
 

 

ACADEMICIAN ALEXEI V. SIMASHKEVICH – 85TH JUBILEE 

 

 

 
 

June 27, 2014 is a special—85th jubilee—birthday in the life and activity of the 

Moldovan researcher Alexei V. Simashkevich. He is Full Member of the Academy of Sciences of 

Moldova, doctor habilitate in physics and mathematics, professor, researcher-consultant of the 

Institute of Applied Physics of the Academy of Sciences of Moldova (the IAP). Academician 

Simashkevich has contributed a lot in the development of the Faculty of Physics of Moldova 

State University (the MSU) and of the IAP, in the progress of semiconductor physics in Moldova, 

and in training of high-level specialists in physics. 

 He was born in Chisinau, into a family of intellectuals. In 1947 1952 was a student at the 

Faculty of Physics and Mathematics, Department of Physics, of the MSU. Then he continued his 

professional education as a candidate of science at the Chair of Experimental Physics of the same 

university. It was then that the future academician got interested in the most progressive ideas in 

semiconductor physics, becoming its loyal and active supporter and developer. Having a high 

standard of culture, great erudition, and intrinsic intuition, A. Simashkevich has always worked 

in the forefront directions of semiconductor physics research. He has developed and matured his 

interest in the study of AII-BVI semiconductors when they were just beginning to get a foothold 

in electronics. 

 As a physicist, Alexei V. Simashkevich made his first steps under the guidance of 

professor Mihail Kot, the founder of the Chair of Electrophysics (today the Chair of Applied 

Physics and Informatics) of the Faculty of Physics and Engineering at the MSU. First, as a 

disciple of professor Kot, later as the Head of the Chair at the MSU, A. V. Simashkevich actively 

participated in the initiation of the specialty ”semiconductor physics” at the MSU, in equipping 

specialized laboratories, and in developing and delivering standard and specialized courses for 

students for 40 years. For a long time, his scientific interests have been in the study of properties 

of thin semiconductor crystal layers, which later consolidated into the area of heterojunctions of 

group AII-BVI semiconductors. 
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Here are the steps of his scientific biography. 

 In 1962 A. V. Simashkevich received his Candidate of Science degree from Vilnius 

University, Lithuania.  

 In 1967-1969, as invited professor, he visited Algeria delivering a course of general 

physics at the Algerian Petroleum Institute, where he published three course books in 

French. 

 From 1967, during 28 years, Alexei V. Simashkevich was the Head of the Chair of 

Semiconductor Physics and the Laboratory of Studies in Semiconductor Physics at the 

MSU. 

 In 1979 A.V. Simashkevich received his higher—doctoral—scientific degree (now 

“doctor habilitate”) in physics and mathematics from the Leningrad Polytechnic Institute 

(at present St. Petersburg). 

 In 1981 he received the title of Full Professor. 

 

 Research outcomes of the Chair and Laboratory of Semiconductor Physics related to the 

properties of the group AIII-BV and AII-BVI semiconductors and heterojunctions based on them 

have been duly appreciated by the world scientific community. As a result, the USSR Academy 

of Sciences decided to organize the first All-Union Conference on properties of heterostructures 

in Chisinau in 1974. The Conference Chairs were Dr. A.V. Simashkevich from the MSU, 

Chisinau, Moldova and Prof. Zh.I. Alferov (the inventor of the heterotransistor and the 2000 

Nobel laureate in physics) from the Ioffe Physicotechnical Institute of the USSR Academy of 

Sciences. During the years when academician Simashkevich was the Head of the Chair of 

Semiconductor Physics at the MSU, more than 600 students got their University Diplomas, many 

of them being citizens of Vietnam, Algeria, Syria, Cuba, Mexico, Germany, Mozambique, etc. 

Seven researchers from the Chair and the Laboratory received their Doctor Habilitate degrees and 

over 59 collaborators became Candidates of Science (in physics and mathematics and in 

engineering). Personally A.V. Simashkevich was the scientific adviser of 25 future doctors of 

science. The results of the research and teaching activities of A.V. Simashkevich are evidenced in 

over 300 communications at national and international conferences, 27 patents, around 600 

scientific publications including chapters in 4 monographs and 6 course books. 

 

Outcomes of his theoretical investigations can be summarized as follows: 

The technology for obtaining crystals, thin films, and heterostructures based on group II-VI 

compounds has been developed; the mechanism of the charge carrier transport via these 

heterostructures has been established; the respective energy diagrams have been proposed; the 

energy spectrum of impurities in AII-BVI compounds and in solid solutions based on them, as 

well as the role of those impurities in the formation of the radiation spectra and of photo-

conduction, have been determined; electroluminescence in the obtained heterostructures has been 

studied and a number of optoelectronic devices (luminescent diodes, efficient detectors of the 

electromagnetic and ionizing radiation have been designed etc.). 

 The scientific and managerial activities of academician Simashkevich have been duly 

appreciated. In 1983 he was decorated with the State Prize of the Republic of Moldova in Science 

and Technology. In 1989 a group of his colleagues and followers were decorated with the same 

prize, which means a high appreciation of the scientific school founded by academician Alexei 

Simashkevich. The same year he was elected Corresponding Member and in 1992 Full Member 
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of the Academy of Sciences of Moldova. As a continuation of his personal recognition, in 1995 

academician Alexei Simashkevich was elected academician-coordinator of the Section for 

Mathematical, Physical, and Engineering Sciences of the Academy of Sciences of Moldova and a 

member of its Presidium. 

 Since then, academician Simashkevich has been working for the Academy of Sciences of 

Moldova, being the founder of a joint MSU-IAP Laboratory for Materials and Structures for 

Solar Energetics and remaining a prolific researcher of the IAP till nowadays. The entire period 

at the IAP, academician Alexei Simashkevich, first as the Laboratory Head and today as leading 

researcher-consultant of the IAP, pays special attention to the development of R&D of 

photovoltaic devices. He was Deputy Director in 2001 and Acting Director of the IAP in 

2002 2005. Being a member of the administration of the Academy and then of the IAP in the 

hard periods for academic institutions, acad. A.V. Simashkevich made a significant contribution 

into the maintenance of the material and human assets of the institutes of Section headed by him 

and their integrity.  

 Research and teaching activities of academician Alexei Simashkevich have always been 

harmoniously combined with administrative and social work. Diversity of interests and areas of 

activity, amicability in the relationships with colleagues and students, high intellectual and 

cultural standards—all that makes it just to say that academician Alexei Simashkevich deserves 

to be of the highest rank on the scientific hierarchy scale, a hard and laborious but rewarding 

duty. 

 

prof., dr. hab. Dormidont Serban 

dr. Olga Iliasenco 

Institute of Applied Physics 
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Abstract 

 

A single crystal of gallium antimonide doped with 3 at % 
57

Fe was obtained via the 

Czochralski method. The Mössbauer investigations revealed four iron patterns: one diamagnetic 

and three Fe magnetically ordered sites, even at room temperature. The data suggested that iron-

containing compounds are formed at grain boundaries, and the microscopy images revealed the 

presence of two types of boundaries and holes of different shape and size. The EDX spectrum 

provided different amounts of Fe in the crystal (GaSb) and, respectively, at the boundary area.  

 

1. Introduction 

 

Gallium antimonide (GaSb) is one of binary semiconductors with a narrow energy 

bandwidth, a low electron effective mass, and a high mobility. It is a material with crystal lattice 

and adequate parameters of semiconducting properties suitable for building optoelectronic 

devices in a range of 0.8 4.3 μm [1 3]. The influence of doping elements belonging to the 3d 

transitional metals Fe, Ni, Cr, and Mn in the binary semiconductors, for instance, gallium 

antimonide, on the new physical properties is of high relevance. Among other trends, of a special 

interest is the preparation of magnetic materials with polarized electrons in a high spin state, 

which are referred to as dilute magnetic semiconductors (DMSs) [4]. The most obvious 

advantage of these materials consists in the possibility to implement magnetic storage of 

information with electronic readout in a single semiconductor device. As was demonstrated in 

[5], the spin injection may be carried out when electrochemical potentials in the ferromagnets 

will be split and the resistance of the ferromagnet is of comparable magnitude to the contact 

resistance. Thorough studies of the Fe Ga system function on the component ratios and 

temperature resulted in the publication of the state diagrams of alloys indicating stable 

intermetallic compounds and their compositions [6, 7]. The main intermetallic substances 

obtained are: the cubic α-Fe3Ga, Pm3m space group, in a range of 20.6 26.3 at % Ga having the 

mailto:turtalcba@gmail.com
mailto:filoti@infim.ro
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solidification temperature of Tc = 588 C; the hexagonal β-Fe3Ga, space group P63/mmc, exists in 

the limits of 24.3–32.0 at % Ga and crystallizes between 590-700 C; the monoclinic or tetragonal 

Fe3Ga4 with composition in at % Ga between 56.5–58.0, the space group C2/m, has a peritectic 

formation temperature of 906 ± 2 C; the β-Fe6Ga5, R3m space group, containing ~45 at % Ga,  

exists in a narrower temperature range of 770–800 C; the α-Fe6Ga5, with the same composition, 

which is characterized by C2/m space group and is stable at temperatures below 770 C; and 

finally the tetragonal FeGa3, space group P4n2. 

According to [8, 9], the Fe-Sb phase diagram consists of two phases: stoichiometric FeSb2 

and Fe1+xSb. The FeSb2 component is stable in the limits of 45–67 at % Sb at temperatures below 

738 C. The space group of the monocrystal is Pnn2 (FeS2-m type structure) [10]. Each Fe atom is 

situated in interstitial sites of Sb atoms and surrounded by six Sb atoms, while the Sb atom is 

surrounded by three nearer iron atoms and one antimony atom. The structure of FeSb2 does not 

change at lower temperatures (4 80 K), but the quadrupole splitting is changed; FeSb is 

crystallized in a range of 42–48 at % Sb in the B81 structure type. The antimony atoms form a 

hexagonal close-packed lattice, and the iron atoms are situated either in octahedral or tetrahedral 

interstices [11]. The NiAs-type B81, the phase Fe3Sb2(ε), has a homogeneity range of 40 47  

at % Sb with maximum liquid curve at 1025 C [12]. 

The role of doping atoms in semiconductors could be evidenced via indirect and direct 

experimental methods. The most ordinary (indirect) methods to investigate the role of doping 

atoms in a semiconductor host involve measurements of electrical conductivity, galvanomagnetic 

effects, photo conductibility, thermoelectric force, etc. These methods used in the investigation of 

semiconductor materials provide the biggest portion of information about the role and state of 

enclosed atoms in semiconductors. However, the interpretation of data concerning the location of 

these centers, which can be substitutional, interstitial, and located at the limit of the grain or on 

the vacancy places, requires great caution and finally is based on results obtained by direct 

methods, such as electronic paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), 

nuclear quadrupole resonance (NQR), nuclear gamma resonance (Mössbauer spectroscopy, MS), 

X-ray photoelectron spectroscopy (XPS), perturbed angular correlations (PAC), etc. However, 

these methods are not universal, such as electrical conductivity or Hall Effect measurements; 

therefore, they are applicable to a limited number of semiconductors (containing accessible 

isotopes in the case of NMR and Mössbauer, valence and spin state for EPR) or to a restricted set 

of impurities, enclosed atom present in them. The role of electronic paramagnetic resonance 

spectroscopy method to justify the basics of the theory of doped centers in semiconductors is well 

known [13, 14]. 

During recent years, the specific literature has accumulated a significant amount of data 

on doped centers in Fe Ga and Fe Sb systems and III-V semiconductors obtained by Mössbauer 

spectroscopy [15-23]. In [24], the spin injection at room temperature by introducing of Fe3Si 

epitaxial layer into GaAs matrix was successfully demonstrated. This result represents an 

example of ferromagnetic Heusler alloy (Fe2FeSi) which is a case of favorable spin injection. 

Considering that the solubility of doping III-V semiconductors is effectively small, in order to 

surpass the difficulties, it was chosen to work far from equilibrium by using epitaxial molecular 

flow (EMF) at low temperatures.  For the GaAs system, Curie temperature Tc values of 60 [25] 

and 159 K [26] were obtained. Upon switching to broadband semiconductors, GaN and ZnO, the 

Tc values were significantly increased. Thus, in [27] Tc above 740 K was obtained by 3% Mn 

doping in a GaN matrix on an Al2O3 support. A theoretical study [28] showed that Cr and Mn 

dopants in the cubic 3C-SiC polytype produce a ferromagnetic solid solution for both C and Si 
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position, exhibiting different magnetic moments. Implantation of Fe in SiC did not lead to 

magnetic phase, but the replacement of silicon (Si) by iron (Fe) (at low concentrations) in the 

hexagonal H6SiC polytype changed the crystal into a ferromagnetic phase. The electrical and 

optical properties of specified devices are widely affected by the doping material, usually owing 

to the diffusion of the desired element into the semiconductor crystal [29]. The actual study 

reports on the growth of a p-type gallium antimonide doped with 3 wt % 
57

Fe, the related optical 

and TEM images, and a large set of data obtained using 
57

Fe Mossbauer spectroscopy performed 

at different temperatures (3 295 K). 

 

2. Material and methods 

 

Sample synthesis: Amounts of Ga, m = 0.6545 g; Sb, m= 1.4250 g; and 
57

Fe,  

m = 0.0331 g were loaded into an optical quartz ampoule with thick walls (2 3 mm) and an 

internal diameter of ~12 mm. The evacuation of the atmosphere alternates with a few cycles of 

washing with argon. At the residual gas pressure of 10
-5

 mm Hg, the ampoule containing sample 

was sealed and tightly connected to an electromagnetic vibrator (50 Hz) to provide a 

homogeneous mixture. Both the ampoule and the vibrator were placed inside a tube type furnace. 

A constant temperature of 900 C was maintained for 24 h. After that, the electrical supply was 

switched off and the furnace was freely cooled via its thermal inertia. The obtained product was 

ground into a powder and then introduced into the zone melting facility to grow a single crystal 

via the Czochralski method. A mass of 0.040 g was separated from the grown single crystal, 

ground into a very fine powder and used as a sample (placed in a specific holder) for Mossbauer 

measurements. 

Mössbauer measurements. The Mössbauer spectra were measured via Oxford 

Instruments Mössbauer-Spectromag 4000 Cryostat from Institute of Inorganic Chemistry, 

Karlsruhe University. The temperature was varied within 3.0 300 K. A 
57

Co source (3.7 GBq) in 

a rhodium matrix was used. The spectrometer was of the electrodynamic type with a constant 

acceleration symmetrical waveform. Isomer shifts values are referred to Fe-metal at room 

temperature. The fits of the experimental data were performed using the wmoss and NORMOSS 

programs. 

X-ray diffraction measurements (XRD) of powder were realized at the Institute of 

Applied Physics of the Academy of Sciences of Moldova via DPOH-УМ1 equipment. (FeKα-

radiation, Mn filter, θ/2θ method.). 

Transmission electron microscopy (TEM) images were recorded using a Jeol ARM 

200F electron microscope. The ion thinning was performed using a Gatan PIPS model 691 device 

operating at 5 kV and 6 degrees incidence. Optical images were obtained using an AXIO-Zeiss- 

ObserverA1m microscope. For TEM specimen preparation, a slice with a thickness of about 500 

m was cut parallel to the basal plane from the cylindrical GaSb crystal sample, using diamond 

wire devices. In the second step, the slice was cut in nine smaller pieces. Finally, the  

0.5 mm x 2 mm x 2 mm GaSb piece was mechanically polished on both faces until a thickness of 

about 30 m and glued on a 3-mm copper TEM grid. This grid was then ion thinned to obtain a 

small hole in the middle. The edges of this hole are transparent to the electron beam in the 

microscope. The TEM specimen was oriented with the microscope axis parallel with the 

cylindrical axis of the initial cylindrical GaSb sample. 
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3. Results and discussion 

 

Galium antimonide doped with Fe-57 isotope studied in this paper was obtained as 

described in "Materials and Methods." The Mössbauer spectra (MS) of GaSb-Fe sample (3 at % 

Fe-57) at different temperatures are presented in Fig. 1. 

 
Fig. 1. Mössbauer spectra of GaSb-Fe sample (3 at % Fe-57) at different temperatures. 

 

At a first glimpse, the most remarkable aspect of the spectra is the existence at a fairly 

high temperature of 298 K (RT = room temperature) of three six-line patterns, suggesting the 

magnetic species for three iron locations. These sextets, also the centrally placed doublet, 

appeared over the entire temperature range (3 295 K) of Mössbauer measurements. The 

Mössbauer spectra parameters of investigated sample are presented in Table 1. 

 It is remarkable that the values (last column in the table) of relative area (proportional to 

the amount of Fe ions on every of its location) remain in reasonable limits. 

The presence of four different patterns in all exhibited Mössbauer spectra draw attention to a very 

important experimental feature. A homogeneous distribution of only 3 at % enriched 
57

Fe inside 

the GaSb single crystal lattice (zinc blend cell), substituting either the Ga or Sb atoms, normally 

would provide two doublets corresponding to both tetrahedral surroundings of Ga and of Sb and 

showing identical distances to the nearest neighbors of different type and to the second sphere of 

12 neighbors of the same type as the central ion of the coordination. In this case, both the IS and 

QS will show distinct figures due to a peculiar bond of Fe with Ga and, respectively Sb, with 

higher values for Fe location on Ga sites. Previous attempts of doping with Mn (for example, Mn 

in GaSb [30]) have failed to prove any substitution location. Therefore, the presence of Fe in four 

sites suggests the formation of potentially well crystallized (preparation route) of binary or 

ternary type compounds. These phases could exist mainly or only at dislocation or packing 

defects appearing during the growth of the single crystal. These dislocations are developed 
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preponderantly at the surface of the crystal and evolve inside the crystal, function of processing 

temperatures and the stress induced by growing. 

 

Table 1. Mössbauer spectra parameters of the GaSb Fe sample at different temperatures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Bint is the internal magnetic field around the iron nucleus, error =  ± 0.2 T; QS is the 

quadrupole splitting, IS is the isomer shift, W is the full line width, errors of QS, IS,  

W  = ± 0.02 mm/s; A is the relative area, error =  ± 1 %; T* is Tesla). 

Another significant feature is the continuous decrease of the IS with temperature proving 

the effect of second order Doppler shift [31]. 

The assignation of the patterns was related to Mössbauer existing data from the literature 

and their analyses in terms of temperature and composition dependence of corroborated 

parameters. 

According to the phase diagram (600 C) of ternary FeGaSb system presented in Fig. 1 of 

[12, 32] and phase diagrams of Fe Ga and Fe Sb [7, 8], at low iron concentrations, the FeGaSb 

system can contain the following phases: FeSb, FeSb2, Fe3Sb2 (ε), Fe3Ga, Fe6Ga5, Fe3Ga4, FeGa3, 

and epitaxial iron particles at nanoscale [33, 34]. 

T(K) Compo- 

nents 

Beff 

(T*) 

mm/s A 

(%) QS IS W 

3 

1 19.5 0.03 0.48 0.56 56 

2 15.7 -0.10 0.48 0.57 30 

3 0.0 0.34 0.39 0.36 8 

4 26.8 -0.22 0.51 0.27 6 

60 

1 18.8 0.03 0.48 0.47 52 

2 15.2 -0.10 0.47 0.47 34 

3 0.0 0.33 0.38 0.28 7 

4 26.2 -0.21 0.48 0.47 7 

150 

1 16.7 -0.02 0.45 0.57 59 

2 13.8 -0.07 0.44 0.41 22 

3 0.0 0.39 0.37 0.36 10 

4 21.1 -0.26 0.44 0.39 9 

250 

1 14.3 -0.03 0.39 0.57 53 

2 11.8 -0.07 0.41 0.46 30 

3 0.0 0.37 0.32 0.32 8 

4 17.9 -0.32 0.40 0.46 9 

293 

1 13.8 -0.04 0.38 0.58 54 

2 11.4 -0.04 0.37 0.48 29 

3 0.0 0.32 0.31 0.32 8 

4 17.0 -0.23 0.36 0.56 9 
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The most facile choice was for the doublet case. Comparing the experimental values of 

Mössbauer spectra parameters for doublet (component 3) of the sample at RT (IS = 0.31 mm/s, 

QS = 0.32 mm/s) (Table 1) with the literature data for MS doublets of Fe Sb and Fe Ga systems 

[15 17, 34 37] at the same temperature, one can see that they are closest to the diamagnetic 

FeGa3 [38] (IS = 0.28, QS = 0.31 mm/s [37]). Checking the structures, the XRD diffractograms 

(Figs. 2a, 2b) confirm the presence of this compound. 

 
Fig. 2. (а) X-Ray powder diffraction spectra of investigated sample GaSb-Fe (3%):   

o—spectrum peaks for GaSb, —peaks for FeGa3 substance and (b) line separation 220 
GaSb (d = 2.156 Å) and 212 FeGa3 (d = 2.126 Å). 

  

There have been as well other possibilities for a paramagnetic component; among the first 

of them, it was the presence of FeSb2. However, in the actual case, it has to be completely 

excluded because the experimental values of QS (MS) are about 4 times lower (Table 1) than 

those reported in [15, 17, 18, 39] with values of QS = 1.26 1.29 mm/s and IS = 0.46 0.45 mm/s 

at RT. 

 Another alternative was amorphous a-FeSb2 or more close in values of IS and QS the 

amorphous compound Fe0.5Sb0.5 [17] with QS = 0.44; 0.51 mm/s and IS = 0.43, 0.54 mm/s at RT 

and 4.2K, respectively, but these compounds are definitely out of any consideration, due to the 

process of growing single crystals. The data of Fe1.3Sb [40, 41] point to a doublet at RT but 

shows two sextets: one very pronounced, with Bint around 11 12 T, and the other one close to 

16 17 T at 5 K; therefore, they are not suitable for our doublet assignation. 

 As specified above, the studied sample contains three sextet components (labelled 1, 2, 4) 

with different values of internal magnetic field Bint equal to 13.8 T (1), 11.4 T (2) and 17.0 T (4) 

at 293 K. Note that these values are much lower than that characteristic of α-Fe (Bint, 33 T), 

indicating the formation of systems with the composition Fe3(Ga1-xSbx)2 [19, 20] or Fe3Ga4 [42], 

as well Fe3Ga or Fe1+xSb [40, 41], where x may cover a large range of values. It is worth noticing 

that, from the beginning, the formation of a Fe3Ga4 compound, where 4 sextets are observed and 

related IS values are close to zero, was excluded [42],. The Fe1-xGаx alloys were studied in [43], 
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with 0.15 ≤ x ≤ 0.30. Those samples, obtained by ball milling, were studied by X-ray powder 

diffraction, magnetization, electroconductibility, and Mössbauer spectroscopy methods in a large 

temperature interval of 5 770 K.  The XRD data demonstrated the presence of three 

crystallographic phases: α (Disorder (bcc)), stable within 15 to 20 at % Ga; α" (Order (bcc), 

FeAl3-DO3), stable within 20-30 at.% Ga; and β (Order (fcc), Cu3Au=LI2) stable within 25 30 at 

% Ga. Curie temperature Tc, magnetic moment μ (μB) /atom, Bint, IS, QS, and electroresistivity 

were determined. Later, close data were published in [44] for Fe100-xGa x, where x = 15.7, 17.0, 

19.0, 22.4, and 24.0, which was obtained by ball milling. In both cases, the values of Bint, IS, and 

QS differ from our data. 

 For all magnetic components of here investigated sample, the Curie temperatures Tc are 

higher than 293 K and in good agreement with the literature data. For example, in ternary 

systems Fe3(Ga1-xSbx)2 and Fe3Ga2-yAsy, where 0.1 ≤ x ≤ 0.75; 0.21< y <1.125, it was 

demonstrated by various physical methods that the magnetic ordered state with TC quite high up 

to 360 374 C is present and magnetic properties strongly depend on the proportion of Ga and Sb 

amount surrounding the Fe [19, 20, 35, 36]. In one attempt to assign the observed three 

magnetically ordered components of the investigated sample, we mainly used the results reported 

for Fe3Ga2-xMx. According to [20, 35], the Fe3(Ga1-xSbx)2 systems, as well as Fe3(Ga1-xAsx)2, 

have the B82 hexagonal structure type belonging to the P63/mmc space group, which is 

characteristic of the Ni2In type. In this structure, there are two positions of Ni ions: with 

octahedral (Oh, NiIn6) environment and one asymmetrical NiIn5 environment. It is obvious that 

the 1st and 2nd sextets should belong to the octahedral environment (lower values of QS 

parameter), while the 4th sextet to asymmetrical. As stated above, the most important approach in 

our analyses was the effect of presence of various elements from pnictide group on Bint, IS, and 

eventually QS parameters in Fe3Ga2 systems. From this point of view, the data from [20, 35] 

suggest a composition rather poor in Sb and richer in Ga in direct relation with reported data in 

[20]. In fact, Table 9 in [20] revealed that, with decreasing Sb content from x = 1 to x = 0.3, the 

Bint (at RT) augments by 1.5 1.7 T. Extrapolating the RT values found for the two octahedral 

surroundings in our study (Table 1), the observed patterns could stand for a composition with 

0.10 0.15 Ga and 1.90 or 1.85 Sb. In the study of Smith et al. [20], a composition with x = 0.10 

(TC data with values around 375 K) was prepared; however, any Mössbauer spectrum or 

parameters were not provided. 

 The Mössbauer line widths W (Table 1) for the sextets of all three positions are fairly 

large compared to the line width measured with our source and a standard alpha-Fe absorber  

(W = 0.25 mm/s). The large line width may be assumed to be an effect of the tiny modified 

nonequivalent surroundings and to relaxation processes. It should be noted that the mentioned 

components of the GaSb Fe system are not formed via substitutions of either Ga or Sb in the 

GaSb single crystal, but are formed at the boundary; hence, their influence on the magnetic, 

electrical, and other properties will be peculiar. Starting to elucidate the above statements, the 

optical and electron microscopy measurements were envisaged. 

 The reflection optical image of the ―as prepared‖ TEM specimen is shown in Fig. 3. Two 

types of crystal domains are observed (transparent and grey) exhibiting large boundaries between 

them. The optical contrast is due to the ion beam etching for the different crystallographic 

orientations of the two types of the domains. The areas near the edges of the black hole situated 

in the middle of the image in Fig. 3 are transparent areas for the electrons in the microscope. 

Figure 4 shows a TEM image obtained in these transparent areas representing the GaSb mono 

crystal structure in the <111> orientation demonstrated by the electron pattern inserted in the 
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figure. The arrows in Fig. 4 show the presence of Ga precipitates on the surface of the GaSb 

TEM specimen after several minutes of observations under the electron beam irradiation being 

formed by diffusion of this element from the bulk. 

 
 

 

 

 

As shown (Fig. 5) in the energy dispersive X-ray spectra (EDX), the Fe amount in the 

crystal bulk areas is less than 0.3 at %, while in the thick area (Fig. 6) of the specimen obtained 

from the location on the boundaries, about 2.5% Fe is present. The excess Ga concentration 

observed in the thin areas of the TEM specimens has two causes. The first one is the ion thinning 

process, which changes the sample concentration near the exposed surface, and the second one is 

the electron irradiation in the microscope, which enhances the Ga diffusion on the TEM specimen 

surface. After several minutes of observations, nanometric precipitates of Ga appear on the 

specimen surface, (see Fig. 4). In the thick areas of the TEM specimen, the Ga and Sb 

concentration resulted from EDX spectra are almost equal, because the amount of the Ga on the 

surface is less important, comparing to the total amount of the Ga present in the bulk. 

As can be observed optically, the boundary regions between the crystal domains are large 

(about 1 m) and, as described above, have a larger concentration of Fe (2.5%) than in the bulk 

(less than 0.3%). This large boundary region, which also shows some polycrystalline structures, 

can be attributed to the presence of the FeGa3 structure observed by X-ray diffraction. 

Due to the complex structure of the boundary region, it was impossible to obtain real 

transparent areas for TEM in these regions; however, EDX spectra (shown in Fig. 6) could be 

recorded.  

These results considerably confirm and support the Mössbauer data and the related 

location of iron containing phases at grain boundaries. This presence indeed could not 

substantially influence the physical properties of the GaSb single crystal doped with a fairly small 

amount of Fe. 

 

 

Fig. 3. Optical image (in reflection) of the axis 

the GaSb-Fe TEM specimen. 

Fig. 4. Domain oriented in the <111> zone of 

the cubic GaSb structure. 
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Fig. 5. EDX spectrum from the thin transparent area of a bulk crystal after TEM observations. 

Ga is largely present on the specimen surface, probably due to the ion thinning process. 
 

 

 
Fig. 6. EDX spectrum on the thick area of the specimen obtained from an area located 

 on the boundaries between the crystal domains. 
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These results considerably confirm and support the Mössbauer data and the related  

location of iron containing phases at grain boundaries. This presence indeed could not 

substantially influence the physical properties of the GaSb single crystal doped with a fairly small 

amount of Fe. 

 

4. Conclusions 

 

A single crystal of GaSb doped with 3 at % Fe was prepared by the Czochralski method in 

order to be investigated using Mössbauer spectroscopy. The microscopy data, imperiously 

requested by MS results, revealed the formation of large monocrystalline domains (GaSb) with 

optically visible boundaries (of a few microns) and holes between them. The EDX spectrum of 

the boundary area granted the presence of 2.5 at % Fe concentration, while the Fe amount in the 

large domains of the crystal was less than 0.3 at %. 

The first output from Mössbauer data was that Fe does not substitute any of the elements 

constituting the GaSb single crystal.  The Fe is present as binary (FeGa3) and ternary  

Fe3(Ga1-xSbx)2 phases on the boundary sites between crystallites. Some Mössbauer parameters, 

such as isomer shift, line width, and fields at nucleus, are specifically influenced by the ratio 

between Ga and Sb in the investigated Fe-containing compounds. 
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Abstract 

 

In this study, the temperature dependences of the thermopower of five samples of 

Pb0.82Sn0.18Te at different carrier concentrations (0.52  10
17

 to 15  10
17 

cm
-3

) were analyzed. The 

results showed that the thermopower heavily depends on charge carrier concentration. At low 

concentrations of charge carriers, the temperature dependences of thermopower exhibit a 

nonmonotonic behavior and have a maximum. A two-band Gottwick model with a linear 

temperature term was used to interpret the experimental data. In this approximation, it is assumed 

that a Lorentz resonance takes place near the Fermi surface. This model makes it possible to 

determine the Fermi energy, as well as the position and width of the resonance, from 

experimental data. 

Significant interest in studying the properties of narrow-gap semiconductors, particularly 

lead telluride tin telluride single crystals, is attributed to wide possibilities of their practical use 

as detectors and radiation sources in the infrared spectrum, thermocouples, strain gauges, etc. At 

the same time, scientific interest in these materials is primarily associated with their unusual 

galvanomagnetic, thermomagnetic, and magneto-optical properties. 

The quality requirements for the samples under study are very high in order to obtain 

reliable experimental results: the volume distribution of the components must be uniform, and 

mechanical defects must be reduced to minimum. The most effective technique for preparing 

homogeneous Pb1-xSnxTe single crystals is the gas-phase growth method. We have developed a 

special technology for gas-phase growth of single crystals using high-purity Pb, Sn, and Te of the 

OSCh-0000 grade as initial materials (Te was purified by multiple zone recrystallization). 

Microstructural and spectral studies and Hall-effect measurements have confirmed the high 

quality of the prepared Pb1-xSnxTe (x = 0.18) single crystals. 

In this study, the temperature dependences of the thermopower of five Pb0.82Sn0.18Te 

samples at different carrier concentrations (0.52  10
17 

to
 
15  10

17 
cm

-3
) have been examined. The 

results have shown that the thermopower heavily depends on charge carrier concentration. For 

low concentrations of charge carriers, the temperature dependences of the thermopower are 

nonmonotonic and exhibit a maximum. 

Figure 1 shows the derived typical temperature dependences of the thermopower of  

Pb1-xSnxTe (x = 0.18) at different concentrations of charge carriers. Samples with a low carrier 

concentration exhibit the thermopower sign reversal, which is indicative of the transition to the 

intrinsic conduction region (curves 4 and 5 in Fig. 1). The thermopower sign reversal for samples 

with a lower concentration of charge carriers is observed at lower temperatures. 

Generally, it is fairly difficult to calculate the kinetic coefficients in semimetals and 

narrow-gap semiconductors because it is impossible to strictly take into account all the factors 

associated with the charge transfer in the crystal owing to strong nonparabolicity of the bands and 
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the complex mechanism of carrier scattering. Nevertheless, experimental studies of transport 

phenomena in these semiconductors provide the most complete information on the kinetics of 

charge carriers and their energy spectrum under a wide variation in temperature and 

concentrations of charge carriers and impurities. 

The derived experimental data were interpreted using a two-band model with a linear 

temperature term proposed by Gottwick [1-4]. This approach assumes that Lorentzian resonance 

occurs in the vicinity of the Fermi surface. This model makes it possible to determine the Fermi 

energy and the position and the width of the resonance from experimental data. 

 

 
 

Fig. 1. Temperature dependence of the thermopower of Pb0.82Sn0.18Te at different carrier 
concentrations: hole concentration, 1017 cm-3, 77 K.  

2 3 4 5 
15 5.2 2.6 0.52 

 

For theoretical analysis in terms of this model, we use the following formulas: 
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where S(T) is the thermopower, T is the temperature, and A, B are constant coefficients. 

Temperature dependence of thermopower

-500

-400

-300

-200

-100

0

100

200

300

400

500

100 140 180 220 260 300 340 380
T

0
K

S,mV/deg

2

3

4

5



Moldavian Journal of the Physical Sciences, Vol. 13, N1-2, 2014 
 

 22 

 

 

 

 

 

Fig. 2. Calculated temperature dependences of the 
thermopower of Pb0.82Sn0.18Te at different carrier 

concentrations: 

hole concentration,        1017 cm-3,   77 K 

3 4 5 

5.2 2.6 0.52 
 

The table 1 lists parameters A, B, E0, and Г calculated by formulas (1) (3). 
 

Table 1. Parameters A, B, E0, and Г calculated by formulas (1) (3) 
 

 S(T)max B, K (В=Т) A, eV/C EF, eV E0, eV Г, eV 

5 430 200 5.38  10
17

 0.066 0.043 0.021 

4 410 280 7.18  10
17

 0.017 0.057 0.016 

3 288 300 5.40  10
17

 0.03 0.043 0.0449 

where C is coulomb. 
 

The E0 and Г (gamma) are determined by the position of the center and the width of the 

resonance on the energy axis, respectively. 

The resonance peak defined by formula (1) adequately describes the temperature 

dependence S(T). The thermopower passes through a maximum at the T = B point. Thus, we can 

determine B and calculate A, E0, and Г. The calculated temperature dependences of the 

thermopower of Pb0.82Sn0.18Te at different carrier concentrations are shown in Fig. 2. 
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Abstract 

 
This study presents the results of investigations on the conductivity and irradiation 

stability of single crystals  ZnIn2S4 in a wide range of incident electron energies (30 75 keV) and 

respective doses (10
14

10
20

 cm
2
). The possibilities of manufacturing accelerated electron 

detectors are explored, and their parameters are estimated. Considering that the energy values on 

the order of 10
2
 keV are near the threshold of structural defects of intensive formation, the 

influence of this phenomenon on the detector parameters is subject to the analysis. 

 

1. Introduction 

 

The materials having semiconductor properties are quite sensitive and change their 

essential physical properties under the action of external radiation and elementary particles 

bombarding them at a high energy. Usually, under the action of external radiation or different 

high-energy particles in crystals, following the ionization, additional scattering centers of charge 

carriers appear. 

Experimental and theoretical study of these processes is up-to-date in terms of 

characteristic stability of microelectronic devices and prevention of degradation processes in 

different devices made of different materials with semiconductor properties. Therefore, it is quite 

important to perform researches related to the influence of electron beams with energies up to 

100keV on the physical properties of semiconductors. To highlight the changes occurring in 

optical, photoelectric and irradiation properties, optical absorption spectra and 

photoconductibility for nonirradiated samples and for samples irradiated with different doses of 

electrons at certain energies were examined. Depending on the doping element, the impurity 

concentration is in a range of 1.2  10
19

 to 2  10
20

 cm
3
. The growth technology for ZnIn2S4 is 

described in detail in [1, 2]. 

 

2. Experimental results on irradiation conductivity 

 

This paper describes the experimental results regarding the change in photoelectric 
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properties and irradiation under the influence of an electron beam accelerated in ternary 

compounds of type , based on the example of typical ternary compound ZnIn2S4. For 

research, we chose perfect slabs in terms of defect density, with an outer surface that had a 

quality optical thickness of 0.20 1.0 mm, obtained from the gas phase using iodine as a carrier 

agent. 

Irradiation conductivity was measured in vacuum at the temperature of 296 K, both under 

stationary and modulated conditions according to the method described in [3]. The current 

density of the electron beam was provided by the flow of  10
16 

cm
-2

s
-1

 particles; the bombardment 

energy was 30, 40, and 75 keV. 

Based on the dependence of the relative resistance change 
0R

R  and the current density of 

the electron beam for three samples of ZnIn2S4 at 40 keV (Fig. 1), one may observe that this 

dependence for all the samples is basically a linear function throughout the study period. The 

dependence between relative resistance (
0R

R ) and irradiation dose at different levels of 

excitation of electron beam energy was also investigated. According to this dependence, it is 

observed that at 75 keV (curve 1, Fig. 2), the resistance slightly decreases in a narrow range of 

variation of the irradiation dose. At an electron beam energy of 40 keV (curve 2), this transition is 

observed to be very slow and approximately linear; at an energy of 30 keV, the dependence on 

the dose is a linear function in the studied range.  

For all the measurements described above, a constant conductivity of the samples in the 

dark was observed: 10
7

10
9
 . At high doses of radiation  irreversible 

changes of the resistance in the dark were observed, which indicates a sudden increase in the 

concentration of balanced charge carriers, in the volume of the single crystal (at least to the depth 

of penetration of the electrons of ). 

 

 
 

Fig. 1. Dependence of relative resistance  on electron beam current for the ZnIn2S4 

samples with a thickness of (1) 0.20, (2) 0.5, and (3) 1.0 mm.  
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Fig. 2. Dependence of relative resistance and radiation dose   at different 

values of the electron beam energy: (1) 75, (2) 40, and (3) 30 keV. 

 

     
 

Fig.  3. Dependence of the ZnIn2S4 single crystals on the dose of irradiation, 

T = 296 K: (1) 50 and (2) 100 keV. 

  

Figure 3 shows the dependence of 
0R

R on the dose of irradiation, where , 

R is the dark resistance of the sample after irradiation dose of . This 

dependence suggests that, at a radiation dose of , the resistance in the dark becomes 

very small, it is approximately 
210 . 
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Fig.  4. Temperature dependence of the parameter φ for accelerated electrons: 

 

 

 

Figure 4 represents the temperature dependence of the parameter φ for accelerated 

electrons with an energy of (1) 50 and (2) 100 keV at a radiation dose of 5∙10
18

 cm
-2

, where  

. Following the above, it can be mentioned that the activation energy of the 

conductivity decreases with decreasing sample resistance. 

The experimental results concerning the cathode conductivity of ZnIn2S4 single crystals 

suggest that, in this case, the conductivity type of the single crystals does not change. We assume 

that the concentration excess of balanced carriers occurs due to the activation of small donors, 

which are probably formed at an intensive irradiation. It was experimentally established that an 

increase in the dose leads to a decrease in the activation energy. For example, for a dose of  

5∙10
18

 cm
-2

, the activation energy was 0.006 eV, which is comparable to the ionization energy of  

Zn atoms between nodes  Zni for the network ZnO according to the data 4 . Therefore, we could 

say that following the interaction of medium-energy electrons in ZnIn2S4, the zinc occurs 

between the nodes of crystalline network. 

Based on previous results, we will examine some operation parameters of electron 

detectors with energies up to 50 keV made on the basis of ZnIn2S4 . For electrons with energies 

of 50 keV having the number of excited electrons per second , the lifetime  of free 

carriers is approximately  and the interior propagation coefficient of carriers, at a 

calculated contact voltage of 5 20 V, achieves a value of  
310  [5, 6], which is obviously lower 

than 
810  for the binary compounds. Being experimentally determined, the detector’s power is up 

to 4 W ∙ cm
-2

, while for the detectors based on CdS and Cd Se, it is 10
-3

 W cm
-2

 7 .  

To develop detectors of high-energy particle and X-ray irradiation, it is necessary to take 

into account other advantages: simple manufacturing of detectors and their operation in steady-

state and modulated conditions; high stability to the action of high energy electron beams and X-

rays. Investigations on the development of new-type detectors or of their new modifications allow 
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obtaining some performances of exploitation parameters compared to the existing ones. 

Having high stability at irradiation, the investigated compounds have many practical 

applications including for the construction of Roentgen radiation detector. In this way, the 

optimum parameters make it possible to use X-ray detector in medicine, ecology as well as in 

agriculture. 
 

3. Experimental results on irradiation stability 

 

 As a result of experimental investigations, there have been determined photo-

conductibility spectra (FC) of layered compounds ZnIn2S4 for the initial sample (Fig. 5, curve 1) 

and irradiated with different doses of accelerated electrons of 10
18

 cm
-2

, 10
20

 cm
-2

 with an energy 

of  60 keV (curves 2 and 3, Fig. 5). Comparison of these curves shows that, after irradiation with 

a dose of 10
18

 cm
-2

, the highest spectrum moves towards the area of low energies located at 2.68 

eV (curve 2, Fig. 5). On the high-energy wing of the spectrum, it is clearly perceived a platform 

feature at 2.85 eV. It should be noted that at a radiation dose of 10
18

 cm
-2

, signal intensity FC in 

the maximum located at 2.85 eV increases, which corresponds to the fundamental absorption. 

In the research, it was found that the spectrum FC of single crystals ZnIn2S4 undergoes 

radical changes with increasing dose of irradiation (curve 3, Fig. 5). During the irradiation of 

ZnIn2S4 with accelerated electrons of a 10
20

 cm
-2

 dose, the maximum value of sensitivity is 

shifted even further to the area of low energies and is set at 2.34 eV. On the high-energy wing of 

the spectrum, an additional maximum to the energy 2.63 eV is highlighted, giving way, in terms 

of intensity, to initial spectrum (curve 1). At high doses of radiation of 10
20

 cm
-2

, the samples’ 

resistance to the dark decreases irreversibly up to 10
2
Ωcm and photosensitivity accordingly 

decreases. Similar studies were carried out on CdGa2S4 crystals and showed that, during their 

irradiation with a  D ≈ 10
20

cm
-2 

dose, significant changes in optical and radiation properties 

occur. 

 
Fig.  5. Photoconductivity spectra of ternary compounds ZnIn2S4: original sample (curve 1) 

and samples irradiated with different doses of accelerated electrons D ≈ 10
18

cm
-2

,  

D ≈ 10
20

cm
-2 

 (curves 2 and 3), with an energy of 60 keV. 
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4. Analysis of results 

 

To summarize, based on these results, we could notice about high stability of optical and 

radiation properties of semiconductor compounds CdGa2S4 and ZnIn2S4,  which is also 

demonstrated by the results of investigations of the optical absorption spectrum of ZnIn2S4 

samples irradiated with accelerated electrons with an energy of 50 and 100 keV, respectively, at a 

density of electron beam of 1.5  10
2
 A  cm

2 
 and at a temperature of 296 K (Fig. 6). The 

exponential sector of the absorption spectrum can be attributed to the presence of "tails" of state 

densities of the conduction band conditioned by the disorder of cationic subnet. This fact is 

described in detail in the case of (ZnIn2S4) 2 . 

Based on the study of the bibliographic data, it can be noticed that significant changes in 

the properties of elementary or binary semiconductors [8] during their irradiation with electrons 

with energies of up to 100 keV occur starting with doses of 14 16 210 10 cm ; in the case of 

ZnIn2S4 and CdGa2S4 compounds, essential changes in optical properties occur starting with 

doses higher than 10
19

 cm
-2

. In the case of ternary semiconductor compounds, which have a 

energy band gap higher than 3 eV, while irradiating them with a dose of ≈10
14 

cm
-2

, optical 

absorption in the ultraviolet spectrum decreases; this effect is referred to as the effect of low 

doses. These results correlate with the data presented in [9]. 

An increase in absorption is recorded at doses higher than 10
15

 cm
-2

. The results 

described in this study concerning the nature of clear structure of the spectrum FC of single 

crystals ZnIn2S4 irradiated at a dose of 10
18

 cm
-2

are consequences of the improvement of the state 

of crystal surface at the initial stage of irradiation, which is assumed to affect the recombination 

of free charge carriers at the sample surface. 

At the same time, we find that the formation mechanism for threshold defects in layer 

compounds ZnIn2S4 is initiated at doses higher than 10
18

 cm
-2

. 

 
 

Fig. 6. Optical absorption for single crystals ZnIn2S4 irradiated with accelerated electrons:  

(1) 50 and (2) 200 keV, j = 1.5  10 2 A  cm 2 ; T = 296K. 
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5. Conclusions 

 

1. The experimental liniar dependence of the relative rezistence of zinc thioindate on electron 

beam as the stimulant has shown that manganese thioindate can be used as an active element 

in electron X-ray detectors. A model of an X-ray and accelerated particle detector capable of 

operating under both steady and modular conditions has been proposed. The coefficient of 

internal amplification of charge carriers at a voltage of 
310  has been estimated. The 

amplification coefficient is 
310 . 

2. The conductibility and irradiation stability of ZnIn2S4 and CdGa2S4 single crystals have been 

studied. The study has shown that the optical and photoelectrical properties incur significant 

changes only for dozes higher than 10
19

 cm
-2

. The results suggest that the studied ternary 

compounds have highly stable properties. 
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Abstract 

  

  We investigate the differences in electrochemical nanostructuring of CuInS2 and CuGaS2 

crystals. It is shown that thermal treatment of CuInS2 crystals either in vacuum or in Zn vapors is 

a procedure providing necessary electrical conductivity to the as-grown high-resistivity crystals 

for a consequent electrochemical nanostructuring, while in CuGaS2 crystals treatment in Zn 

vapors at temperatures higher than 700 
o
C is needed to make them suitable for electrochemical 

nanostructuring. Porous CuInS2 structures with a uniform porosity and the pore diameter 

controlled by the crystal conductivity are demonstrated, while the porosity of CuGaS2 structures 

is inhomogeneous. Possibilities of luminescence enhancement via thin Au and Cu film deposition 

onto nanostructured CuGaS2 surfaces or ITO films onto CuInS2 surfaces are also investigated.   

 

1. Introduction 

 

  It has been demonstrated in previous works [1-3] that the surfaces of I-III-VI2 ternary 

chalcopyrite materials can be nanostructured by electrochemical etching in aqueous electrolytes 

similarly to III-V [4 6] and II-VI [7 9] binary materials. However, there is an essential 

difference between electrochemical treatment of ternary and binary compounds. In contrast to 

binary compounds, anodization of ternary materials can be carried out only at low applied 

voltages of less than 1 V, since electrochemical treatment at higher voltages leads to the 

decomposition of these materials. The approach of electrochemical nanostructuring of 

semiconductors proves to be a strategy for a variety of applications. Particularly, the advent of 

methods for controlling inorganic materials on the nanometer scale opens new opportunities for 

the development of future generations of solar cells [10]. Solar cell technologies, using I III VI2 

direct band-gap chalcopyrite semiconductors as the absorber layer, have attracted great interest 

[11]. Solar cell technologies using I III VI2 chalcopyrite semiconductors have made rapid 

progress in recent years. A conversion efficiency of around 20% has been reached with 

Cu(In,Ga)Se2 thin-film solar cells [12, 13]. However, these solar cells contain a toxic component 

of Se. On the other hand, CuInS2 does not contain toxic elements in comparison with CuInSe2, 

while its band gap energy of about 1.5 eV matches well the solar spectrum for energy conversion, 

and it demonstrates a large absorption coefficient of 10
5
 cm

-1
. The advantages of nanostructured 

absorber layers in solar cells consist in trapping of light inside the cell instead of reflecting back 

out. Further boosting the performance of solar cells can be realized by combining nanostructuring 

with plasmonic effects by deposition of metallic nanostructures.  

  The goal of this paper is to perform a comparison of the effects of electrochemical 
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treatment upon CuInS2 and CuGaS2 crystals and to study the plasmonic effects in nanostructured 

layers of these materials covered with thin metallic films. 

 

2. Sample preparation and experimental details 

 

CuInS2 and CuGaS2 single crystals were grown by chemical vapor transport (CVT) in a 

closed system using iodine as a transport agent. The polycrystalline material, preliminary 

synthesized in iodine atmosphere from a stoichiometric mixture of the elemental constituents, 

was used as the raw charge in the CVT. The iodine concentration was approximately 5 mg cm
−3

. 

The system was cooled down slowly at a rate of 10 °C/h to avoid straining of the crystals after 

crystal growth. 

Electrochemical treatment for nanostructuring was performed in an electrochemical cell 

as described elsewhere [6]. A four Pt electrode configuration was used: a reference electrode in 

the electrolyte, a reference electrode on the sample, a counter electrode, and a working electrode. 

The area of the sample exposed to the electrolyte solution was 0.1 cm
2
. The anodic etching was 

carried out in a 5% HCl:H2O electrolyte in the potentiostatic regime at room temperature. The 

resulting morphology of the etched samples was studied using a TESCAN scanning electron 

microscope (SEM). The photoluminescence (PL) was excited by a LD Pumped all-solid state 

MLL-III-532 laser, or by the 476.5 nm line of an Ar laser, and analyzed through a double 

spectrometer. The spectra were measured with a FEU 106 photomultiplier in a spectral range of 

1.6 2.6 eV, with a FEU 62 photomultiplier in a spectral range of 1.1 1.6 eV, and with a 

PDA10DT InGaAs photodetector in a spectral range of 0.5 1.1 eV. The resolution was better 

than 1 meV. The samples were mounted on the cold station of a LTS-22-C-330 cryogenic 

system. 

 

3. Results and discussions 

 

The as-grown CuInS2 and CuGaS2 crystals are n-type with resistivity on the order of  

10
6
-10

7
 ∙cm and >10

7
 ∙cm, respectively. It is known that low resistivity crystals are required 

for nanostructuring by electrochemical treatment. For decreasing the resistivity of the as-grown 

CuInS2 and CuGaS2 crystals, a few types of thermal treatment have been applied. CuInS2 crystals 

with the resistivity down to 0.3 ∙cm were produced by annealing of crystals in vacuum.  

A similar treatment of CuGaS2 crystals reduced their resistivity only to 10
4

10
5
 ∙cm. For a 

further decrease of resistivity, the samples were subjected to annealing in Zn vapors. The samples 

were subjected to annealing during 30 h. The parameters of samples as a function of the 

technological conditions are presented in Tables 1 and 2. 

The PL spectrum of the as-grown grown CuInS2 (sample #1) is presented by curve 1 in 

Fig. 1a. The spectrum consists of a few near-band-edge lines and a deeper PL band at 1.4 eV 

followed by unresolved phonon replicas. Among the near-band-edge lines, two most intensive 

lines at 1.52 and 1.53 eV are attributed to the recombination of bound excitons [14, 15], while the 

band at higher photon energies (1.537 eV) is due to the recombination of free excitons [14, 15]. 

The band at 1.4 eV was previously attributed to a free-to-bound optical transition with In 

interstitial (Ini) as a donor center involved in this transition. 

Annealing of CuInS2 crystals in vacuum at 700
o
C leads to the quenching of the exciton 

lines and the emergence of a new broad and asymmetric PL band in the near-band-edge region (at 

1.55 eV). This PL band is attributed to the band-to-band transitions, since the shift of the 



Moldavian Journal of the Physical Sciences, Vol. 13, N1-2, 2014 
 

 32 

maximum and its broadening correlates with the shift of the equilibrium Fermi level [1 3]. A 

similar behavior was observed for the near-band-edge PL band in CuInSe2 crystals subjected to a 

similar thermal treatment [2] and in ZnSe single crystals annealed in a Zn melt containing an Al 

impurity [16]. Note that the near-band-edge PL band is shifted to lower photon energies in 

samples annealed in Zn vapors as compared to samples annealed in vacuum [1, 2]. This behavior 

is explained in terms of the theory of heavily doped semiconductors [17, 18]. According to this 

theory, the asymmetric shape of PL bands is caused by potential fluctuations in the material due 

to the high concentrations of charged defects.  
 

Table 1. Electrical parameters of CuInS2 crystals subjected to different thermal treatment 

 

CuInS2 

As 

grown, 

 

#1 

Annealed 

in vacuum 

at 500
o
C, 

#2 

Annealed 

in vacuum 

at 600
o
C, 

#3 

Annealed 

in vacuum 

at 700
o
C, 

#4 

Annealed in 

Zn vapors at 

600
o
C, 

#5 

Annealed in 

Zn vapors at 

700
o
C, 

#6 

 

(  ∙ cm) 

10
6
  10

7
 20 1 0.3 0.1 0.05 

n 

(cm
-3

) 

- 1∙10
15

 3∙10
16

 1.4∙10
17

 6∙10
17

 3∙10
18

 

 

(cm
2
/V∙s) 

- 310 190 140 100 40 

 
Table 2. Electrical parameters of CuGaS2 crystals subjected to different thermal treatment 

 

CuGaS2 

As 

grown, 

 

#1 

Annealed 

in vacuum 

at 500
o
C, 

#2 

Annealed 

in vacuum 

at 600
o
C, 

#3 

Annealed 

in vacuum 

at 700
o
C, 

#4 

Annealed in 

Zn vapors at 

600
o
C, 

#5 

Annealed in 

Zn vapors at 

700
o
C, 

#6 

, (  ∙ cm) > 10
7
 > 10

7
 > 10

6
 10

4
  10

5
 8 0.2 

N, (cm
-3

) - - - - 5.8∙10
15

 3.3∙10
17

 

, (cm
2
/V∙s) - - - - 130 90 

 

 
Fig. 1. (a) PL spectra of CuInS2 crystals with numbers #1 (curve 1) and #4 (curve 2); (b) PL spectra of 
CuGaS2 crystals with numbers #1 (curve 1) and #6 (curve 2). The spectra were measured at T = 10 K. 
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The PL spectrum of the as grown CuGaS2 (sample #1) is presented by curve 1 in Fig. 1b. 

This spectrum is dominated by a strong PL band at 2.4 eV which has been previously attributed 

to donor acceptor pair (DAP) recombination [19, 20]. The weaker band at 2.357 eV is most 

probably a phonon replica of this DAP recombination. A series of three lines observed at higher 

photon energies is due to recombination of excitons. The line at 2.501 eV is due to recombination 

of free excitons [21]. The line at 2.490 eV is in the region of neutral donor bound exciton 

recombination [19, 22], while the band at 2.481 eV is in the region of excitons bound to neutral 

acceptors [21]. 

Unlike CuInS2, annealing of CuGaS2 crystals in vacuum at 700
o
C or in Zn vapours at 600

o
C 

leads only to a decrease in the luminescence intensity and broadening of the lines related to the 

recombination of bound excitons and to the disappearance of the band associated with the 

recombination of free excitons. At the same time, the spectrum of CuGaS2 crystals annealed in Zn 

vapours at 700
o
C (curve 2 in Fig 1b) resembles the spectrum of CuInS2 crystals annealed in 

vacuum at 700
o
C (curve 2 in Fig 1a). It consists of a PL band at 2.537 eV in addition to the PL 

band at 2.4 eV associated with the DAP recombination. That means that the high energy PL band 

(at 2.537 eV) in these samples is caused by potential fluctuations in the material due to the high 

doping. 

 The conductivity of CuInS2 samples directly influences the processes of electrochemical 

etching. Porous layers with uniform porosity are produced under anodization with an applied 

voltage of 0.8 V in aqueous HCl electrolytes. The higher is the conductivity of the sample, the 

smaller is the pore diameter, which varies from 50 nm to 1 µm for porous layers produced on the 

basis of samples from Table 1. The morphology of a layer produced on CuInS2 sample #4 is 

shown in Fig. 2. 
 
 

 
 

Fig. 2. Morphology of a porous layer produced on CuInS2 sample #4 under anodization with 
an applied voltage of 0.8 V: (a) surface and (b) cross section. 

 

  Unlike CuInS2, in CuGaS2 crystals porosity can be introduced only in sample #6 from 

Table 2, since the conductivity of other samples is too low for the anodization. The morphology 

of the produced porous structure in this sample is non-uniform in comparison with CuInS2 

samples. One can see from Fig. 3a that the pore growth starts from separate regions 1 and 2, and 

the pores propagate in radial directions as illustrated in Fig. 3b. When the pores propagating from 

regions 1 and 2 meet in region 4, they further grow in the direction perpendicular to the initial 

sample surface, and a porosity illustrated in Fig. 3d is produced. At the same time, in isolated 

regions 3 the pores grow in a direction parallel to the sample surface, as illustrated in Fig. 3c. 
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Fig. 3. (a) Morphology of a porous structure produced on CuGaS2 sample #6 under anodization with an 
applied voltage of 0.7 V; (b) view of region 2; (c) view of region 3; and (d) view of region 4. 

 

Thin Au and Cu coatings were deposited onto nanostructured CuGaS2 surfaces by means 

of a Cressington magnetron sputtering coater in order to investigate the plasmonic effects in 

metalized nanostructured ternary chalcogenides. Figure 4 illustrates the effect of deposition of 

thin Au and Cu films onto the surface of anodized CuGaS2 sample #6. One can see that the 

integral PL spectrum of the as-anodized sample exhibits a PL band at 1.8 eV in addition to the 

above mentioned bands at 2.4 and 2.537 eV. A similar PL band was previously observed in  

Ga-rich CuGaS2 layers [20]. 

One can see that deposition of thin Au films enhances the PL band at 2.4 eV and 

decreases the intensity of the 1.8 eV PL band. One can suggest that the enhancement of 

luminescence at 2.4 eV is due to surface plasmons, since the energy position of this PL band is 

close to the resonance energy of the surface plasmons at the Au/CuGaS2 interface. On the other 

hand, the decrease of the intensity of the PL band at 1.8 eV is due to the absorption of the light in 

the metal film or due to the overall decrease of the PL intensity caused by the metal film 

deposition. The deposition of Cu films on the surface of the anodized CuGaS2 sample, on  the 

contrary, enhances the PL band at 1.8 eV and attenuates the PL band at 2.4 eV (Fig. 4b). That 

means that the resonance energy of the surface plasmons at the Cu/CuGaS2 interface is closer to 

the position of the 1.8-eV PL band.  
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Fig. 4. (a) Low temperature (10 K) PL spectra of CuGaS2 sample #6 after anodization (curve 
1), and after covering with Au films with a thickness of 5 (curve 2) and 10 nm (curve 3). (b) 
Low temperature (10 K) PL spectra of CuGaS2 sample #6 after anodization (curve 1) and 
after covering with Cu films with thickness of 5 (curve 2) and 10 nm (curve 3). 

 

The influence of deposition of a conducting layer on the luminescence spectra was also 

investigated in porous CuInS2 layers. No PL enhancement was observed after the deposition of 

Cu or Au films. On the contrary, the luminescence intensity decreased after the deposition of a 

metal film. An opposite effect was observed after the deposition of ITO films by a spray 

pyrolysis method described elsewhere [23]. Figure 5 shows the integral PL spectrum of 

nanostructured CuInS2 sample #4. Several PL bands are observed in the low photon energy 

spectral interval in addition to the above mentioned bands at 1.3 1.4 and 1.55 eV.  

 

 
 

Fig. 5. Low temperature (10 K) PL spectra of CuInS2 sample #4 after anodization (curve 1) 
and after covering with ITO films with thickness of 5 (curve 2) and 10 nm (curve 3). 
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The PL bands at 0.87 and 0.97 eV have been previously assigned to the recombination 

within a deep-donor–deep-acceptor DD-DA complex. The underlying model was that these two 

bands are formed via a donor-acceptor pair recombination between pairs of the closest neighbors 

and between pairs of the next-closest neighbors, respectively [24]. The most long-wavelength 

band at 0.63 eV has been associated with a deep exciton bound to isoelectronic deep-donor–deep-

acceptor pairs [24]. 

One can see from Fig. 5 that the infrared luminescence of the nanostructured CuInS2 

sample is enhanced by the thin ITO film deposition, and the luminescence intensity increases 

with an increase in the film thickness from 5 to 10 nm. The longer the wavelength of the PL 

band, the more prominent the luminescence enhancement. This effect suggests that the PL 

enhancement is again due to surface plasmons which exhibit a wide resonance at the ITO/CuInS2 

interface. 

 

4. Conclusions 

 

The results of this study demonstrate that porous CuInS2 structures with a uniform 

porosity and the pore diameter controlled by the crystal conductivity can be produced by 

electrochemical treatment in an aqueous HCl containing electrolyte. The production of these 

structures is possible due to the control of the electrical resistivity in a range of 10
6

10
7 

to   

0.05  ∙ cm by treatment either in vacuum or in Zn vapors at different temperatures. In contrast 

to this, only treatment in Zn vapors at temperatures above 700
o
C provides a desired conductivity 

for CuGaS2 crystals for the application of electrochemical nanostructuring, and the porosity of 

the structures produced in these crystals is non-uniform. A correlation exists between the material 

conductivity controlled by technological procedures and the photoluminescence spectra in both 

CuInS2 and CuGaS2 compounds. The luminescence of as-grown high-resistivity crystals is 

dominated by emission bands due to recombination of excitons and donor acceptor pairs, while 

the near-bandgap PL spectra of highly doped crystals produced by annealing in Zn vapors at high 

temperatures consist of an emission band caused by potential fluctuations in the material due to 

the high concentrations of charged defects. The deposition of thin Cu films on nanostructured 

CuGaS2 surfaces enhances the photoluminescence in a region of 1.8 eV, while Au films lead to 

the enhancement of luminescence in a region of 2.4 eV. Metallic coatings of Cu or Au have no 

positive effects on the photoluminescence of CuInS2; on the contrary, the luminescence intensity 

is decreased by coatings. At the same time, the infrared luminescence of nanostructured CuInS2 

samples is enhanced by the deposition of a thin ITO film. These effects are attributed to the 

excitation of surface plasmons at the Cu/CuGaS2, Au/CuGaS2, or ITO/CuInS2 interfaces. 
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Abstract 

 
The dependences of the fundamental transition on the quantum dot size obtained 

experimentally at various temperatures using different measuring methods are analyzed and 
compared. A simple analytical relationship for approximation of these dependences is proposed. 
The possibility to extrapolate the results for the case of arbitrary temperature is discussed. 

Semiconductor low-dimensional systems, in particular semiconductor quantum dots, 
attract a considerable interest due to the substantial size dependence of the energy of quantum 
transitions in them. This feature is promising for development of absorption and luminescent 
materials necessary for solving a wide range of applied problems from optoelectronic imaging 
and data transfer devices to biological fluorescence labels [1, 2]. 
 Owing to the size quantization of the electron and hole states in quantum dots, the 
location of optical transitions depends on the nanocrystal radius. This phenomenon was observed 
experimentally in studies of the absorption spectra of semiconductor microcrystals dispersed in 
transparent dielectric matrices [3–5]. With the aim to explain the experimental results, a theory 
has been developed to describe the phenomena observed in semiconductors in the framework of a 
model of two simple direct zones of electrons and holes (with the effective masses  and , 

respectively) with a parabolic dispersion dependence [6–8]. The proposed theory was constructed 
in terms of the effective mass approximation; that is, it was assumed that all essential lengths are 
large relative to the lattice constant. It was also assumed that the potential well confining the 
motion of electrons and holes in the quantum dot possesses spherical symmetry and infinitely 
high walls. Moreover, it was shown that, in the case of a strong dimensional quantization, where 
quantum dot radius  is considerably greater than Bohr radii  and  of the electron and hole, 

respectively, the electron and hole energy levels are defined by the expression  
, where 

em hm

a

,

ea ha

, 2 2
, , / 2e h

l n l n e hE k m  , , /l n l nk a , and ,l n  is a universal set of numbers that do not depend 

on . In the special case , we obtain a 0l  0n n   ( 1, 2,3,...n   ) and, hence, 

. Since for small a  the distance between the energy levels is large, 

the electron - hole Coulomb interaction in the first order approximation was neglected.  

, 2 2 2
0, ,/ 2e h

nE n  2
e a 2

h am

It was shown that, due to the dimensional quantization of the electron and hole levels, a 
series of discrete lines should be observed in the interband light absorption where 

2 2 2
0,1 / 2gE a      is the absorption threshold value. Here, gE  is the forbidden gap of the 

bulk semiconductor and  is the reduced mass. The complex structure of the 

valence band and nonparabolicity of the conduction band in semiconductor quantum dots were 
taken into account in [9-15] where the effective mass approximation was also used. It was 

/e h e hm m m m   
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demonstrated that, in this case, the transitions forbidden in the framework of a simple parabolic 
model appear. 

The electronhole Coulomb interaction for h ea a a   (  are the Bohr 

radii of the electron and hole, respectively; 

2
, / me h e ha   2

, e

  is the dielectric constant, and  is the electron 
charge) was taken into account in the adiabatic approximation [6]. It was assumed that the energy 
of the electron motion considerably exceeds the energy of motion of the heavy hole; therefore, 
the electronic potential acting on the hole can be considered as averaged over the electron 
motion. It was shown that, if the Coulomb interaction is taken into account, each line in the 
absorption spectrum transforms into a series of close lines. In this case, the frequency of the 
fundamental transition 

e

0,1  acquires negative correction 1a and positive correction . 

Therefore, the Coulomb interaction becomes notable for quantum dots with small radii. The 
endeavors were made in [16-23] and other works to take into account the Coulomb interaction of 
the electron and hole in detail. 

3/2a

In some of the aforementioned papers (for example, [9, 21]), the finiteness of the potential 
barrier that confines the motion of the electron and hole in the quantum dot was taken into 
account. Here the barrier height served as an adjustable parameter for a better compliance of the 
theoretical dependences and experimental data. Since real quantum dots are always surrounded 
by a dielectric medium, the polarization boundary effects were also taken into consideration [24, 
25].  

Despite the fact that many experimental results related to the optical properties of 
semiconductor quantum dots were qualitatively explained, the theory for small-size dots is in 
general developed worse than for dots with greater dimensions. In particular, the dependence of 
the fundamental optical transition frequency on dot radius , which is an important theoretical 
result, does not sufficiently well coincide with the experimentally obtained dependence and is 
usually fitted to it. This is mainly associated with the fact that, in the case of small , it is 
necessary to use concepts and methods of solid state physics, molecular physics, and quantum 
chemistry simultaneously (see, for example, [26] and references therein). Therefore, hereinafter, 
while discussing this dependence, we will use only the experimental data obtained in various 
works.  

a

a

Figure 1 shows the dependences of energy  0 eVE  of the fundamental optical transition 

(the energy of the first excited state 1S3/21Se) on parameter  for CdSe quantum 

dots plotted on the basis of the experimental data published in [11, 23, 2633].  

24 210 / Å[ ]x a 

At a first glance, it seems that various experimental results suggest us substantially different 
values of the quantum dot radius for the same quantum transition and, therefore, the universal 
dependence of the fundamental transition energy on the radius does not exist! However, one 
should take into consideration that the results reported in [11, 28, 30] are based on experiments 
performed at a temperature of 10 K, though in [23, 26, 29, 32] on the studies [27, 31, 32] 
performed at 300 K. The forbidden gap width and other parameters of bulk CdSe are different for 
various temperature values. The radii of quantum dots could be determined with insufficient 
accuracy. Moreover, quantum dots in various works were studied in different surrounding. 
Respectively, both the potential barrier height, which confines the motion of the electron and 
hole, and the polarization phenomena at the quantum dot surface could be different. 
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Fig. 1. Dependences of the main transition energy  0E x vs. the CdSe quantum dot radius 

 taken from [11, 23, 2633]. The horizontal dotted line corresponds to the frequency of 
second harmonic of YAP-laser. 

a

 
 Another reason the mismatch of the curves is that the graphical presentation of the 
experimental results is not sufficiently accurate. Actually, for example, the same experimental 
data are discussed in [30] and [28]. However, the data of these two papers presented at the same 
plot as  dependence provide two different curves!  0E x

To be sure that the universal  0E x  dependence actually exists, we will do the following. 

First, among all the curves presented in Fig. 1, we will choose one curve denoted as a reference 
one. We will approximate this dependence by a certain not very complicated analytical 
expression . Each of the remaining curves will be also approximated by its own  0E x  0E x  

function. Then we will introduce additional parameters, which correspond to the shift of the 
entire curve, its extension or compression, into the resulting expressions. These parameters will 
be chosen so as to maximally approach all the curves to the reference one. If we succeed to do so, 
the universal dependence obviously exists; moreover, the pattern of deformation of the curves 
will probably help us to understand, why the curves initially did not coincide. 

Let us discuss separately the experimental data for CdSe quantum dots, which refer to 
temperatures of 10 [11, 28] and 300 K [27, 3133]. The dependences at 10 K, which are of 
interest for us, are presented in Fig. 2. 

The  dependence is obtained according the experimental data [11]. Initially, we 

tried to draw two curves in one plot. The first curve was taken from Fig. 6 of [11], the second 
was drawn from Figs. 13 of the same paper for the strongly limited quantity of data. It was 
found that the energy mismatch of the curves amounted to 

 (1)
0E x

10 80  meV. This difference 
defines the accuracy of graphical presentation of the experimental data in the plots in [11]. 

It is evident from Fig. 2 that, though CdSe quantum dots were synthesized and 
characterized by the same research team [11, 28], the  (1)

0E x , , and  (2)
0E x  (3)

0E x  

dependences are substantially different. It is easy to understand the difference between   (1)
0E x  

and  if we take into consideration that different measurement techniques were used in 

[11] and [28]. In [11], the data were obtained using photoluminescence excitation (PLE) 
spectroscopy, and they were used to draw the 

 (2)
0E x

 (1)
0E x  dependence. The  curve was 

obtained using the absorption spectra (Fig. 1 in [28] or Fig. 8 in [34]). 

 x(2)
0E
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Fig. 2. Thin solid line 1 is the result fitted from [11]. It depicts the dependence of energy 

 of the main transition vs. the CdSe quantum dot radius . Thick solid line 2 is the 

 dependence of the first maxima of the absorption spectra vs. the radius presented in 

Fig. 1 of [28]. Thick dashed line 3 shows the dependence 

 (1)
0E x

 (2)
0E x

a

 x(3)
0E  of the pump energies vs. 

the radius derived from Fig. 2 of [28]. 
 

The  dependence is plotted versus the laser pump energy (pump-probe 

experiment), as noted in [28] (Fig. 2 caption). Each mean dot radius  value corresponds to an 
energy value for which a “hole” is bleached at the absorption edge of a weak signal. 

 (3)
0E x

a

It is easy to see that the    1
0 / 4E x  curve coincides with the    3

0E x  curve with high 

accuracy if it is vertically shifted for a certain distance. This unexpected coincidence suggests 
that, though the concept of quantum dot radius a  is used everywhere in [11], the dot’s diameter 

 is actually assumed there. If this is the case, the 2d  a    1
0E x  dependence versus the radius in 

[11] should be represented as the curve shown as a dotted line in Fig. 2. 
With the aim to determine the dependence of the fundamental transition energy versus the 

mean radius, one should use the curve  (2)
0E x  obtained using the absorption spectra in [28, 34]. 

It is shifted upwards form the curve  (3)
0E x  by the value of . Note that, although 

though the author of [30] cites the data from [28], he fits his theoretical dependence to the 
 curve, but actually he should compare it with the 

30 meV

 (3)
0E x  x(2)

0E  curve. 

The dependences of the fundamental transition energy on the dot radius (300 K) are 
presented in Fig. 3, where we also show the  (2)

0E x  curve from Fig. 2 for comparison. 

The  and  dependences follow from the experimental data of the same 

research team [28, 31, 34]. The first curve was obtained at 10 K, where the bulk CdSe forbidden 
gap amounts to ; the second curve, at 300 K, where 

 (2)
0E x

gE 

 (5)
0E x

eV1.84 1.75 eVgE  . Note that, within 

a wide range of parameter x  values, an approximate equation   (5) (2)
0 0E x E  1.84 1.75x    is 

valid. A small divergence occurs only for large x  values, probably, due to the conduction band 
nonparabolicity. The noted equation means that many spectroscopic results obtained at a certain 
temperature can be extrapolated to the case of other temperature values simply by taking into 
consideration the temperature dependence of the forbidden gap of the bulk semiconductor. 
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Fig. 3. Dependences of the fundamental transition energy vs. the mean quantum dot radius at 

300 K: from [32, 33] (thin solid line 4), [31] (thick solid line 5), and [27] (dashed line 6). 

The dotted line corresponds to the curve  (2)
0E x  from Fig. 2. 

 

Let us transform the curves  (4)
0E x  and  (6)

0E x  is such a way that they are maximally 

close to each other and to the  curve. It is easy to see that, for not very large (5)
0E x x  values, we 

have      (6)
0 1.3E x(5) (4)

0 0 0.05 0.05E x E x    . The transformed curves are presented in 

Fig. 4. 
 

 
 

Fig. 4. Transformed curves    (4 ') (4)
0 0 0.05E x E x   (thin solid line), 

 (thick solid line), and    (5') (5)
0 0E x E x     0.05x (6 ') (6)

0 0 1.3E x E  (dashed line). 

 

It follows from Fig. 4 that the curves  (4)
0E x  and  (6)

0 1.3E x  have the same shape. 

Moreover,  and  are close to  (4')
0E x  (6 ')

0E x  (5')
0E x . Therefore, the divergence of the results of 

[32, 33] and [27] is probably associated with the fact that the radius of quantum dots in [27] by a 

factor of 1 /1.3  0.9  differs from the value given by the authors. If we evaluate the quantum 
dot size, for which the fundamental transition is, for example, in resonance with the second 
harmonic of YAP-laser, we obtain that, for each of the  E x(4 ')

0 ,  (5')
0E x , and  curves, 

the  value divergence is within 0.4 Å. 

 (6')
0E x

a
In conclusion, note that all the above curves can be sufficiently well approximated by a 

simple analytical dependence  0E x x x     , where  ,  , and   are certain numerical 

parameters. 
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Abstract 

 
This paper represent the work that has been done to show optically and thermally induced 

changes of the optically constants in chalcogenide (As4S3Se3)1-x:Snx (x=0 10 at.%) thin films. 

The kinetics of optically and thermally induced changes in chalcogenide films were measured by 

monitoring the change of optically constants, such as optical band gap Eg
opt

, absorption 

coefficient α, and refractive index n, using a modified computer-controlled spectrophotometer; 

for data acquisition, the experimental set-up included a digital built-in PC-card PCI-1713A 

connected to the registration module. The relaxation of photodarkening in amorphous 

(As4S3Se3)1-x:Snx thin films, which is described by the stretched exponential function  

T(t)/T(0) = A0+Aexp[-(t-t0)/τ]
(1-β), was also investigated. Since the amorphous (As4S3Se3)1-x:Snx 

thin films exhibit photoinduced effects under the light irradiation with photon energy above the 

optical band gap (hν≥Eg), they are promising materials for registration of optical and holographic 

information. 

 

1. Introduction 

 

The effect of photo-structural transformations in amorphous films of chalcogenide glasses 

under light irradiation and heat treatment is of great fundamental interest for the establishment of 

the general relationships impacting heat and light stresses on amorphous solids. This effect is 

characteristic of many amorphous chalcogenide materials; a lot of applications in optoelectronics 

and photonics have been initiated, especially as inorganic photoresists for submicron technology, 

as switching elements, optical fibers, etc. [1]. Of special interest is the system of chalcogenide 

glasses of the As-S-S type, which exhibits advantageous properties, such as reversibility and 

irreversibility of photostructural transformations, and are promising materials as registration 

media for holography, as photoresists, for fabrication of diffractive elements, and other 

optoelectronic applications [2]. Special interest in the applications of chalcogenide amorphous 

films is connected with doping with metal impurities, which alter the optical, photoelectrical, and 

transport properties of the host material [3]. The effect of foreign atom impurities in thermally 

deposited amorphous chalcogenide films is of practical interest as a tool for modifying optical 

properties and photosensitivity. According to 
119

Sn Mössbauer spectroscopy in the As2Se3:Sn 

glassy system, new tetrahedral Sn(Se1/2)4 and quasi-octahedral SnSe structural units can be 

formed, which affect the degree of photostructural transformations [4]. In addition, it has been 

shown that the Sn impurity introduced in the As2Se3 glass network reduces the photodarkening 

effect [5].  
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In the present paper, the transmission spectra of thin (As4S3Se3)1-x:Snx (x = 0 10 at %) 

amorphous films before and after light and heat treatment have been studied. The main aim of our 

investigation is to study the influence of heart treatment and light exposure on modification of 

optical constants of amorphous (As4S3Se3)1-x:Snx thin films. The obtained experimental results 

are interpreted on the basis of the structure of the Sn-doped chalcogenide glasses [5]. 

 

2. Experimental 

 

Bulk chalcogenide glasses As2S3, As2Se3, (As2S3)0.5:(As2Se3)0.5, and (As4S3Se3)1-x:Snx 

(0≤x≤10 at.%) were prepared from the starting elements of 6N (As, S, Se, Sn) purity by a 

conventional melt quenching method. The starting component elements As4S3Se3 and Sn were 

mixed in quartz ampoules and then evacuated to a pressure of P~10
-5

 torr, sealed and heated to a 

temperature of T = 900
o
C at a rate of 1

o
C/min. The quartz tubes were held at this temperature for 

48 h for homogenization and then slowly quenched in the disconnected furnace.  

For the optical measurements, the thin-film samples with a thickness of d = 1.5±0.02 μm 

were prepared by flash thermal vacuum evaporation of the synthesized initial glasses onto glass 

substrates held at Tsubs = 100
o
C. For optical transmission spectra measurements, a Specord 

UV/VIS (  = 300 800 nm) and a Specord 61 NIR instruments (  = 800 3500 nm) (CARL 

ZEISS, Jena) and a Spectrum 100 FTIR Spectrometer (PerkinElmer) (  = 1280 25000 nm) were 

used. For calculation of the optical constants from the transmission spectra, we used the method 

proposed by Swanepoel and Tauc [6, 7] and the PARAV-V1.0 computer program 

(www.chalcogenide.eu.org) [8]. To study the red shift edge of the transmission spectra of thin 

films, a halogen lamp (  = 400 700 nm, with infrared filter, with a light density of 2 x 10
4 

Lx) 

was used as a source of light exposure. To initiate photostructural transformations in thin film 

samples, continuous He-Ne lasers (  = 633 nm, P = 0.6 mW and  = 540 nm, P = 0.75 mW) were 

used. The relaxation of the transmission curves was measured in-situ both at  = 630 nm and  

 = 540 nm wavelengths during the light exposure. For data acquisition, the experimental set-up 

included a digital built-in PC-card PCI-1713A connected to the registration module. Thermally 

induced modifications of the optical constants of amorphous (As4S3Se3)1-x:Snx thin films by heat 

treatment at Tann = 100
o
C during time t = 30 min with different amounts of Sn were studied. 

 

3. Results and discussion 

 

The mid-IR transmission spectra of As2S3 and some As4S3Se3:Snx bulk glasses are shown 

in Fig. 1 and, as in the case of vitreous As2S3 doped with metals [9], are characterized by several 

well-resolved absorption bands. For vitreous As2S3, these bands are located at frequencies of  

 = 3500 cm
1
 (H2O),  = 3218 cm

1
 (S-H)  = 2482 cm

1
 (S-H,Se-H),  = 1857 cm

1
 (As-H),  

 = 1494 cm
1
 (H2O), and  = 1003 cm

1
 (AsO-As2O3. The characteristic absorption bands for 

pure As2S3 at  = 5190, 3617, 3522, 1857, and 1597 cm
1
 are significantly reduced upon doping 

with Sn [10]. At the same time, for the (As4S3Se3)0.98:Sn0.02 glass, additional absorption bands 

appear. The observed changes upon doping in the mid infrared region are most likely related to 

interactions of a portion of the introduced metal ion impurities with the inherent impurities of the 

host glass, such as hydrogen and oxygen atoms. These interactions result in the reduction of the 

relative intensity of bands associated with O-H, S-H, As-O, and As-H bonds in the parent glass.   
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Fig. 1. Transmission spectra of some bulk samples of 
As4S3Se3:Snx glasses. 

Fig. 2. Transmission spectra of the 
amorphous  (As4S3Se3)0.97:Sn0.03 thin film (1) 
as-deposited, (2) after light exposure, and (3) 
after annealing. 

 

Under light exposure, a red shift of the fundamental absorption edge was observed  

(Fig. 2). It is evident from the transmission spectra (Figs. 2, 3) that heat treatment and light 

exposure of the samples lead to a slight reverse shift of the absorption edge in the initial position. 

Moreover, annealing of vitreous as-deposited thin films of (As4S3Se3)1-x:Snx does not change the 

optical constants, as evidenced by the transmission spectrum in Fig. 4. 

The spectra of optical absorption edge (Fig. 3) of the As-S-Se system with tin impurity are 

characteristic of amorphous semiconductors. In the high absorption region close to the beginning 

of band-to-band optical transition, the absorptions exhibit a square-law energy dependence 

h = (h  - Eg
op)2, widely known as the Tauc plot. This dependence gives a correct value of 

optical band gap Eg
op 

determined as the energy difference between the onsets of exponential tails 

of the allowed conduction bands [6]. 

 

Fig. 3. Absorption spectra in the Tauc coordinates (  h )1/2 = A(h  - Eg) of the 

amorphous (As4S3Se3)0.97:Sn0.03 thin film: (1) as deposited, (2) after light exposure, and 
(3) after light exposure and heat treatment. 
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Fig. 4. Transmission spectra of the amorphous (As4S3Se3)0.97:Sn0.03 thin films: (1) as-
deposited and (2) after annealing. 

 

From the experimental plots in Tauc coordinates (  h )1/2=A(h  - Eg
op) the values of the 

optical band gap Eg
opt were estimated. The average energy change before and after heat treatment 

is ΔEg
opt

=0.02 ± 0.01eV. 

 

 
Fig. 5. Relaxation curves of photodarkening T(t)/T(0)=f(t) for amorphous 

(As3S4Se4)1-x:Snx thin films. Excitation with a He-Ne laser  

at  = 633 nm. 
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Fig. 6. Dependences of parameters τ and  vs. Sn concentration in 

amorphous (As3S4Se4)1-x:Snx thin films at excitation with  = 633 nm. 

 

The relaxation of relative optical transmission T/T0 = f(t) under light exposure at  

 = 633 nm for amorphous (As4S3Se3)1-x:Snx thin films is shown in Fig. 4. At a constant light 

intensity, these dependences characterize the decay of the film optical transmittance with an 

increase in the dose of absorbed photons. The experimental curves show that the general 

tendency is that Sn additives in amorphous (As4S3Se3)1-x:Snx thin films decrease the 

photodarkening. 

 To obtain a unified basis for comparison of the transmission relaxation T(t)/T(0) curves, 

we used the so-called stretched exponential presentation for the relaxation curves in the form: 

T(t)/T(0) = A0+Aexp[-(t-t0)/τ]
(1- ), 

here t is the exposure time, τ is the apparent time constant, A characterizes the exponent 

amplitude, t0  and A0 are the initial coordinates, and α is the dispersion parameter (0 <  < 1). 

Figure 6 represents the dependences of parameters τ and vs. Sn concentration in amorphous 

(As3S4Se4)1-x:Snx thin films at excitation with  = 633 nm. For the obtained relaxation curves, a 

rather wide scatter of parameters is observed for samples of the different composition. For doped 

samples, this dispersion may be caused by the fact that the concentration and distribution 

uniformity of the impurity is not adequately preserved along the film at deposition. However, the 

relaxation curves are significantly different in the case of non-doped As4S3Se3. The main cause is 

the difference in thickness. For these samples, the effect of interference of light reflected at the 

front and rear film boundaries significantly changes the amount of absorbed light leading to a 

strong dependence of photodarkening at a fixed laser wavelength on film thickness [11].  

The photodarkening phenomenon in chalcogenide glass films under illumination has no 

plain explanation up to now in spite of detailed investigation and a series of models advanced for 

interpreting it. The red shift of the absorption edge, which indicates the narrowing of the optical 

gap of the film at photodarkening, is believed to be due to the broadening of the valence band, the 

top of which is formed mainly by states of lone-electron pairs of the chalcogen atom. Several 

models have been proposed to substantiate this broadening with a particular individual atom 

regarded as an initial object of photoexcitation. Recently, a novel model for photodarkening in a-

As2Se(S)3 has been proposed [12], in which photoexcited charge carriers in extended states are 
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considered to be responsible for photodarkening. This model was used for experimental results 

on photodarkening in amorphous As2Se3:Snx [11]. It was shown that tin impurities strongly affect 

the network of the host glass inducing changes in both short-range and medium-range order; in 

particular they exert significant influence on the structural layers and the pattern of their relative 

motion.  

 

4. Conclusions 

 

The transmissions and optical absorption spectra of amorphous As-S-Se films doped with 

1 10 at % Sn were studied before and after light exposure and heat treatment. It was shown that 

the doping of As4S3Se3 glasses with tin impurities leads to a shift of the absorption edge in the 

red region of the spectrum and a decrease in the optical band gap. Under light exposure, 

amorphous (As4S3Se3)1-x:Snx become darkened; that is, photostructural transformations take 

place, while the heat treatment imperceptibly reversed its structure to the initial position. In 

addition, it was observed that annealing of as-deposited thin films of the studied composition 

does not essentially change the shape of the spectra and does not lead to a shift of the 

fundamental absorption edge in any direction. The relaxation of the photodarkening effect in 

amorphous (As4S3Se3)1-x:Snx thin films is described by stretched exponential function  

T(t)/T(0) = A0+Aexp[-(t-t0)/τ
](1- ). The main feature of the photodarkening effect in the samples 

under study is that the tin impurity suppresses this effect. 
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Abstract 

 
Amorphous arsenic trisulfide (As2S3) and arsenic triselenide (As2Se3) are widely 

investigated amorphous materials due to their interesting electrical, optical, and photoelectrical 

properties. Mixed amorphous materials, such as (As2S3):(As2Se3), are of special interest for 

improving the physical properties and recording characteristics and extending the spectral range 

of photosensibility. Chalcogenide vitreous semiconductors (ChVSs) of the As-S-Se system 

exhibit photostructural transformations with reversible and irreversible properties and are 

promising materials as registration media for holography and optical information, for fabrication 

of diffractive elements, and other optoelectronic applications. Because many optoelectronic 

devices on amorphous semiconductors are based on the photoconductivity effect, it is of 

particular interest to study the steady-state and transient characteristics of photoconductivity. In 

this paper, experimental results for steady-state photoconductivity and holographic characteristics 

of amorphous (As4S3Se3)1-x:Snx thin films are described. It was shown that the photoconductivity 

spectra depend on the polarity on the top illuminated electrode and on the Sn concentration in the 

host glass. The photosensitivity of amorphous (As4S3Se3)1-x:Snx thin films is almost constant for 

all Sn-containing glasses. The Moss rule was used for determination of optical forbidden gap Eg 

from the photoconductivity spectra. It was demonstrated that the investigated amorphous films 

are sensitive to light irradiation and can be used as effective registration media for holographic 

information. The relaxation of photodarkening in amorphous (As4S3Se3)1-x:Snx thin films was 

investigated; it was shown that the relaxation curves of transmittance T/T0 = f(t) can be described 

by stretch exponential function T(t)/T(0) = A0+Aexp[-(t-t0)/τ]
(1-)

. The kinetics of diffraction 

efficiency growth (t) was measured by registration of the laser intensity of the 1st interference 

maximum versus time exposure. With an increase in the Sn concentration in amorphous 

(As4S3Se3)1-x:Snx thin films up to 6.0 at % Sn, diffraction efficiency  increases; at higher tin 

concentrations, it decreases. 

 

1. Introduction 

 

Photoconductivity represents a change in conductivity under the action of light radiation. 

Photoconductivity spectra can provide information about the generation, drift, and recombination 

of nonequilibrium current carriers [1]. In our previous works, some physical and optical 

properties of amorphous (As4S3Se3)1-x:Snx thin films have been described [2, 3]. Chalcogenide 

vitreous semiconductors (ChVSs) of the As-S-Se system exhibit photostructural transformations 

with reversible and irreversible properties and are promising materials as registration media for 
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holography and optical information, for fabrication of diffractive elements, and other 

optoelectronic applications [4, 5]. Because many optoelectronic devices on amorphous 

semiconductors are based on the photoconductivity effect, it is of particular interest to study the 

steady-state and transient characteristics of photoconductivity. Evaporated amorphous thin films 

are shown to have a high degree of structural disorder depending on the composition and foreign 

impurities. The electrical, optical, and photoelectrical properties of chalcogenide glasses can be 

varied and regulated over an extensive range by modifying the composition and production 

technique. It was shown that the addition of a Sn impurity in amorphous As2S3 and AsSe thin 

films can provide a pronounced effect on the electrical and transport properties and optical and 

photoinduced phenomena [6-10]. In the last years, special attention has been paid to the influence 

on the photostructural transformation in amorphous thin films doped with metal impurity. It has 

been shown that a Sn impurity introduced in the As2Se3, AsSe and Sb2S3 glass network reduce 

the photodarkening effect. According to 
119

Sn Mössbauer spectroscopy, in the As2Se3:Snx glassy 

system, new tetrahedral Sn(Se1/2)4 and quasi-octahedral SnSe structural units can be formed and 

influence the photostructural transformations. A decrease in the optical gap of As2Se3 glass upon 

Sn alloying, most likely, results from a broadening of the valence band, the top of which is 

formed by Se lone-pair electrons. It was demonstrated that tin impurities has a strong effect on 

transient rather than on steady-state photoconductivity. The enhanced deep trapping in doped 

As2Se3 delays the recombination process and slows down the initial photocurrent relaxation. The 

features of transient photoconductivity were found to be primarily controlled by deep carrier 

trapping with the energy distribution and concentration of deep traps being determined by the 

structure and composition of doped amorphous films [8]. In this paper, experimental results of 

steady-state photoconductivity, photodarkening relaxation and holographic characteristics of 

amorphous (As4S3Se3)1-x:Snx thin films are described. The photoconductivity spectra are used to 

determine some optical parameters. 

 

2. Experimental 

 

The bulk (As4S3Se3)1-x:Snx chalcogenide glasses (x = 010.0 at  % Sn) were prepared 

from the elements of high purity 6N (As, S, Se, Sn) by  the conventional melt quenching method. 

Thin film samples with thickness L = 0.517.5 m were prepared by flash thermal evaporation in 

a vacuum (P = 10
-5

 Torr) of the synthesized initial glass onto glass substrates held at  

Tsubstr = 100
o
C. The thin film samples had a sandwich configuration with two Al electrodes; the 

top electrode was transparent for the incident light. In all the cases, measurement of dark 

conductivity d  and photoconductivity ph  for amorphous semiconductors with the low 

conductivity was performed at a constant current, e.g., the case of low load resistance 

phdL RRR  , where LR  is the load resistance, dR  the sample resistance in the dark, and phR  is 

the sample resistance under illumination. Forasmuch as the calibrated resistance of an U5-11 

electrometrical amplifier was used as a load resistance, the error of the measurements was 

determined by the scatter of load resistance LR ; it was less than 1.0 %. Specific conductivity S  

of the sample was calculated according to the expression 

S

L

RUU

U

S

L

R LL

L

S

S 



11

       (1) 

Here, SR  is the resistance of the sample, S  is the area between the electrodes of the 

sample, U  is the total voltage in the electrical circuit, and LU  is the voltage on load resistance LR  
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In order to initiate the photostructural transformations in the thin film samples a red  

( = 633 nm, P = 0.6 mW) and green ( = 543 nm, P = 0.75 mW) continuous He−Ne lasers were 

used simultaneously as sources of light exposure. The relaxation of the transmission curves was 

measured both at  = 633 nm and  = 543 nm wavelengths in-situ during the light excitation. 

The experimental set-up included a laser and a PCI-1713A digital build-in PC-card for data 

acquisition connected to a Si-photodetector. Special software was elaborated for automatic 

measurements. The microholograms in the amorphous thin films were registered by means of the 

interference of two Ar
+
-laser beams ( = 0.488 m) with a power of W = 0.64 mW. The kinetics 

of diffraction efficiency growth (t) was measured by registration of the intensity of the 1st 

interference maximum versus time exposure at wavelength  = 0.6328 m. Diffraction 

efficiency  was calculated as a ratio of the intensity in the 1st diffraction maximum to the 

intensity of the transmitted laser beam across the sample. 

 
3. Experimental results and discussion 

 

The photoconductivity spectra can give the information regarding the processes of 

generation, drift and recombination of non-equilibrium current carriers. The photoconductivity, 

which is determined as an increase in conductivity under light illumination, can be defined by the 

expression 

)]exp(1[
1

0 kLNe
L

dph         (2) 

Here, 0N  is the number of incident photons on the sample surface per second, L  is 

the thickness of the sample,   describes the efficiency of the generation process d  is the drift 

mobility of the holes,   is the recombination life time, e is the electron charge, and k is the 

absorption coefficient. The exponential term describes the light absorption in the sample of the 

investigated material and thickness.  

Figure 1 shows the spectral distribution of photocurrent for amorphous 

(As4S3Se3)0.97:Sn0.03 thin films at positive (curve 1) and negative (curve 2) polarities at the top 

illuminated electrode. For other (As4S3Se3)1-x:Snx (0x10 at % Sn), the shape of the curves of 

the spectral distribution of photocurrent is similar. In all cases, the photocurrent at positive 

polarity at the top illuminated electrode is higher and the maximum of the spectral distribution is 

shifted in the high energy region of the spectrum (Fig. 2). Since the investigated spectral region  

( h = (0.953.1 eV) corresponds to the region of the optical absorption edge and the values of 

absorption coefficient k change four- to fivefold in this region, the spectral distribution of 

photoconductivity is analyzed  in the approximation of strong and weak absorption.  

In the region of strong absorption 1)exp( kL , the light is absorbed near the surface of 

the sample and photoconductivity is determined by the expression 

0

1
Ne

L
dph   .        (3) 

In this region of energy of the incident photons in the absence of strong surface recombination, 

the photoconductivity weakly depends of the photon energy, which gives the possibility to 

determine the product  d  and which is characteristic of the photosensibility of the investigated 

semiconductor material. 

 In the approximation of weak absorption, at kLkL  1)exp( , from expression (1) we 
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obtain 

0kNe dph   .         (4) 

Relation (4) suggests that, in the region of weak absorption, the dependence of the 

spectral dependence of photoconductivity vs. energy of incident photons is determined by the 

spectral distribution of absorption coefficient k because, in this region, the product  d
 very 

weakly depends on photon energy [11]. This gives the possibility to use the photoconductivity 

spectra for calculating the optical absorption spectra in this region. 

The low energy portion of the log(Iph/N0) dependence is described by the Urbach tail of 

absorption coefficient . The Moss rule was used for determining the optical forbidden gap Eg 

from the photoconductivity spectra. Usually, in chalcogenide glasses, the absorption edge is 

broader than in crystalline analogues, which is caused by a broad energy distribution of electronic 

states in the band gap due to disorder and defects. The distribution of the localized states of the 

semiconductor, including band gap Eg depend on the structure of the investigated material. A 

well-known tool for determining the band gap of the semiconductor is long wavelength 
0  at 

which the photosensitivity achieves half maximum, as is shown in Fig. 1. The dependence of the 

calculated values of Eg
+
 versus Sn concentration in amorphous (As4S3Se3)1-x:Snx thin films is 

shown in Fig. 2 (right Y axis). This dependence has a minimum at about 6.0 at % Sn, which is 

probably attributed to the formation of new tetrahedral units SnSe2. 

 

 

Fig. 1. Spectral distribution of photocurrent Iph = f() 

for amorphous (As4S3Se3)0.97:Sn0.03 thin films. 

Fig. 2. Dependence of the maximum of the 
photocurrent Iph

+(max) and forbidden gap Eg
+ 

versus Sn concentration in amorphous  
(As4S3Se3)1-x:Snx thin films. 

 

Figure 2 shows that the photocurrent is higher for the positive polarity on the illuminated 

top electrode and the maximum in the spectral distribution of photocurrent is displaced in the 

higher region of photon energy. At the negative polarity on the top illuminated electrode, the 

photocurrent decrease after the maximum. That is caused by the existence of a high concentration 

of recombination centers at the surface of the sample due to the presence of a lot of structural 

defects. For this reason, we can assume that the nonequilibrium carriers reaching the surface can 

be captured by the local centers and the recombination process is faster than in the bulk of the 

sample. The probability that the non-equilibrium carriers reach the surface is greater for the case 

where the incident light is absorbed in the small layer, e.g., at high absorption coefficients. For 
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this reason, we observe the fall of the photosensitivity in high energy region because, in the shot 

wavelength region, the absorption coefficient increases and the number of localized states 

involved in the optical transitions also increases. 

Figure 3 shows the spectral distribution of photocurrent for some compositions of 

amorphous (As4S3Se3)1-x:Snx thin films. With an increase in the Sn concentration in amorphous 

(As4S3Se3)1-x:Snx thin films, the maximum of photocurrent Iph(max) and the values of optical 

band gap Eg are shifted to lower energies up to x = 6.0 at % Sn and, for higher concentrations, 

increase due to the formation of new tetrahedral structural units. The photosensitivity of 

amorphous (As4S3Se3)1-x:Snx thin films decreases upon the introduction of Sn into the host glass 

and is almost constant for all Sn-containing glasses. Figure 4 shows the normalized curves of the 

spectral distribution of photocurrent log(Iph/N0) = f(h) for amorphous As4S3Se3 thin films. The 

same dependences are exhibited by all amorphous (As4S3Se3)1-x:Snx thin films with the different 

investigated compositions. 

 

 
Fig. 3. Spectral distribution of photocurrent  

Iph = f() for amorphous (As4S3Se3)1-x:Snx  thin 
films. 

Fig. 4. Normalized curves of the spectral 

distribution of photocurrent log(Iph/N0) = f(h) for 
amorphous As4S3Se3 thin films. 

 

The amorphous (As4S3Se3)1-x:Snx thin films exhibit photoinduced effects under light 

irradiation with photon energy above the optical band gap (hν≥Eg),which makes them promising 

materials for registration of optical and holographic information [2]. 

The relaxation of relative optical transmission T/T0 = f(t) under light exposure at 

wavelength  = 633 nm and  = 543 n for amorphous (As4S3Se3)1-x:Snx thin films is shown in 

Figs. 5 and 6, respectively.  

At a constant light intensity, these dependences exhibit the decay of the film optical 

transmittance with an increase in the dose of absorbed photons. To obtain a unified basis for 

comparison of the transmission relaxation T(t)/T0 curves, we used the so-called stretched 

exponential and single-exponential presentation for the relaxation curves in the form: 
)1(

00 ]/)(exp[)0(/)(   ttAATtT        (5) 

 

]/)(exp[)0(/)( 00 ttAATtT       (6) 

Here, t is the exposure time, τ is the apparent time constant, A characterizes the exponent 

amplitude, t0  and A0 are the initial coordinates, and α is the dispersion parameter (0<<1).  
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For the obtained relaxation curves, a fairly wide scatter of parameters is observed for 

samples of the different composition. For doped samples, the cause of this dispersion may be that 

the concentration and distribution uniformity of impurity are not adequately preserved along the 

film during deposition. However, the relaxation curves are significantly different in the case of 

non-doped As4S3Se3 as well. Comparison of the parameters of the relaxation curves for samples 

deposited at different incident angles has shown that, in the considered limits of distance from the 

center over the evaporator, the greatest effect of photodarkening is observed for the central 

samples, in contrast to the results reported in the literature for obliquely deposited films [12]. A 

slight decrease in the photodarkening amplitude with the distance from the center is due to a 

decrease in the film thickness.  

 

  
Fig. 5. Relaxation curves of photodarkening T/T0 
= f(t) for amorphous (As4S3Se3)1-x:Snx thin films 

under light exposure at wavelength  = 633 nm. 

Fig. 6. Relaxation curves of photodarkening  
T/T0 = f(t) for amorphous (As4S3Se3)1-x:Snx thin 
films under light exposure at wavelength  

 = 543 nm. 

 

 
 

Fig. 7. Normalized optical transmittance kinetics 

for a He−Ne laser beam ( = 633 nm) for 

amorphous As4S3Se3 thin films. 

Fig. 8. Normalized optical transmittance kinetics 

for a He−Ne laser beam ( = 543 nm) for 

amorphous As4S3Se3 thin films. 

 

The photodarkening phenomenon in chalcogenide glass films under illumination has no 

plain explanation up to now in spite of detailed investigation and a series of models advanced for 

interpretation of it. Several models have been put forward to substantiate this broadening 
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considering a particular individual atom as an initial object of photoexcitiation [13, 14]. 

Recently, a novel model for photodarkening in a-As2Se(S)3 has been proposed [15, 16], in which 

photoexcited charge carriers in extended states are considered to be responsible for 

photodarkening.  

 

 

Fig. 9. Normalized optical transmittance kinetics for 

a He−Ne laser beam ( = 633 nm) for amorphous 
(As4S3Se3)0.97:Sn0.03 thin films. 
 

Fig. 10. Normalized optical transmittance 

kinetics for a He−Ne laser beam ( = 543 nm) 
for amorphous (As4S3Se3)0.97:Sn0.03 thin films. 

 

Unlike the previous conceptions, the new model takes into account the layered cluster 

structure of a chalcogenide glass. During exposure, the layer is negatively charged due to capture 

of photoexcited electrons, and repulsive forces are built between the layers. These forces cause 

enlargement of the interlayer distance (leading to photoexpansion) and slip motion along the 

layers. The last-mentioned process alters the interaction of lone-pair electrons between the layers 

leading to a photodarkening effect. Earlier, in a structural model proposed for explanation of 

photodarkening phenomena, M. Popescu [17] has pointed out that distortion in the second and 

third coordination spheres should be taken into account as important factors.  

The model of Shimakawa et al. [15, 16] offers a good basis for consideration of the effect 

on photodarkening of impurity atoms with coordination different from that of the host glass 

atoms, as in the case of tin. The foreign metal atoms provide bridging between the layers and 

hence reduce the slip motion, thus hindering the photodarkening. We suggest that this 

consideration is applicable in the case of tin impurity in amorphous [(As2S3)0.5:(As2Se3)0.5]1-x:Snx 

thin films. Upon the addition of Sn, due to the tetrahedral arrangement of the sp3
 bonds with the 

chalcogens, the dopant atom inserted in the network increases the thickness of the layered 

configuration as revealed by the significant shift of the FSDP towards lower angles. This 

insertion corresponds in fact of introduction of the structural units of the SnSe2 type in the 

network. The transition to a three-dimensionally (3D) network is preceded by the appearance of 

structural units of the SnSe type. Then, the direct consequence of this transition will be shown in 

the intensity of the FSDP which gradually disappears. The interruption of the two-dimensional 

structure and transition is probably due to a more ionic character of the Sn-Se bonds. Since tin 

tends to form directional bonds being introduced in the host glass and especially during 

annealing, some bridging bonds should appear between the layers. The structure of the glass that 

contains tin impurity requires therefore some excess slip forces; that is, it leads to greater 
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exposition doses and time constants.  

  
Fig. 11. Fitting parameters  and  in equation (5) 
for the normalized optical transmittance kinetics 

for a He−Ne laser beam ( = 633 nm) for 

amorphous (As4S3Se3)1-x:Snx thin films. 

Fig. 12. Fitting parameters  and  in equation (5) 
for the normalized optical transmittance kinetics 

for a He−Ne laser beam ( = 543 nm) for 

amorphous (As4S3Se3)1-x:Snx thin films. 

 

The stretched exponential photodarkening kinetics was numerically justified for thick 

amorphous As-Se films [18, 19]. It was shown that in-situ photodarkening kinetics are quite 

similar in amorphous As40Se60 and As50Se50 films and exhibit a strong tendency to non-dispersion 

( values from equation (1) are slightly deviated around 0.6, while photodarkening in As60Se40 

films mainly corresponds to single-exponential rule with  value close to 1.0). It was also 

established that the parameter  values depend on the thickness of the sample. If the film 

thickness is smaller than the penetration depth of the excitation light, the dispersion parameter  

 = 1, which indicates that the photodarkening kinetics can be presented by an exponential 

function (equation (6)). In our case, the penetration depth is defined by the excitation wavelength. 

It is evident that the penetration depth is higher if the amorphous film is excited at a longer 

wavelength ( = 633 nm) than in the case of a shorter wavelength ( = 543 nm). 

The parameters  and  from equations (5) and (6) were calculated by the computer fitting 

of the normalized optical transmittance kinetics curves for exposure of amorphous  

(As4S3Se3)1-x:Snx thin films to a He−Ne laser beam ( = 633 and 543 nm). Figures 11 and 12 

represent the fitting parameters  and  according to equation (5) versus Sn concentration in 

amorphous (As4S3Se3)1-x:Snx thin films. We obtain that, if the thin amorphous film is excited at a 

longer wavelength ( = 633 nm), the values of the dispersion parameter  are smaller, which 

means that dispersion is more pronounced. 

The fact that the photodarkening kinetics may be described by a stretched exponential can 

be regarded as an indication of dispersion by a kinetic mechanism, i.e., the time dependence of 

the process rate [20]. The data allow concluding that the formation of photoinduced absorption is 

limited to a dispersive process with the exponent  0.5. Charge transport in chalcogenide 

glasses is known as highly dispersive due to wide distribution of capture times in multiple-

trapping process [21]. For a-As2Se3-like glasses, the dispersive parameter  of hole transport is 

close to 0.5, in accordance with the value found from the stretched exponential presentation of 

photodarkening kinetiсs [9].  

The transmission hologram gratings in amorphous (As4S3Se3)1-x:Snx thin films with a 

period  = 1m were recorded by two symmetrically incident Ar
+
 laser beams (DPSS-laser) of 
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equal intensity (λ = 532 нм), and the readout of the diffraction efficiency  was made using a 

diode laser beam (λ = 650 нм) in the first diffraction maximum.  

The optical set-up is illustrated in Fig. 13. Diffraction efficiency  was defined as 
0I

Id , 

where 
0I  is the intensity of the readout beam and 

dI  is the intensity of the first order diffracted 

beam. Figure 14 represents the growth of diffraction efficiency (t) during the registration of 

elementary microhologram in amorphous (As4S3Se3)1-x:Snx thin films. The kinetics of diffraction 

efficiency growth (t) was measured by registration of the laser intensity of the 1st interference 

maximum versus time exposure. With an increase in the Sn concentration in amorphous 

(As4S3Se3)1-x:Snx thin films up to 6.0 at % Sn, diffraction efficiency  increases, while for higher 

concentrations of tin, it decreases (Fig. 15.) 

The dependence of the diffraction efficiency versus thin film thickness  

(L = 0.88−17.5 m) was also investigated. Figure 16 represents the kinetics of the registration 

process of the gratings (t) for amorphous As4S3Se3 thin films with different thickness. For 

amorphous As4S3Se3 thin films, it was demonstrated that the maximum of diffraction efficiency  

is obtained for the films with a thickness of about L = 4.0 m. A similar dependence was 

previously obtained for amorphous As40S60 and As55Se45 thin films [22, 23]. The dependence of 

photodarkening for as-evaporated amorphous As-Se [24] and As2Se3:Pr(Dy) thin films was also 

found [25]. 

 

 
Fig. 13. Experimental set-up for Bragg grating 
recording in chalcogenide amorphous thin films: 
DPSS-laser (λ = 532 нм, 30 mW/сm2), M-mirror, 
SF-spatial filter, L-lens, BS-beam splitter, LD-laser 
diode (λ = 650 нм), PD-photodiode. 

Fig. 14. Kinetics of diffraction efficiency (t) 
for different compositions of amorphous 
(As4S3Se3)1-x:Snx thin films. 

 

The dependence of the photodarkening amplitude on the thickness of the amorphous thin 

film is due mainly to the dependence of the position of optical absorption edge, which regulates 

the amount of absorbed photons generating the photodarkening process. As in our case, for 

amorphous As2S3 [22] and As3Se2 [24] thin films, the diffraction efficiency and the 

photodarkening effect were achieved for the thickness of the amorphous film of about  

L = 4.0 m. In addition to the thickness dependence of the position of the optical absorption 

edge, the thickness dependence of the photodarkening in amorphous As2S3 thin films was also 

explained by the strain induced by the lattice mismatch between the film and the substrate [26].  
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Fig. 15. Dependence of diffraction efficiency  
versus Sn concentration in amorphous (As4S3Se3)1-

x:Snx  thin films. 

Fig. 16. Kinetics of diffraction efficiency (t) 
for amorphous As4S3Se3 thin films with 
different thickness. 

 

The thickness dependence of the photodarkening kinetics of optical transmittance in 

amorphous As-Se films also was interpreted on the basis of change in the penetration depth of 

the incident laser beam during exposure [18, 19]. It was shown that the photostructure 

transformations in an amorphous film depend on the thickness of the amorphous film and are 

fairly complicated depending on the nature of evolving changes in short- and long-range 

ordering near-neighbor interactions in the disordered lattice. 

 

4. Conclusions 

 

The experimental results of steady-state photoconductivity, relaxation of photodarkening 

and holographic characteristics of amorphous (As4S3Se3)1-x:Snx thin films are described. It is 

shown that the photoconductivity spectra depend on the polarity on the top illuminated electrode 

and on the Sn concentration in the host glass. The photosensitivity of amorphous  

(As4S3Se3)1-x:Snx thin films is almost constant for all Sn-containing glasses. The Moss rule is 

used for determination of optical forbidden gap Eg from the photoconductivity spectra. It is 

demonstrated that the investigated amorphous films are sensitive to light irradiation and can be 

used as effective registration media for holographic information. The relaxation of 

photodarkening in amorphous (As4S3Se3)1-x:Snx thin films is investigated; it is shown that the 

relaxation curves of transmittance T/T0 = f(t) can be described the stretched exponential function  

T(t)/T(0) = A0+Aexp[-(t-t0)/τ]
(1-)

. Diffraction efficiency   measured in the 1st interference 

maximum in amorphous (As4S3Se3)1-x:Snx thin films increases upon doping with tin up to  

6.0 at % Sn. 
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Abstract 

 

The Bose-Einstein condensation (BEC) of the two-dimensional (2D) 

magnetoexcitonpolaritons in microcavity, where the Landau quantization of the electron and 

hole states accompanied by the Rashba spinorbit coupling plays the main role, was  

investigated. The Landau quantization levels of the 2D heavy holes with nonparabolic dispersion 

law and third-order chirality terms both induced by the external electric field perpendicular to the 

semiconductor quantum well and strong magnetic field B give rise to a nonmonotonous 

dependence of the magnetoexciton energy levels and the polariton energy branches on B. The 

Hamiltonian describing the Coulomb electron–electron and electron–radiation interactions was 

expressed in terms of the two-particle integral operators, such as density operators ˆ ( )Q


 and 

ˆ ( )D Q


 representing the optical and acoustical plasmons and magnetoexciton creation and 

annihilation operators 
†

|| ||( ), ( )ex exk k 
 

 with in-plane wave vectors ||k


 and Q


. Polariton creation 

and annihilation operators 
†

|| ||( ), ( )ex exL k L k
 

 were introduced using the Hopfield coefficients and 

neglecting the antiresonant terms because the photon energies exceed the energy of the cavity 

mode. The BEC of the magnetoexciton–polariton takes place on the lower polariton branch at 

point || 0k 


 with the quantized value of the longitudinal component of the light wave vector, as 

in the point of the cavity mode. 

 The unitary coherent transformation of the obtained Hamiltonian leading to the breaking 

of its gauge symmetry was written as a Glauber-type coherent transformation using polariton 

operators †

0 0,L L  instead of the true Bose operators. It can be represented in a factorized form as a 

product of two unitary transformations acting separately on the magnetoexciton and photon 

subsystems. The first of them is similar to the KeldyshKozlovKapaev unitary transformation, 

whereas the second one is equivalent to the Bogoliubov canonical displacement transformation. It 
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was shown that the first transformation leads not only to the Bogoliubov u-v transformations of 

the electron and hole single-particle Fermi operators but also to the similar transformation of the 

two-particle integral operators. It becomes possible due to the extensive N-fold degeneracy of the 

lowest Landau levels (LLLs) in Landau gauge description, where N is proportional to the layer 

surface area S. In both cases, the u-v coefficients depend on the LLL filling factor, but in the last 

case, this dependence is doubled. The breaking of the gauge symmetry gives rise to the new 

mixed states expressed through the coherent superposition of the algebraic sum of the 

magnetoexciton creation and annihilation operators †

|| ||( ( ) ( ) )i i

ex exe k k e   
 

 and density 

operator ||
ˆ ( )D k


 representing the acoustical plasmon. In contrast, density operator ˆ ( )Q


 

representing the optical plasmon does not take part in these superpositions. 

 

1. Introduction 

 

The present article is based on the background previous papers and monographs [116] as 

well on the recent contribution [1726]. 

 In [17], the Hamiltonian of the electron-radiation interaction in the second quantization 

representation for the case of 2D coplanar electronhole (eh) systems in a strong perpendicular 

magnetic field was derived. The s-type conduction band electrons with spin projections 

1/ 2zs    along the magnetic field direction and the heavy holes with total momentum 

projections 3/ 2zj    in the p-type valence band were taken into account. The periodic parts of 

their Bloch wave functions are similar to ( )x iy  expressions with the orbital momentum 

projection 1vM    on the same selected direction. The envelope parts of the Bloch wave 

functions have the forms of plane waves in the absence of a magnetic field. In its presence, they 

completely changed due to the Landau quantization event. In [1726], the Landau quantization of 

the 2D electrons and holes is described in the Landau gauge and is characterized by the 

oscillator-type motion in one in-plane direction giving rise to discrete Landau levels enumerated 

by the quantum numbers 
en  and 

hn  and by the free translation motion in another in-plane 

direction perpendicular to previous one. The one-dimensional (1D) plane waves describing this 

motion are marked by the 1D wave numbers p and q. In [18], the Landau quantization of the 2D 

electrons with non-parabolic dispersion law, pseudospin components and chirality terms were 

investigated. On this base, in [19], the influence of the Rashba spinorbit coupling (RSOC) on 

the 2D magnetoexcitons was discussed. The spinor-type wave functions of the conduction and 

valence electrons in the presence of the RSOC have different numbers of Landau quantization 

levels for different spin projections. As was demonstrated in [18, 19, 22], the difference between 

these numbers is determined by the order of the chirality terms. Their origin is due to the 

influence of the external electric field applied to the layer parallel to the direction of the magnetic 

field. In [19], two lowest Landau levels (LLLs) of the conduction electron and four LLLs for the 

holes were used to calculate the matrix elements of the Coulomb interaction between the charged 

carriers as well as the matrix elements of the electron-radiation interaction. On these bases, the 

ionization potentials of the new magnetoexcitons and the probabilities of the quantum transitions 

from the ground state of the crystal to the magnetoexciton states were calculated. In the present 

description the number of the hole and magnetoexciton states will be enlarged and the formation 

of magnetopolaritons taking into account the RSOC will be described. A simpler version of 

magnetopolariton without taking into account the RSOC was described in [21] for the case of 
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interband quantum transitions and in [23] for the case of intraband quantum transitions.  

 The paper is organized as follows. In section 2, the results concerning the Landau 

quantization of the 2D heavy holes, as well as of the electrons, in the conduction band taking into 

account the Rashba spinorbit interaction were described. On this base, the Hamiltonians 

describing the electron-radiation interaction and of the Coulomb electronelectron interaction in 

the presence of the Rashba spinorbit coupling were deduced in sections 3 and 4, respectively. 

Section 5 is focused on the description of the magnetoexcitons in the model of a Bose gas. In 

section 6, the breaking of the gauge symmetry of the obtained Hamiltonians is introduced and the 

mixed photonmagnetoexcitonacoustical plasmon states are discussed. Section 7 offers 

conclusions. 

 First of all, we will describe the Landau quantization of the 2D heavy holes following  

[19, 22]. 
  

 

2. Landau quantization of the 2D heavy holes 

 

The full Landau-Rashba Hamiltonian for 2D heavy holes was discussed in [19] following 

formulas (13)(20). It can be expressed through the Bose-type creation and annihilation operators 

†a , a  acting on the Fock quantum states 
†( )

0
!

na
n

n
 , where 0  is the vacuum state of the 

harmonic oscillator. The Hamiltonian has the form [22] 
2 3

3

†

† † 0 ( )1 1ˆ ˆ 2 2 ,
2 2 0

1 0
ˆ

0 1

h ch

a
H a a a a I i

a

I

  
      

         
       





    (1) 

with the denotations 

  

4

4 3

| |
, , , .

| |

h z h z
ch

h ch ch

E Ee H c
l

m c l l e H

 
  

 
   

 

 
    (2) 

Parameter 
h  is not well known; therefore, different versions mentioned below were considered. 

The exact solutions of the Pauli-type Hamiltonian are described by formulas (21)(31) of [19]. In 

more detail, they were described in [22] and have the spinor form  

 
1 1 2 2

1 2

0 0 0 02 2

ˆ , , , | | | | 1.h h n n n n

n n n n

f f
H E f c n f d n c d

f f

   

   

          (3) 

The first three solutions depend only on one quantum number m with values 0, 1, 2 as follows 

[6]: 

 
0

( 0) ; ( 0) ,
0

1

2 4
h chE m m




 
     

 
   

 
13 9

( 1) ; ( 1) ,
2 4 0

h chE m m



 

      
 

      (4) 
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25

4

25
( 2) ; ( 2) .

2 0
h chE m m

 
      

 
  

All other solutions with 3m  depend on two quantum numbers ( 5 / 2)m   and ( 1 / 2)m   and 

have the general expression 

2 2

2

2 2 2 1/2
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( ; ) ( 1) (2 1) (2 5)
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 (5) 

The respective wave functions for 3m   and 4m   are 

  
3 4

0 1

3 4
( 3) and ( 4) .

0 1
h h

c c
m m

d d

           (6)  

They depend on coefficients 
mc  and 

3md 
, which obey to the equations 
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1
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  (7)  

There are two different solutions ( )h m   at a given value of 3m  and two different pairs of the 

coefficients 3( , )m mc d 

 . 

 The dependences of parameters 
ch ,  , and   on the electric and magnetic fields 

strengths may be represented for the GaAs-type quantum wells as follows TH y ; 

kV/cmzE x ; 00.25hm m ; 0.4 meVch y  ; 21.062·10 x y  ; 410 Cxy   with unknown 

parameter C , which will be varied in a larger interval of values. We cannot neglect the parameter 

C  putting it equal to zero because, in this case, as was argued in [19] formula (10), the lower 

spinor branch of the heavy hole dispersion law 
2 2

3
||

|| ||( )
2 2

h z
h

h

k E
E k k

m

  




  

has an unlimited decreasing, deeply penetrating inside the semiconductor energy gap at great 

values of ||k


. To avoid this unphysical situation, a positive quartic term 
4

||h zE k


 was added in 

the starting Hamiltonian. The new dependences were compared with the drawings calculated in 

Fig. 2 of [19] in the case 10 kV/cmzE   and 10C  . Four LLLs for heavy holes were selected in 

[19]. In addition to them, in [22], three other levels were studied as follows: 
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      (8) 

Their dependences on the magnetic field strength were represented in Figs. 1 and 2 of [22] at 

different parameters x  and C ; they are reproduced below. 

 
Fig. 1. (a) The lower branches of the heavy hole Landau quantization levels 

( 5 / 2; 1/ 2)hE m m    for 3m  at parameters 10 kV/cmzE   and 5.5C  ; (b) a 

general view of all the heavy hole Landau quantization levels with m=0,1,...,10 at the same 

parameters zE  and C . They are reproduced from Fig. 1 of [22]. 

 

 The general view of the lower branches 
5 1

( , )
2 2

hE m m    of the heavy hole Landau 

quantization levels with 3m  as a function of magnetic field strength is represented in Fig. 1a 

following formula (5). The upper branches exhibit a simpler monotonous behavior and are drawn 

together with some curves of the lower branches in Fig. 1b. All the lower branches in their initial 

parts have a linear increasing behavior up till they achieve the maximal values succeeded by the 

minimal values in the middle parts of their evolutions being transformed in the final quadratic 

increasing dependences. The values of the magnetic field strength corresponding to the minima 

and to the maxima decrease with increasing number m . These peculiarities can be compared 

with the case of Landau quantization of the 2D electron in the biased bilayer graphene described 

in [18]. The last-mentioned case is characterized by the initial dispersion law without parabolic 

part and by second order chirality terms. They both lead to dependences on magnetic field 

strength for the lower dispersion branches with sharp initial decreasing parts and minimal values 

succeeded by the quadratic increasing behavior. The differences between the initial dispersion 
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laws and chirality terms in two cases of bilayer graphene and of heavy holes lead to different 

intersections and degeneracies of the Landau levels. 

 The spinor-type envelope wave functions of the heavy holes in the coordinate 

representation look as follows [22]: 

   

2

2

2

3 3

( )
( , ; , ) ,

0

0,1,2.
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( )

3

iqx

m

h m

x

iqx
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y qle
q x y

L

m

c y qle
q x y

d y qlL

m


 


 









 













    (9) 

The valence electrons in comparison with the holes are characterized by the opposite signs of the 

spin projections, wave vector, and charge. The respective envelope wave functions can be 

obtained from the previous ones by the procedure 

   
*

ˆ( , ; , ) ( , ; , )v y hq x y i q x y          (10) 

where ˆ
y  is the Pauli matrix. In coordinate representation, they are as follows: 
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* * 2
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e
q x y
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m

 



 





  




 






 



    (11) 

To obtain the full valence electron Bloch wave functions, expressions (11) must be multiplied by 

the periodic parts. In the p-type valence band, they have the form 

, , , , , ,

1
( ( , ) ( , ))

2
v p x q v p y qU x y iU x y  and are characterized by the orbital momentum projections 

1vM   , respectively. The hole orbital projections h vM M   have opposite signs in 

comparison with the valence electron. The full Bloch wave functions of the valence electrons are 

now characterized by a supplementary quantum number vM  side by side with the previous ones 

m , m   and q as follows: 
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 (12) 

From this multitude of valence electron wave functions, the more important of them are 

characterized by the values of m
  with 3m   and 4 as well as by m  with 0,1m  . These four 
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lowest hole energy levels being combined with two projections 1hM   form a set of eight lowest 

hole states, which will be taken into account below.  

 Now, for completeness, we will remember the main results obtained by Rashba [1] in the 

case of the electron conduction band. They are required to obtain a full description of the 2D eh 

pair and of a 2D magnetoexciton under the condition of the Landau quantization under the 

influence of the RSOC. 

 The LLL of the conduction electron in the presence of the RSOC was obtained in [1]:  

   
e

0 0 e

e 1

1 1 e

e ( ).
, ; , ;

( )

ipx

e e

x

a y
R p x y

b yL
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1 2 ;| | | | 1
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The next electron level higher situated on the energy scale is characterized by the pure spin 

oriented state 

   
e

2e 2 e e e

0 e

0 1
, ; , ; .

( ) 2

e
ipx

R

x

R p x y
yL




        (14) 

Two LLLs for conduction electron are characterized by the values of 
e 00.067m m , 

ce 1.49 meV·y   and parameter 38·10 /x y  . They are denoted as 

    

2

e 1 ce

e 2 ce

1
( ) 1 2 ,

4

1
( ) .

2

E R

E R

 



 
    

 







    (15) 

 The lowest Landau energy level for electron e 1( )E R  has a nonmonotonous anomalous 

dependence on magnetic field strength near the point 0 TH  . It is due to the singular 

dependence of the RSOC parameter 
2 5 26.4·10 /x y  , which, in the total energy level 

expression, is compensated for by factor ce  of the cyclotron energy, where ce 1.49 y  meV. 

As earlier, parameters x and y are related with electric field  kV/cmzE x  and magnetic field 

 TH y . The second electron Landau energy level has a simple linear dependence on H . 

 The full Bloch wave functions for conduction electrons including their s-type periodic 

parts look as follows: 
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   (16) 
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Two lowest Rashba-type states for conduction electron will be combined with eight LLLs for 

heavy holes and with the corresponding states of the valence electrons. The eh pair will be 

characterized by 16 states. Heaving the full set of the electron Bloch wave functions in 

conduction and in the valence bands one can construct the Hamiltonian describing in second 

quantization representation the Coulomb electron-electron interaction as well as the electron-

radiation interaction. These tow tasks will be described in the next sections of our review paper. 

The results obtained earlier in [19, 22] taking into account only 8 eh states will be supplemented 

below.  

 

3. Electron-radiation interaction in the presence of the Rashba spin-orbit coupling 

 

In [17, 21] the Hamiltonian of the electron-radiation interaction in the second quantization 

representation for the case of two-dimensional (2D) coplanar eh system in a strong 

perpendicular magnetic field was discussed. The s -type conduction-band electrons with spin 

projections 1/ 2zs    along the magnetic field direction and the heavy holes with the total 

momentum projections 3/ 2zj    in the p -type valence band were taken into account. Their 

orbital Bloch wave functions are similar to ( )x iy  expressions with the orbital momentum 

projections 1M    on the same selected direction. The Landau quantization of the 2D electrons 

and holes was described in the Landau gauge with oscillator type motion in one in-plane 

direction characterized by the quantum numbers 
en  and 

hn  and with the free translational motion 

described by the uni-dimensional(1D) wave numbers p  and q  in another in-plane direction 

perpendicular to the previous one. The electron and hole creation and annihilation operators 

, ,z es n pa
, , ,z es n pa , and , ,z hj n qb

, , ,z hj n qb  were introduced correspondingly. The Zeeman effect and the 

Rashba spinorbit coupling in [17, 21] were not taken into account. 

 The electrons and holes have a free orbital motion on the surface of the layer with the area 

S  and are completely confined in 
3a


 direction. The degeneracy of their Landau levels equals 

2

0/ (2 )N S l , where 0l  is the magnetic length. In contrast, the photons were supposed to move 

in any direction in the three-dimensional (3D) space with the wave vector k


 arbitrary oriented as 

regards the 2D layer as it is represented in the Fig.2 reproduced from [17]. There are three unit 

vectors 1a


, 2a


, 3a


, the first two being in-plane oriented, whereas the third 3a


 is perpendicular to 

the layer. We will use the 3D and 2D wave vectors k


 and ||k


 and will introduce circular 

polarization vectors M


 for the valence electrons, heavy holes, and magnetoexcitons as follows: 

 
Fig. 2. Reciprocal orientations of circularly polarized vectors 

k
 


 and M


 reproduced from [17]. 
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  || 3 || 1 2 1 2

1
; ; ( ); 1.

2
z x y Mk k a k k a k a k a ia M       

       
   (17) 

The photons are characterized by two linear vectors ,k je


 or by two circular polarization vectors 

k
 


 obeying the transversality conditions: 

   ,,1 ,2

1
( ); ( · ) 0; 1,2.

2
k jk k k

e ie e k j       
   

    (18) 

The photon creation and annihilation operators can be introduced in two different polarizations as 

follows: 
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 The reciprocal orientations of circular polarizations 
k

 


 and 
M


 will determine the values 

of scalar products ( · )Mk
  
 

. The electron-radiation interaction describing only the band-to-band 

quantum transitions with the participation of the eh pairs in the presence of a strong 

perpendicular magnetic field was obtained in [17] and can be used as initial expression for 

obtaining the interaction of 2D magnetoexcitons with the electromagnetic field.  

 These results will be generalized below taking into account the Rashba spinorbit 

coupling, which means the use of the spinor-type wave functions (12) and (16) instead of the 

scalar ones [17, 21]. The Hamiltonian looks as 
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 (20) 

The matrix elements will be discussed below. One of them has the form 
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a d
d rU r e y gl e a p a p U r iU r e y pl
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d rU
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 * 2 * 2

1 1 2 , , , , , ,
ˆ ˆ( ) ( ) ( )( ( ) ( )) ( )igx ikr iqx

x y v p x q v p y q mr e y gl e a p a p U r iU r e y pl     
    

    (21) 

One can represent the 2D coordinate vector r


 as a sum r R  
 

 of lattice point vector R


 and 

small vector 


 changing inside the unit lattice cell with lattice constant 0a  and volume 3

0 0v a . 
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Any 2D semiconductor layer has at least minimal width 
0a  and periodic parts ( )nkU r


 are 

determined inside the elementary lattice cell. Periodic parts ( )nkU r


 do not depend on R


 because 

( ) ( )nk nkU R U  
  

. On the other hand, envelope functions ( )n r


 describing the Landau 

quantization have a spread of the order of magnetic length 
0l  which is much greater than 

0a  

(
0 0l a ). It means that they hardly depend on 


, i.e., ( ) ( )n nR R   

 
. The matrix elements 

(21) contains some functions that do not depend on R


 and other ones that do not depend on 


. 

Only the plane wave 
ikr ikR ike e 
   

 contains both of them. Derivative 
r




  acts in the same manner 

on functions ( )nkU 


 and ( )n R


 because R


 and 


 are the components of r


. These properties 

suggested transforming the 2D integral on variable r


 in two separate integrals on variables R


 

and 


 as follows: 

0

2 2 2 3 2

0

0 0

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

R R v

d rA R B A R d B A R a d B d RA R d B
v v

              

          
      (22) 

Here the small value of 2

0a  is substituted by the infinitesimal differential value 
2d R


 because 

( )A R


 is a smooth function on R


. The integrals on te volume 
0v  of the elementary lattice cell 

contain the quickly oscillating periodic parts , , ( )c s gU 


 and , , , ( )v p i qU 


 belonging to s-type 

conduction band and to p-type valence band. They have different parities and obey to selection 

rules 
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   (23) 

The case i j  is different from zero and gives rise to the expression 

   

0

*

, , , , ||

0

1
( ) ( ) ( , )y y

x
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c s g v pi g k cv

iv

d U e U P k g
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   (24) 

The last integral in the zeroth approximation is of the allowed type in the definition of Elliott [26, 

27] and can be considered as a constant ||( , ) (0)cv cvP k g P


 which does not depend on wave 

vectors ||k


 and g . Due to these selection rules, derivatives / r 


 in expression (21) must be 

taken only from the periodic parts , , , ( )v p i qU 


 because all other integrals vanish.  

The integration on variable xR  engages only the plane wave functions and gives rise to the 

selection rule for the 1D wave numbers , , xg q k  as follows: 

  
( )1 2

( ) ( , )x xiR q g k

x kr x

x x

e q g k q g k
L L


  

         (25) 

The integral on variable yR  engages only Landau quantization functions ( )n yR  and gives rise to 

the third selection rule concerning numbers en  and hn  of the Landau levels for electrons and 

holes. It looks as 
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Here, we took into account that Landau quantization functions ( )n y  are real. 

This selection rule coincides with formula (30) in the absence of the RSOC, and its 

interpretation remains the same. Once again one can underlain that, during the dipole-active 

band-to-band quantum transition, the numbers of the Landau levels in the initial starting band, as 

well as in the final arriving band, coincide, i.e.,   e hn n . It is equally true both in the absence and 

in the presence of the RSOC. 

Three separate integrations on ,  and x yR R


 taking into account selection rules (23), (25), 

and (26) lead to the expression 
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     (27) 

Here, the vectors of circular polarizations 
vM


 describing the valence electron states were 

introduced following formula (17). One can introduce also the vectors of the heavy hole circular 

polarizations 
hM


 in the form 
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     (28) 

The magnetoexciton states are characterized by quantum numbers hM , iR ,   and by wave 

vectors ||k


. 

The general expressions for the matrix elements are as follows: 
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  (29) 

Coefficients ||( , ; )iT cR k


 have the forms  
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   (30) 

The other matrix elements can be calculated in a similar way. They are 
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  (31) 

They permit calculating the electron operator parts in Hamiltonian (20) and expressing them in 

terms of the magnetoexciton creation and annihilation operators determined as follows: 

  
2
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Here, he electron and hole creation and annihilation operator were introduced 
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       (33) 

Here, we have supposed that the Coulomb electronhole interaction leading to the formation of 

the magnetoexciton is greater than the magnetoexcitonphoton interaction leading to the 

formation of the magnetopolariton. It means that the ionization potential of the magnetoexciton 

lI  is greater than the Rabi energy 
0 0

(0)R cv

z k

e
P

m l L








 . It was determined in [21]. 

The existence of the phase factors of the type 
2
0yik gl

e


 in expressions (29) and (31) similar with 

that appearing in the definitions of the magnetoexciton creation operators permits obtaining the 

expressions 
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     (34) 

In [21], the Hamiltonian of the electron-radiation interaction was deduced in the absence of the 

RSOC. In its presence, the mentioned Hamiltonian also can be expressed in a compact form in 

terms of the photon and magnetoexciton creation and annihilation operators. As earlier, we 

introduced the values 2

0/ 2N S l , 
zV SL , where 

zL  is the size of the 3D space in direction 

perpendicular to the layer. In the case of microcavity 
zL  equals cavity length 

cL . The electron-

radiation interaction has the form 
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                  (35) 

This expression is similar to the Hamiltonian in the absence of the RSOC. Now the Coulomb 

interaction between charged carriers in the presence of the RSOC will be investigated. 

 

4. The Coulomb interaction in the 2D electron-hole system under the influence of the 

Rashba spin-orbit coupling 

 

The Coulomb interaction in the 2D eh system taking into account the Rashba spinorbit 

coupling was discussed in [19, 22]. Below, we will remind these results including all valence 

electron states (12). In the present description, the multicomponent electron field contains a larger 

variety of the valence band states than in [19, 22]. For the very beginning, the properties of the 

density operator of electron field ˆ( )r


 and of its Fourier components ˆ ( )Q


 will be discussed. To 

this end, the Fermi-type creation and annihilation operators of the electron on different states 
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were introduced. They are denoted as †

, ,,
i iR g R ga a  for the conduction band Rashba-type states (16) 

( , ; )c iR g r , as †

, , , ,,
v m v mM g M ga a   for the spinor valence band states (12) ( , , ; )v v mM g r   and as 

†

, , , ,
,

v m v mM g M g
a a

    for other spinor valence band states (12) ( , , ; )v v mM g r   . These spinor-type 

functions have a form of a column with two components corresponding to two spin projections 

on the direction of the magnetic field. The conjugate functions ( , ; )c iR g r , ( , ; )c iR g r  and 

( , , ; )v v mM g r    have a form of a row with two components conjugate to the components of the 

columns. With the aid of the electron creation and annihilation operators and the spinor-type 

wave functions, creation and annihilation operators †ˆ ( )r  and ˆ ( )r  of the multi-component 

electron field can be written as 
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  (36) 

The density operator of electron field ˆ( )r


 and its Fourier components ˆ ( )Q


 are determined by 

the expressions 

    

†

2

ˆ ˆˆ ( ) ( ) ( ),

ˆ ˆ( ) ( ) iQr

r r r

Q d r r e



 

  

 




         (37) 
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The density operator looks as 
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    (38) 

Fourier components ˆ ( )Q


 of the density operator determine the Coulomb interaction between 

the electrons. They will be calculated below taking into account spinor-type wave functions (12) 

and (16). For example, the first term in expressions (38) looks as 

 

1 1

1 1

†

1 1 , , 1 1

,

( )
† 2 *

, , , , , ,

,

2 2* 2 2 * 2 2

0 0 0 0 0 1 1 0 1 0
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[ ( ) ( ) ( ) ( )],

x

c c R q R g c c
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i g Q q x
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q g x

R R Q a a R q r R g r

e
a a d rU r U r

L

a y ql y gl b y ql y gl

r R

  

   





 

 

 

     

 



 

  

  

 

   (39) 

Following formula (22), it is necessary to separate the integration of the quickly varying periodic 

parts on volume 
0v  of the elementary lattice cell and the integration of the slowly varying 

envelope parts on lattice point vectors R


 as follows: 

 

0
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2 2
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1
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v
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n m Q dR R R e m n Q


  



   



 

 

 

   
       

   









 
 

  (40) 

Here ( )O Q


 is an infinitesimal value much smaller than unity, tending to zero in the limit  

0Q  . It will be neglected in all calculations below. The calculation gives rise to the final form 
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         (41) 

Expression (41) looks as a product of one numeral factor 
1 1( ; ; )S R R Q


 , which concerns the 

concrete electron spinor state and another operator type factor of the general form 

  
2
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It will be met in all expressions listed below, but with different meanings of   and  , as follows: 
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One of the valence electron density fluctuation operator looks as 
† 2
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Here, we have taken into account the following property of the valence band periodic parts 
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They lead to Kronecker symbol ,v vM M   in expression (50) and in the next ones concerning the 

valence band as follows: 
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As usual, they obey to the equalities  
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      (47) 

Up till now, we have dealt with intraband density operators ˆ ( ; ; )c c Q  


 and ˆ ( ; ; )v v Q  


. 

Interband density operators ˆ ( ; ; )c v Q  


 and ˆ ( ; ; )v c Q  


 depend on the interband exchange 

electron densities of the type 
*

, , , , , , , ,

1
( ) ( ( ) ( ))

2xc s g Q v p x g v p y gU U iU     and its complex conjugate 

value. They contain the quickly oscillating periodic parts with different parities and the 

orthogonality integral on the elementary lattice cell has an infinitesimal value 
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   (48) 

 This integral is different from zero if one takes into account, for example, term y yiQ   appearing 

in the series expansion of function y yiQ
e


. It gives rise to interband dipole momentum 

cvd


 with 

the component  

   0
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, , , , , ,

0

,

( ) ( ),
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cv y c s g y v p y g

v

y cv y

e
d d U U

v

O Q Q d

   






    (49) 

The Coulomb interaction depending on interband exchange electron densities ˆ ˆ( ) ( )cv vcQ Q  
 

 has 

a form of the dipoledipole interaction instead of the chargecharge interaction, which takes 

place only in the intraband cases. It is known as a long-range Coulomb interaction and gives rise 

to the longitudinal-transverse splitting of the three-fold degenerate levels of the dipole-active 

excitons in the cubic crystals [28, 29]. These effects with the participation of the 2D 
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magnetoexcitons have not been investigated up till now, to the best of our knowledge, and remain 

outside the present review article. 

Density operator ˆ ( )Q


 in the frame of electron spinor states (12) and (16) looks as 
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  (50) 

The first five terms of this expression depend on the intraband electron densities and determine 

the chargecharge Coulomb interaction. The last four terms depend on the interband electron 

densities and lead to the dipoledipole long-range Coulomb interaction. 

The strength of the Coulomb interaction is determined by coefficients , , ,n n n na b c d  of the spinor-

type wave function (12) and (16) as well as by the normalization and orthogonality-type integrals 

( , , )n m Q


 . They have the properties: 
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4
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Diagonal coefficients , ( )n nA Q


 with 0,1,3n   will be calculated below. The nondiagonal 

coefficients with n m  in the limit 0Q   are proportional to vector components 
iQ  in a degree 

of | |n m . They can be neglected in the zeroth order approximation together with other 

corrections denoted as ( )O Q


. It essentially diminishes the number of the actual components of 

density operator ˆ ( )Q


. 

 In the zeroth order approximation, neglecting the corrections of the order ( )O Q


, we will 

deal only with diagonal terms that permit the simplified denotations 
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The concrete values of coefficients ( ; )S Q


 are 

    

2 2

1 0 0,0 1 1,1

2 0,0

,

2 2

3 3, 3 ,

( ; ) [| | ( ) | | ( )],

( ; ) ( ),

( ; ) ( ), 0,1,2,

( ; ) [| | ( ) | | ( )],

3

m m m

m m m m m m m

S R Q a A Q b A Q

S R Q A Q

S Q A Q m

S Q d A Q c A Q

m



   

  

 



 

 



  

 

 

  
   (53) 
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The calculated values of 
, ( )m mA Q


 equal  
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The diagonal part of density operator ˆ ( )Q


 looks as 
2 2
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It contains two separate contributions from the conduction and valence bands. The latter 

contribution in turn can be represented as due to the electrons of the full filled valence band 

extracting the contribution of the holes created in its frame. To show it, one can introduce the 

hole creation and annihilation operators as follows: 
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This leads to the relation 
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where hole density operator ( , , )h hM Q 


 looks as 

  
2
0 †

, , , ,
2 2

ˆ ( , , ) y

x x
h h

iQ tl

h h Q Q
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The constant part ( ,0)krN Q


in (57) created by electron of the full filled valence band is 

compensated by the influence of the positive electric charges of the background nuclei. In the 

jelly model of the system, their presence is taken into account excluding the point 0Q 


 from the 

Hamiltonian of the Coulomb interaction [29]. Taking into account the fully neutral system of the 

bare electrons and the positive jelly background, we will operate only with the conduction band 

electrons and with the holes in the valence band. In this electronhole description, density 

operator ˆ ( )Q


 becomes equal to 

    
ˆ ˆ ˆ( ) ( ) ( ),

0

e hQ Q Q

Q

   



  

      (59)  

where  
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  (60) 

The Hamiltonian of the Coulomb interaction of the initial bare electrons can be expressed in 

terms of the electron field and density operators (36) and (50) as follows: 
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    (61) 

( )V Q


 is the Fourier transform of the Coulomb interaction of the electrons situated on the surface 

of the 2D layer with area S and dielectric constant 
0  of the medium. The expression 

†ˆ ˆˆ( ) ( ) ( )r Q r  
 

 contains density operator ˆ ( )Q 


 intercalated between field operators †ˆ ( )r


 

and ˆ ( )r


. Operator ˆ ( )r


 cannot be transposed over operator ˆ ( )Q 


 because they do not 

commute, but its nonoperator part expressed through the spinor-type wave function can be 

transposed forming together with the conjugate wave function of field operator †ˆ ( )r


 a scalar. 

After the integration on coordinate r


, the quadratic intercalated density operators will appear in 

the form 
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  (62) 

The same relations remain in the electronhole description. 

The commutation relations between the density operators are the following: 
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         (63) 

Factor 

2 2
0

4

Q l

e


 arising from the product of the density operators ˆ ( )Q


 and ˆ ( )Q 


 being multiplied 

by coefficient ( )V Q


 gives rise to coefficient ( )W Q


 describing the effective Coulomb interaction 

under the conditions of the Landau quantization 

    

2 2
0

2( ) ( )
Q l

W Q V Q e



 

      (64) 

Excluding the intercalations, the Hamiltonian of the Coulomb interaction in the presence of the 

Landau quantization and Rashba spinorbit coupling has the form: 

,

,
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1
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(65) 

 

The Hamiltonian of the Coulomb interaction in the electronhole representation looks as 
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(66) 

In the concrete variant named as 
1F , where the electrons are in state 

1R , whereas the holes are in 

state 
3
  with a given value of 

hM , Hamiltonian (66) looks as 

2 2 2

1 3 0 1 1,1 1 1 1

2 2 2

0 3 3,3 3 3 3

2 2 2 2

0 1 1,1 0 3 3,3

1
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1 3

ˆ( ; ) ( , ; )}e h hR Q M Q   
 

 (67) 

In the absence of the RSOC, we have 0 0 1a d    and 1 3 0b c  . In the variant 1 1 3( , )F R    

described by Hamiltonian (67), the 2D magnetoexciton can be described by the wave function 

  
2
0

1 3

† †

1
, , ,

2 2

1
( , ) 0y

x x
h

iK tl

ex K K
R t M t

t

F K e a b
N   

  


    (68) 

where 0  is the vacuum state determined by the equalities 

    , ,0 0 0t ta b         (69) 

In [22], other seven combinations of the electron and hole states were considered as follows: 

  
2 2 3 3 1 0 4 2 0 5 1 4

6 2 4 7 1 1 8 2 1

( , ), ( , ), ( , ), ( , ),

( , ), ( , ), ( , )

F R F R F R F R
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   (70) 

In all these cases, the exciton creation energies were calculated using the formulas 

   

( , ) ( ) ( , )

( ) ( ) ( ),

( , )

ex n cv n ex n
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n

E F k E F I F k

E F E E E
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     (71) 
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Here, gE  is the semiconductor energy gap in the absence of a magnetic field. ( , )ex nI F k


 is the 

ionization potential of the magnetoexciton moving with wave vector k


 . 

 The Hamiltonian of the Coulomb electron-electron interaction in the case of eh pairs 

with the electrons in the degenerate state 
1( , )eS R  and the holes in the degenerate state 

( , , )h h mS M    has the form 





1

1 1 1 1

1 1

( , )
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  (72) 

Once again, the electron and hole density operators are recalled: 
2
0

1 1

2
0

†

1
, ,

2 2
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, , , ,
2 2
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ˆ ( ; ) ,

ˆ ( , ; ) ,
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  (73) 

Coefficients ( )i jW Q


 in (72) are 

 

 
 

 

2
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2
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( ; ) ( ) ( ) ( ) ,   3,

( , ; ) ( ) ( ) ( )

( ) ( ) ,  3

e e

h h m m m m m m m

e h m

m m m m m m

W R Q W Q a A Q b A Q

W Q W Q d A Q c A Q m

W R Q W Q a A Q b A Q

d A Q c A Q m







  

   





 

  

 

  

  

  

   

   

   

 

   (74) 

The normalization conditions take place 
2 2
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3

m m

a b

d c

m

 



 

 



      (75) 

 

 

 

 

 

 

 

 

 

 



Moldavian Journal of the Physical Sciences, Vol. 13, N1-2, 2014 
 

 84 

In the actual case 3m   we obtain 

 

2 2
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2
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  (76) 

The terms proportional to 
1

ˆ ( )eN R  and ˆ ( , )h h mN M    in (72) have coefficients 
1( )eI R  and ( )h mI   , 

which describe the Coulomb self-actions of the electrons and holes, are listed below together with 

the binding energy of the electron and the hole forming the magnetoexciton. The last value is 

determined by the diagonal matrix element of Hamiltonian (72) calculated with wave function 

(68) as follows: 

  

1 1 1 1

1 1 1

2
2 0

1 1 1

1 1

1 1

( , ) ( , ) ( ) ( , ),
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          (77) 

The binding energy of the magnetoexciton and its ionization potential, which has the opposite 

sign as compared with the binding energy, tend to zero when wave vector k


 tends to infinity and 

the magnetoexciton is transformed into a free eh pair: 
0

,1 1 1 1

0

ˆ( ) ( ) ( )
2

ˆ( , ) ( ) ( , )
2

g

mex e e e e

g

h h m h m h h h m

E
H E R I R N R

E
E M I N M



     

 
      
 

 
     
 

    (78) 

Here, semiconductor energy band gap 0
gE  in the absence of the Landau quantization was 

introduced. 
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Now, instead of electron and hole density operators ˆ ( )e Q


 and ˆ ( )h Q


, we will introduce the 

density operators of the optical plasmon denoted as ˆ ( )Q


 and the acoustical plasmon denoted as 

ˆ ( )D Q


 following the relations 

ˆ ˆ ˆ( ) ( ) ( ),

ˆ ˆ ˆ( ) ( ) ( ),

ˆˆ ( ) ( )
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2
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e
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Q Q Q

D Q Q Q

Q D Q
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D Q Q
Q

  

 







 

 







  

  

 


 


     (79) 

Here, for simplicity, many indices that label the electron, hole, and plasmon density operators are 

omitted. But they must be kept in mind and may be restored in concrete cases.    

In the plasmon representation, Hamiltonian ,1mexH  (78) looks as 

 

 

,1 1

1

ˆ (0)
( ; , )

2

ˆ (0)
( ; , )

2
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D
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    (80) 

Here, the sums and differences of the Landau quantization level energies, the Coulomb self-

interaction terms, and the chemical potentials are defined as follows: 

1 1 1

0

1 1

1 1 1

( ; , ) ( ; , ) ( ; ),
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  (81) 

The remaining part ,2mexH  of Hamiltonian (72), after the excluding of the linear terms, is 

quadratic in the plasmon density operators. It has the form 
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  (82) 

The new coefficients are expressed in terms of the former ones by the formulas 
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    (83) 

In the case of the eh pairs of the type 1( ; )mR    they take the form 
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In a special case 3m   we have 
2
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         (85) 

Side by side with the magnetoexciton subsystem, the photon subsystem does exist. In our case, it 

is composed of photons with a given circular polarization, for example, 
k

 


. Their wave vectors 

3 ||

c

k a k
L


 

 
 have the same quantized longitudinal component equal to 

cL


, where 

cL  is the 

resonator length and arbitrary values of the in-plane 2D vectors ||k


. The photon energies are 

2
2

||2

0

k

c

c
k

n L


  


 , where 0n  is the refractive index of the microcavity. The full number of the 

photons captured into the resonator is determined by their chemical potential ph . 

The zeroth order Hamiltonian of the photons in the microcavity looks as 

 
||

†

0, , ,ph phk k k
k

H c c
 

     


      (86) 

where 
†

, ,
,

k k
c c

 
   are the creation and annihilation photon operators and   denotes a definite 

circular polarization. Only the case     will be considered. It must be supplemented by the 
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Hamiltonian of the magnetoexcitonphoton interaction deduced above in a more general case. In 

the case of dipole-active band-to-band quantum transition with the combination of the eh states 

1 3( , )R    we have 
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    (87) 

The interaction coefficient is as follows: 
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    (88) 

The magnetoexciton creation and annihilation operators were written in a shortened form in (87) 

because there are too many indices in its full description as follows: 
2
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1 3

† † † †

1 3
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2 2
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x x
h

iQ tl
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   (89) 

The full Hamiltonian of the magnetoexcitonphoton system for a more actual combination 

1 3( , )R    may be written 

,1 0, ,2mex ph mex ph mexH H H H H          (90) 

Its remarkable peculiarity is the presence only of the two-particle integral plasmon and 

magnetoexciton operators, rather than of the single-particle electron and hole Fermi operators. It 

permits considerably simplifying the deduction of their equations of motion. For this reason, the 

commutation relations between the full set of four two-particle integral operators 
†ˆ ˆˆ( ), ( ), ( )exQ D Q Q 

  
 and ˆ ( )ex Q


 are needed. They are listed below 
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        (91)  

 

 



Moldavian Journal of the Physical Sciences, Vol. 13, N1-2, 2014 
 

 88 

5. The magnetoexcitons in the Bose-gas model description 

 

The Hamiltonian describing the 2D eh pairs with electrons and holes situated on the 

given Landau quantization levels and interacting between themselves through the Coulomb 

forces was represented as a sum: ,1 ,2mex mexH H . It is expressed in terms of plasmon density 

operators ˆ ( )Q


 and ˆ ( )D Q


. It is useful to represent it in the model of weakly interacting Bose 

gas. To this end, the wave functions describing the free single magnetoexcitons ( )mex P


 as well 

as the pairs of the free magnetoexcitons with wave vectors P


 and R


 ( ), ( )mex mexP R 
 

 were 

introduced: 

  

†

† †

ˆ( ) ( ) 0 ,

ˆ( ) 0 ( ),

ˆ ˆ( ), ( ) ( ) ( ) 0 ,

ˆ ˆ( ), ( ) 0 ( ) ( )

ex ex

ex ex

ex ex ex ex

ex ex ex ex

P P

P P

P R P R

P R R P





 

 

 

 

  

  

 

 

   

   

     (92) 

where 0  is the vacuum state of the semiconductor. They were used to calculate the matrix 

elements 

  
,1 ,2

1 1 2 2 1 1 ,1 ,2 2 2
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          (93) 

With these matrix elements and with the magnetoexciton creation and annihilation operators, the 

new Hamiltonian in the model of weakly interacting Bose gas can be constructed. It looks as 
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   (94) 

Recall that the magnetoexciton creation and annihilation operators in turn are constructed from 

electron and hole creation and annihilation Fermi-type operators 
† †, , ,p p p pa a b b  as follows: 

   
2
0† † †

2 2

1ˆ ( ) y

x x

iP tl

ex P P
t t

t

P e a b
N   

  


     (95) 

and their composition in all calculations is taken into account. Some of them are demonstrated 

below using commutation relations (91): 
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† †

†

† 2 †

† 2 †

0 0 0,

ˆ ˆˆ ( ) 0 ( ) 0 ( ) 0 0,

ˆ ˆ ˆ(0) ( ) 0 2 ( ) 0 ,

ˆˆ (0) ( ) 0 0,

ˆ ˆˆ ˆ( ) ( ) ( ) 0 4sin ( ( , )) ( ) 0 ,

ˆ ˆ ˆ ˆ( ) ( ) ( ) 0 4cos ( ( , )) ( ) 0 ,

ˆ ˆˆ( ( ) ( )

p p

ex

ex ex

ex

ex ex

ex ex

a b

Q D Q Q

D P P

P

Q Q P Z P Q P

D Q D Q P Z P Q P

Q D Q





 



 

   

  

 

   

   

 

  

 



    

    

 
†ˆˆ( ) ( )) ( ) 0 0exD Q Q P   

  

  (96) 

In the present model, the main role is played by the magnetoexciton creation and annihilation 

operators, rather than by the plasmon density operators. 

Magnetoexciton creation energy ( )mexE P


 from Hamiltonian 
0H  consists of three parts: 

1 1 1

2 2

0 0 1 1

1 1 1

( ) ( ; , ; ) ( ; , ) ( ; )

2 ( ; ; )sin ( ( , )) 2 ( ; ; )cos ( ( , ))

( , ; ) ( ; ) ( ; ; )

mex mex h m g h m S m

m a a m

Q Q

g h m l m m

E P E R M P E R M I R

W R Q Z P Q W R Q Z P Q

E M R I R E R P

  

 

  

  

 

 

  

   

  

  

  

 

    



      (97) 

The first component 1( , ; , , )g e h h mE S R S M  
 plays the role of the band gap, whereas difference 

1 1( ; ) ( ; ; )l m mI R E R P  


 determines the resulting ionization potential of the moving 

magnetoexciton with wave vector P


. In the limiting case P


, when 

1 1lim ( ; ; ) ( ; )m l m
P

E R P I R  





, the resulting ionization potential vanishes and the eh pair becomes 

unbound. Nevertheless, the presence of positive term 
1( ; ; )mE R P 


 in formula (97) plays the role 

of the kinetic energy of the magnetoexciton at least in the region of the small values of wave 

vector P


, where this term can be represented in a quadratic form 
2 2

2 ( )

P

M B


 with effective mass 

( )M B  depending on magnetic field strength B. Zeroth-order Hamiltonian 
0H  (94), together with 

the similar Hamiltonian for the cavity photons and with the Hamiltonian describing the 

magnetoexcitonphoton interaction, gives rise to quadratic Hamiltonian 2H  forming the base of 

the polariton conception. It looks as 

 
|| ||

||

† †

2 || || || , ,

* † * †

|| || || ||, ,

ˆ ˆ( ) ( ) ( )

ˆ ˆ( )( ) ( ) ( )( ) ( )
h h

mex ex ex k k k
k k

M ex M exk k k k
k

H E k k k c c

k c k k c k



     

 

 

 

    

      
 

 



  
 

   


  


          (98) 

In this expression, the chemical potentials of the magnetoexcitons and the photons are omitted 

until the single-particle polariton formation is investigated. They will be restored when the 

collective properties of the polaritons will be discussed. The diagonalization of quadratic form 

(98) is achieved introducing the polariton creation and annihilation operators 
|| ||

†̂ ˆ,
k k

L L   in the form 
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of a linear superposition 

   
||

|| || || ,
ˆ ( ) ( ) ( )exk k
L x k k y k c


   

  
      (99) 

It is a simplified form without the antiresonant terms because they are not introduced in the 

starting Hamiltonian 
2H  (98). Quantities  

||( )x k


 and 
||( )y k


 are known as Hopfield coefficients 

[28, 29]. In the case where the scalar product of two circular polarized vectors equals 1, the 

energy spectrum of two polariton branches looks as 

 
|| 2 2

|| || ||

( ) 1
( ) ( ( ) ) 4 | ( ) |

2 2

mex k
mex k

E k
k E k k


  


   





  

             (100) 

The Rabi frequency for the eh pair in the states 
1 3( , )R    is as follows:  

  0 0

0 0

(0) 1
| | (0)

hR cv Mk

c k

e
P a d

m l L


  



  
 

 
           (101) 

In the absence of the RSOI, coefficients 
0 0 1a d   and expression (101) coincides with formula 

(12) in [21]. 

The Hopfield coefficients obey to the normalization condition and are equal to 

    

 

 

 

2

2 ||

|| 2
2

|| ||

2
2 ||

|| 2
2

|| ||

2 2

|| ||

(*

|| ||

( )
( ) ,

( ) | ( )( ) |

| ( )( ) |
( ) ,

( ) | ( )( ) |

( ) ( ) 1,

( )( ) | ( )( ) |

h

h

h

h h

p k

p Mk k

Mk

p Mk k

i

M Mk k

k
x k

k k

k
y k

k k

x k y k

k k e


 

    

  

    

     







 




  




  

 

  



 



 



 


 

   
 

  
   

 

 

    
||

|| ||

)

*

( ) ( )

|| || || ||

|| || ||

,

| ( ) | ( ) ,

( ) ( ) ,  ( ) ( ) ,

( ) ( ) ( ) 0

h h

k

M Mk k

i k i k
x k x k e y k y k e

k k k

 

   

  

   

 

  

 

 

   

   

  

                (102) 

The last equality results from the fact that polariton energy spectrum ||( )p k


 , the 

magnetoexciton and cavity photon bare energies are real entities. This relation will be used below 

at point || 0k 


 where these phases will be simply denoted as ,  and    . 

Now the breaking of the gauge symmetry of the 2D magnetoexcitonphoton system 

leading to the BEC of the magnetopolaritons on the lower polariton branch at point || 0k 


 will 

be discussed. 

 

6. Breaking of the gauge symmetry and the mixed photonmagnetoexcitonacoustical 

plasmon states 

 

A method to introduce the coherent macroscopic polariton states in a system of 2D eh 
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pairs and photons captured in the microcavity was proposed in [30, 31]. It was assumed that the 

eh pairs were excited on the quantum well embedded into the microcavity and interacted with 

the photons captured in the resonator giving rise to the 2D WannierMott excitons and polariton 

formation. As was shown in [30], the proposed method is equivalent to the u-v Bogoliubov 

transformation for the electron and hole Fermi operators and to Bogoliubov displacement 

transformation for the photon Bose operators. This method will be now applied to the case of 2D 

magnetoexcitons and photons in microcavity with the aim to investigate the BEC of 

magnetopolaritons in the state with || 0k 


 on the lower polariton branch. The unitary 

transformation proposed in [30] looks as 

     †

0 0( ) expp pD N N L L             (103) 

where pN  is a macroscopic number of the condensed polaritons at point || 0k 


 of the lower 

polariton branch. The cavity photon with || 0k 


 has a quantized longitudinal projection of its 

wave vector k


 equal to / cL . Only the photons with a given circular polarization are 

considered. In this case, we have 

   

0
,

ˆ (0) (0) (0) ,

(0) (0) ,

(0) (0)

c

ex

L

i

i

L x y c

x x e

y y e








  





            (104) 

and the starting unitary transformation can be factorized in two independent unitary 

transformations acting separately in two subsystems of magnetoexcitons and of the photons as 

follows: 

  †

†

, ,

( ) ( (0) ) ( (0) ),

ˆ ˆ( (0) ) exp (0) (0) (0) ,

( (0) ) exp (0)

c c

p ex p ph p

i i

ex p p ex ex

i i

ph p p

L L

D N D N x D N y

D N x N x e e

D N y N y e c e c

 

 

 





 



    
 

  
    

    

         (105) 

Taking into account the expressions for the magnetoexciton operators 

     

† † †1ˆ (0) ,

1ˆ (0)

ex t t

t

ex t t

t

a b
N

b a
N





 

 




          (106) 

one can transcribe operator ( (0) )ex pD N x  in the form ( (0) ) tzz

ex p

t

D N x e e  , where 

  
 

 

†

† †

ˆ ˆ(0) (0) (0) ,

(0)

i i

p ex ex t

t

i i

t p t t t t

z N x e e z

z x e a b e b a

 

 





 

    

 


          (107) 

The unitary transformations of the Fermi operator are 
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1

†

1

†

( (0) ) ( (0) )

cos( (0) ) sin( (0) ),

( (0) ) ( (0) )

cos( (0) ) sin( (0) )

t t

t t

z z

ex p t ex p t t

i

t p t p

z z

ex p t ex p t t

i

t p t p

D N x a D N x e a e

a v x b e v x

D N x b D N x e b e

b v x a e v x

















  





  

 

  

 

         (108) 

Here, the filling factor of the Bose-Einstein condensate was introduced  

    
2p

p

N

N
              (109) 

Side by side with unitary transformations (108) for the single-particle Fermi operators, one can 

also obtain the transformations for the two-particle integral operators. They were obtained using 

commutation relations (91) and look as follows 

ˆ ˆ

ˆ ˆ

ˆ ˆ†

† †

ˆ ˆ( ) ( ) ˆcos(2 (0) ) ( )sin(2 (0) ),

ˆ ( )ˆ ˆ( ) ( ) cos(2 (0) ) sin(2 (0) ),

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ),  ( ) ( ),

1
( ) ( ) sin 2

2

z z

p p

z z

p p

i i z z

ex ex

z i z i

ex ex

D Q D Q
e e v x Q v x

N N

D Q
e Q e Q v x v x

N

Q e Q e Q e Q e Q

e e Q e e Q

 

 



 

  





 

  

 

 

     

   

 



 

    

 
   

   

( ) 1
| (0) | [cos 2 | (0) | 1] ( ),

2

1 ( ) 1
( ) ( ) sin 2 | (0) | [cos 2 | (0) | 1] ( )

2 2

p p

z i z i

ex ex p p

D Q
v x v x Q

N

D Q
e e Q e e Q v x v x Q

N

 





 

       





  

          (110) 

As one can see, the superposition of the magnetoexciton creation and annihilation operators in the 

form ( )Q


 forms a coherent mixed state with acoustical plasmon density operator 
ˆ ( )D Q

N



. These 

mixed magnetoexcitonplasmon states were discussed in [3234]. 

 The full Hamiltonian of the magnetoexciton-photon system consists of four parts as 

follows: 

    ,1 0, ,2
ˆ ˆ ˆ ˆ ˆ

mex ph mex mex phH H H H H               (111) 

It will be subjected to unitary gauge transformation (105), which means calculation of the 

following unitary transformations: 
1

,1 ,2
ˆ ˆ( | (0) |)( ) ( | (0) |)ex p mex mex ex pD N x H H D N x , 1

0,
ˆ( | (0) |) ( | (0) |)ph p ph ph pD N y H D N y , 

1 1ˆ( | (0) |) ( | (0) |) ( | (0) |) ( | (0) |)ex p ph p mex ph ph p ex pD N x D N y H D N y D N x 

  

 

The first of them is 
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1

,1 ,1

1

1

1

ˆ ˆ( | (0) |) ( | (0) |)

ˆ (0)
( ; , ) cos(2 | (0) |)

2

ˆ (0)
( ( ; , ) )

2

ˆsin(2 | (0) |) ( ; , ) (0),
2

mex ex p mex ex p

mex h m ex p

e h h m e h

p mex h m ex

ex e h

H D N x H D N x

D
E R M v x

G R M

N
v x E R M

 


  

  

  











 

  

   

 

 



            (112) 

The second one looks as  

   



1

,2 ,2

2

0 0

2

ˆ ˆ( | (0) |) ( | (0) |)

1 ˆ ˆˆ ˆ( ) ( ) ( ) ( ) cos (2 | (0) |) ( ) ( )
2

sin (2 | (0) |) ( ) ( )

ˆ ˆcos(2 | (0) |) sin(2 | (0) |) ( ( ) ( ) ( ) ( ))

mex ex p mex ex p

a a p

Q

p

p p

H D N x H D N x

W Q Q Q W Q v x D Q D Q

v x N Q Q

v x v x N D Q Q Q D Q

 

 

 



 

 

    


  

   






     

 

   


0

ˆ ˆˆ ˆ( ) cos(2 | (0) |) ( ( ) ( ) ( ) ( ))

ˆ ˆsin(2 | (0) |) ( ( ) ( ) ( ) ( ))

a p

p

W Q v x Q D Q D Q Q

v x N Q Q Q Q

 

   





    

   


    

   

             (113) 

The third transformation concerns the captured photons 

 
||

1

0, 0,

2 †

, ,

†

, ,

3 || || 1 2

ˆ ˆ( | (0) |) ( | (0) |)

| (0) |

| (0) | ,

,  

c

c c c
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kL

i i
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x y
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The last transformation involves the magnetoexciton and photons operators as follows: 

1

* †

* 1

†

ˆ ˆ( ) ( )

ˆ ˆ( | (0) |){ | (0) | [ (0) ( ) (0)

ˆ(0) ( ) (0)]} ( | (0) |)

1ˆ| (0) |{ (0)[ (cos(2 | (0) |) 1) (0) (
2
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c

c

mex ph p mex ph p

i
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i
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L

i
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H D N H D N
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e D N x

N y v x e
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       (115) 

Taking into account relation (102) between phases ,  and     and definition (110) of operator 

(0) , one can represent the transformed Hamiltonian with the broken gauge symmetry in the 

form 
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Looking at this expression, one may conclude that, side by side with the u-v-type transformation 

(110) of magnetoexciton superposition-type operator ˆ( )Q


 and acoustical plasmon density 

operator ˆ ( ) /D Q N


, another mixed state of the acoustical plasmonphoton type appeared under 

the influence of the magnetoexcitonpolariton BEC. In addition to them, there are anti-resonant-

type terms in the magnetoexciton-photon interaction, even if they were not included in initial 

Hamiltonian (87). The obtained results permit determining chemical potentials ex  and ph  and 

investigating the energy spectrum of the collective elementary excitations. 
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7. Conclusions 

 

The influence of the RSOC on the properties of the 2D magnetoexcitons was described 

taking into account the results concerning the Landau quantization of the 2D electrons and holes 

with nonparabolic dispersion laws, pseudospin components and chirality terms [18, 19, 22]. The 

main attention was paid to the study of operators ˆ ( )Q


 and ˆ ( )D Q


 that, together with 

magnetoexciton creation and annihilation operators †

||
ˆ ( )ex k


 and 

||
ˆ ( )ex k


, form a set of four two-

particle integral operators. It was shown that the Hamiltonians of the electron-radiation and 

Coulomb electronelectron interactions can be expressed in terms of these four integral two-

particle operators. The unitary transformation breaking the gauge symmetry of the deduced 

Hamiltonian and the BEC of the magnetoexcitonpolaritons were introduced in the frame of the 

KeldyshKozlovKopaev method using the polariton creation and annihilation operators. They 

were expressed in terms of the same magnetoexciton and photon operators using the Hopfield 

coefficients in a simplified form without the anti-resonance terms because the energies of the 

participant quasiparticles are finite situated near the energy of the cavity mode. The unitary 

transformation is factorized as a product of two unitary transformations acting independently in 

two magnetoexciton and photon subsystems. It was realized that the BEC of magnetoexciton 

polaritons supplementary gives rise to the acoustical plasmonphoton interaction and to a new 

type plasmonpolariton formation. The antiresonance terms of the magnetoexcitonphoton 

interaction also appeared even if they were neglected in the starting Hamiltonian. The mixed 

magnetoexcitonacoustical plasmon states in the absence of the RSOC were investigated in 

[3234]. The obtained final transformed Hamiltonian will be used to study the collective 

elementary excitations. 
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Abstract 

 
First-principles simulation, meaning density-functional theory calculations with plane 

waves and pseudopotentials, has become a prized technique in condensed-matter theory. 

However, it is only in the last 15 years or so that we have been able to compute the properties of 

condensed matter from first principles. Here we discuss the basics of the subject, give a brief 

review of the theory, examine the advantages and disadvatnges of its implementation, and 

illustrate some of the ways simulators approach problems through a small case study. We also 

discuss why and how modern software design methods can be used in computational materials 

science. 

 

1. Introduction 

 

The properties of materials are often controlled by defects and impurities. This is 

particularly true in the case of semiconductors, where the incorporation of impurities in small 

concentrations determines the electrical conductivity. The fabrication of p-type and n-type doped 

layers underlies the design of almost all electronic and optoelectronic devices. A similar situation 

takes place in luminescence of phosphors where the material properties strongly depend on 

dopants. 

To achieve this control of defects and impurities, comprehensive knowledge of the 

fundamental processes that control doping is required. In recent years, first-principles 

calculations have made important contributions to this knowledge. Today, the performance of 

computers is highly advanced, and we have reached the conclusion that the use of first-principles 

calculation is the most appropriate for highly accurate analysis of problems at the atomic or 

electronic scale. For the current first-principles calculation, high-speed simulation with high 

accuracy is necessary. 

     This paper is written to alleviate the barriers and pains which beginners in 

computational materials science suffer. Special attention is paid to the fact that experimentalists, 

rather than specialists, use this package in order to interpret the derived data. The goal of this 

paper is to provide an overview of the state-of-the-art methodology for performing first principles 

calculations for defects and impurities. More details can be found in various excellent reviews 

that are available for that purpose [1–3] and in our future works. 
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2. Computational, experimental, and theoretical methods 

 
 

Computational Materials Science aims at enhancing the communication between 

experimental materials research, theory, and computational work on both existing and new 

advanced materials and their applications (Fig. 1). 

 

 
Fig. 1. Unique model combining Experiment, Theory, and Computation. 

 

Computational Materials Science presents the most important approaches in this new 

interdisciplinary field of materials science and engineering. The reader will learn to assess which 

numerical method is appropriate for performing simulations at the various microstructural levels 

and how they can be coupled. Modeling and simulation play an ever increasing role in the 

development and optimization of materials. 

Nevertheless, we have to understand that only very few aspects of chemistry can be 

computed exactly. However, just as not all spectra are perfectly resolved, often a qualitative or 

approximate computation can give a useful insight into chemistry if you understand what it tells 

you and what it does not. 

 

3. First principles or “ab initio” calculations 

 

Big success in the development of computer hardware and software enables now to 

perform the first principles (ab initio) calculations with accuracy comparable with that obtained 

in experiment. These approaches also enable predicting the behavior of materials under extreme 

conditions (for example, at very high pressures inaccessible under laboratory conditions), to 

study dangerous (radioactive, explosive) materials. They are very useful in predicting new 

materials with interesting properties that have never been synthesized. Moreover, the first 

principles calculations enable improving our understanding of physical phenomena occurring in 

known materials. The Nobel Prizes awarded to Robert S. Mulliken (1966), Walter Kohn and John 

Pople (1998) can be regarded as an acknowledgment of their significant contribution to the 

development of first principles methods in physics, chemistry, and materials science.  

In physics, a calculation is said to be from first principles, or ab initio, if it starts directly 

at the level of established laws of physics and does not make assumptions, such as empirical 
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model and fitting parameters. For example, calculation of electronic structure using the 

Schrödinger's equation within a set of approximations that do not include fitting the model to 

experimental data is an ab initio approach. 

The term "ab initio" is a Latin term meaning "from the beginning". This name is given to 

computations which are derived directly from theoretical principles, with no inclusion of 

experimental data. Most of the time, this is referring to an approximate quantum mechanical 

calculation. The approximations made are usually mathematical approximations, such as using a 

simpler functional form for a function or getting an approximate solution to a differential 

equation.  

Scientists mainly use three different methods to make calculations:  

 Molecular mechanics uses classical physics to explain and interpret the behavior 

of atoms and molecules. It relies on force-field with embedded empirical parameters and 

requires experimental data (or data from ab initio) for parameters. This method does not 

calculate electronic properties. Typically, it is a large system (thousands of atoms).  

 Semi-empirical techniques use approximations from empirical (experimental) data 

to provide the input into the mathematical models. This method uses quantum physics and 

experimentally derived empirical parameters. It is less demanding computationally than 

ab initio methods and capable of calculating transition states and excited states. At the 

same time, it is less rigorous than ab initio methods and requires experimental data (or 

data from ab initio) for parameters. It is a medium-sized system (hundreds of atoms). 

 ab initio, a group of methods in which molecular structures can be calculated using 

nothing but the Schroedinger equation, the values of the fundamental constants and the 

atomic numbers of the atoms present. This method is useful for a broad range of systems 

because it does not depend on experimental data. It is capable of calculating transition 

states and excited states. A disadvantage is that it is computationally expensive. Usually, 

it is a small system (tens of atoms) requiring rigorous accuracy. 

To better understand the computational approaches and simulation packages, we propose 

the following scheme in Fig. 2.  

Some of the most popular computation programs are summarized below: 

VASP: Pseudopotential, Ultra-soft, projector augmented-wave (PAW), parallel execution 

in supercomputer. 

SIESTA: localized orbital basis and pseudopotential, parallel execution, very small basis, 

handle very large system (nano system). 

WIEN97: linearized-augmented-plane wave (LAPW) method, parallel execution in 

supercomputer. 

WIEN2K: full potential linear-augmented plane wave (FPLAPW) approach within the 

framework of DFT. WIEN2K is based on the method which is among the most precise and 

reliable ways to calculate the electronic structure of solids. 

OSAKA-2K: one of the best pseudopotential methods. This package is a set of program 

codes which calculate electronic structures of materials. It covers a wide range of calculations 

from optimization of crystal structure to molecular dynamic simulations, in addition to standard 

self-consistent calculation and band calculations.  

CRYSTAL-98 package, which is based on both Density Functional and Hartree–Fock 

theories. The gradient-corrected correlation functional by Lee, Yang and Parr is used, combined 
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with the Becke 3 exchange functional (B3LYP). 

CRYSTAL-06: linear combination of atomic orbitals (LCAO) formalism. Hybrid 

Hartree-Fock-DFT Hamiltonians (B3PW and PBE0) is used. 

 

 
Fig. 2. Scheme of computational approaches and simulation packages. 

 

The most common types of ab initio calculations are referred to as Hartree Fock 

approximation (abbreviated HF), Density functional theory (DFT), and the quantum Monte Carlo 

(QMC) method.  

We consider here QMC and HF methods very briefly and pay our attention mostly to DFT 

methods, because they are among the most popular and versatile methods available in condensed-

matter physics, computational physics, and computational chemistry. 

3.1. Monte Carlo calculations 

Quantum Monte Carlo techniques provide a practical method for solving the many-body 

Schrödinger equation. They are closely related to the well established classical Monte Carlo 

methods that have been successfully applied to a wide range of problems involving stochastic 

behavior ranging from scientific problems, engineering problems and modeling the financial 

markets. A common link between classical and quantum Monte Carlo techniques is the use of 

random numbers to evaluate multi-dimensional integrals. QMC works with an explicitly 

correlated wave function and numerically evaluate integrals using a Monte Carlo integration. 

These calculations can be very time consuming, but they are probably the most accurate methods 

known today. 

There are several flavors of QMC such as variational, diffusion, and Green's functions. 

The latter two are projection approaches which dispense with quantum chemical basis sets, but 

they have to deal with the fermion sign problem, and the related fixed-node approximation. In 

general, all QMC methods have a good scaling with the number of electrons, enabling relatively 
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large systems to be tackled, but with a computational cost much larger than traditional ab-initio 

methods based on DFT. The good reviews of Monte Carlo method can be found in Refs, [4-6]. 

 

3.2. Hartree–Fock algorithm 

The Hartree–Fock method is typically used to solve the time-independent Schrödinger 

equation for a multi-electron atom or molecule as described in the Born–Oppenheimer 

approximation. In Hartree-Fock method as a starting point, the wave function is used to describe 

electronic structure. Since there are no known solutions for many-electron systems, the problem 

is solved numerically. Due to the nonlinearities introduced by the Hartree–Fock approximation, 

the equations are solved using a nonlinear method such as iteration, which gives rise to the name 

"self-consistent field method."  

In this method, the primary approximation is referred to as the central field 

approximation. This means that the Coulombic electron-electron repulsion is not specifically 

taken into account. However, its net effect is included in the calculation.  

The second approximation in HF calculations is that the wave function must be described 

by some functional form, which is only known exactly for a few one electron systems. The 

functions used most often are linear combinations of Slater type orbitals or Gaussian type 

orbitals, abbreviated STO and GTO. The wave function is formed from linear combinations of 

atomic orbitals or more often from linear combinations of basis functions. Because of this 

approximation, most HF calculations give a computed energy greater than the Hartree Fock limit.  

One of attempts of non-empirical method to obtain the properties of solid is to solve the 

equation of the many-electron Hamiltonian directly. In practice, this equation is often rewritten 

through a Slater determinant which is composed of a lot of single-electron wave functions. 

In Hartree-Fock approximation only the exchange effect is considered. In many problems, 

it is known that the exchange term only is not good. Further developments in order to include the 

correlation effect into account, many methods, such as the configuration interaction by expanding 

on many Slater determinants and the quantum Monte Carlo method, have been devised [7-10]. 

Anyway, these approaches are all based upon the wave functions and express the 

electronic states of solid through the set of wave functions. In the configuration interaction 

method, the combination of wave functions is very complicated, resulting in a severe limitation 

of the size of problems. Meanwhile, for the many-electron problems, another and very different 

approach has been proposed; it is referred to as the density functional theory. 

 

3.3. Density functional theory 
Density functional theory is a quantum mechanical modelling method used in physics and 

chemistry to investigate the electronic structure (principally the ground state) of many-body 

systems, in particular atoms, molecules, and the condensed phases.  

In this approach, the electron density is the quantity, from which the theory is developed. 

It is much easier to solve one-electron equations derived from the density functional theory than 

to solve the general equation. With this theory, the properties of a many-electron system can be 

determined by using functionals, i.e., functions of another function, which in this case is the 

spatially dependent electron density. Hence, the term density functional theory comes from the 

use of functionals of the electron density. Electron density is a primary way of describing the 

system. 

DFT has been very popular for calculations in solid state physics since the 1970s. It was 

impossible to solve many body problems by quantum mechanical methods. It became possible 

only with the adiabatic approximation (Born-Oppenheimer) and Density Functional Theory 
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(Hohenberg and Kohn 1964, Kohn and Sham 1965). Since 1980, this method has established a 

position as one of the main methods of calculating the properties of solids and molecules from 

the first principles. However, DFT was not considered accurate enough for calculations in 

quantum chemistry until the 1990s, when the approximations used in the theory were greatly 

refined to better model the exchange and correlation interactions. In many cases, the results of 

DFT calculations for solid-state systems agree quite satisfactorily with experimental data. 

Computational costs are relatively low compared to traditional methods, such as Hartree-Fock 

theory based on the complicated many-electron wavefunctions. A price of mathematical 

simplification of the density functional method, which replaces a many-electronic problem by a 

one-electron problem, is paid by introducing an unknown functional of exchange and correlation 

Vxc of the charge density. Fortunately, there is an easy approximation for Vxc. The most widely 

used forms of Vxc is the so-called Local Density Approximation (LDA) and Generalized Gradient 

Approximation (GGA) shown in Fig.3. 

A generalization of the LDA method for systems with strong Coulomb correlations is 

proposed as LDA+U [7, 9], which gives a correct description of the Mott insulators. The LDA + 

U method takes into account orbital dependence of the Coulomb and exchange interactions which 

is absent in the LDA.  

Despite recent improvements, there are still difficulties in using density functional theory 

to properly describe intermolecular interactions, especially van der Waals forces (dispersion); 

charge transfer excitations; transition states, global potential energy surfaces, and some other 

strongly correlated systems; and in calculations of the band gap in semiconductors. The 

development of new DFT methods designed to overcome this problem, by alterations to the 

functional or by the inclusion of additive terms, is a current research topic. Some of DFT 

implementations are summarized and shown in Fig. 3. 

 

 
 

Fig. 3. DFT Implementations. 

 

There are many good reviews about density functional theory [11-14]. 

Density functional theory is a widely used method to calculate the ground state energy of 



Moldavian Journal of the Physical Sciences, Vol. 13, N1-2, 2014 
 

 104 

a system by mapping a multiple-electron system into a single electron problem. By incorporating 

exchange-correlation, such as a local (spin) density approximation (L(S)DA) and generalized 

gradient approximations (GGA), DFT has attained much success in deriving the ground state 

electronic structure properties. However, when it comes to systems with highly correlated 

electrons, such as that possessing d- or f-electrons, computations with L(S)DA or GGA reveal 

their disadvantages. They fail to describe magnetic insulators, such as 3d-transition-metal oxides 

or a Mott insulator. Despite being able to reproduce the ground state structures for the magnetic 

NiO and MnO series, the theory wrongly predicted Mott insulators as metal. In addition, the gaps 

in NiO and MnO are predicted to be too small in magnitude compared to photoemission 

experiments [15]. Many attempts have been made to improve the L(S)DA and GGA calculations 

on systems with d- or f-electrons. One of the most successful improvements is the ‘+U ’ approach 

(i.e., L(S)DA+U and GGA+U ). As pointed out by Anisimov et al. [7, 9], the L(S)DA behaves 

like a weak-coupling mean-field theory. Anisimov et al. generalized the L(S)DA method by 

proposing the L(S)DA+U approach to strongly correlated systems. In this approach effective on-

site interactions are introduced to the existing Hamitonian to better account for the orbital 

dependence of the Coulomb and exchange interactions of the strongly correlated (i.e., d- and f-) 

electrons. The basic idea of L(S)DA+U (which also applies to GGA+U ) calculation is described 

as follows [7 9]. For delocalized s- and p-electrons in the atom, only L(S)DA calculations are 

involved. For localized d- or f-electrons, a on-site d-d column interaction or a Hubbard-like term 

is used instead of the averaged coulomb energy. The d- or f-electron interactions can be quite 

accurately calculated via this ‘+U ’ approach. Many DFT packages, such as WIEN2k [16], 

provide computational functionality to conveniently calculate the ‘+U ’effect. 

To summarize, computational science is a branch of science that generates data which 

complements experimental data on the structures, properties, and reactions of substances. The 

calculations are based primarily on Schroedinger's equation and include:  

1. calculation of electron and charge distributions; 

2. molecular geometry in ground and excited states; 

3. potential energy surfaces; 

4. rate constants for elementary reactions; 

5. details of the dynamics of molecular collisions. 

The good side of ab initio methods is that they eventually converge to the exact solution, 

once all of the approximations are made sufficiently small in magnitude. However, this 

convergence is not monotonic. Sometimes, the smallest calculation gives the best result for a 

given property.  

The bad side of ab initio methods is that they are expensive. These methods often take 

enormous amounts of computer time, memory, and disk space.  

In general, ab initio calculations give very good qualitative results and can give 

increasingly accurate quantitative results in future. 

For details readers are referred to Refs. [17-19]. 

Some examples of application considered computational methods for real luminescent 

materials will be demonstrated in our future works. 

 

4. Conclusions 

 

In this paper, we reviewed the state of the art in computational approaches for calculating 

defects and impurities in semiconductors and luminescent materials from first principles. The 
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methodology is entirely general and can be applied to any material. First-principles theory has 

played an important role in interpreting and guiding experiments in this rapidly developing field.  

Looking toward the future, we can be confident that first-principles computations will 

continue to play an important role in addressing defects and impurities, especially in 

luminescence with activator impurities. New developments in methodology could make the 

approach even more powerful. These first-principles calculations can then form a foundation for 

realistic simulations of the actual processes. 
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Abstract 

 

The structural and electronic properties of yttrium tantalate (YTaO4) and yttrium niobate 

(YNbO4) crystals are studied using experimental and first-principles GGA+U total energy 

calculations. The band gap of the host lattice from absorption and luminescence experiment is 

measured to be 5.1 eV for YTaO4 and 4.1eV for YNbO4. This is close to 5.14 eV and 4.28 eV, 

respectively, reproduced by means of GGA+U approach. In our calculation, we tune both 

Hubbard energy U and exchange parameter J to reproduce the energy gap measured 

experimentally. It is found that Hubbard energy U plays a major role in reproducing the 

experimentally measured energy gap, but exchange parameter J does not. We also calculate the 

density of states (DOS) using the optimized U to interpret the experimentally measured 

luminescence spectra. Both the experimental and DOS calculations show that the valence band of 

tantalate (Ta) and niobate (Nb) systems is mainly composed of oxygen (O) 2p states. The lower 

conduction band is mainly composed of Ta 5d states or Nb 4d states, respectively, while the 

upper conduction band involves the contribution mainly from yttrium (Y) 4d states, with the 

middle conduction band mainly a mixture of Ta or Nb and Y states. The calculated partial DOS 

of each atom in the tantalate and niobate system is then compared with the UV and VUV spectra 

from photoluminescence excitation (PLE) experiment to explain the nature of the bands 

observed. 

 

1. Introduction 

 

Undoped YTaO4 and YNbO4 are well known as self-activated phosphors for more than 

four decades. Even though these materials are well-known self-activated phosphors, their 

electronic structure, optical absorption mechanism, and optical transitions have not been clearly 

understood. 

Historically, Ferguson [1] in 1957 was the first to describe both natural fergusonite (a 

yttrium niobium-tantalate) as well as synthetic YTaO4 correctly, where they crystallized in 

monoclinic symmetry with the space group 15 (I 2/a). YTaO4 exhibits three crystal structures. At 

high temperature the tetragonal form (T, space group 88) with scheelite structure distorts via a 

second-order phase transition to monoclinic (M, space group 15) structure having the fergusonite 

structure. Another monoclinic structure, called M
′
 (space group 13), can be synthesized directly 
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at lower temperatures (below 1400 C). M
′
 transforms to T at approximately 1450 C and then to 

M upon cooling. YNbO4 has a polymorphism and exhibits two polymorphs: the high temperature 

T-scheelite and the low temperature M-fergusonite [2-5]. At high-temperature tetragonal form 

(T) of YNbO4 with scheelite structure distorts via a second-order phase transition to a monoclinic 

(M) structure having the fergusonite structure. The monoclinic phase transforms into tetragonal 

phase at 900 C.  

YNbO4, together with YTaO4, are commercially valuable and used extensively in X-ray 

intensifying screens. As we all know, performances of phosphors and luminescence properties 

strongly depend on their crystal and electronic structures which can be understood via quantum 

mechanical calculations. Some fundamental questions concerning host lattice emission and 

charge transfer transitions in YTaO4 and YNbO4 remain to be answered. To better understand the 

luminescence mechanism, crystallographic structure, and absorption mechanism of these 

phosphors, first-principles calculations have been carried out. 

This paper is dedicated to investigate the electronic properties of yttrium tantalate and 

niobate systems through the study of its density of states (DOS) and band structure using 

experimental and first-principles calculations. To the best of our knowledge, there is no offer of 

any explanation in the literature to the apparent discrepancy between the experimental spectra 

and calculated DOS [6 9]. The experimental spectra for YTaO4 recorded a 5.1-eV band gap 

between conduction band and valence band, while the gaps from first-principles calculations are 

4.2 eV (without scissor operator) and 4.8 eV (with scissor operator) [6, 10]. Thus, there is a 

discrepancy of 0.9 eV (without scissor operator) between experiment measurement and first-

principles calculation. A scissor operator is applied to include the effects of self-energy and 

excitonic shift only. Therefore, the band gap issue cannot be resolved even with a scissor  

operator. Similarly, for YNbO4, from our experimental spectra, we have the band gap between 

conduction and valence band of 4.1 eV, while the DOS from calculations in [6, 10] infers a band 

gap of 3.8 eV (value calculated without using the scissor treatment). 

Density functional theory (DFT) is a widely used method to calculate the ground state 

energy of a system by mapping a multiple-electron system into a single electron problem. By 

incorporating an exchange-correlation, such as a local (spin) density approximation (L(S)DA) 

and generalized gradient approximations (GGA), DFT has attained much success in deriving the 

ground state electronic structure properties. However, when it comes to systems with highly 

correlated electrons, such as that possessing d- or f-electrons, computations with L(S)DA or 

GGA reveal their disadvantages. They fail to describe magnetic insulators, such as 3d-transition-

metal oxides or Mott insulator. Despite being able to reproduce the ground state structures for the 

magnetic NiO and MnO series, the theory wrongly predicted Mott insulators as metal. In 

addition, the gaps in NiO and MnO are predicted to be too small in magnitude compared to 

photoemission experiments [11]. Many attempts have been made to improve the L(S)DA and 

GGA calculations on systems with d- or f-electrons. One of the most successful improvements is 

the „+U‟ approach (i.e., L(S)DA+U and GGA+U ). As pointed out by Anisimov et al. [12, 13], 

the L(S)DA behaves like a weak-coupling mean-field theory. Anisimov et al. generalized the 

L(S)DA method by proposing the L(S)DA+U approach to strongly correlated systems. In this 

approach, effective on-site interactions are introduced to the existing Hamiltonian to better 

account for the orbital dependence of the Coulomb and exchange interactions of the strongly 

correlated (i.e., d- and f-) electrons. The basic idea of L(S)DA+U (which also applies to GGA+U 

) calculation is described as follows [12 14]. For delocalized s- and p-electrons in the atom, only 

L(S)DA calculations are involved. For localized d- or f-electrons, a on-site d-d column 
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interaction or a Hubbard-like term is used instead of the averaged coulomb energy. The d- or f-

electron interactions can be quite accurately calculated via this „+U ‟ approach. Many DFT 

packages, such as WIEN2k [15], provide computational functionality to conveniently calculate 

the „+U ‟effect. 

The discrepancy between the published experimental results on the energy band gap of 

YTaO4 and YNbO4 from luminescence excitation spectra or absorbance data and that calculated 

from DFT is significant. One of the main goals of this work is to address this issue by 

reproducing the experimentally measured energy band gap through GGA+U calculations using 

the DFT package WIEN2k [15]. DOS obtained from the GGA+U calculation is then used to 

provide insight into the origin of the features measured in the excitation spectra.  

 

2. Experimental and theoretical methods 

 

2.1. Sample preparation 

A few sets of yttrium tantalate and niobate phosphors were prepared by solid state 

reaction method from a homogeneous mixture consisting of Y2O3 (99.9%) and Ta2O5 or Nb2O5 

(Optipur). Different inorganic salts, such as Li2SO4, LiCl, and Na2SO4, were used as a flux. The 

mixtures were homogenized with a ball mill, in acetone medium, and dried at 70°C. The 

phosphor samples were baked at 1200°C for 4 h and slowly cooled to room temperature. Finally, 

the samples were water washed, dried, and then sieved.  

 

2.2. Characterization techniques 

The samples were investigated using X-ray diffraction, UV and VUV excitation 

luminescence, and first-principles quantum-mechanical calculations in order to study their 

structural and luminescent properties.  

UV measurements were monitored using a Perkin-Elmer LS50B spectrometer with a 

xenon flash lamp. VUV excitation spectra of samples were measured using a VUV 

spectrophotometer equipped with a VUV monochromator (ARC, VM 502) and a light source of a 

30-W deuterium lamp (ARC, DS775-100). 

In XRD measurements, a Cu-K  radiation (   = 1.54 Å) source generated from a Rigaku 

rotating anode generator was used operating at 40 kV and 40 mA. Basically, we measured the 

powder diffraction profiles ( –2  scan) in a range of 10° to 80°.  

 

2.3. Ab initio method 

Calculations were conducted using the all-electron full potential linearized augmented 

plane-wave method (FP-LAPW) [16 18] as implemented in WIEN2k [15]. In the FP-LAPW 

method, the unit cell is divided into non-overlapping atomic spheres, or Muffin-tin spheres that 

centered at the atomic sites and the interstitial region. In the interstitial region, a plane wave 

expansion is used, whereas inside the atomic sphere it is a combination of radial functions and 

spherical harmonics of the solution of the single electron Schrodinger equation. For exchange and 

correlation effects, the method of generalized gradient approximation (GGA) parameterized by 

Perdew, Burke, and Ernzerhohf (PBE96) [19] is used. Parameter RKmax of 7 is used in the 

simulation where R is the smallest atomic sphere radius in the unit cell and Kmax is the magnitude 

of the largest K vector. RKmax will determine the matrix size used in self-consistency iterations. 

Lattice parameters for the YTaO4 and YNbO4 host lattices are taken from experimental data in 

Table 1. For integrals over the Brillouin zone, 18 k-points are used, as was implemented in [7]. 

The quantum effects contributed by strongly correlated d or f-electrons can be properly 
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treated using the GGA+U approach. There are two types of input parameters in the GGA+U 

calculation, namely U and J. U is the Hubbard energy or Coulomb parameter, while J refers to the 

exchange parameter. J is set to zero throughout the simulation. A different value of U will return 

a different output. The value of U is manually tuned until the resultant band gap from the 

GGA+U calculation agrees with that obtained by the experiments. The self-interaction corrected 

(SIC) variant of the GGA+U approach, which was introduced by Anisimov et al. [20], with an 

approximate correction for the self-interaction is used. 

 

3. Results and discussion 

 

3.1.  Crystallographic data 

Crystallographic structure of M′ YTaO4 was first described by Wolten [21] with an “R” 

value of only 0.15. Later on Brixner and Chen [22] were able to reduce the “R” value to 0.034 

and confirm the structure. It consists essentially of cube-like 8 coordinated Y polyhedra which 

can best be described as distorted square antiprisms. The average Y–O distance is 2.355 Ǻ. The 

tantalum atoms are in a distorted octahedral coordination with four shorter Ta–O bonds at 1.86 

and 1.95 Ǻ, and two longer ones at 2.23 Ǻ. The unit cell parameters are a = 5.30, b = 5.45,  

c = 5.11 Ǻ and β = 96.5°.  

The chemistry, as well as the structures of different tantalate‟s forms, are quite complex 

and for the purpose of the present article we shall restrict our discussion to the M′ form of 

YTaO4, as it is the only structure exhibiting superior luminescent properties. 

In the YNbO4 host lattice, the niobium atom can be considered tetrahedrally coordinated 

to the oxygen atoms in a highly distorted site. In M-fergusonite, YNbO4, this is no longer valid, 

since two of the four next-nearest oxygen ions are at shorter distance, whereas the other two are 

at longer distance than in the scheelite structure. We have to take into account the interaction 

between the Nb
5+

- ion and six oxygen ions, i.e., to consider a Nb
5+

- ion with a [4+2] 

coordination. From this point of view, the M-fergusonite structure is in between the scheelite 

structure with isolated tetrahedral groups and crystal structures of niobates with octahedral 

niobate groups [2 5, 22].  

We took into account the atomic positions and lattice parameters in YTaO4 and YNbO4 

mentioned in the cited above references, but the crystallographic data of investigated samples can 

vary a little from database results due to different sample synthesis and need to be carefully 

measured for particular samples when comparing crystallographic and luminescent properties. 

Therefore, we conducted XRD experiments for our samples independently. Our XRD 

measurements for prepared samples show the monoclinic phases of both phosphors (Fig. 1).  

The detailed main peaks of synthesized tantalate phosphors in a range of 15°-50° are 

shown in Fig. 2b. From this figure it is evident that traditional XRD measurements with Cu-K  

radiation give wide peaks. To correctly determine the crystalline structures of the synthesized 

phosphors, we carried out XRD measurements on the basis of Synchrotron X-ray Diffraction 

patterns (Pohang Accelerator Laboratory, Korea). The result is shown in Fig. 2a. Similar results 

(not shown here) were also registered for niobate crystals. 
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Fig. 1. XRD measurements (Cu-Kα radiation with λ = 1.54 Å source generated from a Rigaku 

rotating anode generator) of YTaO4 phosphor (top) and YNbO4 (bottom). 

 

 
Fig. 2. A comparison of XRD measurements of YTaO4 phosphor on the basis of 

synchrotron X-ray diffraction patterns (top) and Cu-Kα radiation (λ = 1.54 Å) 

source generated from a Rigaku rotating anode generator (bottom). 

 

The Rietveld calculation provides the crystallographic information by comparing the 

model profile with X-ray or neutron curves using the least squares method. The lattice parameters 

and atomic positions from Rietveld analysis are presented in Table 1. 

 

 
           (a) 

 
           (b) 

Fig. 3. Crystal structure of M'- YTaO4 (a) and YNbO4 (b) 



M. Nazarov, L. Th. Leng, Y. T. Leong, L. L. Chen, and I. D. Arellano 
 

111 

 
Table 1. Atomic positions and lattice parameters in YTaO4 and YNbO4 

M'-YTaO4 Atom x y z F 

a=5.29568Ǻ 

b=5.445447Ǻ 

c=5.10940Ǻ 

β=96.39119 

Y 0.25 0.76523 0 1 

Ta 0.25 0.30632 0.5 1 

O(1) 0.49619 0.43402 0.27800 1 

O(2) 0.09912 0.09079 0.24181 1 

M-YNbO4 Atom x y z F 

a=7.61851Ǻ 

b=10.94611Ǻ 

c=5.29745Ǻ 

β=138.43617 

Y 0 0.37891 0.25 1 

Nb 0 0.85620 0.25 1 

O(1) 0.20166 0.78039 0.20515 1 

O(2) 0.25050 0.96246 0.65526 1 

 

These results are very close to those cited in Brixner and Chen [22]. One can see that the 

occupation factor F = 1, which means the site is fully occupied by an atom. The crystal structures 

of M'- YTaO4 and YNbO4 based on Table 1 are presented in Fig. 3. 

3.2 Ab initio calculations, DOS and luminescence of YTaO4 

Figure 4 shows the DOS and band structure plots for YTaO4 with and without  

considering U.  

 

The coordinates of the special points used in plotting the YTaO4 band structure are listed in 

Table 2.  
Table 2. Coordinates of the special points used in plotting the band structure in Fig. 4 

Label Coordinates 

GM 0,0,0 

Z 0, 1/2, 0 

Y 1/2, 0, 0 

A -1/2, 0, 1/2 

B 0, 0, 1/2 

D 0, 1/2, 1/2 

E -1/2, 1/2, 1/2 

 

These coordinates can be obtained from standard sources, such as the Bilbao 

Crystallographic Server [23]. The band gap without Hubbard energy adjustment is 4.225 eV (Fig. 

4a), while that with fine-tuned GGA+U is 5.15 eV (Fig. 4c). To obtain Fig. 4c and Fig. 4d, we 

vary the Hubbard energies U associated with the d-electrons of the Y and that of the Ta atom, 

respectively. We observe that when we “switch on” the Hubbard energy terms of either Y or Ta, 

or both, the band gap widens. While tuning for the best values of U for the Y and Ta atoms in a 

trial-and-error manner, we found that when U (Y atom)>U (Ta atom), the DOS of the Y atom 

will overshadow that of the Ta atom in the conduction region. Adding the exchange parameter J 

to the system will only make the band gap smaller but the overall DOS profile is almost 

unperturbed. Putting all these considerations together, the best values to match with the 

experimental findings are: U (Y atom) = 4.08 eV, U (Ta atom) = 11.56 eV,   

J (for both Ta and Y) = 0 eV. The band gap obtained with these U values is 5.15 eV. The 

Hubbard energy U provides a way to tune the output of the ab initio calculation to match the 
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energy gap as measured in the experiments. It is to be mentioned that the objective of tuning for 

the best values of U and J is not merely to match the band gap between experiment and ab initio 

calculation. Rather, the best values of U and J are used in the calculation of density of states 

(DOS) which are then compared with experiments. 

 

 

 
                                    (a) 

 
                            (b) 

 
 

            (c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            

                                                                                                                                       

(d) 

 
Fig. 4. (a) DOS and ( b) band structure plot for YTaO4 without considering Hubbard energy. (c) 

DOS and (d) band structure obtained with a fine-tuned Hubbard energy. 

 

Although the values of the band gaps calculated by density functional theory are known to 

be underestimated [24], it is interesting to compare the gaps taken from the luminescence and 

absorbance experiments with calculated data. The results are compiled in Table 3. Band gap can 

be directly derived from absorbance spectra, such as that shown in Fig. 5, by determining the 

absorbance edge. The band gap value of 5.1 eV, as suggested from Fig. 5 (1) for YTaO4, is in 
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good agreement with other experimental results listed in Table 3. 

 
Fig. 5. Experimental absorbance spectra of YTaO4 and YNbO4 as measured in [25]. The band 

gaps deduced from this spectrum are 5.1 eV and 4.1, respectively. 

 
Table 3. Reported band gap energies of YTaO4 

No. Egap (eV) Method Ref. 

1 4.8 DFT (GGA method)  [10] 

2 3.8 

 

5.0 

DFT (LDA method) 

 

Excitation spectrum 

[7] 

3 5.2 DFT (GGA + scissor operator) [25] 

4 5.5 Abstracted from table 4.17 of Ref. [25] [26] 

5 3.8 Diffuse reflectance [27] 

6 5.0  Excitation spectrum [28] 

7 5.0  Excitation spectrum [29] 

8 5.1  Optical absorption spectrum [30] 

9 5.2  Optical absorption spectrum [31] 

10 5.4  

5.0  

Diffuse reflection spectrum 

Excitation spectrum 

[32] 

11 4.2 Calculated from DOS (GGA and LDA) using data 

from [30]  

[33]  

12 5.1 From absorption spectrum This work 

13 5.15 DFT (GGA+U) This work 
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Figure 6 shows the PLE intensity measured experimentally and partial DOS of Y and Ta 

calculated from GGA+U.  

 
Fig. 6. UV (1) and VUV (2) excitation spectra of YTaO4 with partial DOS of Y and Ta in 

the conduction band. 

 

From the luminescence excitation spectra, the band gap in YTaO4 corresponds to 5.15 eV 

and there are three bands A, B and C peaked around 6, 7, and 10 eV in the conduction band. The 

calculated partial DOS provides very insightful information to understand the characteristic 

features of these bands, such as identifying and explaining the nature of excitation bands and 

determining correctly the band gap in YTaO4. In order to explain the nature of the A, B, and C 

bands in Fig. 6, we compare the PLE spectra against the calculated DOS. In Fig. 6, the position 

of the calculated conduction band on the energy scale was aligned with real spectra for the sake 

of easy comparison. As will be discussed below, the calculated DOS of the tantalum and yttrium 

provide a basis to understand the nature of bands A, B, and C in the excitation spectra. 

Band A in the UV (1) and VUV (2) PLE around 6 eV in Fig. 6 can be associated with the 

absorption of the host lattices. The TaO4
3−

 group can absorb excitation energy through  

O
2−

 → Ta
5+

 host charge transfer transition. This assumption is confirmed clearly by tantalum 

DOS distribution. The yttrium contribution in this area is negligible. 

Band B in the VUV PLE spectra is also associated with the absorption of the host lattice, 

which involves mostly through O
2−

→Ta
5+

 host charge transfer transition as well as the transitions 

between 4d-like states of Y and 2p-like states of O or Y
3+

-O
2−

 (Fig. 6). Band B is a hybrid band, 

and it is composed from both [Y-O] and [Ta-O] charge transfer transitions. 

Band C, peaked around 10 eV, is mostly related to the transitions between 4d-like states 

and 4s-like states of Y and 2p-like states of O. The Y-O bonds are excited and the energy is 

transferred to host lattice while the contribution of Ta-O is diminished. 

If the high energies X-ray, electron beam, or VUV excitations were applied, it would be 

quite reasonable to assume that the excitation energy is absorbed first by the host lattice, which 

involves the transition between 4d-like states of Y and 2p-like states of O. The absorbed energy 

may then be transferred to TaO4 groups and last transferred to the activator center, if any. 
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3.3 Ab initio calculations, DOS and luminescence of YNbO4 

As in previous paragraph, we use here the same DFT package WIEN2k to perform the 

GGA+U calculation for niobate system. Lattice parameters for the host lattice YNbO4 are listed 

in Table 1. 18 k-points are used for integrals over the Brillouin zone. RKmax value is set to 7.  

 

 
Fig. 7. (a) DOS and (b) band structure plot for YNbO4 without considering Hubbard 
energy. (c) DOS and (d) band structure obtained with a fine-tuned Hubbard energy. 

 

Figure 7 shows the DOS and band structure plot for YNbO4 with and without considering 

Hubbard energy U. The band gap without Hubbard energy adjustment is 3.8 eV (Fig. 7a) while 

that with fine-tuned GGA+U is 4.28 eV (Fig. 7c). To obtain Fig. 7c and Fig. 7d, we vary the 

Hubbard energies U associated with the d-electrons of the Y and that of the Nb atom, 

respectively. Once the Hubbard energy U of the atom Y or Nb, or both, is switched on, the band 

gap widens. In the trial-and-error approach searching for the best values for U for the Y and Nb 

atoms, the DOS of the Y atom will overshadow that of the Nb atom in the conduction region 

unless U (Y atom) < U (Nb atom). Considering all the constraints, the best values to match with 

the experimental findings are: U (Y atom) = 0.68 eV, U (Nb atom) = 6.80 eV and the band gap 

obtained with these U values is 4.28 eV. 

The DOS profile computed with fine-tuned Hubbard energy is almost identical with that 

computed without, except that the width of the band gap is varied with the strength of U. It thus 

can be concluded that the main effect of the Hubbard energy U on top of the GGA calculation on 
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this system is to widen the band gap, which in turn provides a way to tune the output of the ab 

initio calculations to match the energy gap as measured in the experiments. Band gap can be 

directly derived from absorbance spectra, such as that shown in Fig. 5, by determining the 

absorbance edge. The band gap value of 4.1 eV, as suggested from Fig. 5 (2) for YNbO4, is in 

good agreement with other experimental results listed in the literature, which has a value lying 

between 4.1–4.4 eV [10, 25, 26, 34 40]. A similar result of ≈ 4.2 eV is estimated from excitation 

UV and VUV spectra as shown in Fig. 8. 

 

 

 
Fig. 8. PLE spectra for YNbO4  under UV (1) and VUV (2) excitation. 

 

To give a reliable interpretation to the overall feature of the luminescence and structural 

properties of niobate system, we investigate the excitation spectra of these materials and explain 

them from DOS theory. Four obvious large bands A, B, C, and D in the VUV PLE (Fig. 8) 

spectra are observed. We note that band A is only observed in the VUV but not in the UV data. 

We seek to clarify the nature of these bands with the aid from the DFT results. It is believed that 

bands B, C, and D in the VUV range in the niobate system are related to the following processes. 

Band B around 230 nm, which coincides well with the UV data, is associated with the absorption 

of the host lattices. The NbO4
3−

 groups can absorb excitation energy through O
2−

→Nb
5+

 host 

charge transfer transition. Bands C and D, peaking around 170 nm and 125 nm, are probably 

related to the host absorption. The Y-O bonds are excited and the energy is transferred to the host 

lattice. 

The position of this band C for Y
3+

 ions can be calculated with the help of an empirical 

formula given by Jorgensen [41] 

 

ECT  = [(X ) − (M )] × 30, 000 cm
−1

. 

 

Here, ECT gives the position of the charge transfer band (CTB) in cm
−1

, (X) the optical 

electronegativity of the anion, and (M) that of the central metal ion. Using the Pauling scale for 

electronegativity [42], namely (O)=3.44 and (Y)=1.22, the CTB of Y-O can be estimated near the 

67.000 cm
−1

, or around 150 160 nm. 

To check this assumption and to explain the real nature of the bands, we compare the PLE 

spectra with the DOS calculated from first-principles (see Fig. 9). 
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Fig. 9. UV (1) and VUV (2) excitation spectra of YNbO4 with partial DOS of Y and Nb 
in the conduction band. 

 

In the energy scale, the position of the calculated conduction band is aligned with real 

spectra. The contributions of  Nb and Y are taken from partial DOS. The partial DOS of Niobium 

and Yttrium in Fig. 9 provides very insightful information to understand the characteristic 

features of these bands, such as identifying and explaining the nature of excitation bands and 

determining correctly the band gap in YNbO4. 

The nature of all the bands in excitation spectra can be explained by the Niobium and 

Yttrium partial DOS. Band A is partially located in the band gap. From DOS calculations for 

ideal structures, no contribution from Nb, Y, or O is observed in this area. Moreover, this band in 

UV spectrum for λem = 400 nm is not observed. It is thus supposed that band A is related to 

defects that can be excited by other wavelengths, because the excitation spectra in VUV were 

obtained by observing all emission light. The other possibility may be the calibration function in 

VUV measurements. The photoluminescence excitation spectra were measured in the VUV range 

of 100 350 nm using a sodium salicylate powder as a reference and calibrated by that of sodium 

salicylate, which has constant quantum efficiency in a range of 115–300 nm, and some artifacts 

can be seen in the ends of this area. 

Band B in Fig. 9 is explained through the O
2−

→Nb
5+

 host charge transfer transition. For 

the niobate system, the filled orbitals are concentrated on the oxygen ions and the empty ones on 

the niobium ions, so that the lowest optical transitions can be considered as 2p(O)→ 4d(Nb) 

charge transfer transitions. Thus, the excited state consists of an increased electron density in the 

vicinity of the metal ion along the tetrahedral bonds. 

Band C is a hybrid band, and it is composed from both citation [Y-O] and [Nb-O] charge 

transfer transitions. Band D in the VUV PLE spectra is associated with the absorption of the host 

lattice, which involves mostly the transitions between 4d-like states of Y and 2p-like states of O 

or Y
3+

- O
2−

 charge transfer transition. 

If the high energies X-ray, electron beam or VUV excitations are applied, it would be 

quite reasonable to assume that the excitation energy is absorbed first by the host lattice, which 

involves the transition between 4d-like states of Y and 2p-like states of O. The absorbed energy 



Moldavian Journal of the Physical Sciences, Vol. 13, N1-2, 2014 
 

 118 

may then be transferred to NbO4 groups and last transferred to the activator center, if any. 

Using real UV excitation (Fig. 8, curve 1) and emission spectra of YNbO4 host lattice, as 

well as DOS interpretation (Fig. 9), the configurational coordinate diagram showing the energy 

transfer from excited to ground state is presented in Fig. 10. 

 
Fig. 10. Excitation (a) and emission (c) spectra of YNbO4 host lattice and configurational 

coordinate diagram (b) corresponding to real data and showing the energy transfer from 
excited to ground state. 

 

4. Conclusions 

 

Through the GGA+U method as implemented in WIEN2k, we have addressed the band 

gap issue and the contribution of d-electrons from Y and Ta or Nb atoms in the conduction band. 

The band gap of the YTaO4 host lattice is about  5.1 eV based on absorption and luminescence 

experiments, while the band gap of the YNbO4 host lattice from DOS calculation is 4.28 eV and 

agrees well with 4.1 eV from absorption and luminescence experimental data. The band gap 

calculated using GGA+U is tuned to match the value from experiments by varying the Hubbard 

energies U associated with the Y and Ta or Nb atoms. The Hubbard energy U plays a major role 

in tuning the energy band gap to the right value. The J parameter, on the other hand, does not 

affect the calculation. Our GGA+U calculation shows that Ta atoms contribute to the total DOS 

in the 5 7 eV range for the tantalate system and  Nb atoms in the 4–6 eV range for the niobate 

system, while Y atom dominates from 7eV onwards in the conduction band for both. These 

results are in good agreement with the luminescence experiment and explain well the three bands 

as measured in the UV and VUV excitation spectra. 
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Abstract 

 
The algebraic formulation of a Wick's theorem that allows one to present the vacuum or 

thermal averages of the chronological product of an arbitrary number of field operators as a 
determinant (permanent) of the matrix is proposed. Each element of the matrix is the average of 
the chronological product of only two operators. This formulation is extremely convenient for 
practical calculations in quantum field theory and statistical physics by the methods of symbolic 
mathematics using computers. 

Wick's theorems are extensively used in quantum field theory [14] and statistical physics 
[57]. They allow one to use the Green's functions method and consequently to apply Feynman's 
diagrams for investigations [13]. The first of these, which can be referred to as Wick's Theorem 
for Ordinary Products, gives us the opportunity to reduce, in an almost automatic mode, the usual 
product of operators into a unique sum of normal products multiplied by -numbers. It can be 
formulated as follows [4]. Let 

c

 i iA x  ( 1, 2, ,i n  ) be “linear operators,” i.e., some linear 

combinations of creation and annihilation operators. Then the ordinary product of linear operators 
is equal to the sum of all the corresponding normal products with all possible contractions, 
including the normal product without contractions, i.e., 

 

  1 1 1 2 1 1 1 1 2 3 4: : : : : : : : : :n n n n n n nA A A A A A A A A A A A A A A A A                ,

, 1, 2, , n  Awhere  ( i j ) is the contraction between the factors  and : :i j i j i jA A A A A A 
 i jA . 

Since the vacuum expectation value of the normal ordered product is zero, this theorem provides 
us a way of expressing the vacuum expectation values of n  linear operators in terms of the 
vacuum expectation values of two operators. 
 Wick's Theorem for Chronological Products [4] asserts that the T -product of a system of 

 linear operators is equal to the sum of their normal products with all possible chronological 
contractions, including the term without contractions. It follows directly from the previous 
theorem and gives the opportunity to calculate the vacuum expectation values of the 
chronological products of linear operators. 

n

Finally, from Wick's theorem for chronological products, the Generalized Wick's 
Theorem [4] can be obtained. It asserts that the vacuum expectation value of the chronological 
product of  linear operators  can be decomposed into the sum of  vacuum 

expectation values of the same chronological products with all possible contractions of one of 
these operators (for example, 

1n 1, , , nA B B n

A ) with all others, i.e., 
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  1 10
1

0

.n i
i n

T AB B T AB B B
 

 
   

 



   n     (1) 

Here    
0

: :i j i j i j i jA A T A A A A T A A  


 ( , 1, 2, ,i j n  ) is the chronological contraction 

between factors  and iA jA . It should be noted that, in contrast to the usual Wick's theorem for 

chronological products, there are no expressions involving the number of contractions greater 
than one on the right-hand side of (1). 
 The Wick's theorem for chronological products or its generalized version is used for the 
calculation of matrix elements of the scattering matrix in each order of perturbation theory [14]. 
The procedure is reduced to calculation of the vacuum expectation of chronological products of 
the field operators in the interaction representation. A number of operators i of the Fermi fields 

and the same number of their “conjugate” operators i , as well as operators of the Bose fields 
   

s s s      may be used as factors in these products. Here, all continuous and discrete 

variables are included in the index. In the interaction, representation operators i , i , and s  

correspond to free fields and satisfy the commutation relationships of the form 

, , 0i j i j   
 

        , , F
i j rs ijD 


    , . Therefore, the averaging of the 

Fermi and Bose fields can be performed independently. 

  ( ), B
r s D  


    rs

Since we may rearrange the order of the operators inside T-products taking into account 
the change of the sign, which arises when the order of the Fermi operators is changed, we present 
our vacuum expectation value of the chronological product of the Fermi operators in the form 

                     
1 1 2 2 0

.
n ni j i j i jT             (2) 

To calculate (2), we can use Wick's theorem for chronological products. However, while 
considering the higher-order perturbation theory, the number of pairs i j  of operators i  and 

j  becomes so large that the direct application of this theorem begins to represent certain 

problems because it is very difficult to sort through all the possible contractions between i  and 

j . 

 A consistent use of the generalized Wick's theorem would introduce a greater accuracy in 
our actions. However, in this case, we expect very cumbersome and tedious calculations. 
Hereinafter, we show that the computation of (2) can be easily performed using a simple formula: 

       1 1 2 2 0
det ,

n ni j i j i j i jT
 

            (3) 

where 

    
0

, 1, 2, ,i j i j i jT n
     

        


 .   (4) 

The proof of this theorem is provided by induction. Let us assume now that (3) is true for  pairs n

i j   and consider it for the case of 1n . Using the generalized Wick's theorem, we have 
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1 1 1 1 1 1 1 1 2 2

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

0 0

1

02

0 0
.

n n n n n n

n n n n

n n n n n n n n n n

i j i j i j i j i j i j

n

i j i j i j i j i j i j

i j i j i j i j i j i j i j

T T

T

T T

     


         

         

         

   

     

     





      

    

      



 

 

 







 

Taking into account (3), we obtain 

 

   
1 1 1 2 1

2 1 2 2 2

1 1 1 1 1 1

1 2

1 1 1 2 1 1 1 1 2 1

1 1 1 2 1

2 1 1

1 1 1 2

1 2

0

n n n n

n

n n n

n n n n

n n

n n n n

n n n

n n

n n n n

i j i j i j

i j i j i j

i j i j i j

i j i j i j

i j i j i j i j i j i j

i j i j i j

i j i j
i j i j

i j i j i j

T    

  

  

  

 

 

  

  
    

  

     

  
  

 

  






   


 

  


   


 

1

1 1 1 2 1

1 1 1 2 1

2 1 2 2 2

1 1

1 2

.

n n

n n n

n

n

n n

n n n n

i j

i j i j i j

i j i j i j

i j i j i j

i j

i j i j i j



  

 



  

  

  


  









   


n

  (5) 

Rearranging the rows in the determinants in (5), it is easy to see that the right hand side is the 
expansion of the 

    

1 1 1 2 1 1

2 1 2 2 2 1

1 1 1 2 1 1

det , 1, 2, , 1

n

n

n n n n

i j i j i j

i j i j i j

i j

i j i j i j

n
 

 





   

  

  
   

  






   


 

along the last column [8]. The validity of (3) for 1n   follows from the definition i j 
  in (4). 

 Note that this result does not depend on the way how we divide the operators on the left 
hand side of (3) into pairs i j 

  . Indeed, if on the left hand side of (3) we permute, for example, 

j
  and j

  (    ), it changes its sign. The same happens on the right hand side of (3) since 

this change leads to the permutation of two columns in the determinant, and it also changes its 
sign. Similarly, in the case of a permutation of i

 and i
 (   ).  Obviously, when the whole 

pair i j 
   is transposed, the left and right hand sides of (3) do not change. 

The above theorem has an important consequence. In fact, it establishes a perfect 
coincidence between the vacuum expectation values of the chronological products of  pairs of 
field operators and the -order determinant. If we present this determinant as the sum of the 
elements and cofactors of one any row or column and thereafter use again the indicated 

n
n
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coincidence for the  1n  -order determinants included in each summand, we will return to the 

generalized Wick's theorem. Alternatively, in our -order determinant, we can select arbitrary  
rows or columns (1 ) and use the Generalized Laplace’s Expansion [8] for its presentation 
as the sum of the products of all -rowed minors using these rows (or columns) and their 
algebraic complements. Then, taking into account our theorem, we obtain a representation of the 
vacuum expectation values of the chronological products of  pairs of field operators as the sum 
of the products of vacuum expectation values of the chronological products of  pairs of 
operators and vacuum expectation values of the chronological products of  pairs. The 
number of terms in this sum is 

n m
m n 

m

n
m

mn
 !n m n m

  

!/

 

!

 

. This decomposition can be useful for the 

summation of blocks of diagrams. 
 Obviously, the formula similar to (3) can be obtained and in the case of Bose fields: 

 
 

       
          

1 1
0

0

perm ,

, 2, , .

n ni j i j i j

i j i j

T

T n

 

   

   

  

   

 

    

  




2 2i j

i j 

 

 

 

 



, 1
   (6) 

Representations (3) and (6) not only greatly simplify all calculations, but also allow one to 
perform them using a computer with programs of symbolic mathematics [9]. 

In quantum statistics the -body thermal, or imaginary-time, Green’s functions in the 
Grand Canonical Ensemble are defined as the thermal trace of a time-ordered product of the field 
operators in the imaginary-time Heisenberg representation [57]. To calculate them in each order 
of perturbation theory, the Wick's theorem is also used. Obviously, in this case, the theorem also 
may be formulated in the form of 

n

(3) and (6) convenient for practical calculation.  
In order to demonstrate the usability of the proposed formulation of the Wick's theorem, 

we find the first-order correction to the one- and two-particle thermal Green’s functions for the 
Fermi system described in the interaction representation by the Hamiltonian 

           int 1 2 1 2 1 2 1

1
, , ,

2
H d d U    ,2 ,        r r r r r r r r   

that contains the product of the field operators  1, r  and  1, r  in this representation 

(parameter   indicates the spin projections,   is the imaginary-time). The one-particle Green’s 
function can be represented as [6, 7] 

  
   1 2 0

1 2

0

, ,I

T x
x x

  
 



x  
  

where 
0

  is the symbol for the Gibbs average over the states of a system of noninteracting 

particles,  , ,x   r  and 

   int

0

exp ' .T d H


 


'


  
 
   

We obtain  
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1 2 1 1 2 2
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1 2 1 1 1 2

1 2 1 2 1 2 1 2 1 1 1 2

0
2 2 2 1 2 2

1
,

2

, , ,
1

, ,
2

, , ,

I x x T x x dz dz z z

T x x z z z z

x x x z x z

x x dz dz z z z x z z z z

z x z z z z





 

     

     

   

  
      

  





 






, , ,



 (7) 

where     1 2 1 2 1 2x x U      r r . We can immediately take into account the reduction of 

the disconnected diagrams, if we assume in (7) that 
0

1  and  1 2,x x 0   [6]. Then, 

     

     
         

   

         
   

         

1 2 1 2 1 2 1 2

1 2 1 1 1 2 1 2
1 2 1 1

2 2 2 1 2 2 2 2

1 2 1 2
1 2 1 2 1 1 1 2

2 2 2 2

1 2 1 2 1 1 1 2 1 2 2 2

1 1

1
, ,

2

, , , ,
, ,

, , , ,
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, ,

, ,

, , , ,

,

I x x x x dz dz z z

z x z z z x z z
x z x z

z x z z z x z z

z x z z
x x dz dz x z z z

z x z z

x x dz dz x z z z z z z x

dz x

   

    
  

     
 

   
 

      

 







 





       1 2 1 2 2 2 1 2, , .z dz z z z z z x      

 

Taking into account      0
1 2 1 2, ,x x x  x , we finally obtain 

 
                 

                 

0 0 1 0
1 2 1 2 1 2 1 1 1 2 2 2

1 0
1 2 1 2 1 2 1 2 1

, , , , ,

, ,

I x x x x dz dz x z z z z x

z z z z z z z z dz z z z z

  

      


0

,

, .

   

   
 

Similarly, for the two-particle Green’s function 

  
       1 2 3 4 0

1 2 3 4

0

, , ,II

T x x x x
x x x x

       



, 

we have 

 

           

                     

1 2 3 4 1 3 2 4
0

1 2 1 2 1 3 2 4 1 1 2 2

0

, , ,

1

2

II x x x x T x x x x

dz dz z z T x x x x z z z z





   

       

   

    






 

 
   
     

   
  

      
      





1 1 1 2

1 3 1 4 2 1 2 2
1 2 1 2

2 3 2 4 1 3 1 4 1 1 1 2
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0 0 , ,
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0 0 0 0
1 3 2 4 1 4 2 3

0 0 0 0 0 0
1 2 1 1 2 2 1 2 1 3 2 4 1 4 2 3

0

, , , ,

, , , , , ,

x x x x x x x x

dz dz x z x z z z z x z x z x z x
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