 0.161; 0.362; 0.370; 0.605; 0.679 
0.10 0.186; 0.376; 0.480 
0.20 0.196; 0.376; 0.199; 0.386 GaSe: Sn 

0.50 0.281; 0.321; 0.343; 0.353; 0.500 
 

Conclusions 
 

The margin of fundamental band of absorption of the crystals GaSe is formed by the 
optical transitions with the formation of excitonic complexes. The maximum of excitonic 
absorption line in the state n=1 is localized at 2.102 eV (T=78K). The impurity atoms of Cu, 
Cd and Sn create the acceptor levels. The energy of created levels of Cu is in the slow 
decreasing from 110 meV up to 90 meV with the increasing of their concentration from 
0.05% at.up to 0.5% at. With the decreasing of the sample temperature from 293 K up to 78 K 
the energy of acceptor levels of Cu, Cd and Sn is in weak decreasing. 

The impurity atoms of Cu in the quantities up to 0.2% at. and of Sn up to 0.1% at. are 
arranged in the vacancies of Ga from the interior of stratified packages and lead to the 
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amplification of the intensity of excitonic line n=1 in the photoluminescence spectra. The 
impurity atoms create the acceptor levels which lead to the formation of the bands in the 
photoluminescence spectra. 

The energetic diagram of the surface states in the crystals GaSe doped with Cu, Cd and 
Sn in the quantities up to 0.5% at. was established from the analysis of thermal stimulated 
luminescence. 
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Abstract 

 
The aim of this paper is to study the loss of gallium (Ga) and arsenic (As) loss during 

the sedimentation of gallium arsenate (GaAsO4) from waste solutions of GaAs epitaxial 
production by chloride method. The solid wastes of this semiconductor manufacturing process 
are removed from technological equipment by dissolution in an acidic etching solution. In 
order to recover valuable Ga and very toxic As from these waste solutions we proposed to 
precipitate them as gallium arsenate. Experiments have been conducted to determine the 
migration of the two elements in filtrate and washing solutions as a function of pH for both 
model and real industrial wastes. It has been determined the optimal interval of pH for 
sedimentation, the losses of Ga and As present 0,01-0,053%. For model solutions the 
sedimentation is optimal in the range of pH from 3,2 to 4,3, while in the case of real waste 
solution this interval is 3,6-5,0. Comparative evaluation of the precipitation efficiency 
revealed that for model solutions the arsenic loss during the precipitation is higher (0,5%), 
and this can be explained by a different ratio of initial Ga3+ and AsO4

3- in model and real 
solutions. The results described in this paper provide important guidelines for the 
sedimentation of gallium arsenate from acidic waste solutions and indicate an overall 
efficiency of the process that could lead to savings in cost and process time for industrial 
effluent treatment technologies. 
 

1. Introduction 
 

The semiconductor gallium arsenide (GaAs) manufacturing processes generate large 
amount of solid wastes containing valuable gallium and toxic arsenic [1]. The dissolution of 
these wastes in specific etching solutions is an inevitable process. For instance in the case of 
growing GaAs layers from gaseous phase by chloride epitaxial method the technological 
equipment should be periodically treated with an etching solution to remove the solid deposit 
from the surface. Usually the solutions for etching contain a solubilizing and an oxidazing 
agent. In general it is desirable to use chemical agents which oxidaze arsenic to +5 valence 
state, since the use of acids without oxidizer leads to generation of a highly toxic gas arsine 
AsH3. A number of chemicals have been used for these purposes, the most commonly used 
oxidants being hydrogen peroxide, hypochlorites, and nitric acid. The combination of the 
nitric with hydrochloric acid is especially attractive, since the resulted solution is 
characterized by a high etching activity and short reaction time. The dissolution process 
produces an acidic waste solution that may contain up to 2 mol/l of gallium(III) and 
arsenic(V). At such concentrations, the aqueous wastes require subsequent treatment for 
recovery of Ga and removal of As, prior to discharge of the waste from the manufacturing 
plant. For example, during the process of growing epitaxial GaAs semiconductor layers from 
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gaseous phase by chloride method the resulting waste solution from etching technological 
equipment in HCl/HNO3 may contain up to 70% of the initial materials of high purity [2, 3]. 
The same category of liquid wastes results from dissolution of residual epitaxial GaAs plates 
in such acidic solutions. Since the aqueous waste itself contains gallium and arsenic of high 
semiconductor purity there is a critical need in developing appropriate technologies for their 
recovery. Recycling of such wastewater offers tremendous benefits from both reduced cost of 
production and environmental liability [1]. For example, gallium is particularly expensive and 
its recovery is economically advantageous to semiconductor manufacturers. However, there is 
a lack of technologies dealing with recovery of Ga and As from waste solutions containing g/l 
concentrations of these elements. It is clear that management of such hazardous wastes 
containing huge concentration of As is a very serious problem [4].  

The environmental issues facing semiconductor industry have recently considerably 
expanded and become increasingly important concerns. For instance, the management and 
disposal of hazardous wastes, such as arsenic, receive significant attention because of strict 
regulation [4, 5]. Therefore, it is desirable to treat the wastewaters at the production plants, 
avoiding the costs and risks of eventual transportation to specialized mills. This strategy 
would permit to reduce production costs, conserve natural resources, and prevent pollution.  

We propose a simple and robust method for recovery of both Ga and As from waste 
solutions derived from dissolution of GaAs in acidic solutions. This method involves the 
sedimentation of gallium arsenate (GaAsO4) by adjusting the pH of the solution. The present 
study is devoted to the study of gallium arsenate sedimentation by titration of corresponding 
acidic solutions with an alkaline base (NaOH or KOH) and analysis of Ga and As removal at 
different pH, as well as the loss of these elements during the precipitation and washing of the 
sediment.  

 
2. Experimental Section 

 
2.1. Materials 

 
Three model and one real waste solutions were considered for the present study. The 

three model waste solutions have been obtained by dissolution of GaAs plates in an acidic 
solution of nitric and hydrochloric acid and contain respectively 297.524, 244.586 and 92.425 
g of GaAs in 1 litre of solution. The real waste solution results from etching technological 
equipment of GaAs epitaxial layers growing from gaseous phase from the Ga-AsCl3-H2 
system. The other chemicals were analytical reagent grade and were used without any further 
purification. All solutions were prepared in deionised pure grade water. All glassware were 
cleaned with water and 1 N HCl and then rinsed with distilled water. KOH and NaOH stock 
solutions were standardized with a solution of hydrochloric acids (CN=1.000 mol/l). The 
intermediate and secondary standards of working solutions were prepared freshly for each 
experiment. The separation of the sediment was performed using FILTRAK paper filters of 
medium porosity.  

 
2.2. Procedure 

 
2.2.1. Precipitation 

 
The sedimentation experiments were carried out at 20±1 °C. The pH of the waste 

solutions was adjusted by adding either aqueous NaOH or KOH. An initial volume of 2ml of 
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the acidic solutions was added in 11 beakers, each of 50 ml. To each beaker 20 ml of 
deionised water was added to dilute the solutions in order to minimise the possible co-
precipitation effects. Then to the first beaker a solution of the alkaline base was added 
gradually to the point of incipient precipitation. To the rest of the beakers a step-wise 
increased volume of the alkaline base was added under continuous stirring. For instance in the 
case of potassium hydroxide solution with a concentration of T=0.05743 g/l, this volume was 
in the range 0.3-0.7 ml, and it was individual for each acidic solution, function of the 
concentration of gallium and arsenic. These concentrations were preliminary measured by 
means of a spectrophotometric method [3]. The final volume of the solutions was adjusted to 
50 ml with deionised water and the samples were left to equilibrate for 4 hours.  

 
2.2.2. Filtration and Washing 

 
The separation of the obtained gallium arsenate sediment was performed by filtration on 

the paper filters. The filters were preliminarily stored at 120 C° for 40 min and weighted on a 
balance with a precision of 0.5 mg. The time of contact of the filters with the atmosphere is 
minimised and is maintained constant for each sample. The sediments were separated by 
filtration. The filtrate solutions have different values of pH and present the first source of 
gallium and arsenic losses during the sedimentation of GaAsO4. The obtained gallium 
arsenate sediment was washed with 50 ml of deionised water directly on the filter. The 
washing solutions present the second source of gallium and arsenic losses.  

 
2.2.3. Drying of the sediment 

 
The filters containing the gallium arsenate were dried at 120 °C for 90 min and then 

weighted. The obtained gallium arsenate presents a white amorphous solid, slightly 
hygroscopic. The weighting is performed in the same conditions for all samples, during the 
same period of time, determined by the cooling the samples to room temperature in a 
desiccator. The weight of the gallium arsenate was determined as the difference of the weight 
of the filter with and without sediment.  

 
3. Measurements 

 
The weight of the samples was measured by means of a laboratory balance VLR-200 

(class of precision - 2). The pH measurements of the solutions were performed with an 3310 
pH meter by means of glass and Ag/AgCl electrodes, the later filled with saturated potassium 
chloride solution.  

The concentrations of gallium (Ga) and arsenic (As) in solutions have been measured by 
atomic-absorption spectroscopy method. The measurements have been performed by an 
atomic-absorption spectrophotometer AAnalyst-800 (Perkin-Elmer, USA), supplied with a 
flame atomizer with pneumatic nebulizer and interchangeable burner heads, the thermo-
electric atomizer transversely-heated graphite furnace THGA incorporating an electromagnet 
for longitudinal Zeeman-effect background correction and flow injection system FIAS-400. 
As a line radiation source we have used the hollow cathode HCL lamp for determination of 
Ga and the electrode less discharge EDL lamp for determination of arsenic. A P-E firm AA 
Win Lab 4.1 program with utilisation of the computer controlled machine work and the 
analysis process. This method has found exhaustive use for determination of small 
concentrations of arsenic [6] and gallium [7] for determination of trace amounts of gallium by 
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tungsten metal furnace. The filtrate solutions contain 1-680 mg/l of gallium and 55-880 mg/l 
of arsenic, depending on the value of the pH of sedimentation. For this reason it is necessary 
to dilute the investigated solutions for using the described methods [8, 9]. The dilution of 
solutions is only of 5-20 times for atomisation method in flame, and of 100-1,000 times for 
thermal method and up to 10,000 times for hydride technique is necessary.  

 
4. Results and Discussion 

 
Three different model and one real waste solutions have been selected for the gallium 

arsenate sedimentation studies. The purpose for selecting those solutions was to study the 
effect of concentration of the dissolved gallium and arsenic, as well as their ratio. The results 
of the sedimentation of the gallium arsenate from acidic wastes are shown in Fig. 1. As 
expected, at higher concentrations of Ga(III) and As(V) the quantity the gallium arsenate 
sediment is higher. The interval of pH for optimum sedimentation for the solution with the 
concentration of GaAs 2.06 mol/l is between 3.2 and 4.4 with 3.1% loss from the weight of 
the sediment. At the concentration of GaAs 0.64 mol/l this interval is between pH 3.2 and 5.0 
with the same amount of loss of the sediment.  

 
                         Fig.1. Precipitation of gallium arsenate from waste solutions 
 

For the real waste solution with a concentration of Ga 0.27 mol/l the highest removal 
was obtained at a pH between 3.6 and 6.7, but the losses are smaller than 1% from the total 
weight. To be noted that the ratio of Ga to As in the real waste solution is close to 2:1, while 
in the model solutions this ratio is 1:1. The efficiency of the precipitation is higher for the 
more diluted solutions. The weight of the sediment obtained in the range of optimal pH values 
is about 20% higher as the calculated for anhydrous gallium arsenate. This increase in mass 
can be explained by the hygroscope properties of the obtained gallium arsenate, that can 
incorporate water molecules, as well as co-precipitate other ions presented in solutions.   

The experiments were conducted with both KOH and NaOH solutions, the results are 
identical in both cases. The loss of gallium and arsenic calculated from gravimetric 
measurements presents a general characteristic of the precipitation process, but does not 
contain information about absolute losses of these elements. The atomic absorption method 
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permits to measure directly the concentrations of Ga and As, both in filtrate and washing 
solutions.  

As observed in Fig. 2, in the filtrate solution resulted from the model waste samples the 
total concentrations of arsenic in the investigated pH range are between 0.5 and 0.9 mol/l, 
while the gallium concentrations are between 36 mg/l to 120 mg/l with the highest removal 
between pH 3.2 and 4.3.  

 

 
             

Fig. 2. Ga and As losses in the filtrate from the model waste solution 
 

It is clear that for the real waste solution the composition of the sediment is different 
from stoechiometric, and can be formulated as Ga(AsO4)x. The occurrence of both 
stoechiometric and non-stoechiometric gallium arsenates has been previously reported 
[10-12]. A possible reason for the increase of gallium concentrations in the filtrate at pH 
higher than 4.3 may be formation of soluble Ga species. The speciation of gallium(III) 
solution chemistry and formation of hydroxo-complexes is well documented [13].  

The solution chemistry of gallium(III) is very sensitive to pH due to hydrolysis 
reactions. For instance, Ga(III) solutions with more than 0.1 g/L or 1.4 mM Ga, one or more 
polynuclear species, such as [Ga26(OH)65]13-, can exist at pH above 3. Below 0.01 g/L or 0.14 
mM Ga, four mononuclear complexes are reported: GaOH2+ (pKa1=3.09), Ga(OH)2

+ 
(pKa2=3.55), Ga(OH)3 (pKa3=4,40) and Ga(OH)4

- (pKa4=6.0) [13]. In our case the existence of 
soluble polynuclear Ga(III) complexes is very likely and this can explain the increase of 
Ga(III) concentration in the filtrate at pH higher than 4.3. The same conclusion may be made 
based on the results of the measuring gallium concentrations in washing solutions.  

For washing solutions, as shown on Fig. 3, the concentrations of arsenic at pH higher 
than 4.3 increase to a value of 0.26 g/l, and at pH 5.05 reach 0.73 g/l and are higher than in 
the filtrate 0.61 g/l, while at the more acidic pH the As concentrations are in the range 58-90 
mg/l.  
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Fig. 3. Ga and As losses in the precipitate washing water from model waste solution 
 

 
Fig. 4. Ga and As losses in the filtrate from the real waste solution 

 
The effect of pH on the removal of gallium and arsenic from the real waste solution 

with the ratio Ga/As=2:1 is presented in Fig. 4. It can be seen from the figure that the 
concentrations of these elements in filtrate are smaller, probably due to their lower content in 
initial solution. The concentrations of As in filtrate decrease with pH from 42 mg/l to 2.2 mg/l 
at pH=3.9. The gallium concentrations also diminish from 328 mg/l to 1.7 mg/l at pH=3.9., 
but the beginning of the optimal sedimentation is at a slightly higher pH, 3.5 versus 3.2 for 
model solutions. A possible reason for this behaviour may be the different ratio of gallium to 
arsenic in solution.  
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Fig. 5. Ga and As losses in the precipitate washing water from real waste solution 

 
Fig. 5 shows the losses of Ga and As during the washing of the sediment obtained from 

real wastes. It can be seen from the figure that in the range of pH 2.75-3.50 the character of 
dependence of Ga concentrations in solutions is similar, the absolute values diminish, 
however, due to dilution 1:1 at washing. The concentrations of arsenic diminish as well, but 
the dependence is not the same any more. At higher pH values the concentration of Ga (1.30 
mg/l) is over the respective in filtrate (0.30 mg/l) with even a higher ratio than the 
corresponding value in the case of model samples. In contrast to this, As concentrations in 
this interval of pH values have the same behaviour as in the case of model solutions. To sum 
up, the precipitation experiments with model and real solutions proved that the interval of 
optimal removal of gallium arsenate is different in the two cases.  

Results of the efficiency of gallium and arsenic removal in the process of gallium 
arsenate sedimentation at optimal values of pH are presented in Table 1.  

 
Table 1. The efficiency of gallium arsenate sedimentation. 

Element pH range Concentra
tion , g/l 

Losses at 
filtratioin, 
mg/l 

Losses at 
washing, 
mg/l 

Total 
losses, 
mg/l 

Total 
losses,  % 

Ga 3.2-4.3 143.4 65.5 10.1 75.6 0.053 
Ga 3.6-5.0 18.96 1.7 0.15 1.85 0.010 
As 3.2-4.3 154.1 655.0 119.5 774.5 0.500 
As 3.6-5.0 10.19 1.6 1.6 3.8 0.037 

 
As can be seen from Table 1, the total losses of Ga are function of initial concentration 

of this element and constitute 0.01-0.053%. The corresponding As losses during the 
precipitation from the real waste solution are of the same order that those of Ga and present 
0.037%. Contrary, the removal of As from model solutions is less efficient and the losses 
present about 0.5%. There is a difference of one order between the losses of Ga and As, it 
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seems that there is no correlation with the initial concentrations of these elements, and 
probably it is connected with the ratio of Ga to As at the precipitation and co-precipitation of 
the species existing in solutions.  

It is known that some high-pressure modifications of gallium arsenate present promising 
electronic materials [14-16] with useful opto-electronic and piezoelectric properties in a large 
range of temperature, between 15 and 1073K. A study is in course to reveal the respective 
properties of the obtained material from our sedimentation experiments. In parallel we are 
currently developing a technology of processing the obtained gallium arsenate in order to 
recover pure gallium and arsenic. The obtained filtrate and washing solutions still contain 
huge quantities of As and in order to remove the contaminant from the resulting wastewater 
one of the available commonly used technologies can be used, for instance precipitation and 
adsorption by iron(III).  
 

5. Conclusions 
 

The precipitation of gallium arsenate may be considered as a serious option for removal 
of both gallium and arsenic from acidic aqueous wastes of GaAs semiconductor industry. The 
sedimentation from the real waste with a ratio of Ga to As of 2:1 is particularly effective with 
the optimal pH range of the process between pH 3.6-5.0. In the case of three model solutions 
with a ratio Ga:As=1:1 this interval is between 3.2-4.3. The losses of Ga and As present 0.01 
to 0.053% in the optimal conditions, with a mention that in the case of model solutions the 
loss of As is higher and constitutes about 0.5%. The obtained results are promising and 
showed that removal of gallium arsenate from acidic solutions can be performed with losses 
less than 0.5%. The obtained gallium arsenate can be further processed to isolate pure gallium 
and arsenic, while the remaining waste solution can be treated with a conventional technology 
for arsenic removal. Implementation of this process may have a positive role on the waste 
minimisation and pollution prevention within industrial process of GaAs layers production.  
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An improved technology for treatment of thermal elements of SbBiTe alloys is given. 

Optimal technological regimes for their cutting, mechanical and chemical polishing are found. 
The electric spark method of cutting, double-sided mechanical polishing without preliminary 
grinding are found to improve the surface state, to increase output of valid thermal elements 
and to save material. Optimal conditions for chemical plating of nickel on butt-ends of 
thermal elements are found.  
   

1. Introduction      
 

Solid solutions of SbBiTe are the most efficient materials for preparation of 
thermoelectric cooling devices in the region of low temperatures [1,2]. Efficient work of 
thermocooling devices depends on both physical parameters of a semiconductor material they 
are made of and a technology for preparation of thermal elements themselves. The thermal 
element surface state influences greatly the quality of thermoelectric devices, however the 
process of cutting of thermal elements and their treatment  is not well studied in literature.  
 Low hardness and layered crystal structure of these alloys determine formation of 
broken surface layers of a significant thickness in the process of cutting and abrasive 
mechanical treatment. Due to this, it is practically impossible to obtain a perfect surface of 
thermal elements of given parameters without a post-treatment.        
 Hence, this paper shows results of improvement of the technology for treatment of 
thermal elements based on SbBiTe alloys of p- and n-types of conductivity, with the purpose 
to achieve high values of thermal efficiency Z=3•10-3 K-1 and approximately equal values of 
parameters of the thermopower α, conductivity σ and thermal conductivity κ of the branches 
of both conductivity types in the temperature range 300-200 K.  
 

2. Experimental results         
 

We studied the technology for treatment of thermal elements having the sizes 
1,1x1,1x1,8 mm3 and 0,95x0,95x1,4 mm3  cut out of SbBiTe alloys of p- and n-types of 
conductivity with the figure of merit Z no less than 3,1•10-3 1/K and σ=(1100-1200) Ohm-

1cm-1. Fragility and splitting along the cleavage plane restrict the methods of cutting and 
mechanical polishing of thermal elements.         

The following methods were studied: cutting with metal saw, diamond disks and 
electric spark cutting. It was found that the first two methods are not suitable since the cutting 
process causes appearance of large splits along the cut planes due to fragility of this material, 
and is accompanied by a rivet  formation. The electric spark cutting gives a positive result.   

 231
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The cutting was carried out using the electric spark device of the type A207.23 allowing 
to decrease  thermal and mechanical overloads and the sample deformation. As a washing 
liquid 25% spirit solution in distilled water was used.        

The wire diameter determined the cutting regime. Thus, for example, for a nickel wire 
of the diameter 0,065 mm, the open-circuit voltage is U=55 V, the short-circuit current is 
equal to I=0,1÷0,2 A. For a brass wire of the diameter 0,09 mm, U=70 V, and I=0,15 ÷0,2 A.   

A condensation battery in machine-tools of this type is built in the power supply of the 
RC generator. Due to this, the cutting regime may be controlled only by the supply voltage 
and short-circuit current. Higher values of the latter cause splitting of a larger number of 
thermal elements while cutting. Thus, for example, at U=70 V, I=0,15 A the output 
coefficient is 88%, and at U=70 V, I=0,2A  it decreases down to 73%.  Optimal regimes for 
cutting of SbBiTe alloys were found when the coefficient of the thermal element output was 
∼100%.         

Mild regime of cutting, in spite of the low electric erosion stability of this material, 
allows to obtain rather high roughness of the thermal element surface - ∇6-∇8, and the 
deformed layer is about 20-50 μm.     

An attempt to polish the deformed layer obtained after the sample cutting with diamond 
pastes resulted in the broken layer increase and  in a breaking of thermal elements along the 
cleavage plane. Therefore, in order to remove the broken layer of the butt-ends, double-sided 
mechanical polishing on felt with the chromium oxide powder  was used, without the grinding 
process. As a result, a layer having the thickness of about 20-30 μm was removed. 
Microscopic investigations of the thermal element surfaces after polishing have shown that 
they were light, without cuts and breaks, and corresponded to the ∇8-∇9 purity class. Let us 
also note that the double-sided polishing of the samples eliminated the necessity of rejection 
of spoilage of the thermal elements according to height.      
 After the chemical polishing the thermal elements were repeatedly washed in organic 
dissolvents (benzine, toluene, isotropil spirits, acetone) in order to remove contamination, 
then they were washed in distilled water and went to chemical treatment of the surface.  
 The analysis of the literature data has shown that for thermoelectric alloys of bismuth 
telluride two types of polishing etching - electrolytic and chemical are used with an etchant 
based on HNO3-HCl and CH3COOH-Br2 [3-5]. Use of electrolytic etching of thermal 
elements has not given a practical result due to the fact that on the sample surface there took 
place formation of films of yellow or black colour, i.e. films of oxides and products of the 
sample interaction with the etchant, which are not always dissolved. Besides, the etching 
kinetics is significantly influenced by the temperature, density of the current and 
concentration of the solution, that impedes obtaining of demanded sizes of the thermal 
elements.    
 One of the peculiarities of the etchants given in literature is that usually they are 
intended for one plane, in the majority of cases for the cleavage plane of perfect crystals, 
while thermal elements are cut usually not of perfect crystals, but of ingots with a special 
texture of the cleavage plane due to necessity to increase mechanical strength of branches of 
the thermal elements.      
 The chemical etching of the thermal elements was carried out in etchants of different 
composition for one and the same material, they were composed both as it is recommended in 
literature and on our own.   
 It is found that the chemical polishing of the thermal elements includes two stages of 
etching: the first is etching in a solution of mineral acids (32NHO3 + 12HCl during 5-10 sec.) 
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and the second is etching in a solution containing 20-25 g of CH3COOH + 12Br2 during 30-60 
sec.         

After the mechanical polishing, the thermal elements underwent the chemical one. It 
was noted that the degree of the material removal while polishing depended on the surface 
state, composition of the material, temperature and freshness of etching solutions.   

Optimal conditions for chemical polishing of the thermal elements were found, resulting 
in pure  surfaces, without residuum of oxide film, with a metal glitter and with the surface 
roughness of ∇10-∇11 purity class. The etching regime ensuring the demanded sizes of the 
thermal elements was found as well.    
 Then a possibility of chemical plating of nickel film layer [3] on butt-ends of the 
thermal elements after the above mentioned preparation of the surface was studied. Main 
advantages of chemical nickel-plating in comparison with other metal coverings are the 
following: the possibility to plate nickel as a uniform layer upon parts of any configuration, 
absence of pores, the possibility to plate nickel simultaneously on a large number of thermal 
elements under similar conditions. Besides, nickel-plating of working butt-ends of thermal 
elements of SbBiTe alloys allows using solders which do not wet the thermoelectric material, 
that is solders of series ПОС and ПОСК with a flux consisting of a saturated solution of 
ammonium chloride in glycerine.        
 Chemically polished butt-ends of thermal elements after washing with hot and then cold 
distilled water were subjected to chemical activation, whereupon nickel-plating was 
performed in the following solution, g/l:            
 nickel chloride - 21;        
 sodium hypophosphite - 24;          
 sodium cytrate - 45;         
 ammonium chloride - 30;         
 distilled water up to 1 l,         
during 30 minutes at the temperature 50-60°C, and the solution PH was corrected with the 
30% aqueous solution of ammonia. However, coverings obtained of this solution are often 
fragile, this impeding their use for thermal elements.              
 It turned out that sodium hypophosphite significantly influences the quality of covering 
of thermal elements of SbBiTe based alloys. The best result is obtained when its content is 
10-15 g/l. If its amount is less than 7 g/l the covering is porous and has weak adhesion. When 
hypophosphite content is increased higher than 20 g/l the covering is fragile and rough, and 
the solution stability decreases.           
 It should be noted that in order to obtain a uniform covering and the solution stability 
nickel-plating should be performed while the solution mixing. For increasing of adhesion and 
decreasing of the resistance of the contact after plating of nickel the thermal treatment was 
carried out in vacuum 5•10-6-1•10-5 mm Hg during 30-45 min at the temperature 250-300°C. 
In order to avoid large mechanical stresses the cooling velocity did not exceed 5 degree/min.            
 Investigation of the covering microstructure has shown that it is expedient to plate 
nickel layer of the thickness 8-12 μm,  because the thin covering having the thickness 3-5 μm 
was dissolved by the solder in some places while soldering.         
 The plated nickel turned out light, dead, and the pitting phenomenon is not observed. At 
this treatment of the thermal element surface the covering adhesion was 46-68 kH/cm2. This, 
in its turn, increases reliability of operation of thermoelectric coolers assembled of the 
branches with these nickel layers.  
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3. Conclusions   

 
 Optimal technological regimes for cutting and for treatment of thermal elements after 
cutting are selected. The spark method of cutting allows to increase the output of valid 
thermal elements, to improve their quality and to save the material. It is shown that the 
doubled-sided mechanical polishing, without the grinding process, improves the state of the 
thermal element surface and eliminates the necessity of rejection of spoilage of the elements 
according to height. For decrease of the contact resistance of thermal elements and for 
increase of their mechanical and thermal durability optimal conditions for chemical plating of 
nickel on butt-ends of thermal elements of alloys based on SbBiTe solid solution are found.           
 

 
References  

            
[1] L.I.Anatychuk. Kiev, Naukova dumka (1989).     
[2] B.M.Goltsman, V.I.Lyashchenok. USSR Patent application N 4086479 (1986).       
[3] K.Sangval. Moscow, "MIr" (1990).       
[4] Iu.S.Volkov. Methods for selection of electrolyte for size electrochemical treatment of 

metals (in Russian) (1968).       
[5] "Etching of semiconductors". Translation from English of S.N.Gorin., Moscow, "Mir" 

(1965).      
[6] T.I.Sturov, N.F.Shatanov. USSR Patent  N 213512 (1976).  
 
  
    
   
  
   
 
 
 
 
 
 



Moldavian Journal of the Physical Sciences, Vol.4, N2, 2005 
 

 235

PARACONDUCTIVITY ANALYSIS FOR Ni-DOPED BSCCO 
 

I.T. Dihor 
 

Superconductivity & Magnetism Laboratory, State University of Moldova, 
MD2009 Chisinau, ReMoldova 

 
Abstract 

 
The paraconductivity effect of Ni-doped 2223 BSCCO ceramic samples was studied using 

data obtained from resistive measurements. The temperature ranges of 2D and 3D regimes of 
fluctuation conductivity as well as the crossover between different temperature regimes were 
determined in terms of the Lawrence and Doniach theory of fluctuations. 
 

Introduction 
 

Although a superconductor exhibits superconductivity only below Tc, there are 
superconducting electron pairs present also above Tc. These pairs are referred to as 
superconducting fluctuations. They are caused by thermodynamic fluctuations, which 
continuously create and destroy electron pairs. There is always a certain number of pairs present: 
the closer to Tc, the more pairs. It is, however, only below Tc that a superconducting condensate 
penetrates the material and the resistivity is zero. Superconducting fluctuations have a number of 
measurable effects. They influence, for example, electrical, thermal, and magnetic properties. 
Fluctuations have particularly large effects in high Tc superconductors (HTS), partly because of 
their high anisotropy. The fluctuation effects in HTS are large and easily observable, thanks to 
the short coherence lengths, the high temperatures involved, and the layered structure.  

One easily observable effect of fluctuations is a fluctuation resistivity (conductivity) or 
more commonly the paraconductivity. The resistivity curve is linear, but bends down just above 
Tc. This decrease in resistivity can be attributed to the superconducting fluctuations. 

In this paper we study the influence of Ni doping ions on paraconductivity of two types of 
superconductors: Bi1.8Pb0.46Sr1.88(Ca1-xNix)2.06Cu3Oy (I) and Bi1.6Pb0.4Sr1.8Ba0.2(Ca1-xNix)2Cu3Oy 
(II) using the Lawrence-Doniach (LD) model of fluctuations. Here x denote the concentration of 
doping metal x=0, 0.02, 0.05. 

The Aslamazov-Larkin (AL) model [1] is the most intuitive one, simply reflecting the fact 
that the superconducting electron pairs contribute to the conduction. Hence, this term gives a 
positive contribution to the conductivity (i.e. a decrease of the resistance against temperature 
decrease). The AL model was the first model to be derived and was treated for layered structures 
already in 1970 by Lawrence and Doniach [2]. In this model, each Cu-O plane is considered to be 
a two-dimensional (2D) superconductor, separated from the neighboring planes by insulating 
regions. The layers are coupled by Josephson tunneling. Close to Tc, where the coherence length 
perpendicular to the plane is much larger than the inter-plane distance, the material shows the 3D 
anisotropic superconductor behavior. Far away from Tc, where the coherence lengths are shorter 
than the inter-plane distance, it follows a 2D behavior. 
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In the LD model, the AL conductivity above Tc can be written as 

( )[ ] 2
1

2 1
16 δεε

σ
+

=
s

eAL
LD        (1) 

 

where ε = (T - Tc)/Tc is reduced temperature, ( )
2

2 04
s
cξδ =  is an anisotropy parameter, ξc(0) is the 

coherence length perpendicular to the planes at zero temperature, and s is the inter-plane distance. 
At Tc (ε << δ) expression (1) approaches 

( )
2

12

3 032
−= ε

ξ
σ eAL

D   (λ = -1/2)     (2) 

 
and at higher temperature (ε >> δ) it approaches 
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The crossover from 2D to 3D regime of fluctuations occurs when ε ≈ δ. This corresponds to 

ξc
2(T) ≈ s/2 with crossover temperature Tcross determined by  

( )δ+= 1ccross TT        (4) 
 

Result and analysis 
 

In Fig.1 and Fig.2 the temperature dependences of resistivity superconductors of types I 
and II with different level of doping respectively are presented. 

 
We assumed that Tc is the temperature where dρ/dT is a maximum, although there are other 

several methods to find Tc listed in the literature [3]. The linear (metallic) behavior of ρ(T) 
dependence is considered to be above 2Tc temperature and could be fitted to ρN(T) = ρ(0) + BT. 

Using the normal and total resistivity data shown in Fig.1, 2 and expression (1) we can 
extract the paraconductivity of these samples. The results are shown in Fig.3, 4 in a log-log scale. 
In brackets the R-squared coefficient of determination of fitted lines is indicated. 

From these diagrams the crossover from 2D (λ = -1) to 3D (λ = -0.5) regime of 
superconducting fluctuations of studied samples except Bi1.6Pb0.4Sr1.8Ba0.2(Ca1-xNix)2Cu3Oy with 
x=0.02 was identified (table 1). For above mentioned sample the 2D regime was not identified: 
the dimensional crossover occurs from 1D (λ = -1.5) regime directly to 3D regime (λ = -0.5). 
This sample contains 90% of 2223 phase with some 2212 and 2201 phase. Probably these small 
phases distributed randomly in the 2223 phase form wire type conductivity. In case of 
Bi1.6Pb0.4Sr1.8Ba0.2(Ca1-xNix)2Cu3Oy sample with x=0.05 the phase content of 2223 is 65% and 
2212 phase is 25%. Here the 2D regime of conductivity occurs. The superconductor type I with 
x=0.02 contain 90% of 2223 phase without any other phases while for x=0.05 this superconductor 
contains 25% of 2223 phase and 65% of 2212 phase. 
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Fig.1. The temperature dependence of resistivity for type I superconductor. 

50 100 150 200 250 300
T, K

0

0.4

0.8

1.2

1.6

2

ρ,
 ×

10
-3
 O

hm
⋅c

m

Bi1.6Pb0.4Sr1.8Ba0.2(Ca1-xNix)2Cu3Oy 
x=0.02
x=0.05

 
Fig.2. The temperature dependence of resistivity for type II superconductor. 
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Fig.3. The ln(Δσ) vs lnε plot for type I superconductor. 
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Fig.4. The ln(Δσ) vs lnε plot for type II superconductor. 
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Table 1. The parameters obtained from Fig.3, 4 
 Bi1.8Pb0.46Sr1.88(Ca1-xNix)2.06Cu3Oy Bi1.6Pb0.4Sr1.8Ba0.2(Ca1-xNix)2Cu3Oy
x 0.02 0.05 0.02 0.05 

Tc, K 96.5 93.5 96.5 95.5 
Tcross, K 99.3 95.1 98.5 97.7 
ξ(0), Å 13.9 6.9 2.1 20.4 

δ 0.029 0.017 0.021 0.023 
3D regime -5.3 < ln ε < -3.5 -5.3 < ln ε < -3.9 -5.3 < ln ε < -3.8 -5.3 < ln ε < -3.8 
2D regime  -3.4 < ln ε < -1.5 -3.8 < ln ε < -3.0 - -3.7 < ln ε < -3.0 

 
In [4] the dimensional crossover from 0D to 1D near Tc was identified. The authors refer 

this crossover to fact that small islands of the 2223 phase distributed in 2212 phase could form 
quiasi-1D dimensional percolation structure above Tc. 
 

Conclusion 
 

The investigation of 2D and 3D conduction in Ni-doped 2223 BSCCO ceramic samples has 
confirmed the usefulness of the paraconductivity in the identified temperature ranges over which 
copper planes and chains conduct. For all samples the crossover occurs at the temperature Tcross ≈ 
1.03Tc. However in the case of Bi1.6Pb0.4Sr1.8Ba0.2(Ca1-xNix)2Cu3Oy sample (x=0.02) the crossover 
from 1D to 3D regime was  identified. Also, the coherence length ξ(0) at temperature T = 0K was 
determined (Table 1). 
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Abstract 

 
The colloidal solution of fullerene C60 in water has been investigated by UV-VIS 

spectroscopy. It is shown that the peculiarities of colloidal solution spectrum are similar to 
UV-VIS spectrum for solid state C60. The direct and indirect optical transitions were found for 
this colloidal solution of fullerene. The existence of indirect transitions proves the presence of 
solid state C60 in water. The influence of IR laser irradiation on the colloidal solution of 
fullerene in water was also investigated. It is shown that under action of high power laser 
radiation the red shift of the optical line corresponding to hu↔t1u (HOMO-LUMO) transitions 
arises. Other transitions are not affected by IR laser. 
 

Since its discovery in 1985 [1], carbon-60 (C60), a newly found all-carbon molecule, has 
captured the attention of scientists all over the world. The investigation of its physical and 
chemical properties, as well as the properties of its compounds, became one of the most 
popular topics of today's research in solid state physics, material science, chemistry and 
biomedicine. 

The main contribution of the present work has been the research of optical properties of 
fullerite C60 nanostructures in water and changes in the structure of the optical spectra of the 
fullerene C60 water solution under influence of IR laser irradiation. It is known that the 
fullerenes are characterized by poor solubility in water. In [2]  it has been proposed a method 
for obtaining the molecular-colloidal dispersions of fullerenes in water without any stabilizers 
and this resulted in the generation of solutions with fullerene aggregate sizes from several 
nanometers to 200.  

For investigation of fullerene C60 aggregates in water a solution with initial 
concentration c=0.3 mg/ml was used. The parameters of electronic spectrum of this solution 
were obtained in the 1.6-6.2 eV range using SPECORD M40 UV-VIS spectrometer.  

In Fig.1 the absorption spectrum of non-irradiated (○) fullerene C60 aggregates in water 
is presented. The UV-VIS spectrum of colloidal fullerene water solution does not 
significantly differ from UV-VIS spectrum of fullerite C60 having the same positions of 
spectral lines. The similarity of spectra of C60 solid films and C60 in solution suggests the 
same origin for the transitions in both cases and shows the molecular character of the solid. 
Four intensive lines of absorption with maxima at 2.92, 3.62, 4.66 and 5.63 eV are caused by 
dipole allowed transitions. The positions of these lines correspond to data of ellipsometric and 
optical transparency measurements for crystalline C60 [3-7]. The line of small intensity caused 
by optical dipolar-forbidden transition hu↔t1u (HOMO↔LUMO) is also noticed in the range 
of fundamental absorption edge (~2 eV).  

The existence of the direct forbidden transitions hu↔t1u, direct allowed transitions 
(hu↔t1g, (hg+gg)↔t1u, hu↔hg, (hg+gg)↔t2u), indirect allowed optical transitions (hu↔t1g, 
(hg+gg)↔t1u) and indirect forbidden optical transitions (hu↔t1g, (hg+gg)↔t1u) in the C60 
fullerene aggregates in water is shown in Fig.2 and Fig.3 for non-irradiated samples. The 
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presence of indirect optical transitions is characteristic only of solid state and in the case of 
C60 colloidal water solution existence of such transitions certainly proves the C60 crystalline 
type in water. For transitions hu↔hg, (hg+gg)↔t2u the indirect allowed or forbidden transitions 
were not identified. The notations for indirect transitions used above are conditional, since the 
final states at these transitions belong to group of wave vector. 
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Fig.1 The absorption spectra for non-irradiated (○) and irradiated (∆, ∇, □) by high power IR laser 

(P=40 W) samples of fullerene C60 aggregates in water. 
The values of Eg for direct and indirect dipole forbidden and dipole allowed transitions, 

as well as energy of phonons, which participate in indirect optical transitions, are represented 
in Table 1. Index γ in Table 1 marks the exponent of multiplying E⋅α of dependence 
(E⋅α)γ=f(E). 

Table 1. 
The energy gaps determined from direct and indirect optical transitions data for the fullerene 

aggregates C60 in water. 
Direct 

forbidden 
Direct 

allowed Indirect allowed Indirect forbidden Type of 
transition Eg, eV Eg, eV Eg, eV Eph, cm-1 Eg, eV Eph, cm-1

hu↔t1u 1.77 - - - - - 
hu↔t1g - 2.37 1.89 879.28 1.71 903.48 

(hg+gg)↔t1u - 3.27 2.56 1097.098 2.14 1900 
hu↔hg - 4.02 - - - - 

(hg+gg)↔t2u - 4.90 - - - - 
γ 2/3 2 1/2 1/3 
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We see from Table 1 that in the case of indirect forbidden transition (hg+gg)↔t1u the 
energy of phonon Eph=1900 cm-1 exceeds the limiting energy for “intern” phonons of the 
fullerite C60. In this transition, probably, two phonons with summary energy equal to 1900 
cm-1 participate. 
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Fig.2 The direct allowed transitions (•), indirect allowed transitions (◊) and indirect forbidden 

transitions (∇) in the C60 fullerene aggregates in water in (2-3.1) eV range. 
 

The solution of fullerene aggregates C60 in water was irradiated by IR laser type LTN-
101 with wavelength λ=1064.1 nm (emitted power ≈ 40 W) for 3 times, every time being with 
2 min duration. The absorption optical spectra for irradiated samples (∆, ∇, □) are presented 
in Fig.1. The increasing of optical absorption with increasing of irradiation dose is caused by 
evaporation of the water with increasing of fullerene aggregate concentration during the 
irradiation processes. In the case of irradiated samples the change of Eg occurs. Namely, for 
the direct forbidden transitions hu↔t1u the decrease of Eg after IR laser irradiation was found.  
This decreasing depends on irradiation dose: 1.77 eV before irradiation, 1.68 eV after the first 
irradiation, 1.62 eV after the second irradiation, 1.57 eV after the third irradiation (Fig.4). The 
influence of high power IR laser irradiation on hu↔t1u (HOMO↔LUMO) transitions in C60 
thin films was also examined. But in this case no change of Eg value was observed. Thereby 
the red shift of HOMO↔LUMO Eg only for fullerite C60 nanostructures in water occurs. The 
decreasing of Eg during the high power irradiation of fullerene C60 aggregates in water is 
linear type dependence in the first approximation. 

In [8] the effect of energy blue shift of star-like C60PSn macromolecule (PS polystyrene, 
n=1, 2, 3, 4) photoluminescence spectra was observed. This shift is assumed to HOMO-
LUMO gap increasing. According to [8] the increasing of HOMO↔LUMO gap is caused by 
formation of new covalent bonds between fullerene C60 and polystyrene chains. The type of 
such bonds can affect the values of Hamiltonian matrix elements W1 and W2 of states mixing  
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Fig.3 The direct allowed transitions (•), indirect allowed transitions (◊) and indirect forbidden 

transitions (∇) in the C60 fullerene aggregates in water in (3-3.8) eV range. 

 
Fig.4. The decreasing of Eg corresponding to hu↔t1u (HOMO↔LUMO) direct dipole forbidden 

transitions under action of high power IR laser irradiation vs. irradiation time  
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for cases of C-C and C-H bond formation, respectively. These matrix elements determine the 
following dependence of the HOMO↔LUMO transition quantum [9] 

hν=[Δ2+n(W1
2+W2

2)]½ , 
where Δ is initial HOMO-LUMO gap of unperturbated fullerene and n is number of new 
formed chemical bond pairs. The dependence of HOMO↔LUMO gap vs. n at n<9 is linear 
function in accordance with experimental data (blue HOMO↔LUMO transition shift) [8]. 
Moreover, this behavior weakly depends on peculiarities of full polymer chain or other 
ligands attached to fullerene, but strongly depends on the nearest neighbors of C60 linked to 
fullerene by covalent bonds. In contrast to the fullerene C60PSn blue HOMO↔LUMO shift at 
decreasing of n the red shift of HOMO↔LUMO transitions must be observed. This effect was 
observed in our experiments at action of high power IR laser irradiation on the fullerite C60 in 
water. 

The fullerene water solution consists of isolated C60 molecules in hydrated state, 
C60@{H2O}n complexes and of their small spherical clusters. The complexes C60@{H2O}n 
are surrounded by spherical layers of interconnected water molecules and can be noticed as 
[C60@{H2O}n]m [10]. In such a structure the carbon atoms are centers of electron-deficiency 
and capable of interacting with electrons donated by extra water molecules. Under action of 
the high power IR laser irradiation the breaking of these bonds takes places. This leads to 
decreasing of HOMO↔LUMO gap. The high power IR laser irradiation leads also to 
breaking of the bonds between C60@{H2O}n complexes in spherical fractal clusters of 
hydrated fullerenes. However at these breakings the HOMO-LUMO gap remains unchanged. 

According to our experiments, unlike HOMO-LUMO transitions, the value of Eg 
corresponding to direct allowed optical transitions (hu↔t1g, (hg+gg)↔t1u, hu↔hg, 
(hg+gg)↔t2u), indirect allowed optical transitions (hu↔t1g, (hg+gg)↔t1u) and indirect 
forbidden optical transitions (hu↔t1g, (hg+gg)↔t1u) for fullerene C60 aggregates in water is not 
affected by high power IR laser irradiation. 
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The transition of plane surface of liquid dielectric charged with the electrical charge in 

the electrostatic field in the periodical gofer surface of crater type deformation is researched. 
It was proved for the first time that the apparition of dissipative structures keeps not optical 
character but thermal and is not conditioned by the presence of the photo sensible 
semiconductor layer. It was established that the development of dissipative structures on the 
surface of dielectric liquid includes in itself the mechanism of initiation of germination 
deformations and a mechanism of multiplication of the centers of new deformations in the 
free volume of germination deformation.  
 

Introduction 
 

The thermoplastic layer of photo thermoplastic career of information (PTPCI) during 
the development of deformations on the local microzones with the values of sizes within the 
limits (6÷25)μm are behavioral as the liquid dielectric during  t≈(0.3÷1)s of sensitizing 
(deposition of electrical charges) in the electrostatic field [1-5]. This allowed authors [6] by 
numerical methods to separate the development of wave shock of substance masses in the 
normal plane on the substrate of the sample of liquid dielectric-solid metal substrate of the 
development of the wave of mass transportation of substances in the radial plane [2]. Taking 
into consideration that the “depth” of deformations determines the value of penetrated light 
flux through the liquid layer, in [7] the numerical processing 3D of optical images 2D was 
applied. The basic idea consists in the storage of penetrated light through PTPCI in the 
memory of computer. The structure 3D approximated of the deformation of relief portable 
surface was represented by the association of each point (x, y) of the image with the pseudo 
spatial parameter of color (h). This allowed the definition of expression of some new physical 
value Q – the quality factor of pseudo spatial optical images. 
 
 

1. Method of research and the processing of results 
 

The method of research was elaborated in [8]. The numerical method of calculation 
evidentiated the non linear character of the phenomenon of apparition of the grey points nij 
(grey pixels) on the curves of histogram of optical image and the interconnection with the 
mechanism of development of the deformations of crater type on the free surface of PTPCI. 
The model of development of the deformations elaborated in paper [1] does not explain and 
does not suppose the apparition of spatial structures in group or sets of groups. The 
elaboration of structural model that will give good results must take into consideration the 
factors that assure the apparition of one group with square symmetry of the deformation of 
crater type – “attack figure”. The attack figure is multiplied into the structure of hexagonal 
symmetry of deformation. Taking into the consideration the possibility of the apparition “of 
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the crystallization of coulomb type” on the surface of some liquid dielectric media (see [9]), 
the computational modeling was applied. Applying special programs, the structured models 
were obtained that describe the process of germination and multiplication of thermoplastic 
deformations in group by the algorithm represented in fig. 1. On the base of computational 
calculations the results of theoretical researches were taken [8, 9]. The results of theoretical 
researches indicate that the first non stable harmonics are excited for which the deformation 
of hexagonal micro relief is nonvariant with respect to the rotation with 120°around the 
perpendicular axis on the plane of the surface of liquid. 
 

 
 

Fig. 1 The algorithm of pseudorepresentation 2D – 3D of the development of dissipative structures 
 

From those mentioned above, further we will analyze the mechanism of initializations 
of periodic –spatial deformed structures for which the germination deformation Co can initiate 
three centers of deformation Cs respectively only two on the selected micro zone. The 
experimental researches [see 10, 11] indicate that one more mechanism of initialization exists 
that can be observed in the samples with ultra fine liquid layers. The modification of 
dissipative structures can be performed in these samples from the hexapole to the octapole 
because the distance between Co and Cs is greater as the radial values of the thermoplastic 
deformations. The modification is described by computational modeling for which C0 can 
initiate on the selected microzone four centers of deformations Cs, but Cs only two 
respectively. It was established by computational modeling that on the free surface of 
researched samples the structural groups (units) can exist formed of germination deformations 
of crater type - Co with the approached geometrical structure (local) of satellite deformations 
– (Cs) and the packing configuration: 1Co-2Cs; 1Co-3Cs; 1Co-4Cs; 1Co-5Cs; 1Co-6Cs; that are 
increased up to the structure with removed order of one set of groups: 2Co - 10Cs.  

It was observed from computational modeling that in the experimental situation the sets 
of group can form a periodical lattice that formally can be described by structural unit of the 
type:   
 
                                        xCo→(2x2+x)Cs  of  Co( x )→ Cs(2x

2
+x); where x=1, 2, ….                (1) 

 
 

here x=f(ω) is the multiplication coefficient of the centers of new deformations as the function 
of the increment of formation of deformation ω, thermal stable also in the electrical field. 
The existence of elementary structural unit (x=1) results from relation (1) that assures the 
mechanism of multiplication of the centers of new deformations that correspond to the 
geometrical configuration of packing: 
                                                                   (1Co →3Cs)                                                           (2) 
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Fig. 2   Structural units induced by electrostatic field on the surface of liquid dielectric: 
a) - (1Co– 2Cs);  b) - (1 Co– 3Cs);   c) - (1Co – 6Cs);   d) (1Co – 10Cs)  ↔ Co x → Cs(2x

2
+x)

 
Several examples of structural units are proposed in fig. 2 that are realized during the 

development of the deformation of crater type at the projection of optical images on the free 
surface of liquid dielectric. The model is characterized by the coefficients α,β, γ  [2]. The 
defined structural relations are classified by the analogy with the structures for which the 
electrical bonds are established (chemical). So that, the mechanisms of initialization of the 
series of stable structures for which the intermediary states do not exist can be defined by the 
general relation of type: Co

XCs
Y

XY, where X,Y is the number of harmonics (waves) totally 
initiated by Co. So, all geometrical forms are calculated of stable structures that can be 
realized in the process of formation and restructure of the deformation of the surface of liquid 
dielectric, researched in paper [8]: Co

3Cs
2

6 and Co
4Cs

2
8. The research of the mechanisms of 

formation of stable structure – (Co
4Cs

2
8) formed of germination deformation and 8 satellite 

craters on the perimeter are outside of the objectives of the recent paper. The statistical 
modifications of the geometry of the structure Co

4Cs
2

8 were emphasized in [8], but the 
dynamical modifications will be researched in the future papers. The limit of applicability of 
the model of the mechanisms of initialization of the harmonics represents the case X=Y=2 for 
which the stable form would be  Co

2Cs
2

4 described by relation (2) that results from the 
mechanism of multiplication of the centers of new thermoplastic deformations. From the 
evident form of relation Co

2Cs
2

4 the dissipative structure represents a group of four 
thermoplastic deformation centers that are multiplied, independent of initial deformation C0. 
Then the theoretical and experimental results will be synthesized by approximated numerical 
methods. 
 

2. Theoretical investigations. 
 

The numerical interpretation of the process of development of the deformation 
emphasized the thermal character of it and the dependence on rheology. An important factor 
in the research of the process of initialization of the deformations represents the phenomenon 
of the decreasing of effective thickness of the visualized structure under the action of the 
pressure of electrical forces. The value of relative deformation of the surface of liquid is 
represented by form: 

                                                                  
NN te

z
δξ

≈
Δ

                                                       (3) 

In this case the equation of the removing of the mass of liquid in the real coordinates of 
the space and time      is represented as: 
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                                                                         ωξξ
=

dt
d                                                          (4) 

 
here:    ω is the increment of the formation of deformation. 

We will mention that:                                     
t

Vz ∂
∂

=
ξ                                                              

The value of the speed of decreasing of the effective thickness of the layer of liquid was 
determined as the difference (Δn) of grey points that appear on 2 neighbor frames N.   In fig. 
3 the dynamical surface of the liquid was modeled during 0.04 s: 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3 The numerical representation of the development of dissipative structures: 
                      1 – the “numerical” removing of the points of one Newtonian liquid – 2, from   
                            the dynamical  surface - ),( trξ .  
 

So in the linear approximation by the amplitude the solution of the equation of profile of 
dynamical surface of the liquid is defined as: 
 
                                                                        ∫= Vdtiξ                                                           (5) 
                                               

The value Vz is interpreted as sum of nij bits stored in the memory of computer in the 
interval of time dt=0.04s. From the expression of the calculation of total information that is 
contained by optical image results: 
 
                                                                 InnS ij

ji
2

,
log∑=                                                     (6) 

 
Where (I) is given by relation (4) and represents the gradation from white to black of 

each point,   (ni) is the number of points from the row (I) and (nj) - from the column j. For 
I=256 (the black nuance), a point of one image will contain the information of S=8bits=1 byte   
(1 pixel), S has the physical meaning of maximal deformation of 8 bits of thermoplastic 
sample in the point of liquid surface with the real coordinate of the space ztr =),(ξ .  Then the 
stock of numerical data from the memory of computer from a base of nij bytes will describe 
the formation of radial deformation with the characteristic dimensions (λ). Then the sum of nij 
bytes is represented as:        
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The synthesis of numerical data and experimental ones is described by the relation of 

numerical calculation: 

                                                                1
1

1 1
≤≡∑ ∑

= = λ

ξy
k

i

x
k

j ij
n

S
                                                  (8) 

 
Here: (ξ) is the removing of the points of the liquid surface: (λ) is the radial dimensions 

of the selected micro zone at the moment t. The numerical relation (8) taking into 
consideration the relations (6) expresses the process of apparition of grey points nij on the 
selected micro zone, that represents a data base which is increased exponentially. From the 
experimental data a numerical model was developed in accordance with relation (3): 
 

                                   were NtSe
z

k

i

x
k

j
ij
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=

≅≡ z
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i

x
k

j
ij

n
S
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t 1 1

1ln1ωδ  and   ω(t) ≈αt─1              (9) 

 
Here: α≤1 is the parameter that characterizes the dispersion; δ is interpreted as the speed 

(the increment ω) of formation of deformation. 
 

3. The processing of experimental material 
 

In these conditions of experiment described in paper [9] the value of increment 
calculated by relation (9) varies in limits ω=0.35÷28s-1.  In this segment the values: ω≈0.7÷7s-

1 indicated in paper [2] are also included. The increasing of the values of limits (from 0.7 to 
0.35 and 7 to 28 s-1), with one order on the kinetic of short duration is explained by the 
possibilities of the modern high advanced technologies: the registration of the processes of 
deformation in the fluxes of diffused light through the section of the sample of thermoplastic 
material of the values no greater than 0.1lx. The increasing of the range of values of the 
parameter is explained also by the approximation of the calculation admitted by the authors of 
paper [8]. This result indicates that a group of effects of deformations of the liquid surface, 
characterized by the values ω≥7÷28 s-1 (II stage) up till now is not defined. The defined 
values in table Nr.1 are proposed for a separated crater in the conditions of experiment that 
assures: The characteristics of the field Uc= 5.5kV, the temperature of thermal treatment T= 
60˚C of the sample with the thickness ztp=2μm.   

We will mention that for spatial parameter (kh), where
λ
π2

=k , in the conditions of 

recent experiment the range of values 1.2÷6.2 was defined that is in good accordance with the 
results of numerical researches (table Nr.1). The performed calculations for the conditions of 
regimes from the recent paper indicate that at the variation of the characteristic of the field or 
of the value of the temperature of thermal treatment the form of experimental shapes is saved, 
modifying only their shape. The peculiarities of the concreted form of one exponential 
dependence (see (9)) that describes the formation of one crater is proposed in fig. 4: 
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  Table Nr. 1       
  t(s) h    |lnh| kh ≡ 2π(ξ/λ)

0,48 0,2 1,6094 1.256 
0,52 0,3 1,2039 1.884 
0,56 0,4 0,9162 2.512 
0,6 0,5 0,6931 3.14 
1 0,6 0,5108 3.768 

1,4 0,7 0,3566 4.396 
2 0,8 0,2231 5.024 
4 0,9 0,1053 5.652 
* 1 0 6.280 

 
 
 
 
 
 
 

 
 
 
 

 
Fig. 4 The logarithmical representation of pseudospatial parameter h; parameters of the curve: 

Uc=5.5 kV, T= 60˚C, t0=0.3 s 
 

It is remarkable that with the increasing of sensitizing time of the liquid layers, the 
breaking of the straight becomes more clearly expressed. The moment of the apparition of the 
deformation of crater type can be determined for every characteristics of field. Using the data 
of the values of the pseudospatial parameter (kh) from table Nr.1 we can model 
mathematically the possible values of  λ    for the values  ξ possible in the given experiment.  
The numeric model of the process of multiplication of the centers of new deformations on the 
different layers of viscous liquid (it was admitted zi ≡ξ ), confirms the validity of the physical 
model proposed in [9]. The value of radial dimensions of the characteristic deformation, 
installed in the process of germination of the centers of new deformations of crater type is 
proposed in table Nr. 2:    
                                                                             
          Table Nr. 2       
 

kh
iπξ

λ
2

≥  (μm)  
t*(s) 

 
h(ur) 

ξ1=0.5μm ξ1=1μm ξ1=2 μm 
0.48 0.2 2.5 5 10 

1 0.6 0.8 1.6 3.3 
2 0.8 0.6 1.2 2.5 
4 0.9 0.5 1.1 2.2 

** 1 0.5 1 2 
 
Here  t* is the time of sensitizing that depends on the parameters of registration regime;           

zi ≡ξ the maximal value of spatial parameter;  z is the thickness of liquid layer; h is the value 
of pseudospatial parameter.    
      

The values of the parameter t* from table Nr. 2 are valid for the characteristic of the 
field Uc=5÷6.5 kV and T=60-80˚C, on the thermoplastic layers with the thickness of 
1<z 2μm (over the value≤ 3ξ ). The data of numerical calculation from table Nr. 2 show the 
dynamical parameters of periodical restructure of the deformation on the viscous liquid 
surface. The obtained results as the dependence of the value t*>>t0=0.3s, on the viscous layers 
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with z=2μm, indicate a spectrum of values of (λ) from 10÷25μm which are included in the 
spectrum of values indicated in the physical model of the process of germination of the 
centers of spatial deformations (see [2]). Comparing the results for different maximal values 

zi ≡ξ  from table Nr.2 we can make the conclusion that the smallest values λ on the surface of 
PTPCI and respectively a higher resolution of registered optical images can be obtained on 
the layers of thicknesses of ≈0.5μm. An evident result represents the definition of the values 
of parameter (λ) at the maximal value of the pseudo spatial parameter h=1 (the row marked 
with ** from table Nr. 2). This obtained result by numerical method thoroughly corresponds 
to the obtained values from the experimental researches.   

The kinetic of the development of the deformation processes and germination of the 
centers of new deformations on the dynamical surface of the liquid (see [3]) can be followed 
from the dispersion shapes from the graphical representation – fig. 5. We will mention here 
that the function ω2 describes the law of dispersion of the system in the absence of one 
interferential raster, defined from experimental measurements with the step Δh=0.15 and the 
time of delay of the moment of apparition of effects of deformation in the electrostatic sample 
– 0.3s, the field Uc=5.5kV, according to the experimental data from table Nr. 3: 

 
Table Nr. 3  

 
 
 
 
 
 
  

N•0.04s 0.3+ti(s) 
|Δh| h │ω│ kh ω2

 1-3 0.42 0.15 0.15 15.8 0.95 249 
3-12 0.78 0.15 0.3 5.2 1.9 27 

12-14 0,86 0.15 0.45 23.7 2.8 529 
14-22 1.18 0.15 0.6 6 3.8 36 

22-100 4.3 0.15 0.45 0.4 2.8 0.16
 
 

 
 

Fig. 5 The law of dispersion ω2 during the sensitizing of the dielectric of liquid. 
 

The numerical calculation of the spatial parameter (kh) indicates that after ≈1s from the 
moment of connection of corona the dimensions of characteristic deformation 
λ=2πz/kh 3µm on the layers with the thickness z≤2µm. We will have to mention that for the 
kinetics of short duration we can establish λ

≅
max=2πz/kh≅ 13.2µm is confirmed by direct 

metrical measurements performed in the real time of registration.   
From the analysis of the range of values of the pseudospatial parameter (kh) we can 

make the conclusion that for the description of the deformation phenomena of the dynamic 
surface of the viscous liquid we can apply the model of Newtonian liquid, for which the 
removing of one point of the liquid corresponds to one pixel on the matrix of numerical 
transformation. 

The calculation of the values (ω) with relation (9) indicates the field of absolute values 
|ω| ≅0.5÷28(s-1). The law of dispersion from relation (9) is defined graphically in fig. 2. The 
form of the shape ω2 is in good concordance with the result of theoretical researches and 
experimental ones that indicate the possibility of the discrediting of the dispersion shapes [2]. 
The experimental analysis on the values of the dependence generally indicates that the shape 
of dispersion is determined by a certain monoparametric set of shapes (fig. 5). The evident 
expression of the equation ω2 that describes the set of shapes can be represented as: ω2

(X, t) =0. 
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The form of experimental shape of the law of dispersion    represents a set of kinetic parabolas 
of type:    
                                                                    ω2

+ =(ω -X)2                                                       (10)  
Here the sign + indicates that the shape of wrapping of the parabolic set is the axis of 

abscises (0,t); X characterizes the movement of the substance masses in the divergent fluxes 
on the surface of liquid. 
 

4. The basic results, general conclusions 
 
1. The basic results were obtained on the base of researching method elaborated by the 
authors that assured the storage as the form of one numerical data base in the memory of 
computer of the optical information obtained from the light beam diffused by the non 
homogeneities of the free surface of the sample of liquid dielectric – the rigid metal electrode. 
2. The thermoplastic layer of PTPCI during the development of the deformations on the local 
micro zones D≈6÷25μm is similar as dielectric liquid in the interval t≈0.3÷1s, U=5÷7kV, 
T=58÷80°C and the values of the pseudo spatial parameter (h) enclosed in the limits 0 and 0.2.  
3. The type of restructure of the surface of liquid dielectric in the range of temperatures 
T=58÷90°C is modified as the dependence of the time of charge with the electrical charge 
t=0.3÷10s, at the constant value of the potential U of corona; the increasing of the value U 
from 5 till 7 kV contributes to the increasing of the speed of development of thermoplastic 
deformations and the increasing of the values of the pseudospatial parameter h>0.2÷1. 
4. The increasing of the value U and the time of sensitizing assures the formation of 
dissipative structures both in the illuminated regions and non illuminated regions of PTPCI. 
5. It was established that an optimal exposition exists for the researching in the real time of 
the phenomena of deformation on the surface of liquid dielectric with the values enclosed in 
the limits 0÷0.33lx. 
6. On the base of the method of the chemical selective attack generally the dispersed model 
was elaborated of the deformation of the surface of liquid characterized by kinetic curves that 
form hysteresis loops, in the optimal regime of the registration of optical images. 
7. The generalized geometrical model of the dissipative structures was realized by the 
identification of statistical coefficients: 
a)   α- the ratio between the dimensions of germination deformation and separated 
deformation that possesses the values enclosed between 1 and 0.5; 
b)  β- the ratio between the dimensions of crater from the volume of germination deformation 
and the mediated dimensions of one separated crater. The increasing of the value U leads to 
the increasing of the value      in the limits 0.8 and 1; 
c)   γ-    the most stable coefficient that characterizes the ratio of distances between the centers 
of deformations with the values enclosed in the limits 2 and  2.1. 
8. The optical hybrid devices with big potential of application realized by PTPCI by the 
wrapping of the diffractive element on the refractive element of one diffractional grating, 
obtained by holographic method. 
9. The mechanism of multiplication of the centers of new deformations on the surface of 
liquid is described by the relation   xCo→(2x2+x)Cs, where the coefficient of multiplication 
(x) is functional by the increment of formation of deformations (ω). 
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