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A representation theorem for bounded distributive

hyperlattices

Abdelaziz Amroune and Ali Oumhani

Abstract. A representation theorem for bounded distributive hyperlattices is given. The equiva-

lence between the category of Priestley spaces and the dual of the category of bounded distributive

hyperlattices is established.

1. Introduction

The notion of hyperstructures was introduced 80 years ago [6], it has been studied
by several authors see for example [1, 4, 5, 10, 11, 12], this bibliography and the
references therein is not exhaustive.

Later, Koguep et al. [4], Konstantinidou [5] introduced respectively the notion
of hyperlattices and studied ideals and �lters in these structures. Prime ideals and
prime �lters in hyperlattices have been examined by R. Ameri et al. [1]. Rasouli
and Davvaz de�ned a fundamental relation on a hyperlattice to get a lattice from
a hyperlattice. Moreover, they de�ned a topology on the set of prime ideals of a
distributive hyperlattice [11, 12].

The Stone's representation theorems [13, 14] proved that every Boolean algebra
is isomorphic to a set of {Ia : a ∈ A} (where Ia denotes the set of prime ideals of
A not containing a). Since then, representation theorems for distributive lattices
has known a vast development.

H. A. Priestley developed another kind of duality for bounded distributive
lattices [8, 9]. Such representation theorems enable a deep and a concrete compre-
hension of the lattices as well as their structures. Our motivation �nds its place
in the following opinion:

"Stone's duality and its variants are central in making the link between syn-
tactical and semantic approaches to logic. Also in theoretical computer science,
this link is central as the two sides correspond to speci�cation languages and the
space of computational states. This ability to translate faithfully between alge-
braic speci�cation and spatial dynamics has often proved itself to be a powerful
theoretical tool as well as a handle for making practical problems decidable" see
[3].
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In this paper, we extend some results of [8, 9], where a representation theorem
of bounded distributive hyperlattices is presented. In other words, the category of
Priestley spaces is equivalent to the dual of the category of bounded distributive
hyperlattices.

2. Preliminaries

Let X be a nonempty set and P ∗(X) denotes the set of all nonempty subsets of
X. Maps f : X ×X → P ∗(X), are called hyperoperations [6].

De�nition 2.1. Let L be a nonempty set, ∧ be a binary operation and t be a
hyperoperation on L. L is called a hyperlattice if for all a, b, c ∈ L the following
conditions hold:

(i) a ∈ a t a, and a ∧ a = a;

(ii) a t b = b t a, and a ∧ b = b ∧ a;

(iii) a ∈ [a ∧ (a t b)] ∩ [a t (a ∧ b)];

(iv) a t (b t c) = (a t b) t c, and a ∧ (b ∧ c) = (a ∧ b) ∧ c;

(v) a ∈ a t b⇒ a ∧ b = b.

A hyperlattice L with the property

a ∧ (b t c) = (a ∧ b) t (a ∧ c)

is called distributive, where for all nonempty subsets A and B of L we de�ne

A tB = ∪{a t b | a ∈ A, b ∈ B} and A ∧B = {a ∧ b | a ∈ A, b ∈ B}.

The converse of condition (v) in De�nition 2.1 is true. Indeed using (iii) in
De�nition 2.1, we obtain a ∈ a t b by taking b = a ∧ b.

Hence, we can de�ne a partial order on L by:

a ≤ b⇔ b ∈ a t b⇔ a ∧ b = a.

A hyperlattice L is called bounded if there exist 0, 1 ∈ L such that for all a ∈ L,
0 ≤ a ≤ 1.

Consider a lattice (L,∧,∨). We de�ne the Nakano hyperoperation t on L
by x t y = {z ∈ L/z ∨ x = z ∨ y = x ∨ y} , for all x, y ∈ L. To the best of our
knowledge, the t hyperoperation was �rst introduced by Nakano in [7], which is
an investigation of hyperrings.

Lemma 2.2. If (L,∧,∨) is a distributive lattice, then (L,∧,t) is a distributive

hyperlattice where a t b = {x ∈ L | a ∨ b = a ∨ x = b ∨ x} for all a, b ∈ L.
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Proof. Straightforward.

Lemma 2.3. Let L = {0, 1}. Then, ({0, 1} ,∧,t) is a bounded distributive hyper-

lattice, where
∧ 0 1

0 0 0

1 0 1

and
t 0 1

0 {0} {1}
1 {1} {0, 1}

.

De�nition 2.4. [10] A nonempty subset I of a hyperlattice L is called an ideal if
the following conditions hold

(i) If a, b ∈ I, then a t b ⊆ I;

(ii) If a ∈ I, b ≤ a, and b ∈ L, then b ∈ I.

A proper ideal I is called prime if a ∧ b ∈ I implies a ∈ I or b ∈ I for all a, b ∈ L.

De�nition 2.5. [10] A nonempty subset F of a hyperlattice L is called a �lter if
the following conditions hold

(i) If a, b ∈ F , then a ∧ b ∈ F ;

(ii) If a ∈ F , a ≤ b, and b ∈ L, then b ∈ F .

A proper �lter F is called prime if for all a, b ∈ L (at b)∩F 6= ∅ implies a ∈ F or
b ∈ F .

Theorem 2.6. [1] If P is a prime ideal of a hyperlattice L, then L−P is a prime

�lter of L. Similarly, if F is a prime �lter of L, then L−F is a prime ideal of L.

Proposition 2.7. If δ is a nonempty subset of a hyperlattice L, then the smallest

�lter containing δ has the form

〈δ〉 = {x ∈ L | a1 ∧ ... ∧ an ≤ x, for some a1, .., an ∈ δ} .

Proof. First, we prove that 〈δ〉 is nonempty. Let a ∈ δ, since a ≤ a, then a ∈ 〈δ〉,
hence 〈δ〉 6= ∅. To proof that 〈δ〉 is a �lter let x ∈ 〈δ〉, y ∈ X such that x ≤ y, then
∧ni=1ai ≤ x ≤ y, so y ∈ F .

On the other hand, for x, y ∈ 〈δ〉, there exist a1, a2, . . . , an, b1, b2, . . . , bm such
that ∧ni=1ai ≤ x and ∧mj=1bj ≤ y. Then, (∧ni=1ai) ∧ (∧mj=1bj) ≤ x ∧ y. Therefore,
x ∧ y ∈ 〈δ〉.

Next, let a ∈ δ, since a ≤ a, we have a ∈ 〈δ〉. Then δ ⊆ 〈δ〉.
Finally, suppose that F is a �lter with δ ⊆ F . Then for any x ∈ 〈δ〉, then there

exist a1, a2, .., an ∈ δ such that ∧ni=1ai ≤ x, then x ∈ F . Therefore 〈δ〉 ⊆ F .

If δ = {a}, we write 〈δ〉 =↑ a = {x ∈ L | a ≤ x}.

Proposition 2.8. [10] Let (L,∧,t) be a distributive hyperlattice. If a ∈ L then

↓ a = {x ∈ L |x ≤ a} is an ideal.
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Theorem 2.9. Let X be a distributive hyperlattice, F be a �lter and I an ideal

of X. If F ∩ I = ∅, then there is a prime �lter P such that F ⊆ P and P ∩ I = ∅.

Proof. Let G be the family of those �lters F ′ which satisfy F ⊆ F ′ and F ′∩ I = ∅.
It follows from the Zorn's lemma that G has a maximal element P . Since P ∈ G it
remains to prove that the �lter P is prime. Since P ∩ I = ∅, P is proper. Suppose
P is not prime. Then there exist a, b ∈ X such that (a t b) ∩ P 6= ∅, and a /∈ P
and b /∈ P . Let a0 ∈ (a t b) ∩ P and let δ = P ∪ {a}. Then 〈δ〉 ∩ I 6= ∅, otherwise
P ⊆ 〈δ〉 ∈ G contradicting the maximality of P . Take x ∈ 〈δ〉 ∩ I. This implies
easily there exists p ∈ P that p ∧ a ≤ x, it follows that a0 ∧ p ∧ a ≤ x and since
x ∈ I, it follows that a0 ∧ p∧ a ∈ I. Similarly a0 ∧ q ∧ b ∈ I. Then, a0 ∧m∧ a ∈ I
and a0∧m∧b ∈ I such that m = p∧q, it follows that (a0∧m∧a)t(a0∧m∧b) ⊆ I,
which implies a0∧m ∈ (a0 ∧m)∧(a t b) ⊆ I, and a0∧m ∈ P , therefore I∩P 6= ∅,
which is a contradiction.

Corollary 2.10. Let L be a distributive hyperlattice. If I is an ideal and a ∈ L−I,
then there exists a prime �lter P such that a ∈ P and P ∩ I = ∅.

Proof. Let I be an ideal, a ∈ L − I and take F = 〈a〉, it follows F ∩ I = ∅. By
Theorem 2.9, there is a prime �lter P such that F ⊆ P and P ∩ I = ∅.

De�nition 2.11. Let L and L′ be two hyperlattices and f : L→ L′ be a mapping.

1. f is said to be a hyperlattices homomorphism if f(x ∧ y) = f(x) ∧ f(y) and
f(x t y) ⊆ f(x) t f(y), for all x, y ∈ L.

2. f is said to be a strong homomorphism of a hyperlattices, if f(x ∧ y) =
f(x) ∧ f(y) and f(x t y) = f(x) t f(y), for all x, y ∈ L. If f is a bijection,
then f is said to be a hyperlattices isomorphism (strong isomorphism).

Proposition 2.12. Let (L,∧,t) be a hyperlattice, ({0, 1} ,∧,t) be the hyperlattice

in Lemma 2.3 and F be a subset of L. If F is a prime �lter, then there is a

surjective hyperlattices homomorphism f : L→ {0, 1}, such that F = f−1 ({1}).

Proof. Set f(X) = 1 if X ⊆ F , and f(X) = 0 otherwise. Since (x t y) ∩ F 6= ∅ ⇔
(x ∈ F or y ∈ F ), then f(x t y) = 1⇒ x t y ⊆ F ⇒ (x t y) ∩ F 6= ∅ ⇒ x ∈ F or
y ∈ F ⇒ f(x) = 1 or f(y) = 1. Hence, f(x t y) ⊆ f(x) t f(y).

If f(x t y) = 0, we have x t y * F , it follows that (x t y) ∩ F = ∅, which
implies x /∈ F and y /∈ F , it follows that f(x) = 0 and f(y) = 0, which implies
f(x) t f(y) = 0. Therefore, f(x t y) ⊆ f(x) t f(y).

For the second homomorphism axiom, we have f (x ∧ y) = 0⇔ x∧y ⊆ L−F ⇔
(x ∈ L− F or y ∈ L− F )⇔ (f (x) = 0 or f (y) = 0)⇔ f (x) ∧ f (y) = 0. Hence,
f (x ∧ y) = f (x) ∧ f (y).

Corollary 2.13. Let L be a distributive hyperlattice. If a, b ∈ X are such that

a � b there is a prime �lter F such that a ∈ F and b /∈ F .

Proof. Take I =↓ b in Corollary 2.10.
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3. Priestley duality

De�nition 3.1. Let (L,≤) be a poset. A subset E ⊆ L is said to be increasing

(decreasing) if ∀x, y ∈ L, x ∈ E and x ≤ y (y ≤ x) implies y ∈ E.

De�nition 3.2. An ordered topological space is a triple (X, τ,≤) such that (X, τ)
is a topological space and (X,≤) is a poset. A clopen set in a topological space is
a set which is both open and closed. The ordered topological space is said to be
totally disconnected if for every x, y ∈ X such that x � y there exists an increasing
τ -clopen U and a decreasing τ -clopen V such that U ∩ V = ∅ with x ∈ U and
y ∈ V.

De�nition 3.3. A Priestley space is a compact totally disconnected ordered topo-

logical space.

If A is a bounded distributive hyperlattice, then its dual space is de�ned to be
T (A) = (X, τ,≤), whereX is the set of homomorphisms from A onto ({0, 1},∧,t),
preserving 0 and 1, τ is the product topology induced from {0, 1}A, and ≤ is the
partial order de�ned by f ≤ g in X if and only if f(a) ≤ g(a) for all a ∈ A. T (A)
is compact, and it is also totally order disconnected, i.e., a Priestley space.

De�nition 3.4. [2] Let (X, τ,≤), and (X ′, τ ′,�) be two Priestley spaces. Then
f : X → X ′ is called

1. increasing if for all x, y ∈ X, x ≤ y ⇒ f (x) � f (y).

2. a Priestley spaces homomorphism if is increasing and continuous. If it is a
bijection, then it is a Priestley spaces isomorphism.

Lemma 3.5. If δ = (X, τ,≤) is a Priestley space, then there exists a hyperoper-

ation t such that (L (δ) ,∩,t, ∅, X) is a bounded distributive hyperlattice, where

L (δ) = {Y ⊆ X |Y is increasing and τ -clopen} and t is de�ned by

A tB = {X ∈ L (δ) |A ∪B = A ∪X = B ∪X}

for all A,B ∈ L (δ).

Proof. By Lemma 2.2.

Lemma 3.6. Let A be a bounded distributive hyperlattice. Then FA : A→ L(T (A))
de�ned by FA (a) = {f ∈ X | f(a) = 1} is a hyperlattices isomorphism.

Proof. For all a, b ∈ A we have

FA (a ∧ b) = {f ∈ X | f(a ∧ b) = 1} = {f ∈ X | f(a) = 1} ∩ {f ∈ X | f(b) = 1}
= FA (a) u FA (b) ,

and
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FA (a t b) = {FA(t) | t ∈ a t b} = {{f ∈ X | f(a t b) = 1}}
⊆ {{f ∈ X | f(a) = 1} ∪ {f ∈ X | f(b) = 1}} = {FA (a) ∪ FA (b)}
⊆ FA (a) t FA (b) .

Suppose that a 6= b. If a � b, there exist a prime �lter F such that a ∈ F
and b /∈ F (Corollary 2.13). Thus, by Proposition 2.12, there is a hyperlattices
homomorphism f : A → {0, 1} such that a ∈ f−1 ({1}) and b /∈ f−1 ({1}), hence
f (a) = 1 and f (b) = 0, i.e., FA (a) � FA (b).

Similarly, b � a gives FA (b) � FA (a). Hence, a 6= b implies FA (a) 6= FA (b)
i.e., FA is injective.

To prove that FA is surjective, let U ∈ L (T (A)). Then, for all f ∈ U and
g ∈ L (T (A)) − U , since U is increasing, we have g < f . Thus, f (afg) = 1 and
g (afg) = 0 for some afg ∈ A. Hence, f ∈ FA (afg) and g ∈ L (T (A))− FA (afg).

For �xed f ∈ U we have g ∈ L (T (A)) − U ⊆
n
∪
i=1

(L (T (A))− FA (afgi)) =

L (T (A))−FA
n

( ∧
i=1
afgi) (because L (T (A))−U is compact). For af =

n
∧
i=1
afgi =, we

have FA (af ) = FA
n

( ∧
i=1
afgi) ⊂ U . On the other hand, f (af ) = 1, thus f ∈ FA (af ).

Therefore, U = ∪f∈UFA (af ). We �nd again a �nite covering U =
n
∪
j=1

FA (afj).

Hence, {U} ⊇
n
t
j=1

FA (afj) ⊇ FA(
n
t
j=1

afj), (since B ⊂ B′ ⇒ F−1A (B) ⊂ F−1A (B′)

and FA injective). Consequently, F−1A (FA(
n
t
j=1

afj)) =
n
t
j=1

afj)).

We have
n
t
j=i
afj ⊆ F−1A (U), since

n
t
j=1

afj ∈ P∗ (A), i.e., ∅ 6=
n
t
j=1

afj ⊆ A, i.e.,

FA is surjective. Since FA is injective, there exists a ∈ A such that U = FA (a).
Therefore, FA is a hyperlattices isomorphism.

Lemma 3.7. If f : A1 → A2 is a hyperlattices homomorphism, then the map

T (f) : T (A1)→ T (A2) de�ned by T (f)(g) = g ◦ f is a homomorphism of Priestley

spaces.

Proof. For all g1, g2 ∈ T (A1) , from g1 ≤ g2 it follows g1 ◦ f ≤ g2 ◦ f . Hence T (f)
is increasing. The continuity of T (f) follows from the fact that for every a ∈ A1,

T (f)
−1

(FA1 (a)) = {g ∈ T (A2) /T (f) (g) ∈ FA1 (a)}
= {g ∈ T (A2) /g ◦ f (a) = 1} = {g ∈ T (A2) /g (f (a)) = 1}
= FA2 (f (a)) .

This completes the proof.

Lemma 3.8. If δ = (X, τ, r) is a Priestley space, then the map Gδ : δ → T (L(δ))
de�ned by

Gδ(x)(Y ) =

{
1 if x ∈ Y,
0 if x /∈ Y,

for all Y ∈ L(δ), is an isomorphism of Priestley spaces.
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Proof. To prove the surjectivity, for each f ∈ T (L(δ)) we consider the sets U =
{Y ∈ L (δ) | f (Y ) = 1}, V = {Z ∈ L (δ) | f (Z) = 0}, A = ∩Y ∈UY and B =
∪Z∈V Z. Suppose that A−B = ∅. Then (∩Y ∈UY ) ∩(∪Z∈V Z)c = ∅, consequently
(∩Y ∈UY ) ∩ (∩Z∈V ZC) = ∅. Since X is compact, we have (

n
∩
i=1
Yi) ∩ (

m
∩
j=1

ZCj ) = ∅.

Thus,
n
∩
i=1
Yi ⊆

m
∪
j=1

Zj and f(
m
∪
j=1

Zj) = 1, a contradiction because f(
m
∪
j=1

Zj) =

m
∨
j=i
f (Zj) = 0. Hence A − B 6= ∅. Then, there exists x ∈ A − B such that

Gδ (x) = f. Therefore Gδ (x) (Y ) = 1 ⇔ x ∈ Y ⇔ Y ∈ U ⇔ f (Y ) = 1. So, Gδ is
surjective.

Let x1, x2 ∈ δ, x1 6= x2. If x1 � x2, then there exists Y0 ∈ L (δ) such that
x1 ∈ Y0 and x2 /∈ Y0, hence Gδ(x1)(Y0) 6= Gδ(x2)(Y0). If x2 � x1, then there
exists Y1 ∈ L (δ) such that x2 ∈ Y1 and x1 /∈ Y1, hence Gδ(x2)(Y1) 6= Gδ(x1)(Y1).
Thus x1 6= x2 implies Gδ(x1)(Y ) 6= Gδ(x2)(Y ), so Gδ is injective.

To prove that Gδ is continuous, let Z be a τ -clopen subset of T (L (δ)) . Then,
there exists y ∈ L (δ) such that Y = FL(δ) (y). Thus

G−1δ (Y ) = G−1δ (FL(δ) (y)) =
{
x ∈ X/Gδ(x) ∈ FL(δ) (y)

}
= {x ∈ X/Gδ(x) (y) = 1} = {x ∈ X/x ∈ y} = X ∩ y = y.

Hence, Gδ is continuous.

Note that, since Y ∈ L(δ) are increasing, x ≤ y implies Gδ(x)(Y ) ≤ Gδ(y)(Y ).

Lemma 3.9. If h : δ1 → δ2 is a homomorphism of Priestley spaces, then the

map L(h) : L(δ2) → L(δ1) de�ned by L(h)(y) = h−1(y) for every y ∈ L(δ2) is a

hyperlattices homomorphism.

Proof. For all y ∈ L(δ2) we have L(h)(y) ∈ L(δ1). For all y, z ∈ L(δ2) since h−1
commutes with set-theoretical operations we have,

L(h)(y t z) ⊆
{
h−1 (x) |h−1(y ∪ z) = h−1 (y ∪ x) = h−1 (z ∪ x)

}
=

{
h−1 (x) |h−1(y) ∪ h−1(z) = h−1 (y) ∪ h−1(x) = h−1 (z) ∪ h−1(x)

}
⊆ L(h)(y) t L(h)(z).

and L(h)(y ∩ z) = h−1(y ∩ z) = h−1(y) ∩ h−1(z) = L(h)(y) ∩ L(h)(z).
Hence, L(h) is a hyperlattices homomorphism.

Theorem 3.10. L (T (f)) ◦ FA1
= FA2

◦ f for any hyperlattices homomorphism

f : A1 → A2.

f
A1

- A2

FA1
?

FA2
?

L(T (A1))
- L(T (A2))

L(T (f))
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Proof. For all a ∈ A1,

(L (T (f)) ◦ FA1) (a) = L (T (f)) (FA1 (a)) = T−1 (f) (FA1 (a))

= {g ∈ T (A2) |T (f) (g) ∈ FA1 (a)}
= {g ∈ T (A2) | g ◦ f ∈ FA1 (a)}
= {g ∈ T (A2) | g (f (a)) = 1}
= FA2 (f (a)) = (FA2 ◦ f) (a) ,

which completes the proof.

Theorem 3.11. For any homomprphism h : δ1 → δ2 of Priestley spaces, we have

T (L (h)) ◦Gδ1 = Gδ2 ◦ h.
h

δ1 - δ2

Gδ1
?

Gδ2
?

L(T (δ1))
- L(T (δ2))

L(T (h))

Proof. (T (L (h)) ◦Gδ1) (f) = T (L (h)) (Gδ1 (f)) = Gδ1 (f) ◦ L (h) for all f ∈ δ1.
Hence for all y ∈ L (δ2) we have

(T (L (h)) ◦Gδ1) (f) (y) = (Gδ1 (f) ◦ L (h)) (y) = Gδ1 (f)
(
h−1 (y)

)
=

{
1 if f ∈ h−1 (y)
0 if f /∈ h−1 (y) =

{
1 if h (f) ∈ y
0 if h (f) /∈ y

= Gδ2 (h (f)) (y) = (Gδ2 ◦ h) (f) (y) .
This completes the proof.

Theorem 3.12. The dual of the category of Priestley spaces is equivalent to the

category of distributive hyperlattices.

Proof. By Lemma 3.6, Lemma 3.8, Theorem 3.10 and Theorem 3.11.

4. Examples

Example 4.1. Let A = {0, a, b, 1}. Consider the following Cayley tables

∧ 0 a b 1

0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

t 0 a b 1

0 {0} {a} {b} {1}
a {a} {0, a} {1} {b, 1}
b {b} {1} {0, b} {a, 1}
1 {1} {b, 1} {a, 1} A

Then (A,∧,t, 0, 1) is a bounded distributive hyperlattice. T (A) is the set
of homomorphisms from A onto {0, 1} = {f1, f2} and its bidual is: L(T (A)) =
{∅, {f1}, {f2}, {f1, f2}}, where
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0 a b 1

f1 0 1 0 1

f2 0 0 1 1

t ∅ {f1} {f2} {f1, f2}
∅ ∅ {f1} {f2} {f1, f2}
{f1} {f1} {∅, {f1}} {f1, f2} {{f2}, {f1, f2}}
{f2} {f2} {f1, f2} {∅, {f2}} {{f1}, {f1, f2}}
{f1, f2} {f1, f2} {{f2}, {f1, f2}} {{f1}, {f1, f2}} {∅, {f1}, {f2}, {f1, f2}}

Then (L(T (A)),∩,t, ∅, X) is a bounded distributive hyperlattice with X =
{f1, f2}. FA : A → L(T (A)) is given by FA(0) = ∅, FA(a) = {f1}, FA(b) = {f2},
FA(1) = {f1, f2}.

Example 4.2. Let D(30) = {1, 2, 3, 5, 6, 10, 15, 30} be the set of positive divisors
of 30 and (D(30),∧,∨) the lattice where a∧b and a∨b are respectively the greatest
common divisor and the least common multiplier of a and b. De�ne on D (30) the
hyperoperation by: a t b = {x ∈ D(30)|a ∨ b = a ∨ x = b ∨ x}, for all a, b ∈ L.
Then (D (30) ,∧,t, 1, 30) is a bounded distributive hyperlattice. T (D (30)) is the
set of homomorphisms from D(30) onto {0, 1} = {f1, f2, f3}.

D (30) 1 2 3 5 6 10 15 30

f1 0 1 0 0 1 1 0 1

f2 0 0 1 0 1 0 1 1

f3 0 0 0 1 0 1 1 1

Its bidual is: L(T (D (30))) = {∅, {f1}, {f2}, {f3}, {f1, f2}, {f1, f3}, {f2, f3}, X},
where X = {f1, f2, f3}.

t ∅ {f1} {f2} {f3}
∅ ∅ {f1} {f2} {f3}
{f1} {f1} {∅, {f1}} {f1, f2} {f1, f3}
{f2} {f2} {f1, f2} {∅, {f2}} {f2, f3}
{f3} {f3} {f1, f3} {f2, f3} {∅, {f3}}
{f1, f2} {f1, f2} {{f2} , {f1, f2}} {{f1} , {f1, f2}} {X
{f1, f3} {f1, f3} {{f3} , {f1, f3}} X {{f1} , {f1, f3}}
{f2, f3} {f2, f3} {X} {{f3} , {f2, f3}} {{f2} , {f2, f3}}

X X {{f2, f3}, X} {{f1, f3} , X} {{f1, f2} , X}
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t {f1, f2} {f1, f3}
∅ {f1, f2} {f1, f3}
{f1} {{f2}, {f1, f2}} {{f3} , {f1, f3}}
{f2} {{f1}, {f1, f2}} X

{f3} X {{f1} , {f1, f3}}
{f1, f2} {∅, {f1}, {f2}, {f1, f2}} {{f2, f3} , X}
{f1, f3} {{f2, f3}, X} {∅, {f1} , {f3} , {f1, f3}}
{f2, f3} {{f1, f3}, X} {{f1, f2}, X}

X {{f3}, {f1, f3}, {f2, f3}, X} {{f2} , {f1, f2}, {f2, f3}, X}

t {f2, f3} X

∅ {f2, f3} X

{f1} X {{f2, f3}, X}
{f2} {{f3}, {f2, f3}} {{f1, f3}, X}
{f3} {{f2} , {f2, f3}} {{f1, f2}, X}
{f1, f2} {{f1, f3}, X} {{f3} , {f1, f3}, {f2, f3}, X}
{f1, f3} {{f1, f2}, X} {{f2} , {f1, f2}, {f2, f3}, X}
{f2, f3} {∅, {f2} , {f3} , {f2, f3}} {{f1} , {f1, f2} , {f1, f3} , X}

X {{f1} , {f1, f2} , {f1, f3} , X} L(T (A))

Then (L(T (A)),∩,t, ∅, X) is a bounded distributive hyperlattice. FA(1) = ∅,
FA(2) = {f1}, FA(3) = {f2}, FA(5) = {f3}, FA(6) = {f1, f2}, FA(10) = {f1, f3},
FA(15) = {f2, f3}, FA(30) = X.

Example 4.3. Let (X, τ,≤) be a Priestley space, where X = {a, b, c} and ≤ is
given by

≤ a b c

a 1 0 1
b 0 1 1
c 0 0 1

and L(X) = {∅, {c} , {a, c} , {b, c} , X}, where

t ∅ {c} {a, c} {b, c} X

∅ ∅ {c} {a, c} {b, c} X

{c} {c} {∅, {c}} {a, c} {b, c} X

{a, c} {a, c} {a, c} {∅, {c}, {a, c}} X {{b, c} , X}
{b, c} {b, c} {b, c} X {∅, {c}, {b, c}} {{a, c} , X}
X X X {{b, c}, X} {{a, c} , X} L(X)

≤ ∅ {c} {a, c} {b, c} X

∅ 1 1 1 1 1
{c} 0 1 1 1 1
{a, c} 0 0 1 0 1
{b, c} 0 0 0 1 1
X 0 0 0 0 1
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and T (L(X)) = {f1, f2, f3} such that

L(X) f1 f2 f3
∅ 0 0 0
{c} 0 0 1
{a, c} 1 0 1
{b, c} 0 1 1
X 1 1 1

The isomorphism GX : X → T (L(X)) is de�ned by GX(a) = f1, GX(b) = f2,
GX(c) = f3.

Conclusion

In this paper, we propose a new way to represent distributive hyperlattices. It is
shown that the dual of the category of Priestley spaces is equivalent to the category
of bounded distributive hyperlattices.

For further investigations, we give the following open question.

Question. Is there a relation between the category of bounded distributive hyper-

lattices and the category of bounded distributive lattices?
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Implication zroupoids and identities

of associative type

Juan M. Cornejo and Hanamantagouda P. Sankappanavar

Abstract. An algebra A = 〈A,→, 0〉, where → is binary and 0 is a constant, is called an I-
zroupoid if A satis�es the identities: (x → y) → z ≈ [(z′ → x) → (y → z)′]′ and 0′′ ≈ 0, where

x′ := x → 0, and I denotes the variety of all I-zroupoids. An I-zroupoid is symmetric if it

satis�es x′′ ≈ x and (x→ y′)′ ≈ (y → x′)′. The variety of symmetric I-zroupoids is denoted by

S. An identity p ≈ q, in the groupoid language 〈→〉, is called an identity of associative type of

length 3 if p and q have exactly 3 (distinct) variables, say x, y, z, and are grouped according to one

of the two ways of grouping: (1) ?→ (?→ ?) and (2) (?→ ?)→ ?, where ? is a place holder for

a variable. A subvariety of I is said to be of associative type of length 3, if it is de�ned, relative

to I, by a single identity of associative type of length 3. In this paper we give a complete analysis

of the mutual relationships of all subvarieties of I of associative type of length 3. We prove, in

our main theorem, that there are exactly 8 such subvarieties of I that are distinct from each

other and describe explicitly the poset formed by them under inclusion. As an application of the

main theorem, we derive that there are three distinct subvarieties of the variety S of associative

type, each de�ned relative to S, by a single identity of associative type of length 3.

1. Introduction

In 1934, Bernstein gave a system of axioms for Boolean algebras in [3] using
implication alone. Even though his system was not equational, it is not hard to
see that one could easily convert it into an equational one by using an additional
constant. In 2012, the second author extended this �modi�ed Bernstein's theorem�
to De Morgan algebras in [24] by showing that the variety of De Morgan algebras,
is term-equivalent to the variety DM (de�ned below) whose de�ning axioms use
only an implication → and a constant 0.

The primary role played by the identity (I): (x → y) → z ≈ [(z′ → x) →
(y → z)′]′, where x′ := x→ 0, in the axiomatization of each of those new varieties
motivated the second author to study the identity (I) in its own right and led him

2010 Mathematics Subject Classi�cation: 06D30, 08B15, 20N02, 03G10
Keywords: implication zroupoid, variety, identity of associative type
The �rst author wishes to dedicate this work to the memory of Oscar Foresi, his second dad.
The second author wishes to dedicate this work to the memory of his sister, Paddawwa R.
Hooli.
The work of Juan M. Cornejo was supported by CONICET (Consejo Nacional de Investiga-
ciones Cienti�cas y Tecnicas) and Universidad Nacional del Sur.
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to introduce a new equational class of algebras called implication zroupoids in [24]
(also called implicator groupoids in [7]).

An algebra A = 〈A,→, 0〉, where → is binary and 0 is a constant, is called
a zroupoid. A zroupoid A = 〈A,→, 0〉 is an implication zroupoid (I-zroupoid, for
short) if A satis�es:

(I) (x→ y)→ z ≈ [(z′ → x)→ (y → z)′]′, where x′ := x→ 0,

(I0) 0′′ ≈ 0.

I denotes the variety of implication zroupoids. The varieties DM and SL are
de�ned relative to I, respectively, by the following identities:

(DM) (x→ y)→ x ≈ x (De Morgan Algebras);
(SL) x′ ≈ x and x→ y ≈ y → x (semilattices with the least element 0).

The variety BA of Boolean algebras is de�ned relative to DM by the following
identity:

(BA) x→ x ≈ 0′.

The variety I exhibits (see [24]) several interesting properties; for example,
the identity x′′′ → y ≈ x′ → y holds in I; in particular, I satis�es x′′′′ ≈ x′′.
Two of the subvarieties of I that are of interest in this paper are: I2,0 and MC
which are de�ned relative to I, respectively, by the following identities, where
x ∧ y := (x→ y′)′:

(I2,0) x′′ ≈ x;

(MC) x ∧ y ≈ y ∧ x.

The (still largely unexplored) lattice of subvarieties of I seems to be fairly
complex. In fact, Problem 6 of [24] calls for an investigation of the structure of
the lattice of subvarieties of I.

The papers [5], [6], [7], [8], [9], [10] and [11] have addressed further the above-
mentioned problem, but still partially, by introducing several new subvarieties of
I and investigating relationships among them. The (currently known) size of the
poset of subvarieties of I is at least 30; but it is still unknown whether the lattice
of subvarieties is �nite or in�nite. We conjecture that its cardinality is 2ω.

Motivated by the fact that not all algebras in I are associative with respect to
the operation →, the quest for �nding more new subvarieties of I led us naturally
to consider the question as to whether generalizations of the associative law would
yield some new subvarieties of I and thereby reveal further insight into the struc-
ture of the lattice of subvarieties of I. This quest led to the results in [9], [10] and
this paper, which will show that this is indeed the case.

The poset of the (then) known varieties that appears in [8] is given below for
the reader's convenience (for the de�nitions of the varieties in the picture, see [8]).
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A look at the associative law would reveal the following characteristics:

(1) Length of the left side term = length of the right side term = 3,

(2) The number of distinct variables on the left = the number of distinct variables
on right = the number of occurrences of variables on either side,

(3) The order of the variables on the left side is the same as the order of the
variables on the right side,

(4) The bracketings used in the left side term and in the right side term are
di�erent from each other.



16 J. M. Cornejo and H. P. Sankappanavar

One way to generalize the associative law is to relax somewhat the restrictions
(1) and (2) by choosing m distinct variables and setting the length of the left
term = that of right term = n, with n > m, and keeping (3) and (4). But
then, for n > 4, there will be more than two possible bracketings. So, we order
all possible bracketings and assign a number to each, called bracketing number.
Such identities are called �weak associative identities of length n�. For a precise
de�nition and notation of weak associative identities, we refer the reader to [10]
and the references therein.

A second way to generalize the associative law is to relax (3) and to keep
(2), (4) and the �rst half of (1). So, we consider the laws of the form p ≈ q of
length n such that (a) each of p and q contains the n (an integer > 3) distinct
variables, say, x1, x2, . . . , xn, (b) p and q are terms obtained by distinct bracketings
of permutations of the n variables. Let us call such laws as �identities of associative
type of length n�.

A third way to generalize the associative law is to relax all of four features
mentioned above by allowing number of occurrences of variables on one side be
di�erent from the number on the other side. Let us refer to these as �identities of
mixed type�.

Speci�c instances of all such generalizations of the associative law have already
occurred in the literature at least since late 19th century. We mention below a few
such instances.

Weak associative identities of length 4 with 3 distinct variables, called �identi-
ties of Bol-Moufang type�, have been investigated in the literature quite extensively
for the varieties of quasigroups and loops. In fact, the �rst systematic analysis of
the relationships among the identities of Bol-Moufang type appears to be in [12]
in the context of loops. For more information about these identities in the context
of quasigroups and loops, see [12], [15], [19], [20]) and the references therein.

More recently, in [9] and [10], we have made a complete analysis of relation-
ships among weak associative identities of length 6 4, relative to the variety S of
symmetric I-zroupoids (i.e., satisfying x′′ ≈ x and (x → y′)′ ≈ (y → x′)′). We
have shown that 6 of the 155 subvarieties of S, each being de�ned by a single weak
associative law of length m 6 4 (including the Bol-Moufang type), are distinct.
Furthermore, we describe explicitly by a Hasse diagram the poset formed by them,
together with the varieties BA and SL.

We should mention here that such an analysis of weak associative laws of length
6 4 relative to the variety I is still open.

The identities of associative type have also appeared in the literature. We
mention several examples below, using · for the binary operation instead of →.

• The identity x · (y · z) ≈ (z · x) · y was considered in [28] by Suschkewitsch
(see also [27, Theorem 11.5]).

• Abbott [1] uses the identity x · (y · z) ≈ y · (x · z) as one of the de�ning
identities in his de�nition of implication algebras.
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• The identities x ·(y ·z) ≈ z ·(y ·x), x ·(y ·z) ≈ y ·(x ·z), and x ·(y ·z) ≈ (z ·x) ·y
were investigated for quasigroups by Hosszú in [13].

• The identity x · (z · y) ≈ (x · y) · z is investigated by Pushkashu in [22].

• The identities x · (z · y) ≈ (x · y) · z and x · (y · z) ≈ z · (y · x) have appeared
in [14] of Kazim and Naseeruddin.

The identities of mixed type have also been considered in the literature. A few
are listed below:

• left distributivity: x·(y ·z) ≈ (x·y)·(x·z), appears, according to [18], already
in the late 19th century publications of logicians Peirce and Schroeder (see
[17] and [25], respectively),

• right distributive: (z · y) · x ≈ (z · x) · (y · x) (see [26]),

• distributive if it is both left and right distributive (see [26]),

• medial: (x · y) · (u · v) ≈ (x · u) · (y · v) (see [26]),

• idempotent: x · x ≈ x (see [26]),

• left involutory (or left symmetric): x · (x · y) ≈ y (see [26]).

Several identities of associative type have appeared in the literatiure on groupoids
as well. For instance,

• (x · y) · z ≈ (z · y) · x: Abel-Grassmann's groupoid (AG-groupoid) (see [21]),

• (x · y) · z ≈ (z · y) · x and x · (y · z) ≈ y · (x · z) (AG∗∗-groupoid),

• x · (z · y) ≈ (x · y) · z: Hosszú-Tarski identity (see [22]),

• (x · y) · z ≈ (z · y) · x: Left almost semigroup (LA-semigroup) (see [22]),

• x · (y · z) ≈ z · (y · x): Right almost semigroup (RA-semigroup) (see [22]).

Similar to the problem mentioned in [10] for weak associative identities, the
following general problem presents itself naturally if we restrict our attention to
identities of associative type.

Problem. Let V be a given variety of algebras (whose language includes a binary

operation symbol, say, ‘→′). Investigate the mutual relationships among the sub-

varieties of V, each of which is de�ned by a single identity of associative type of

length n, for small values of the positive integer n.

We will now consider the above problem for the variety I. We begin a system-
atic analysis of the relationships among the identities of associative type of length
3 relative to the variety I.
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De�nition 1.1. An identity p ≈ q, in the groupoid language 〈→〉, is called an
identity of associative type of length 3 if p and q have exactly 3 (distinct) variables,
say x, y, z, and these variables are grouped according to one of the following two
ways of grouping:

(a) o→ (o→ o), (b) (o→ o)→ o.

In the rest of the paper, we refer to an �identity of associative type of length
3� as simply an �identity of associative type�.

We wish to determine the mutual relationships of all the subvarieties of I de-
�ned by the identities of associative type, which will be referred to as �subvarieties
of associative type�.

Our main theorem says that there are 8 of such subvarieties of I that are
distinct from each other and describes explicitly, by a Hasse diagram, the poset
formed by them, together with the varieties SL and BA. As an application, we
show that there are 3 distinct subvarieties of S of associative type.

We would like to acknowledge that the software �Prover 9/Mace 4� developed
by McCune [16] has been useful to us in some of our �ndings presented in this
paper. We have used it to �nd examples and to check some conjectures.

2. Preliminaries

We refer the reader to the standard references [2], [4] and [23] for concepts and
results used, but not explained, in this paper.

Recall from [24] that SL is the variety of semilattices with a least element 0.
It was shown in [7] that SL = C ∩ I1,0, where I1,0 is de�ned by x′ ≈ x, and C is
de�ned by x→ y ≈ y → x, to relative to I.

The two-element algebras 2z, 2s, 2b were introduced in [24]. Their operations
→ are respectively as follows:

→ 0 1
0 0 0
1 0 0

→ 0 1
0 0 1
1 1 1

→ 0 1
0 1 1
1 0 1

Recall that V(2b) = BA. Recall also from [7, Corollary 10.4] that V(2s) = SL.

The following lemmas will be useful in the sequel.

Lemma 2.1. [24, 7.16] Let A be an I-zroupoid. Then A |= x′′′ → y ≈ x′ → y.

Lemma 2.2. [7, 3.4] Let A be an I-zroupoid. Then A satis�es:

(a) (x→ y)→ z ≈ [(x→ y)→ z]′′,

(b) (x→ y)′ ≈ (x′′ → y)′.
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Lemma 2.3. [24, 8.15] Let A be an I-zroupoid. Then the following are equivalent:

1. 0′ → x ≈ x,

2. x′′ ≈ x,

3. (x→ x′)′ ≈ x,

4. x′ → x ≈ x.

Recall that I2,0 andMC are the subvarieties of I, de�ned, respectively, by the
equations

x′′ ≈ x. (I2,0)

x ∧ y ≈ y ∧ x. (MC)

Lemma 2.4. [24] Let A ∈ I2,0. Then

1. x′ → 0′ ≈ 0→ x,

2. 0→ x′ ≈ x→ 0′.

Lemma 2.5. Let A ∈ I2,0. Then A satis�es:

(a) (x→ 0′)→ y ≈ (x→ y′)→ y,

(b) (y → x)→ y ≈ (0→ x)→ y,

(c) 0→ x ≈ 0→ (0→ x),

(d) (0→ x)→ (0→ y) ≈ x→ (0→ y),

(e) x→ y ≈ x→ (x→ y),

(f) 0→ (x→ y) ≈ x→ (0→ y),

(g) 0→ (x→ y′)′ ≈ 0→ (x′ → y),

(h) x→ (y → x′) ≈ y → x′.

Proof. For the proofs of items (a), (b), (c), (f), (g), and (h) we refer the reader to
[7]. The proofs of items (d) and (e) are in [5].

Theorem 2.6. [8] Let ti(x), i = 1, . . . , 6 be terms and V a subvariety of I. If

V ∩ I2,0 |= [t1(x)→ t2(x)]→ t3(x) ≈ [t4(x)→ t5(x)]→ t6(x),

then

V |= [t1(x)→ t2(x)]→ t3(x) ≈ [t4(x)→ t5(x)]→ t6(x).
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2.1. Identities of associative type

We now turn our attention to identities of associative type of length 3. Recall that
such an identity will contain three distinct variables that occur in any order and
that are grouped in one of the two (obvious) ways. The following identities play a
crucial role in the sequel.

Let Σ denote the set consisting of the following 14 identities of associative type
(of length 3 in the binary language 〈→〉):

(A1) x→ (y → z) ≈ (x→ y)→ z
(Associative law)

(A2) x→ (y → z) ≈ x→ (z → y)

(A3) x→ (y → z) ≈ (x→ z)→ y

(A4) x→ (y → z) ≈ y → (x→ z)

(A5) x→ (y → z) ≈ (y → x)→ z

(A6) x→ (y → z) ≈ y → (z → x)

(A7) x→ (y → z) ≈ (y → z)→ x

(A8) x→ (y → z) ≈ (z → x)→ y

(A9) x→ (y → z) ≈ z → (y → x)

(A10) x→ (y → z) ≈ (z → y)→ x

(A11) (x→ y)→ z ≈ (x→ z)→ y

(A12) (x→ y)→ z ≈ (y → x)→ z

(A13) (x→ y)→ z ≈ (y → z)→ x

(A14) (x→ y)→ z ≈ (z → y)→ x.

We will denote by Ai the subvariety of I de�ned by the identity (Ai), for
1 6 i 6 14. Such varieties will be referred to as subvarieties of I of associative
type.

The following proposition is crucial for the rest of the paper.

Proposition 2.7. Let G be the variety of all groupoids of type {→} and Let V
denote the subvariety of G de�ned by a single identity of associative type. Then

V = Ai, for some i ∈ {1, 2, . . . , 14}.

Proof. In an identity p ≈ q of associative type of length 3, p and q have exactly 3
(distinct) variables, say x,y,z, and these variables are grouped according to one of
the two ways of bracketing mentioned above. Thus, there are six permuatations
of 3 variables which give rise to the following 12 terms:

1a: x→ (y → z) 1b: (x→ y)→ z

2a: x→ (z → y) 2b: (x→ z)→ y

3a: y → (x→ z) 3b: (y → x)→ z

4a: y → (z → x) 4b: (y → z)→ x

5a: z → (x→ y) 5b: (z → x)→ y

6a: z → (y → x) 6b: (z → y)→ x.



Implication zroupoids 21

It is clear that these 12 terms, in turn, will lead to 66 identities in view of the
symmetric property of equality. It is routine to verify that each of the 66 identities
is equivalent to one of the 14 identities of Σ in the variety of groupoids. Then the
proposition follows.

Our goal, in this paper, is to determine the distinct subvarieties of I and to
describe the poset of subvarieties of I of associative type. It su�ces to concentrate
on the varieties de�ned by identities (A1)-(A14), in view of the above proposition.

3. Properties of subvarieties of I of associative type

In this section we present properties of several subvarieties of I which will play a
crucial role in our analysis of the identities of associative type relative to I.

Lemma 3.1. Let A ∈ I such that A |= x′ → y ≈ x → y′, then A |= (x → y) →
y′ ≈ x→ y′.

Proof. Let a, b ∈ A. Then (a→ b)→ b′
2.5(a)& 2.6

= (a→ 0′)→ b′
hyp
= (a′ → 0)→ b′

= a′′ → b′
hyp
= a′′′ → b

2.1
= a′ → b

hyp
= a→ b′.

Lemma 3.2. Let A ∈ I2,0 such that A |= (x → y)′ ≈ x → (0 → y), then

A |= x→ y′ ≈ x→ (0→ y).

Proof. Let a, b ∈ A. Then a → b′
2.3(1)

= a → (0′ → b)′
hyp
= a → [0′ → (0 → b)]

2.3(1)
= a→ (0→ b).

Lemma 3.3. Let A ∈ I2,0 such that A |= (x→ y)′ ≈ x→ (0→ y). Then

A |= [x→ (y → z)′]′ ≈ x→ (y → (0→ z))′.

Proof. Let a, b, c ∈ A. We have that [a → (b → c)′]′
hyp
= a → (0 → (b → c)′)

hyp
= a → (0 → (b → (0 → c)))

2.5(f)
= a → (b → (0 → (0 → c)))

hyp
= a → [b → (0 →

c)′].

Lemma 3.4. Let A ∈ I such that A satis�es:

(1) (x→ y)′ ≈ x→ (0→ y),

(2) x′ → y ≈ x→ y′.

Then, A |= 0→ [x→ (y → z)] ≈ 0→ [(x→ y)→ z].

Proof. Let a, b, c ∈ A. Then, 0 → [(a → b) → c]
(I)
= 0 → [(c′ → a) → (b → c)′]′

(I)
= 0→ {[(b→ c)′′ → c′]→ [a→ (b→ c)′]}′′ 2.6= 0→ {[(b→ c)→ c′]→ [a→ (b→
c)′]}′′ 3.1

= 0 → {[b → c′] → [a → (b → c)′]}′′ 3.2& 2.6&hyp
= 0 → {[b → (0 → c)] →
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[a → (b → c)′]}′′ 3.3&hyp
= 0 → {[b → (0 → c)] → [a → [b → (0 → c)]′]}′′ 2.5(h)& 2.6

=

0 → {a → [b → (0 → c)]′}′′ (3.4)
= 0 → {a → [b → c]′′}′′ 2.6

= 0 → {a → [b → c]}′′
(3.4)
= 0′ → {a→ [b→ c]}′ (3.4)= 0′′ → {a→ [b→ c]} = 0→ {a→ [b→ c]}.

Lemma 3.5. Let A ∈ I such that A |= (x→ y)′ ≈ (y → x)′. Then

A |= (x→ y)→ z ≈ (y → x)→ z.

Proof. Let a, b, c ∈ A. Then, (a → b) → c
2.6
= (a → b)′′ → c

hyp
= (b → a)′′ → c

2.6
= (b→ a)→ c.

De�nition 3.6. Let A ∈ I. We say that A is of type 1 if the following identities
hold in A:

(E1) (x→ y)′ ≈ x→ (0→ y),

(E2) x′ → y ≈ x→ y′,

(E3) 0→ (x→ y) ≈ 0→ (y → x),

(E4) x → (y → z) ≈ (p(x) → p(y)) → p(z), where p is some permutation of
{x, y, z}.

Theorem 3.7. If A ∈ I is of type 1 then A |= (Aj) for all 1 6 j 6 14.

Proof. Let A ∈ I be of type 1, and a, b, c ∈ A. In view of equations (E1), (E2)
and Lemma 3.4 we have that

A |= 0→ [x→ (y → z)] ≈ 0→ [(x→ y)→ z]. (3.1)

Then we can consider the following cases.

• Assume that j = 1. Then a→ (b→ c)
(E4)
= (p(a)→ p(b))→ p(c)

2.2
= [(p(a)→

p(b)) → p(c)]′′
(E1)
= [(p(a) → p(b)) → (0 → p(c))]′

2.5(f)& 2.6
= [0 → [(p(a) →

p(b))→ p(c)]]′
(E3)& (3.1)

= [0→ [(a→ b)→ c]]′
2.5(f)& 2.6

= [(a→ b)→ [0→ c]]′

(E1)
= [(a→ b)→ c]′′

2.2
= (a→ b)→ c.

The cases j = 3, 5, 7, 8, 10 are similar.

• Assume that j = 2. Then, in the same way as in the case of j = 1 we have
that

A |= x→ (y → z) ≈ [0→ [(p(x)→ p(y))→ p(z)]]′. (3.2)

Then, a → (b → c)
(3.2)
= [0 → [(p(a) → p(b)) → p(c)]]′

(E3)& (3.1)
= [0 →

[(p(a) → p(c)) → p(b)]]′
2.5(f)& 2.6

= [(p(a) → p(c)) → [0 → p(b)]]′
(E1)
=

[(p(a)→ p(c))→ p(b)]′′
2.2(a)

= (p(a)→ p(c))→ p(b)
(E4)
= (a→ c)→ b.

The cases j = 4, 6, 9 are similar.
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• Assume that j = 11. (a → b) → c
2.2(a)

= [(a → b) → c]′′
(E1)
= [(a → b) →

(0 → c)]′
2.5(f)& 2.6

= [0 → [(a → b) → c]]′
(E3)& (3.1)

= [0 → [(a → c) → b]]′

2.5(f)& 2.6
= [(a→ c)→ [0→ b]]′

(E1)
= [(a→ c)→ b]′′

2.2
= (a→ c)→ b.

The cases j = 12, 13, 14 are similar.

To prove that the variety Aj is of type 1, with j ∈ {3, 5, 7, 8, 10}, we need the
following lemmas.

Lemma 3.8. If A ∈ A5 then A satis�es

(a) x′ → y ≈ x→ y′,

(b) (x→ y)′ ≈ 0→ (x→ y),

(c) x→ (0→ y) ≈ 0→ (x→ y).

Proof. Let a, b ∈ A. Then

(a) a→ b′ = a→ (b→ 0)
(A5)
= (b→ a)→ 0

2.6
= (b→ a′′)→ 0 = (b→ (a′ → 0))→

0
(A5)
= [(a′ → b)→ 0]→ 0 = (a′ → b)′′

2.6
= a′ → b.

(b) Observe that (a→ b)′ = (a→ b)→ 0
(A5)
= b→ (a→ 0) = b→ a′

3.8(a)
= b′ → a

= (b→ 0)→ a
(A5)
= 0→ (b→ a).

(c) Notice that 0→ (a→ b)
(A5)
= (a→ 0)→ b

2.6
= (a′′ → 0)→ b

3.8(a)
= (a′ → 0′)→

b
2.4(2)& 2.6

= (0→ a)→ b
(A5)
= a→ (0→ b).

Lemma 3.9. If A ∈ A8 then A satis�es:

(a) x→ y′ ≈ x′ → y′,

(b) x→ y′ ≈ 0→ (y′ → x).

Proof. Let a, b ∈ A. Then a → b′ = a → (b → 0)
(A8)
= (0 → a) → b

(I)
= [(b′ →

0) → (a → b)′]′ = [(b′ → 0) → (a → b)′] → 0
(A8)
= (a → b)′ → (0 → (b′ → 0))

(A8)
= (a → b)′ → ((0 → 0) → b′) = (a → b)′ → (0′ → b′)

2.3(1)& 2.6
= (a → b)′ → b′

= ((a → b) → 0) → b′
(A8)
= 0 → (b′ → (a → b))

(A8)
= 0 → ((b → b′) → a)

2.6
= 0 → ((b′′ → b′) → a)

2.3(4)& 2.6
= 0 → (b′ → a), implying that A satis�es the

identity (b). Next, 0→ (b′ → a)
(A8)
= (a→ 0)→ b′ = a′ → b′, thus A satis�es the

identity (a).
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Lemma 3.10. If A ∈ A10 then A satis�es:

(a) [0→ (x→ y)]′ ≈ x→ y′,

(b) (y → x)′′ ≈ x→ y′,

(c) (x→ y)′ ≈ x→ y′.

Proof. Let a, b ∈ A.

(a) We have that A |= [0→ (x→ y)]′ ≈ x→ y′, since

a→ b′ = a→ (b→ 0)
= (0→ b)→ a by (A10)
= [(a′ → 0)→ (b→ a)′]′ by (I)
= [((a→ 0)→ 0)→ (b→ a)′]′

= [(0→ (0→ a))→ (b→ a)′]′ by (A10)
= [(0→ a)→ (b→ a)′]′ by 2.5 (c) and 2.6
= [(0→ a)→ [(b→ a)→ 0]]′

= [(0→ a)→ [0→ (a→ b)]]′ by (A10)
= [(0→ a)→ [(0→ a)→ (0→ b)]]′ by 2.5 (f) and (d) and by 2.6
= [(0→ a)→ (0→ b)]′ by 2.5 (e) and 2.6
= [0→ (a→ b)]′ by 2.5 (d), (f) and by 2.6.

(b) Observe that a → b′
3.10(a)

= [0 → (a → b)]′
(A10)

= [(b → a) → 0]′ = (b → a)′′.
Hence, A |= (b).

(c) Since a→ b′
3.10(a)

= [0→ (a→ b)]′
2.5(c)& 2.6

= [0→ (0→ (a→ b))]′
(A10)

= [((a→
b)→ 0)→ 0]′ = (a→ b)′′′ = (a→ b)′, we conclude that A |= (c).

Lemma 3.11. If A ∈ A3 ∪ A5 ∪ A7 ∪ A8 ∪ A10 then A satis�es

(1) (x→ y)′ ≈ x→ (0→ y),

(2) x′ → y ≈ x→ y′ and

(3) 0→ (x→ y) ≈ 0→ (y → x).

Proof. Let a, b ∈ A.

• Suppose A ∈ A3. Then (a→ b)′ = (a→ b)→ 0
(A3)
= a→ (0→ b), implying

A |= (1). Observe that a′ → b = (a→ 0)→ b
(A3)
= a→ (b→ 0) = a→ b′. So,

(2) holds inA. Also, 0→ (a→ b)
(A3)
= (0→ b)→ a

(I)
= [(a′ → 0)→ (b→ a)′]′

= [a′′ → (b → a)′]′
2.6
= [a → (b → a)′]′

(3.11)
= [a′ → (b → a)]′

2.5(h)& 2.6
= (b →

a)′
2.3(1)& 2.6

= 0′ → (b → a)′
3.11(2)

= 0′′ → (b→ a) = 0 → (b → a), proving
that (3) holds in A.
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• Assume that A ∈ A5. Then (a → b)′
3.8(b)

= 0 → (b → a) = 0′′ → (b → a)
3.8(a)

= 0′ → (b → a)′
2.3(1)& 2.6

= (b → a)′ = (b → a) → 0
(A5)
= a → (b → 0)

= a → b′
3.8(a)

= a′ → b
2.3(1)& 2.6

= (0′ → a′) → b
3.8(a)

= (0 → a′′) → b
2.6
= (0 → a) → b

(A5)
= a → (0 → b), proving that (1) is true in A. (2)

is immediate from Lemma 3.8 (a). Next, 0 → (a → b)
3.8(b)

= (a → b)′

= (a → b) → 0
(A5)
= b → (a → 0) = b → a′

3.8(a)
= b′ → a

2.6
= (b′ → a)′′

3.8(a)
=

(b → a′)′′
3.8(b)

= [0 → (b → a′)]′
3.8(c)

= [b → (0 → a′)]′
3.8(a)

= [b → (0′ → a)]′

2.3(1)& 2.6
= (b→ a)′

3.8(b)
= 0→ (b→ a), proving (3) holds in A.

• Assume that A ∈ A7. Then (a → b)′
2.6
= (a → b)′′′ = [(a → b) → 0]′′

(A7)
=

[0→ (a→ b)]′′
2.5(f)& 2.6

= [a→ (0→ b)]′′
(A7)
= [(0→ b)→ a]′′

2.6
= (0→ b)→ a

(A7)
= a→ (0→ b), proving that A satis�es (1).

Next, a′ → b
2.6
= [a′ → b]′′ = [(a′ → b) → 0]′

(A7)
= [0 → (a′ → b)]′

2.6
=

[0 → (a′ → b′′)]′
2.5(g)& 2.6

= [0 → (a → b′)′]′ = [0 → ((a → b′) → 0)]′

(A7)
= [0 → (0 → (a → b′))]′

2.5(c)& 2.6
= [0 → (a → b′)]′ = [0 → (a → b′)] → 0

(A7)
= [(a → b′) → 0] → 0 = (a → b′)′′ = (a → (b → 0))′′

(A7)
= ((b → 0) → a)′′

2.6
= (b → 0) → a

(A7)
= a → (b → 0) = a → b′, proving that (2) is true in A.

Finally, observe that 0 → (a → b)
(A7)
= (a → b) → 0

2.6
= (a′′ → b) → 0 =

[(a′ → 0) → b] → 0
(A7)
= [b → (a′ → 0)] → 0 = [b → a′′] → 0

2.6
= [b → a] → 0

(A7)
= 0→ (b→ a), proving that (3) holds in A.

• Let A ∈ A8. First, we will prove (2) hold in A. Now, a → b′
3.9(b)

= 0 →
(b′ → a)

2.6
= 0 → (b′ → a′′)

3.9(a)
= 0 → (b′′ → a′′)

(A8)
= (a′′ → 0) → b′′

2.6
= (a′′ → 0)→ b = a′′′ → b

2.1
= a′ → b, proving (2).

Notice that a → (0 → b)
(A8)
= (b → a) → 0 = (b → a)′

2.6
= (b → a)′′′

= (b → a)′′ → 0
(2)
= (b → a)′ → 0′

2.3(1)& 2.6
= [0′ → (b → a)′] → 0′

(2)
=

[0′′ → (b → a)] → 0′ = [0 → (b → a)] → 0′
2.5(f)& 2.6

= [b → (0 → a)] → 0′

(A8)
= [(a → b) → 0] → 0′ = (a → b)′ → 0′

(2)
= (a → b) → 0′′ = (a → b) → 0

= (a→ b)′, proving (1) holds in A.

The identity

0→ (x→ y) ≈ (x→ y)′ (3.3)

holds in A, since 0 → (a → b) = 0′′ → (a → b)
(2)
= 0′ → (a → b)′

2.3(1)& 2.6
=

(a→ b)′.
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Then 0→ (a→ b)
(3.3)
= (a→ b)′ = (a→ b)→ 0

(A8)
= b→ (0→ a)

(1)
= (b→ a)′

(3.3)
= 0→ (b→ a), proving (3) is true in A.

• Assume that A ∈ A10. Hence

a′ → b = a′ → b′′ by 2.6
= (a′ → b′)′ by 3.10 (c)
= (a′ → b′)→ 0
= 0→ (b′ → a′) by (A10)
= 0→ (b′ → (a→ 0))
= 0→ ((0→ a)→ b′) by (A10)
= (b′ → (0→ a))→ 0 by (A10)
= (b′ → (0→ a))′

= ((b→ 0)→ (0→ a))′

= [(0→ a)→ (0→ b)]′ by (A10)
= [0→ (a→ b)]′ by 2.5 (f) & (d) and by 2.6
= [(b→ a)→ 0]′ by (A10)
= (b→ a)′′

= a→ b′ by 3.10 (b),

proving (2) holds in A.

Consider a → (0 → b)
(A10)

= (b → 0) → a
(I)
= [(a′ → b) → (0 → a)′]′

3.10(c)
=

[(a′ → b) → (0 → a′)]′
(2)
= [(a′ → b) → (0′ → a)]′

2.3(1)& 2.6
= [(a′ → b) → a]′

(2)
= [(a→ b′)→ a]′

2.5(b)& 2.6
= [(0→ b′)→ a]′

(A10)
= [a→ (b′ → 0)]′ = [a→ b′′]′

2.6
= (a→ b)′, proving (1).

To �nish o� the proof, 0 → (a → b)
(A10)

= (b → a) → 0
3.10(c)

= b → a′

(2)
= b′ → a = (b → 0) → a

(A10)
= a → (0 → b)

(1)
= (a → b)′ = (a → b) → 0

(A10)
= 0→ (b→ a).

Theorem 3.12. A3 = A5 = A7 = A8 = A10.

Proof. Let A ∈ A3 ∪ A5 ∪ A7 ∪ A8 ∪ A10. By Lemma 3.11 we have that A is of
type 1. Then, using Theorem 3.7, A ∈ Aj for all j ∈ {3, 5, 7, 8, 10}.

Lemma 3.13. If A ∈ A13 then A satis�es

(a) (x→ y)′ ≈ (0→ x)→ y,

(b) (x→ y)′ ≈ x′ → y′,

(c) (x→ y)′ ≈ (0→ y)→ x′,
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(d) (x→ y)′ ≈ (x→ y)′′,

(e) (x→ y)′ ≈ (y → x)′.

Proof. Let us consider a, b ∈ A.

(a) (a→ b)′ = (a→ b)→ 0
(A13)

= (b→ 0)→ a
(A13)

= (0→ a)→ b. Hence A |= (a).

(b) Observe that (a → b)′
2.6
= 0′ → (a → b)′ = (0 → 0) → (a → b)′

(A13)
= [0 →

(a → b)′] → 0
(I20)& 2.6

= [0 → (a → b′′)′] → 0
2.5(g)& 2.6

= [0 → (a′ → b′)] → 0
(A13)

= [(a′ → b′)→ 0]→ 0 = (a′ → b′)′′
2.6
= a′ → b′

(c) Observe (a → b)′
(a)
= (0 → a) → b

2.6
= (0 → a)′′ → b

(b)
= (0′ → a′)′ → b

2.6
= a′′ → b

(A13)
= (0→ b)→ a′.

(d) Note that (a → b)′
(c)
= (0 → b) → a′

(I)
= [(a′′ → 0) → (b → a′)′]′ = [a′′′ →

(b → a′)′]′
2.1
= [a′ → (b → a′)′]′

(b)
= [a′ → (b′ → a′′)]′

2.6
= [a′ → (b′ → a)]′

2.5(h)& 2.6
= (b′ → a)′

(A13)
= ((0→ a)→ b)′

(A13)
= ((a→ b)→ 0)′ = (a→ b)′′.

(e) We have (b → a)′
(c)
= (0 → a) → b′

2.6
= [(0 → a) → b′]′′

(b)
= [(0 → a)′ → b′′]′

(d)
= [(0 → a)′′ → b′′]′

2.6
= [(0 → a) → b]′

(d)
= [(0 → a) → b]′′

2.6
= (0 → a) → b

(a)
= (a→ b)′.

Theorem 3.14. A11 = A12 = A13.

Proof. Let us consider A ∈ A11 and a, b, c ∈ A. Hence (a → b) → c
2.3(1)& 2.6

=

((0′ → a) → b) → c
(A11)

= ((0′ → b) → a) → c
2.3(1)& 2.6.

= (b → a) → c. Hence,
A ∈ A12, implying A11 ⊆ A12.

Now assume that A ∈ A12 and a, b, c ∈ A. Then (a → b) → c
(I)
= [(c′ → a) →

(b → c)′]′
(I)
= {[(b → c)′′ → c′] → [a → (b → c)′]′}′′ 2.6

= {[(b → c) → c′] → [a →
(b → c)′]′}′′ (A12)

= {[c′ → (b → c)] → [a → (b → c)′]′}′′ 2.5(h)& 2.6
= {(b → c) →

[a → (b → c)′]′}′′ (A12)
= {[a → (b → c)′]′ → (b → c)}′′ = {[[a → (b → c)′] →

0] → (b → c)}′′ (A12)
= {[0 → [a → (b → c)′]] → (b → c)}′′ 2.5(b)& 2.6

= {[(b → c) →
[a → (b → c)′]] → (b → c)}′′ 2.5(h)& 2.6

= {[a → (b → c)′] → (b → c)}′′ 2.5(a)& 2.6
=

{[a → 0′] → (b → c)}′′ (A12)
= {[0′ → a] → (b → c)}′′ 2.3(1)& 2.6

= {a → (b → c)}′′
(A12)

= {(b→ c)→ a}′′ 2.6= (b→ c)→ a, which implies that A12 ⊆ A13.

If A ∈ A13 and a, b, c ∈ A, then (a → b) → c
(A13)

= (b → c) → a
(A13)

= (c →
a) → b

2.6
= (c → a)′′ → b

3.13(e)
= (a → c)′′ → b

2.6
= (a → c) → b, concluding that

A13 ⊆ A11.
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4. Main theorem

In this section we will prove our main theorem. But �rst we need one more lemma.

Lemma 4.1. If A ∈ A2 ∪ A6 ∪ A9 then A ∈ A11.

Proof. We will see that A |= (x→ y)′ ≈ (y → x)′.

Let a, b ∈ A.

• If A ∈ A2, (a→ b)→ 0
2.3(1)& 2.6

= (0′ → (a→ b))→ 0
(A2)
= (0′ → (b→ a))→

0
2.3(1)& 2.6

= (b→ a)→ 0.

• If A ∈ A6, (a→ b)→ 0
2.3(1)& 2.6

= (0′ → (a→ b))→ 0
(A6)
= (a→ (b→ 0′))→

0
(A6)
= (b→ (0′ → a))→ 0

2.3(1)& 2.6
= (b→ a)→ 0.

• If A ∈ A9, then

(a→ b)′ = (a→ b)→ 0
= (a→ (0′ → b))→ 0 by 2.3 (1) and 2.6
= (b→ (0′ → a))→ 0 by (A9)
= (b→ a)→ 0 by 2.3 (1) and 2.6
= (b→ a)′

Now, apply Lemma 3.5, to get A ∈ A12. Therefore, using Theorem 3.14, we
conclude A ∈ A11.

We are now ready to present the main theorem of this paper.

Theorem 4.2. We have

(a) The following are the 8 subvarieties of I of associative type that are distinct

from each other.

A1,A2,A3,A4,A6,A9,A11 and A14.

(b) They satisfy the following relationships:

1. SL ⊂ A3 ⊂ A4,

2. BA ⊂ A4 ⊂ I,
3. A3 ⊂ A1 ⊂ I,
4. A3 ⊂ A2 ⊂ A11, A3 ⊂ A6 ⊂ A11 and A3 ⊂ A9 ⊂ A11,

5. A11 ⊂ A14 ⊂ I.
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Proof. Observe that, in view of Theorem 3.12 and Theorem 3.14 we can conclude
that each of the 14 subvarieties of associative type of I is equal to one of the
following varieties:

A1,A2,A3,A4,A6,A9,A11,A14.

We �rst wish to prove (b). Notice that by Lemma 3.11 we have that A ∈ A3 is of
type 1. Then, using Theorem 3.7, A ∈ Aj for all 1 6 j 6 14. Hence

A3 ⊆ Aj for all 1 6 j 6 14. (4.4)

1. Recall that SL = C ∩ I1,0. Then, we get C ⊆ A1 and I1,0 ⊆ A1 by [7, Theorem
8.2] and [7, Theorem 9.3], respectively, implying SL ⊆ A3, and A3 ⊆ A4 by
(4.4).

The algebras 2z and 2b show that SL 6= A3 and A3 6= A4, respectively.

2. In view of [10] we have that BA ⊂ S. By [9, Lemma 3.1], S |= x→ (y → z) ≈
y → (x→ z). Thus, BA ⊆ A4.

The algebra 2s shows that BA 6= A4 and the following algebra shows that
A4 6= I, respectively.

→ 0 1 2

0 0 0 0
1 2 0 0
2 0 0 0

3. The algebra 2b shows that A1 6= I and the following algebra witnesses that
A3 6= A1.

→ 0 1 2

0 0 1 2
1 1 1 2
2 2 1 2

4. Using (4.4) and Lemma 4.1 we can conclude that A3 ⊆ A2 ⊆ A11, A3 ⊆ A6 ⊆
A11 and A3 ⊆ A9 ⊆ A11.

The following algebras show that A3 6= A2 and A2 6= A11, respectively.

→ 0 1 2

0 0 0 0
1 2 0 2
2 0 0 0

→ 0 1 2

0 0 0 0
1 2 0 0
2 0 0 0

The following algebras show that A3 6= A6 and A6 6= A11, respectively.

→ 0 1 2 3

0 0 0 0 0
1 0 2 3 0
2 0 0 0 0
3 0 0 0 0

→ 0 1 2

0 0 0 0
1 2 0 0
2 0 0 0

The following algebras show that A3 6= A9 and A9 6= A11, respectively.
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→ 0 1 2 3

0 0 0 0 0
1 0 2 3 0
2 0 0 0 0
3 0 0 0 0

→ 0 1 2

0 0 0 0
1 2 0 0
2 0 0 0

5. Let A ∈ A11 and a, b, c ∈ A. By Theorem 3.14, A11 = A12 = A13. Hence

(a→ b)→ c
(A13)

= (b→ c)→ a
(A12)

= (c→ b)→ a. Therefore A11 ⊆ A14.

The algebra 2b shows that A14 6= I and the following algebra shows that
A11 6= A14.

→ 0 1 2 3

0 0 1 2 3
1 2 3 2 3
2 1 1 3 3
3 3 3 3 3

The proof of the theorem is now complete since (a) is an immediate consequence
of (b).

The Hasse diagram of the poset of subvarieties of I of associative type, together
with SL and BA, is:

s
s s
s

s s s s s
s
s
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�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
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B
B
B
B
B
B
B
B
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J
J
J
J
J
J
J
J
J
J
J
J

@
@
@
@

A
A
A
A

PP
PP

PP
PP

PP
PP

H
HH

H
HH

HH

@
@
@
@

T

SL BA

A3

A2 A6 A9 A1 A4

A11

A14

I
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5. Identities in symmetric implication zroupoids

Let A ∈ I. A is involutive if A ∈ I2,0. A is meet-commutative if A ∈ MC.
A is symmetric if A is both involutive and meet-commutative. Let S denote the
variety of symmetric I-zroupoids. In other words, S = I2,0 ∩MC. The variety S
was investigated in [7], [9] and [10] and has some interesting properties.

In this section we give an application of the main theorem, Theorem 4.2, to
describe the poset of the subvarieties of the variety S.

Lemma 5.1. [9, Lemma 3.1 (a)] Let A ∈ S. Then A satis�es x → (y → z) ≈
y → (x→ z).

Lemma 5.2. [9, Lemma 2.1] MC ∩ I1,0 ⊆ C ∩ I1,0 = SL.

Lemma 5.3. [9, Lemma 3.2] Let A ∈ S such that A |= x → x ≈ x. Then

A |= x′ ≈ x.

Lemma 5.4. A11 ∩ S = SL.

Proof. Let A ∈ A11 ∩ S and a ∈ A. Since S ⊆ I2,0, we have

a = a′ → a by Lemma 2.3 (4)
= (0′ → a′)→ a by Lemma 2.3 (1)
= (0′ → a)→ a′ by (A11)
= a→ a′ by Lemma 2.3 (1)
= a′′ → a′

= a′ by Lemma 2.3 (4).

Therefore, A |= x ≈ x′. Then, by Lemma 5.2, A ∈ SL.

Lemma 5.5. A1 ∩ S ⊆ SL.

Proof. Let A ∈ A1 ∩ S and a ∈ A. Then

a = 0′ → a by Lemma 2.3 (1)
= (0→ 0)→ a
= 0→ (0→ a) by (A1)
= 0→ a by Lemma 2.5 (c).

Consequently,
A |= x ≈ 0→ x. (5.5)

Therefore,
a = a′ → a by Lemma 2.3 (4)

= (a→ 0)→ a
= a→ (0→ a) by (A1)
= a→ a by equation (5.5)

Thus, by Lemma 5.3, A |= x′ ≈ x. Using Lemma 5.2 we can conclude the
proof.
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We will denote by Si the variety Ai ∩ S with 1 6 i 6 14.

Proposition 5.6. Each of the 14 subvarieties of associative type of S is equal to

one of the following varieties:

SL, S14, S.

Proof. From Theorem 3.12 and Theorem 3.14 we know that each of the 14 subva-
rieties of associative type of I is equal to one of the following varieties:

A1,A2,A3,A4,A6,A9,A11,A14.

Using Theorem 4.2, Lemma 5.4 and Lemma 5.5 we have that

SL ⊆ S3 ⊆ S2 ⊆ S11 ⊆ SL,

SL ⊆ S6 ⊆ S11 ⊆ SL,

SL ⊆ S9 ⊆ S11 ⊆ SL

and
SL ⊆ S1 ⊆ SL

By Lemma 5.1, A4 = S, So, S4 = S.

We are now ready to present the main theorem of this section.

Theorem 5.7. We have

(a) The following are the 3 subvarieties of S of associative type that are distinct

from each other.

SL, S14, S.

(b) They satisfy the following relationships

1. SL ⊂ S14 ⊂ S,
2. BA 6⊂ S14.

Proof. We �rst prove (b).

1. By Theorem 4.2, SL ⊆ S14.
The following algebras show that SL 6= S14 and S14 6= S, respectively.

→ 0 1 2 3

0 0 1 2 3
1 2 3 2 3
2 1 1 3 3
3 3 3 3 3

→ 0 1

0 1 1
1 0 1

2. Since 2b 6|= (S14), it follows that BA 6⊆ S14.
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The proof of the theorem is now complete since (a) is an immediate consequence
of Proposition 5.6 and (b).

The Hasse diagram of the poset of subvarieties of S of associative type, together
with BA, is:

r
r r
r

r
�
�
�

�
�
�

A
A
A

T

SL BA

S14

S
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A characterization of almost simple groups

related to L3(37)

Ashraf Daneshkhah and Younes Jalilian

Abstract. Let G be a �nite group, and let Γ(G) be its prime graph. The degree pattern of G

is denoted by D(G) = (deg(p1), . . . ,deg(pk)), where |G| = pα1
1 · · · p

αk
k and deg(pi) is the degree

of vertex pi in Γ(G). The group G is called k-fold OD-characterizable if there exist exactly k

non-isomorphic groups H satisfying |G| = |H| and D(G) = D(H). In this paper, we characterize

all �nite groups with the same order and degree pattern as almost simple groups related to the

projective special linear group L3(37).

1. Introduction

Let G be a �nite group. We denote by ω(G) the set of orders of elements of G and
by π(G) the set of prime divisors of the order of G. The spectrum µ(G) of G is
the set of elements of ω(G) that are maximal with respect to divisibility relation.
Let π(G) = {p1, . . . , pk}. The prime graph Γ(G) of a group G is the graph whose
vertex set is π(G) and two distinct primes p and q are adjacent (we write p ∼ q)
if and only if G contains an element of order pq, that is to say, pq ∈ ω(G). For
p ∈ π(G), the degree deg(p) of p is the degree of the vertex p in Γ(G), that is to
say, the number of vertices q ∈ π(G) which are adjacent to p. If |G| = pα1

1 · · · p
αk

k ,
then we denote D(G) := (deg(p1),deg(p2), . . . ,deg(pk)), where p1 < p2 < ... < pk.
This k-tuple is called the degree pattern of G. A group G is called k-fold OD-
characterizable if there exist exactly k non-isomorphic �nite groups having the
same order and degree pattern as G. In particular, a 1-fold OD-characterizable
group is simply called OD-characterizable. A group G is said to be an almost
simple group related to L if and only if L E G . Aut(L) for some non-abelian
simple group L.

The notion of degree patterns of prime graphs and related topics has been
introduced in [9]. There are natural questions mentioned in [9] about the structure
of �nite groups with the same degree patterns and the same orders:

Let G and M be �nite groups satisfying the conditions (1) |G| = |M | and (2)
D(G) = D(M).

(i) How far do these conditions a�ect the structure of G?

2010 Mathematics Subject Classi�cation: 20D05, 20D06

Keywords: Projective special linear groups, almost simple groups, k-fold OD-characterization,
prime graph
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(ii) Is the number of non-isomorphic groups satisfying (1) and (2) �nite?

It is therefore important to investigate the number of non-isomorphic groups
satisfying conditions (1) and (2) for important families of groups M . In a series
of articles, it has been proved that some �nite almost simple groups are OD-
characterizable or k-fold OD-characterizable for k > 2, for example see [5, 11, 15].
Note in passing that a few classes of �nite simple groups have been in general
characterized by their degree patterns and orders, see for example [9, 13, 16]. To
our knowledge, the lack of information on the spectra of almost simple groups
is the main reason which makes this characterization somehow di�cult in general
argument but the situation for some simple groups is rather di�erent as the spectra
of these groups are known, see for example [2, 3, 8].

Motivated by [4], in this paper, we focus on groups related to L3(37) and
show that L3(37) and L3(37) : Z2 are OD-characterizable while L3(37) : Z3 and
L3(37) : S3 are 3-fold and 5-fold OD-characterizable, respectively. Indeed, we
prove that

Theorem 1.1. Let H be an almost simple group related to L := L3(37). If G is
a �nite group such that D(G) = D(H) and |G| = |H|, then the following hold:

(a) If H = L, then G ∼= H.

(b) If H = L : Z2, then G ∼= H.

(c) If H = L : Z3, then G is isomorphic to H, Z3 × L or Z3 · L (non-split).

(d) If H = L : S3, then G is isomorphic to H, Z3 × (L : Z2), Z3 · (L : Z2)
(non-split), (Z3 × L) · Z2 or (Z3 : L) · Z2.

Throughout this article, all groups under consideration are �nite. For p ∈ π(G),
we denote by Gp and Sylp(G) a Sylow p-subgroup of G and the set of all Sylow
p-subgroups of G, respectively. All further de�nitions and notation are standard
and can be found in [1, 7].

2. Preliminaries

In this section, we mention some useful results to be used in proof of Theorem 1.1.
Here the independence number α(Γ) of a graph Γ is the maximum cardinality of
an independent set among all independent sets of Γ. Let now G be a �nite group,
and let Γ(G) be its prime graph. Then we set α(G) := α(Γ(G)). Moreover, for a
vertex r ∈ π(G), let α(r,G) denote the maximal number of vertices in independent
sets of Γ(G) containing r.

Lemma 2.1. [12, Theorem 1] Let G be a �nite group with α(G) > 3 and α(2, G) >
2, and let K be the maximal normal solvable subgroup of G. Then the quotient
group G/K is an almost simple group, that is, there exists a �nite non-abelian
simple group S such that S 6 G/K 6 Aut(S).
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Lemma 2.2. [10, Theorem 1] Let S be a �nite non-abelian simple group, and let
p be the largest prime divisor of |S| with |S|p = p. Then p - |Out(S)|.

Lemma 2.3. The orders, spectra and degree patterns of the almost simple groups
related to L3(37) are as in Table 1.

Proof. Note that Aut(L3(37)) ∼= L3(37) : S3. So if G is an almost simple group
related to L3(37), then G is isomorphic to one of the groups L3(37), L3(37) : Z2,
L3(37) : Z3, L3(37) : S3. The result for H = L3(37) can be obtained by [8,
Theorem 9] and for the remaining groups we use GAP [6].

Table 1: The orders, spectra and degree patterns of H, where H is an almost
simple group related to L3(37).

H |H| µ(H) D(H)

L3(37) 25 · 34 · 7 · 19 · 373 · 67 {7 ·67, 23 ·3 ·19, 22 ·32, 22 ·3 ·37} (3, 3, 1, 2, 2, 1)
L3(37) : Z2 26 · 34 · 7 · 19 · 373 · 67 {7 ·67, 23 ·3 ·19, 23 ·32, 22 ·3 ·37} (3, 3, 1, 2, 2, 1)
L3(37) : Z3 25 · 35 · 7 · 19 · 373 · 67 {3 · 7 · 67, 23 · 32 · 19, 22 · 32 · 37} (3, 5, 2, 2, 2, 2)
L3(37) : S3 26 · 35 · 7 · 19 · 373 · 67 {3 · 7 · 67, 23 · 32 · 19, 22 · 32 · 37} (3, 5, 2, 2, 2, 2)

3. Proof of the main result

In this section, we prove Theorem 1.1 through a series of Lemmas and propositions.
Observe that Theorem 1.1(a) follows from [4, Proposition 3.4]. Therefore in what
follows we deal with the remaining cases.

Proposition 3.1. Let H := L : Z2 where L := L3(37). If |G| = |H| and D(G) =
D(H), then G ∼= H.

Proof. Note by Table 1 that |G| = 26 ·34 ·7 ·19 ·373 ·67 and D(G) = (3, 3, 1, 2, 2, 1).
Since deg(7) = 1, there exists the unique prime p2 ∈ π(G) such that 7 is adjacent to
p2. Since also |π(G)| = 6, there are four more primes which are not adjacent to 7. If
these four vertices, say p3, p4, p5 and p6, are pairwise adjacent, then the degrees of
the vertices p3, p4, p5 and p6 are at least 3, which is impossible. Hence there exist at
least two non-adjacent vertices p3 and p4. Let ∆ = {7, p3, p4} be an independent
set in Γ(G). Then α(G) > 3. Furthermore, α(2, G) > 2 since deg(2) = 3 and
|π(G)| = 6. By Lemma 2.1, there is a non-abelian �nite simple group S such that
S 6 G/K 6 Aut(S), where K is a maximal normal solvable subgroup of G. We
show that 67 6∈ π(K). Assume to the contrary, that is, 67 ∈ π(K). We prove
that p would be adjacent to 67, where p ∈ {7, 19}. If p ∈ π(K), then K contains
a cyclic Hall subgroup of order p · 67, and so p is adjacent to 67. If p 6∈ π(K),
then it follows from Frattini argument that G = KNG(P ), where P is a Sylow
67-subgroup of K, and so NG(P ) has an element x of order p. Thus P 〈x〉 is a
cyclic subgroup of G of order p · 67. Therefore both 7 and 19 are adjacent to 67
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which contradicts the fact that the degree of 67 is 1. Therefore, 67 /∈ π(K), and
hence π(K) ⊆ {2, 3, 7, 19, 37}.

Now we prove that S is isomorphic to L. By Lemma 2.2, 67 /∈ π(Out(S)),
then 67 /∈ π(K) ∪ π(Out(S)), and so 67 ∈ π(S). Therefore by [14, Table 1], S is
isomorphic to L as claimed. Moreover, since |G| = |L : Z2| = 2|L|, we deduce that
K is isomorphic to 1 or Z2.

If K is isomorphic to Z2, then G = CG(K) as G/CG(K) isomorphic to a
subgroup of Aut(K) = 1. Therefore K 6 Z(G) which implies that deg(2) = 5,
which is a contradiction. Thus K = 1, and so G ∼= L : Z2.

Proposition 3.2. Let H := L : Z3 where L := L3(37). If |G| = |H| and D(G) =
D(H), then G is isomorphic to one of the groups H, Z3×L and Z3 ·L (non-split).

Proof. Note by Table 1 that |G| = 25 ·35 ·7 ·19 ·373 ·67 and D(G) = (3, 5, 2, 2, 2, 2).
Therefore, Γ(G) must be the graph as in Figure 1 in which {a, b, c, d} = {7, 19, 37, 67}.

Figure 1: The prime graph Γ(G) of G in Propositions 3.2 and 3.3.
3

2 d

a c

b

We observe by Figure 1 that {a, b, c} is an independent set in Γ(G), and so
α(G) > 3. Furthermore, α(2, G) > 2 since deg(2) = 3 and |π(G)| = 6. By Lemma
2.1, there is a �nite non-abelian simple group S such that S 6 G/K 6 Aut(S),
where K is a maximal normal solvable subgroup of G. By the same argument as
in Proposition 3.1, we can show that 67 6∈ π(K), and so π(K) ⊆ {2, 3, 7, 19, 37}.
It follows from Lemma 2.2, 67 /∈ π(Out(S)), then 67 ∈ π(S). Therefore by [14,
Table 1], S is isomorphic to L. Thus L 6 G/K 6 Aut(L), and so |K| = 1 or 3,
which implies that K is isomorphic to 1 or Z3.

If K = 1, then since L 6 G/K 6 Aut(L) and |G| = |L : Z3|, we conclude that
G is isomorphic to L : Z3.

IfK is isomorphic to Z3, thenG/K ∼= L. In this case, we have thatG/CG(K) 6
Aut(K) = Z2. Thus |G/CG(K)| is 1 or 2. If |G/CG(K)| = 2, then K is a
proper subgroup of CG(K), and so 1 6= CG(K)/K E G/K ∼= L. This implies
that G = CG(K), which is a contradiction. Therefore, |G/CG(K)| = 1. Then
K 6 Z(G), that is to say, G is a central extension of Z3 by L. If G splits over K,
then G is isomorphic to Z3×L, otherwise, G is isomorphic to Z3 ·L (non-split).

Proposition 3.3. Let H := L : S3 where L := L3(37). If |G| = |H| and D(G) =
D(H), then G is isomorphic to one of the groups H, Z3 × (L : Z2), Z3 · (L : Z2)
(non-split), (Z3 × L) · Z2 and (Z3 : L) · Z2.



A characterization of grouos related to L3(37) 39

Proof. According to Table 1, we have that |G| = 26 · 35 · 7 · 19 · 373 · 67 and
D(G) = (3, 5, 2, 2, 2, 2). Therefore, the prime graph Γ(G) is the graph as in Figure
1, where {a, b, c} forms an independent set in Γ(G), and so α(G) > 3. Moreover,
α(2, G) > 2 as deg(2) = 3 and |π(G)| = 6. Now we apply Lemma 2.1 and conclude
that there is a �nite non-abelian simple group S such that S 6 G/K 6 Aut(S),
where K is a maximal normal solvable subgroup of G. Again, by the same manner
as in Proposition 3.1, we have that 67 6∈ π(K), and hence π(K) ⊆ {2, 3, 7, 19, 37}.
By Lemma 2.2, 67 /∈ π(Out(S)), and since 67 /∈ π(K) ∪ π(Out(S)), it follows that
67 ∈ π(S), and so by [14, Table 1], S is isomorphic to L. Thus L 6 G/K 6 Aut(L)
implying that |K| ∈ {1, 2, 3, 6}. Hence K is isomorphic to one of the groups 1, Z2,
Z3, Z6 and S3.

If K = 1, then since L 6 G/K 6 Aut(L) and |G| = 6|L|, we conclude that G
is isomorphic to L : S3.

If K is isomorphic to Z2, then K is central in G, and so deg(2) = 5 in Γ(G),
which is a contradiction.

If K is isomorphic to Z3, then K 6 CG(K) and G/K ∼= L : Z2, and so
G/CG(K) is isomorphic to a subgroup of Aut(K) ∼= Z2. Thus, |G/CG(K)| = 1 or
2. If |G/CG(K)| = 1, then K 6 Z(G), that is to say, G is a central extension of
Z3 by L : Z2. This implies that G is isomorphic to Z3 × (L : Z2) or Z3 · (L : Z2)
(non-split). If |G/CG(K)| = 2, then K is a proper subgroup of CG(K), and so
CG(K)/K is a nontrivial normal subgroup of G/K ∼= L : Z2. Thus CG(K)/K ∼=
L. Since K 6 Z(CG(K)), it follows that CG(K) is a central extension of K by
L, and hence CG(K) is isomorphic to Z3 ×L or Z3 ·L (non-split). Therefore G is
isomorphic to (Z3 × L) · Z2 or (Z3 · L) · Z2.

If K is isomorphic to Z6, then K 6 CG(K) and G/K ∼= L. Since G/CG(K)
is isomorphic to a subgroup of Z2, it follows that |G/CG(K)| = 1 or 2. If
|G/CG(K)| = 1, then K 6 Z(G), and so deg(2) = 5, which is a contradic-
tion. Thus |G/CG(K)| = 2. Since K is a proper subgroup of CG(K), the group
CG(K)/K is a nontrivial normal subgroup of G/K ∼= L, which is a contradiction.

If K is isomorphic to S3, then K ∩ CG(K) = 1 and G/K ∼= L. Note that
G/CG(K) is isomorphic to a subgroup of Aut(K) ∼= S3. Then CG(K) 6= 1.
Since CG(K) ∼= CG(K)K/K is a non-identity normal subgroup of G/K ∼= L, we
conclude that G = CG(K)K, where CG(K) ∼= L and K ∩ CG(K) = 1. This
implies that G is isomorphic to K ×CG(K) ∼= S3 × L, however this case can be
ruled out as deg(2) = 3.

Proof of Theorem 1.1. The proof of Theorem 1.1 follows immediately from Propo-
sition 3.4 in [4] and Propositions 3.1�3.3.
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Pseudoisomorphisms of quasigroups

Ivan I. Deriyenko

Abstract. A simple method of construction of autotopies of quasigroups is presented.

1. In this short note all considered quasigroups are de�ned on a �nite set Q,
α, β, γ are permutations of the set Q. The composition of permutations is de�ned
as αβ(x) = α(β(x)). Let (Q, ·) and (Q, ◦) be two quasigroups. Their permutations
La(x) = a · x, Ra(x) = x · a, Ma(x) : x ·Ma(x) = a and L◦

a(x) = a ◦ x, R◦
a(x) =

x ◦ a, M◦
a (x) : x ◦M◦

a (x) = a are called left, right and middle translations of the
corresponding quasigroup. Quasigroups A = (Q, ·) and B = (Q, ◦) are isotopic if
there exists triplet T = (α, β, γ), called an isotopism, such that

γ(x · y) = α(x) ◦ β(y), (1)

or equivalently

γ−1(x ◦ y) = α−1(x) · β−1(y), (2)

for all x, y ∈ Q. In this case, we will write A ∼ B. Obviously A ∼ A. In this case
we say that T = (α, β, γ) is an autotopism.

Left, right and middle translations play an important role in the investigation of
isotopies of quasigroups (see for example [2], [3] and [4]). They also are used in the
construction of prolongations and contractions of Latin squares (see [5] and [6]).
Below we present a simple method of construction of autotopies of quasigroups
based on such translations.

2. An isotopy of the form Tl = (α, β, α) is called a left pseudoisomorphism.
An isotopy Tr = (α, β, β) is called a right pseudoisomorphism, and an isotopy
Tm = (α, α, γ) is called a middle pseudoisomorphism.

As a simple consequence of (1) we obtain

Lemma 1. Two quasigroups (Q, ·) and (Q, ◦) are isotopic if and only if at least

one of the following identities

Li = γ−1L◦
α(i)β, Ri = γ−1R◦

β(i)α, Mi = β−1M◦
γ(i)α

is satis�ed for some permutations α, β, γ of Q.

2010 Mathematics Subject Classi�cation: 20N05
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Corollary 1. The triplet T = (α, β, γ) is an autotopism of a quasigroup (Q, ·) if

and only if at least one of the following identities

Li = γ−1Lα(i)β, Ri = γ−1Rβ(i)α, Mi = β−1Mγ(i)α

is satis�ed for some permutations α, β, γ of Q.

By a left b-adjoint quasigroup of a quasigroup (Q, ·) we mean a quasigroup
(Q, ∗) with the operation x∗y = L−1

b (x ·y), where b ∈ Q is �xed. A right b-adjoint

quasigroup is de�ned analogously. A a middle b-adjoint quasigroup of a quasigroup
(Q, ·) is de�ned as a quasigroup (Q, ∗) with the operation
x ∗M−1

b (y) = x · y.

Theorem 1. Two quasigroups are isotopic if and only if its left b-adjoint quasi-

groups are right pseudoisomorphic.

Proof. Let quasigroups (Q, ·) and (Q, ◦) be isotopic and let this isotopism has the
form (1). If (Q, ∗) and (Q, �) are left b-adjoint quasigroups of quasigroups (Q, ·)
and (Q, ◦), respectively, then x ∗ y = L−1

b (x · y) and x � y = (L◦
b)

−1(x ◦ y). Thus,
L�
x = (L◦

b)
−1L◦

x. This, by Lemma 1, gives

L∗
x = L−1

b Lx = (γ−1L◦
α(b)β)

−1γ−1L◦
α(x)β = β−1(L◦

α(b))
−1L◦

α(x)β = β−1L�
α(x)β.

Hence β(x ∗ y) = α(x) � β(y).
The converse statement is obvious.

Corollary 2. If quasigroups (Q, ·) and (Q, ◦) are isotopic, then, for every b ∈ Q,

its left b-adjoint quasigroups are right pseudoisomorphic. Conversely, if for some

b ∈ Q left b-adjoint quasigroups of quasigroups (Q, ·) and (Q, ◦) are pseudoisomor-

phic, then (Q, ·) and (Q, ◦) are isotopic.

In a similar way we can prove the following two theorems.

Theorem 2. Two quasigroups are isotopic if and only if its right b-adjoint quasi-

groups are left pseudoisomorphic.

Theorem 3. Two quasigroups are isotopic if and only if its middle b-adjoint

quasigroups are middle pseudoisomorphic.

3. As it is well known, any permutation ϕ of the set {1, 2, . . . , n} can be decom-
posed into r 6 n cycles of the length k1, k2, . . . , kr with k1+k2+ . . .+kr = n. We
denote this fact by C(ϕ) = {k1, k2, . . . , kr}. C(ϕ) is called a cyclic type of ϕ.

Two permutations ϕ,ψ ∈ Sn are conjugate if there exists a permutation ρ ∈ Sn
such that ρϕρ−1 = ψ. Two permutations are conjugate if and only if they have
the same cyclic type (cf. [7]).

Let (Q, ◦), where Q = {1, 2, . . . , n} be a quasigroup and let

C(L◦) = {C(L◦
1), C(L

◦
2), . . . , C(L

◦
n)},
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C(R◦) = {C(R◦
1), C(R

◦
2), . . . , C(R

◦
n)},

C(M◦) = {C(M◦
1 ), C(M

◦
2 ), . . . , C(M

◦
n)}.

Then as a consequence of the above results we obtain

Theorem 4. If quasigroups (Q, ·) and (Q, ◦) are isotopic, then C(L∗) = C(L�),
C(R∗) = C(R�), C(M∗) = C(M�) for all its left (right, middle) b-adjoint quasi-

groups (Q, ∗) and (Q, �).

The converse statement is not true.

Example 1. Consider two loops de�ned by the following tables.

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 4 5 6 1 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 1 2 3 4 5

◦ 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 4 3 6 5
3 3 4 5 6 1 2
4 4 3 6 5 2 1
5 5 6 1 2 4 3
6 6 5 2 1 3 4

The �rst loop is a group isomorphic to the cyclic group Z6; the second is not a group
because (5 ◦ 4) ◦ 3 6= 5 ◦ (4 ◦ 3). So, by the Albert's theorem, they are not isotopic, but,
as it is not di�cult to see, C(L∗) = C(L�), C(R∗) = C(R�), C(M∗) = C(M�) for all its
b-adjoint quasigroups (Q, ∗) and (Q, �).

4. Basing on the above results we can �nd autotopies of quasigroups for which
left, right or middle translations have di�erent cyclic types.

For simplicity permutations will be written in the form of cycles and cycles will
be separated by points, e.g.

ϕ =

(
1 2 3 4 5 6
3 1 2 5 4 6

)
= (132.45.6.).

Example 2. Let (Q, ·) be a quasigroup de�ned by the following table:

· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 8 6 5 4 7 1 3
3 3 7 8 1 2 4 5 6
4 4 5 2 8 3 1 6 7
5 5 6 7 2 8 3 4 1
6 6 3 4 7 1 5 8 2
7 7 4 1 3 6 8 2 5
8 8 1 5 6 7 2 3 4

This quasigroup has the following left and right translations:
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left translations cyclic type

L1 (1.2.3.4.5.6.7.8.) {1,1,1,1,1,1,1,1}
L2 (128367.45.) {2, 6}
L3 (13864.275.) {3, 5}
L4 (14876.253.) {3, 5}
L5 (158.26374.) {3, 5}
L6 (165.23478.) {3, 5}
L7 (17243.568.) {3, 5}
L8 (18462.357.) {3, 5}

right translations cyclic type

R1 (1.2.3.4.5.6.7.8.) {1,1,1,1,1,1,1,1}
R2 (128.37456.) {3, 5}
R3 (13857.264.) {3, 5}
R4 (148673.25.) {2, 6}
R5 (15876.243.) {3, 5}
R6 (16534.278.) {3, 5}
R7 (172.35468.) {3, 5}
R8 (18475.236.) {3, 5}

If this quasigroup has an autotopy of the form β(x · y) = α(x) · β(y), then
by Corollary 2 we have Li = β−1Lα(i)β for every i ∈ Q. Since Li and Lα(i),
as a conjugate permutations, have the same cyclic type, in the case i = 2 must
be L2 = Lα(2), so α(2) = 2. Thus L2 = β−1L2β, i.e., βL2 = L2β. The last
equation is satis�ed by β = (128367.5.4.). Now, using βLi = Lα(i)β, we see that
α = (1.2.354786.). This shows that our quasigroups has an autotopy (α, β, β).
Since autotopies form a group (cf. [1]), (αk, βk, βk) also are autotopies for each
natural k.

An autotopy of the form (σ, ρ, σ) is induced by right translations. Indeed,
from the fact that Ri = σ−1Rρ(i)σ have the same cyclic type we obtain R4 =
Rρ(4). So, ρ(4) = 4. Hence, analogously, as in the previous part, we calculate
σ = (137684.2.5.) and ρ = (1.4.257863.). Obviously (σt, ρt, σt) also is an autotopy
for each natural t. Moreover, composition of (αk, βk, βk) and (σt, ρt, σt) is an
autotopy too. For example, composition of (α, β, β) and (σ, ρ, σ) gives an autotopy
(α1, β1, γ1) with α1 = ασ = (154.387.2.6.), β1 = βρ = (125.387.4.6.), γ1 = βσ =
(163.284.5.7.).
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Menger algebras of associative and self-distributive

n-ary operations

Wieslaw A. Dudek and Valentin S. Trokhimenko

Abstract. The necessary and su�cient conditions under which a Menger algebra of rank n can

be isomorphically represented by associative or (i, j)-associative n-ary operations are given. Also

the conditions under which a Menger algebra of rank n can be homomorphically represented by

self-distributive n-ary operations are found.

1. Multiplace functions are known to have various applications not only in math-
ematical analysis, but are also widely used in the theory of many-valued log-
ics, cybernetics and general systems theory. Algebras of such functions (called
Menger algebras) are studied in various directions [4]. In particular, many authors
studied algebras of functions with some additional properties, see for example
[4, 6, 7, 8, 9, 10, 11, 12]. Menger algebras of n-place functions closed with respect
to certain additional operations and allow �xed exchange of some variables are
described in [4].

As it is known semigroups and groups can be isomorphically represented by
functions of one variable. Similar results are obtained for (n + 1)-ary Menger
algebras of some types. Namely, it is proved (see for example [4]) that some types
of (n + 1)-ary Menger algebras can be represented by n-place functions.

In this short paper we give necessary and su�cient conditions under which
a Menger algebra of rank n can be isomorphically represented by associative or
(i, j)-associative n-ary operations de�ned on some set. We also �nd conditions
under which a Menger algebra of rank n can be homomorphically represented by
self-distributive n-ary operations and prove that in the case when this algebra is
also reductive then it can be isomorphically represented by these functions.

2. In the whole article, we assume that n > 2 and A is a nonempty set. Any
function f : An → A de�ned for each element of the set An is called an n-ary
operation on A. The set of all such operations, for �xed A and n > 2, is denoted
by Ωn(A). On the set Ωn(A) we can consider the Menger superposition O de�ned
by:

O(f, g1, . . . , gn)(a1, . . . , an) = f(g1(a1, . . . , an), . . . , gn(a1, . . . , an)),

where f, g1, . . . , gn ∈ Ωn(A), a1, . . . , an ∈ A.

2010 Mathematics Subject Classi�cation: 20N05, 08A05
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Any subset Φ ⊂ Ωn(A) closed with respect to this superposition is called a
Menger algebra of n-ary operations and is denoted by (Φ,O).

This superposition satis�es (cf. [4]) the following superassociative law:

O(O(f, g1, . . . , gn), h1, . . . , hn) =

O(f,O(g1, h1, . . . , hn), . . . ,O(gn, h1, . . . , hn)),

where f, g1, . . . , gn, h1, . . . , hn ∈ Ωn(A).
According to general convention used in theory of n-ary operations, the above

superassociative law can be written in the shorted form as:

O(O(f, gn1 ), hn
1 ) = O(f,O(g1, h

n
1 ), . . . ,O(gn, h

n
1 )). (1)

In the case when g1 = g2 = . . . = gk = g instead of gk1 we will write
k
g.

Any nonempty set G with an (n+ 1)-ary superassociative operation o is called
an (n + 1)-ary Menger algebra or a Menger algebra of rank n and is denoted by
(G, o). If in a Menger algebra (G, o) of rank n from the fact that the equation
o(g1, x

n
1 ) = o(g2, x

n
1 ) is valid for all x1, . . . , xn ∈ G it follows g1 = g2, then this

Menger algebra is called reductive [4]. An element e ∈ G is called a left (right)

diagonal unit of a Menger algebra (G, o) of rank n if o(e,
n
x) = x (respectively

o(x,
n
e) = x) holds for all x ∈ G. If e is both left and right diagonal unit, then it is

called a diagonal unit. If a Menger algebra has an element that is a left diagonal
unit and an element that is a right diagonal unit, then these elements are equal
and no other elements which are left or right diagonal units. A left (right) diagonal
unit of (G, o) is a left (right) neutral element of a diagonal semigroup of (G, o),

i.e., a semigroup (G, ·) with the operation x · y = o(x,
n
y). It is clear that a Menger

algebra with right diagonal unit is reductive. Also a Menger algebra (G, o) of rank
n in which there are x1, . . . , xn such that o(g, xn

1 ) = g for all g ∈ G is reductive.

3. We say that an n-ary operation f ∈ Ωn(A) is

• (i, j)-associative, where 1 6 i < j 6 n, if it satis�es the identity

f(ai−1
1 , f(ai+n−1

i ), a2n−1
i+n ) = f(aj−1

1 , f(aj+n−1
j ), a2n−1

j+n ), (2)

• associative, if it is (i, j)-associative for all 1 6 i < j 6 n,

• superassociative, if it satis�es the identity

f(f(a, bn−1
1 ), cn−1

1 ) = f(a, f(b1, c
n−1
1 ), . . . , f(bn−1, c

n−1
1 )). (3)

• self-distributive or autodistributive, if for all 1 6 i 6 n, it satis�es the identity

f(ai−1
1 , f(bn1 ), ani+1) = f(f(ai−1

1 , b1, a
n
i+1), . . . , f(ai−1

1 , bn, a
n
i+1)). (4)
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It is clear that the operation f ∈ Ωn(A) is associative if and only if it is
(1, j)-associative for all j = 2, 3, . . . , n.

Unfortunately, the set of all associative ((i, j)-associative, superassociative) n-
ary operations de�ned on the set A may not be closed with respect to the Menger
superposition. Indeed, ternary operations f(x, y, z) = x ∧ y ∧ z and g(x, y, z) =
x ∨ y ∨ z de�ned on a lattice L are associative and superassociative, but their
Menger superposition h = O(f, g, g, g) is neither associative nor superassociative.

We will say that an (n + 1)-ary operation o ∈ Ωn+1(A) is

• quasi-(i, j)-associative, where 1 6 i < j 6 n, if it satis�es the identity

o(a, bi−1
1 , o(a, bi+n−1

i ), b2n−1
i+n ) = o(a, bj−1

1 , o(a, bj+n−1
j ), b2n−1

j+n ), (5)

• quasi-associative, if it is quasi-(i, j)-associative for all 1 6 i < j 6 n,

• quasi-superassociative, if it satis�es the identity

o(a, o(a, b, cn−1
1 ), dn−1

1 ) = o(a, b, o(a, c1, d
n−1
1 ), . . . , o(a, cn−1, d

n−1
1 )), (6)

• quasi-self-distributive or quasi-autodistributive, if for all 1 6 i 6 n it satis�es
the identity

o(a, bi−1
1 , o(a, cn1 ), bni+1) = o(a, o(a, bi−1

1 , c1, b
n
i+1), . . . , o(a, bi−1

1 , cn, b
n
i+1)). (7)

Note that an (n+1)-ary operation o ∈ Ωn+1(A) is quasi-associative if and only
if all n-ary operations fa ∈ Ωn(A) de�ned by

fa(xn
1 ) = o(a, xn

1 ) (8)

are associative in the above sense. Thus any algebra (A, o) with one (n + 1)-
ary quasi-associative operation o can be characterized by the algebra (A,F) with
the family F = {fa | a ∈ A} of n-ary associative operations de�ned by (8), i.e.,
by the class of n-ary semigroups (A, fa), where a ∈ A. Analogously a quasi-
superassociative (quasi-self-distributive) algebra (A, o) can be characterized by
the class of n-ary superassociative (self-distributive) algebras (A, fa). A group-
like Menger algebra (A, o) of rank n (cf. [2] or [4]) which is simultaneously quasi-
associative and quasi-self-distributive can be characterized by self-distributive n-
ary groups (A, fa), i.e., by self-distributive associative n-ary quasigroups (cf. [1]).
This means that these Menger algebras can be described by commutative groups
and one of their automorphisms (cf. [3, Theorem 3]).

Example 1. On a commutative semigroup (G,+) with the property nx = x for
each x ∈ G and �xed n > 2 we de�ne the (n + 1)-ary operation

o(x0, x
n
1 ) = ϕ(x0) + x1 + x2 + · · ·+ xn + b,
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where b ∈ G is �xed and ϕ is an idempotent endomorphism of (G, ·) such that
ϕ(b) = b. Direct computations show that (G, o) is a quasi-associative Menger
algebra of rank n. If ϕ is not the identity map, then this Menger algebra is not
associative. So, the class of quasi-associative Menger algebras contains non-trivial
non-associative algebras.

Example 2. Let (G,+) be a commutative semigroup in which nx = x for all
x ∈ G and �xed n > 2. Then for every a ∈ G the set G with the operation

fa(x0, x
n
1 ) = x0 + x1 + x2 + · · ·+ xn + a

is a Menger algebra of rank n that is both associative, quasi-associative and self-
distributive. Moreover, the set ΦG = {fa | a ∈ G} is closed with respect to the
Menger superposition O. Thus, (ΦG,O) is a Menger algebra of associative, quasi-
associative, quasi-superassociative and self-distributive (n + 1)-ary operations.

4. Now we present a characterization of quasi-associative Menger algebras by
algebras of associative n-place functions.

First, we characterize quasi-(i, j)-associative Menger algebras.

Theorem 1. A Menger algebra (G, o) of rank n is isomorphically represented by

(i, j)-associative n-ary operations if and only if it is quasi-(i, j)-associative.

Proof. Necessity. Let (Φ,O) be a Menger algebra of (i, j)-associative n-ary
operations de�ned on the set A. Then, for all f, g1, . . . , g2n−1 ∈ Φ and all elements
a1, . . . , an ∈ A, we have

O(f, gi−1
1 ,O(f, gi+n−1

i ), g2n−1
i+n )(an1 ) =

f(g1(an1 ), . . . , gi−1(an1 ),O(f, gi+n−1
i )(an1 ), gi+n(an1 ), . . . , g2n−1(an1 )) =

f(g1(an1 ), . . . , gi−1(an1 ), f(gi(a
n
1 ), . . . , gi+n−1(an1 ))(an1 ), gi+n(an1 ), . . . , g2n−1(an1 )) =

f(g1(an1 ), . . . , gj−1(an1 ), f(gj(a
n
1 ), . . . , gj+n−1(an1 ))(an1 ), gj+n(an1 ), . . . , g2n−1(an1 )) =

f(g1(an1 ), . . . , gj−1(an1 ),O(f, gj+n−1
j )(an1 ), gj+n(an1 ), . . . , g2n−1(an1 )) =

O(f, gj−1
1 ,O(f, gj+n−1

j ), g2n−1
j+n )(an1 ).

Thus, O(f, gi−1
1 ,O(f, gi+n−1

i ), g2n−1
i+n )(an1 ) = O(f, gj−1

1 ,O(f, gj+n−1
j ), g2n−1

j+n )(an1 ),
i.e., a Menger algebra (Φ,O) is quasi-(i, j)-associative.

Sufficiency. Let (G, o) be a quasi-(i, j)-associative Menger algebra of rank
n. For every g ∈ G we de�ne on the set G0 = G ∪ {e, c}, where e 6= c and e /∈ G,
c /∈ G, the n-ary operation ωg by putting:

ωg(xn
1 ) =


o(g, xn

1 ), if x1, . . . , xn ∈ G,

g, if x1 = . . . = xn = e,

c, otherwise.
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To prove that this operation is associative, we must consider a few cases.
First, we consider the case when x1, . . . , x2n−1 ∈ G. In this case

ωg(xi−1
1 , ωg(xi+n−1

i ), x2n−1
i+n ) = o(g, xi−1

1 , o(g, xi+n−1
i ), x2n−1

i+n ) =

o(g, xj−1
1 , o(g, xj+n−1

j ), x2n−1
j+n ) = ωg(xj−1

1 , ωg(xj+n−1
j ), x2n−1

j+n ).

If x1 = . . . = x2n−1 = e, then, according to the de�nition, we have

ωg(
i−1
e , ωg(

n
e),

n−i
e ) = ωg(

i−1
e , g,

n−i
e ) = c

and

ωg(
j−1
e , ωg(

n
e),

n−j
e ) = ωg(

j−1
e , g,

n−j
e ) = c.

Thus,

ωg(
i−1
e , ωg(

n
e),

n−i
e ) = ωg(

j−1
e , ωg(

n
e),

n−j
e ).

In all other cases

ωg(xi−1
1 , ωg(xi+n−1

i ), x2n−1
i+n ) = c = ωg(xj−1

1 , ωg(xj+n−1
j ), x2n−1

j+n ).

So, in any case the operation ωg is (i, j)-associative.

Now we show that P : g 7→ ωg is an isomorphism between (G, o) and (ΦG,O),
where ΦG = {ωg | g ∈ G}. To prove this fact we also must consider a few cases.

Let g, g1, . . . , gn ∈ G.

1) If x1, . . . , xn ∈ G, then

ωo(g,gn
1 )(x

n
1 ) = o(o(g, gn1 ), xn

1 ) = o(g, o(g1, x
n
1 ), . . . , o(gn, x

n
1 ))

= ωg(ωg1(xn
1 ), . . . , ωgn(xn

1 )) = O(ωg, ωg1 , . . . , ωgn)(xn
1 ).

2) If x1 = x2 = . . . xn = e, then, according to the de�nition of ωg, we obtain

O(ωg, ωg1 , . . . , ωgn)(
n
e) = ωg(ωg1(

n
e), . . . , ωgn(

n
e)) = ωg(gn1 ) = o(g, gn1 )

and ωo(g,gn
1 )(

n
e) = o(g, gn1 ). Thus, ωo(g,gn

1 )(
n
e) = O(ωg, ωg1 , . . . .ωgn)(

n
e).

3) In other cases we have ωo(g,gn
1 )(x

n
1 ) = c and

O(ωg, ωg1 , . . . , ωgn)(xn
1 ) = ωg(ωg1(xn

1 ), . . . , ωgn(xn
1 )) = ωg(

n
c) = c.

Thus, in any case ωo(g,gn
1 ) = O(ωg, ωg1 , . . . , ωgn) This means that P (o(g, gn1 )) =

O(P (g), P (g1), . . . , P (gn)). Hence, P is a homomorphism.
Obviously P is onto (ΦG,O). Moreover, if P (g1) = P (g2), for some g1, g2 ∈ G,

then also ωg1(xn
1 ) = ωg2(xn

1 ) for x1, . . . xn ∈ G0. In particular, ωg1(
n
e) = ωg2(

n
e),

which gives g1 = g2. So, P is an isomorphism.
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In the same way, using the same construction of the operations ωg, we can
prove the following two theorems.

Theorem 2. A Menger algebra (G, o) of rank n is isomorphically represented by

associative n-ary operations if and only if it is quasi-associative.

Theorem 3. Any quasi-superassociative Menger algebra (G, o) of rank n can be

isomorphically represented by suprassociative n-ary opertations de�ned on some

set.

From the above results we can deduce the following corollary.

Corollary 1. If a Menger algebra of rank n is at the same time quasi-(i, j)-
associative and quasi-superassociative, then it can be isomorphically represented by

n-ary operations which are at the same time (i, j)-associative and superassociative.

Analogous result is valid for Menger algebras which are at the same time quasi-
associative and quasi-superassociative.

Problem A. Find necessary and su�cient conditions under which a Menger alge-

bra of rank n can be isomorphically represented by superassociative n-ary operations
de�ned on some set.

5. We will now consider a Menger algebra of self-distributive n-ary operations.

Theorem 4. A Menger algebra (G, o) of rank n is homomorphically represented

by self-distributive n-ary operations if and only if it is quasi-self-distributive.

Proof. Necessity. Let (Φ,O) be a Menger algebra of self-distributive n-ary ope-
rations de�ned on the set A. Then for all f, gi, hi ∈ Φ, i = 1, 2, . . . , n, and all
a1, . . . , an ∈ A we have

O(f, gi−1
1 ,O(f, hn

1 ), gni+1)(an1 ) =

f(g1(an1 ), . . . , gi−1(an1 ), f(h1(an1 ), . . . , hn(an1 )), gi+1(an1 ), . . . gn(an1 ))
(4)
=

f(f(g1(an1 ), . . . , gi−1(an1 ), h1(an1 ), gi+1(an1 ), . . . gn(an1 )), . . . ,

f(g1(an1 ), . . . , gi−1(an1 ), hn(an1 ), gi+1(an1 ), . . . gn(an1 ))) =

O(f,O(f, gi−1
1 , h1, g

n
i+1), . . . ,O(f, gi−1

1 , hn, g
n
i+1))(an1 ).

Thus, (Φ,O) is a quasi-self-distributive Menger algebra.

Sufficiency. Let (G, o) be a quasi-self-distributive Menger algebra of rank n.
For every g ∈ G we de�ne on G the n-ary operation ωg by putting

ωg(xn
1 ) = o(g, xn

1 ).
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Then for all xi, yi ∈ G and i = 1, . . . , n, we obtain:

ωg(xi−1
1 , ωg(yn1 ), xn

i+1) = o(g, xi−1
1 , o(g, yn1 ), xn

i+1)
(7)
=

o(g, o(g, xi−1
1 , y1, x

n
i+1), . . . , o(g, xi−1

1 , yn, x
n
i+1)) =

ωg(ωg(xi−1
1 , y1, x

n
i+1), . . . , ωg(xi−1

1 , yn, x
n
i+1)).

So, the operation ωg is self-distributive.

Now we show that P : g 7→ ωg is a homomorphism between (G, o) and (ΦG,O),
where ΦG = {ωg | g ∈ G}. Indeed, for all g, g1, . . . , gn, x1, . . . , xn ∈ G we have:

ωo(g,gn
1 )(x

n
1 ) = o(o(g, gn1 ), xn

1 ) = o(g, o(g1, x
n
1 ), . . . , o(gn, x

n
1 ))

= o(g, ωg1(xn
1 ), . . . , ωgn(xn

1 )) = ωg(ωg1(xn
1 ), . . . , ωgn(xn

1 ))

= O(ωg, ωg1 , . . . , ωgn)(xn
1 ),

which means that

P (o(g, gn1 )) = O(P (g), P (g1), . . . , P (gn)).

This completes the proof.

Note that the homomorphism P : g 7→ ωg may not be one-to-one, but if a
Menger algebra (G, o) is reductive, then it is one-to-one, and consequently, it is an
isomorphism. Thus the following result is valid.

Corollary 2. If a quasi-self-distributive Menger algebra of rank n is reductive,

then it can be isomorphically represented by self-distributive n-ary operations de-

�ned on some set.

In a similar way we can prove

Theorem 5. Any quasi-associative (quasi-(i, j)-associative, quasi-superassocia-

tive) Menger algebra (G, o) of rank n satisfying (7) can be homomorphically repre-

sented by self-distributive associative (respectively, (i, j)-associative, superassocia-
tive) n-ary operations de�ned on some set.

Problem B. Find necessary and su�cient conditions under which a Menger alge-

bra of rank n can be isomorphically represented by self-distributive n-ary operations

de�ned on some set.

Problem C. Find necessary and su�cient conditions under which a quasi-(i, j)-
associative (quasi-associative, quasi-superassociative) Menger algebra of rank n
satisfying (7) can be isomorphically represented by self-distributive (i, j)-associative
(associative, superassociative) n-ary operations de�ned on some set.
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Retractions of cyclic �nitely supported Cb-sets

Mohammad M. Ebrahimi, Khadijeh Keshvardoost and Mojgan Mahmoudi

Abstract. The monoid Cb of name substitutions originated by Pitts in name abstraction, and
the notion of a �nitely supported Cb-set appeared in the study of models of homotopy type theory
in the works of Gabbay and Pitts. On the other hand, retracts and retractions play a crucial
role in most branches of mathematics as well as in computer science where partial morphisms
need to be completed. Retracts are the subobjects whose related inclusion morphism have a left
inverse, called retraction.

In this paper, we study the retracts and retractions of cyclic �nitely supported Cb-sets. We

�nd the general de�nition of retractions from a cyclic Cb-set, and give necessary conditions under

which retractions exist. Also, �x-simple retracts of a cyclic Cb-set are characterized. Further,

the cyclic �nitely supported Cb-sets all whose subobjects are retract, are studied. In particular,

we give a necessary condition for a cyclic �nitely supported Cb-set to be retractable.

1. Introduction and preliminaries

The notion of a nominal set was originated by Fraenkel in 1922 and developed by
Mostowski in the 1930s under the name of legal sets. The legal sets were applied
to prove the independence of the axiom of choice with the other axioms (in the
classical Zermelo-Fraenkel (ZF) set theory).

In 2001, Gabbay and Pitts rediscovered those sets in the context of name
abstraction. They called them nominal sets, and applied this notion to properly
model the syntax of formal systems involving variable binding operations (see [5]).

In [10], Pitts generalized the notion of nominal sets, by �rst adding two ele-
ments 0, 1 to D, then generalizing the notion of a �nitary permutation to �nite

substitution, and considering the monoid Cb instead of the group G. Then he
de�ned the notion of a support for Cb-sets, sets with an action of Cb on them, and
invented the notion of �nitely supported Cb-sets, a generalization of nominal sets.
He has shown that the category of �nitely supported Cb-sets is in fact isomorphic
to the category of nominal sets equipped with two families of unary operations
which substitute names (elements of D) by the constants 0 or 1; and the cate-
gory of �nitely supported Cb-sets is a core�ective subcategory of the category of
Cb-sets.

The notion of retractions appears when one can �nd a left inverse (re�ection) for
a morphism. This notion plays a crucial role in many areas of mathematics, such
as homological algebra, topology, ordered algebraic structures, etc. The retracts

2010 Mathematics Subject Classi�cation: 08A30, 18A20, 20B30, 20M30, 20M50, 68Q70.
Keywords: Cb-set, �nitely supported, retract, retractable.
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are also known as complete or partial objects in recursion theory by computer
scientists (see [7]).

On the other hand, we recall from [6] that every Cb-set is a disjoint union of all
its indecomposable sub Cb-sets, where an indecomposable Cb-set is a Cb-set which
can not be written as a disjoint union of non-empty sub Cb-sets. Therefore, to �nd
retractions of a Cb-set, it is su�cient to obtain retractions of its indecomposable
sub Cb-sets. Also, it is known that cyclic �nitely supported Cb-sets are indecom-
posable (see Proposition I.5.8 of [6]). These facts provided our motivation to study
the retracts of cyclic �nitely supported Cb-sets in this paper. First, applying the
characterization of cyclic �nitely supported Cb-sets from [3], and assuming the
existence of retractions from a cyclic Cb-set to its proper sub Cb-sets, we �nd the
possible de�nition of them.

Moreover, using the characterization of cyclic �x-simple �nitely supported Cb-
sets given in [3], we �nd a characterization of retracts of cyclic �nitely supported
Cb-sets. Also, we prove that simple �nitely supported Cb-sets which are �x-simple
with one zero element are retracts of cyclic �nitely supported Cb-sets.

Finally, retractable (the ones all whose subobjects are retract) �nitely sup-
ported Cb-sets are studied; and a necessary condition for cyclic �nitely supported
Cb-sets to be retractable is obtained.

1.1. M-sets

In the following, we recall some notions and facts about M -sets, for a general
monoid M . For more information, see ([2, 6]).

A (left) M -set for a monoid M with identity e is a set X equipped with a
map M × X → X, (m,x)  mx, called an action of M on X, such that ex = x
and m(m′x) = (mm′)x, for all x ∈ X and m,m′ ∈ M . An equivariant map from
an M -set X to an M -set Y is a map f : X → Y with f(mx) = mf(x), for all
x ∈ X,m ∈M .

An element x of an M -set X is called a zero (or a �xed) element if mx = x, for
all m ∈ M . We denote the set of all zero elements of an M -set X by FixX. The
M -set X all of whose elements are zero is called a discrete M -set, or an M -set
with identity action.

An equivalence relation ρ on an M -set X is called a congruence on X if xρx′

implies mxρmx′, for x, x′ ∈ X, m ∈ M . We denote the set of all congruences
on X by Con(X). Also, for x, x′ ∈ X, the smallest congruence on X containing
(x, x′) is denoted by ρ(x, x′). It is in fact, the equivalence relation generated by
{(mx,mx′) | m ∈M}.

A subset Y of an M -set X is a sub M -set (or M -subset) of Y if for all m ∈M
and y ∈ Y we have my ∈ Y . The subset FixX of X is in fact a sub M -set.
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1.2. Cb-sets

Now, we give some basic notions about the monoid Cb, and Cb-sets. For more
information one can see [9, 10].

Let D be an in�nite countable set, whose elements are sometimes called di-

rections (atomic names or data values) and PermD be the group of all permuta-
tions (bijection maps) on D. A permutation π ∈ PermD is said to be �nite if
{d ∈ D | π(d) 6= d} is �nite. Clearly the set PermfD of all �nitary permutations is
a subgroup of PermD.

Also, we take 2 = {0, 1} with 0, 1 6∈ D.

De�nition 1.1. (a) A �nite substitution is a function σ : D → D ∪ 2 for which
Domfσ = {d ∈ D | σ(d) 6= d} is �nite.

(b) If d ∈ D and b ∈ 2, we write (b/d) for the �nite substitution which maps
d to b, and maps identically on other elements of D. Each (b/d) is called a basic

substitution.
(c) If d, d′ ∈ D then we write (d d′) for the �nite substitution that transposes

d and d′, and keeps �xed all other elements. Each (d d′) is called a transposition

substitution.

De�nition 1.2. (a) Let Sb be the monoid whose elements are �nite substitutions,
with the monoid operation given by σ · σ′ = σ̂σ′, where σ̂ : D ∪ 2→ D ∪ 2 maps 0
to 0, 1 to 1, and on D is de�ned the same as σ. The identity element of Sb is the
inclusion ι : D ↪→ D ∪ 2.

(b) Let Cb be the submonoid of Sb satisfying the following injectivity condition:

(∀d, d′ ∈ D), σ(d) = σ(d′) /∈ 2⇒ d = d′.

(c) Take S to be the subsemigroup of Cb generated by basic substitutions. The
members of S are of the form δ = (b1/d1) · · · (bk/dk) ∈ S for some di ∈ D and
bi ∈ 2, and we denote the set {d1, . . . , dk} by D

δ
.

Remark 1.3. (1) Notice that each �nite permutation π on D, can be considered
as a �nite substitution ι ◦ π : D → D ∪ 2. Doing so, throughout this paper, we
consider the group PermfD as a submonoid of Cb, and denote ι ◦ π with the same
notation π.

(2) Let d ∈ D and b ∈ 2. Then, for a �nite permutation π and a basic
substitution (b/d), one can compute that in Cb, π(b/d) = (b/π(d))π and (b/d)π =
π(b/π−1(d)). Then, by induction, we also have:

π(b1/d1) · · · (bk/dk) = (b1/πd1) · · · (bk/πdk)π,

and
(b1/d1) · · · (bk/dk)π = π(b1/π

−1d1) · · · (bk/π−1dk),

for π ∈ Permf(D), d1, · · · , dk ∈ D, and bi ∈ 2, for i = 1, . . . , k.
(3) Let d 6= d′ ∈ D and b, b′ ∈ 2. Then (b/d)(b′/d′) = (b′/d′)(b/d). But,

we see that (1/d)(0/d) = (0/d) and (0/d)(1/d) = (1/d), and hence (1/d)(0/d) 6=
(0/d)(1/d).
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Theorem 1.4. [3] For the monoid Cb, we have:

Cb = Permf(D) ∪ Permf(D)S, Permf(D) ∩ Permf(D)S = ∅.

1.3. Finitely supported Cb-sets

In this subsection, we give some basic notions of �nitely supported Cb-sets needed
in the sequel, some of which are given in [10].

The following de�nition introduces the notion of a, so called, support, which is
the central notion to de�ne �nitely supported Cb-sets.

De�nition 1.5. (a) Suppose X is a Cb-set. A subset Cx ⊆ D supports an element
x of X if, for every σ, σ′ ∈ Cb,

(σ(c) = σ′(c), (∀c ∈ Cx))⇒ σx = σ′x

If there is a �nite (possibly empty) support Cx then we say that x is �nitely

supported.
(b) A Cb-set X all of whose elements has a �nite support, is called a �nitely

supported Cb-set.
We denote the category of all Cb-sets with equivariant maps between them by

SetCb, and its full subcategory of all �nitely supported Cb-sets by SetCb
fs .

Remark 1.6. [3] Suppose that X is a non-empty �nitely supported Cb-set and
x ∈ X \ FixX.

(1) By Remark 1.3(3), it is clear that

{d ∈ D | (0/d)x 6= x} = {d ∈ D | (1/d)x 6= x}.

This set is in fact the least �nite support of x. First notice that, by Lemma 2.4 of
[10], this set is a �nite support for x. Now, let C be a �nite support for x. Then
for any d ∈ D with (0/d)x 6= x, by taking σ = (0/d) and σ′ = ι in the De�nition
1.5(a), we get (0/d)d′ 6= d′, for some d′ ∈ C. So, by the de�nition of (0/d), we
have d = d′, and therefore d ∈ C.

From now on, we call the least �nite support for x the support for x, and denote
it by suppx.

(2) Let δ ∈ S. Then, by (1),

δ x = x if and only if D
δ
∩ suppx = ∅.

(3) Let {d1, . . . , dk} ⊆ suppx. Then,

supp (b1/d1) · · · (bk/dk)x ⊆ suppx \ {d1, . . . , dk},

for any bi ∈ 2 and i = 1, · · · , k.
(4) Let δ ∈ S. Then,

δ x = x if and only if |supp δ x| = |suppx|.
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(5) By (3) and (4), we have

δ x 6= x if and only if |supp δ x| < |suppx|.

(6) Let π ∈ Permf(D). Then, suppπx = π suppx, and so |suppπx| = |πsuppx| =
|suppx|.

(7) X has a zero element.

Remark 1.7. [3] Let X be a �nitely supported Cb-set and x ∈ X. Then,

(1) Sx
.
= {δ ∈ S | δ x = x} is a subsemigroup of S;

(2) S′x
.
= S \ Sx = {δ ∈ S | δ x 6= x} is also a subsemigroup of S;

(3) If δ ∈ S′x then δ x = δ1 x, for some δ1 ∈ S′x with D
δ1
⊆ suppx;

(4) If δ ∈ S′x then πx 6= π′δx, for some π, π′ ∈ Permf(D). Since otherwise, if
πx = π′δx then by Remark 1.6(5,6),

|suppx| = |suppπx| = |suppπ′δx| = |supp δx| < |suppx|

which is impossible.

De�nition 1.8. A cyclic �nitely supported Cb-set X is said to be cyclic, if it is
generated by only one element, that is X = Cbx, for some x ∈ X.

Lemma 1.9. [3] Let Cbx be a cyclic �nitely supported Cb-set. Then,

Cbx = Permf(D)S′x x ∪ Permf(D)x, Permf(D)S′x x ∩ Permf(D)x = ∅.

2. Retractions of cyclic �nitely supported Cb-sets

In this section, we study retracts and retractions of cyclic �nitely supported Cb-
sets. We �nd the general de�nition of a retraction, and give some necessary and
su�cient conditions for a sub Cb-set of a cyclic �nitely supported Cb-set to be a
retract.

First, we give the de�nition of a retraction.

Let X be an object of a category C. A subobject J of X is called a retract of
X if there exists a morphism g : X → J , called a retraction, such that g|

J
= id

J
.

Notice that, for a proper sub Cb-set Cbx′ of Cbx, Cbx′ is a retract of Cbx if
and only if Cbδ0x is a retract of Cbx, where x′ = πδ0x, for some π ∈ Permf(D)
and δ0 ∈ S′x.

Lemma 2.1. Suppose πδ0x is a non-zero element in Cbx, where π ∈ Permf(D)
and δ0 ∈ S′x . If there exists a retraction ϕ from Cbx to Cbδ0x then

(i) ϕ(x) ∈ Permf(D)δ0x;

(ii) ϕ(x) = δ0x.
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Proof. (i) We have ϕ(x) ∈ Cbδ0x. So by Lemma 1.9, ϕ(x) ∈ Permf(D)S′
δ0x
δ0x or

ϕ(x) ∈ Permf(D)δ0x. We show ϕ(x) ∈ Permf(D)δ0x. On the contrary, let ϕ(x) ∈
Permf(D)S′

δ0x
δ0x. Then, ϕ(x) = π′δ′δ0x where δ′ ∈ S′

δ0x
and π′ ∈ Permf(D).

Since ϕ is a retraction and δ0x ∈ Cbδ0x, we get

δ0x = ϕ(δ0x) = δ0ϕ(x) = δ0π
′δ′δ0x.

Now, by Remark 1.6(5,6),

|supp δ0x| = |supp δ0π
′δ′δ0x| < |supp δ0x|,

which is impossible.
(ii) By (i), we get ϕ(x) ∈ Permf(D)δ0x. So there exists π′ ∈ Permf(D) such

that ϕ(x) = π′δ0x. Since ϕ is a retraction and δ0x ∈ Cbδ0x, we get

δ0x = ϕ(δ0x) = δ0ϕ(x) = δ0π
′δ0x = π′δ′0δ0x,

where the last equality is true by Remark 1.3(2). Now, δ′0 ∈ Sδ0x , since otherwise,
if δ′0 ∈ S′δ0x then by Remark 1.6(5,6),

|supp δ0x| = |suppπ′δ′0δ0x| = |supp δ′0δ0x| < |supp δ0x|,

which is impossible. Thus, δ′0 ∈ Sδ0x and so δ0x = π′δ′0δ0x = π′δ0x. Therefore,
ϕ(x) = δ0x.

Corollary 2.2. Suppose πδ
0
x is a non-zero element of Cbx, for some π ∈ Permf(D)

and δ0 ∈ S′x. Let ϕ : Cbx→ Cbδ0x be a retraction. Then,

(i) If δx ∈ Cbδ0x then δδ
0
x = δx;

(ii) If πδ0x = π′δ′
0
x then δ

0
x = δ′

0
x.

Proof. (i) Since ϕ is a retraction, by Lemma 2.1, we get

δx = ϕ(δx) = δϕ(x) = δδ0x.

(ii) Let πδ0x = π′δ′
0
x. Then δ′

0
x ∈ Cbδ0x and |supp δ′

0
x| = |supp δ0x|. Since

δ′
0
x ∈ Cbδ0x, by (i) δ′

0
x = δ′

0
δ0x. So supp δ′

0
x ⊆ supp δ0x. Now, since |supp δ′

0
x| =

|supp δ
0
x| and supp δ0x is �nite, we get supp δ′

0
x = supp δ

0
x. Thus for all d ∈ D

δ′0
,

we have d /∈ supp δ0x and so δ′
0
x = δ′

0
δ0x = δ0x.

Remark 2.3. Let Cbδ0x be a proper sub Cb-set of Cbx. Then,
(1) B = {πδx ∈ Permf(D)S′xx | Dδ

∩ supp δ0x 6= ∅} is a proper sub Cb-set of
Cbx.

(2) If a ∈ B then a = πδx, for some π ∈ Permf(D) and δ ∈ S′
δ0x

. This

is because, since δ x ∈ B, we get D
δ
∩ supp δ0x 6= ∅. So by Remark 1.6(2),

δδ0x 6= δ0x. Therefore, δ ∈ S′δ0x .
(3) If a ∈ Cbx \ B then a = πx, for some π ∈ Permf(D) or a = πδx, for some

π ∈ Permf(D) and δ ∈ S
δ0x

. Notice that, if δx /∈ B then D
δ
∩ suppx = ∅, and so

by Remark 1.6(2), δδ0x = δ0x. Thus δ ∈ Sδ0x .
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Theorem 2.4. Let Cbδ0x be a proper sub Cb-set of Cbx. Then, Cbδ0x is a retract

of Cbx if and only if the assignment ϕ : Cbx→ Cbδ0x de�ned by

ϕ(a) =

{
πδδ0x, if a = πδx ∈ B
πδ0x, if a = πx or πδx /∈ B

is a map retraction, where B is considered as in Remark 2.3.

Proof. To prove the non-trivial part, let Cbδ0x be a retract of Cbx and ψ : Cbx→
Cbδ0x be a retraction. Then, by Lemma 2.1, ψ(x) = δ0x. Let a = a′. Then, we
show ϕ(a) = ϕ(a′).

Case (1): Suppose a = a′ ∈ B. By Remark 2.3(2), πδx = a = a′ = π′δ′x, for
some π, π′ ∈ Permf(D) and δ, δ′ ∈ S′

δ0 x
. Now, ψ(a) = ψ(a′) and so

ϕ(a) = πδδ0x = πδψ(x) = ψ(πδx) = ψ(a) = ψ(a′) = ψ(π′δ′x)
= π′δ′ψ(x) = π′δ′δ0x = ϕ(a′).

Case (2): Suppose a = a′ /∈ B. By Remark 2.3(3), a = πx, for some π ∈
Permf(D) or a = πδx, for some π ∈ Permf(D) and δ ∈ S

δ0x
. Then, by Remark

1.7(4), we have the following subcases;
Subcase (2a): If πx = a = a′ = π′x then

ϕ(a) = πδ0x = πψ(x) = ψ(πx) = ψ(a) = ψ(a′) = ψ(π′x) = π′ψ(x)
= π′δ0x = ϕ(a′).

Subcase (2b): If πδx = a = a′ = π′δ′x then δδ0x = δ0x and so

ϕ(a) = πδ0x = πδδ0x = πδψ(x) = ψ(πδx) = ψ(a) = ψ(a′) = ψ(π′δ′x)
= π′δ′ψ(x) = π′δ′δ0x = π′δ0x = ϕ(a′).

Now, we show ϕ is equivariant and ϕ |
Cbδ0x

= id |
Cbδ0x

. Suppose a ∈ Cbx and
σ1 ∈ Cb. We have the following cases:

Case (a): Let a ∈ B. Then, σ1a ∈ B and by Remark 2.3(2), a = πδx, where
π ∈ Permf(D) and δ ∈ S′

δ0x
. Now,

σ1ϕ(a) = σ1πδδ0x = ϕ(σ1πδx) = ϕ(σ1a).

Case (b): Let a /∈ B. Then, by Remark 2.3(3), a = πx, for some π ∈ Permf(D)
or a = πδx, for some π ∈ Permf(D) and δ ∈ S

δ0x
and by Remark 1.7(4), we have

the following subcases;
Subcase (b1): Let a = πx and σ1 = π1. Then,

σ1ϕ(a) = π1ϕ(πx) = π1πδ0x = ϕ(π1πx) = ϕ(π1a) = ϕ(σ1a).

Subcase (b2): Let a = πδx and σ1 = π1. Then,

σ1ϕ(a) = π1ϕ(πδx) = π1πδ0x = ϕ(π1πδx) = ϕ(π1a) = ϕ(σ1a).
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Subcase (b3): If a = πx and σ1 = π1δ1 or a = πδx and σ1 = π1δ1 then

σ1ϕ(a) = π1δ1ϕ(a) = π1δ1πδ0x = π1πδ
′
1δ0x.

Now, if σ1a ∈ B then

σ1a = π1δ1πx = π1πδ
′
1x or σ1a = π1δ1πδx = π1πδ

′
1δx,

and so D
δ′1
∩ supp δ0x 6= ∅. Thus ϕ(σ1a) = π1πδ

′
1δ0x = σ1ϕ(a).

Also, if σ1a /∈ B then

π1δ1a = π1δ1πx = π1πδ
′
1x or π1δ1a = π1δ1πδx = π1πδ

′
1δx,

and so D
δ′1
∩ supp δ0x = ∅. Thus δ′1δ0x = δ0x, and so

ϕ(σ1a) = π1πδ0x = π1πδ
′
1δ0x = σ1ϕ(a).

It remains to show ϕ |
Cbδ0x

= id
Cbδ0x

. Let a ∈ Cbδ0x. Then, a = π′δ′δ0x, for
some π′ ∈ Permf(D) and δ′ ∈ S′

δ0x
or a = π′δ0x, for some π′ ∈ Permf(D). Now, if

a = π′δ′δ0x then a ∈ B and so ϕ(a) = π′δ′δ0x = a. Also, if a = π′δ0x then a /∈ B,
and so ϕ(a) = π′δ0x = a.

Now, we recall the following de�nition and theorem from [3].

De�nition 2.5. We call a �nitely supported Cb-set X, �x-simple if its only non-
trivial sub Cb-sets are of the form

⋃
i∈I{θi}, for a set I, and θi ∈ FixX.

If X is a �x-simple Cb-set and FixX = {θ1, . . . , θk}, then we simply call X,
{θ1, . . . , θk}-simple. A {θ}-simple Cb-set is said to be θ-simple or 0-simple.

Theorem 2.6. If X is a non-discrete �x-simple �nitely supported Cb-set, then X
is cyclic and of one of the forms

Permf(D)x ∪ {θ} or Permf(D)x ∪ {θ1, θ2}

where θ, θ1, θ2 ∈ FixX, and |FixX| ≤ 2.

Recall that simple algebras are the one whose only congruences are ∆ and ∇.
Now, using the above theorem, we have:

Lemma 2.7. Let Cbx be a cyclic �nitely supported Cb-set. Then, each simple sub

Cb-set of Cbx is a retract of Cbx.

Proof. Let A be a simple sub Cb-set and θ ∈ FixCbx. Then, by Theorem 6.3 of
[3], A is θ-simple and so by Theorem 2.6, A = Permf(D)x′ ∪ {θ}, where x′ ∈ Cbx.
Take x′ = πδ0x, for some π ∈ Permf(D) and δ0 ∈ S′x. Now, applying Theorem 2.4,
it is su�cient to show that the assignment ϕ mentioned there, is a map. Notice
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that, if πδx ∈ B then D
δ
∩ supp δ0x 6= ∅ and since A is Permf(D)x′ ∪ {θ}, we get

δδ0x = θ. Thus, we have

ϕ(a) =

{
θ, if a ∈ B
πδ0x, if a = πx or πδx /∈ B

To see that it is well-de�ned, assume a = a′. If a = a′ ∈ B, then ϕ(a) = θ = ϕ(a′).
Let a /∈ B. Then, by Remark 2.3(3), a, a′ ∈ {πx, π′x, πδx, π′δ′x}, for some π, π′ ∈
Permf(D) and δ, δ′ ∈ S

δ0x
. So by Remark 1.7(4), we have the following cases:

Case (1): πx = a = a′ = π′x.

Case (2): πδx = π′δ′x.

In each case, we must show πδ0x = π′δ0x. To show this, by Theorem 6.4 of [3],
it is su�cient to show suppπδ0x = suppπ′δ0x. Notice that, supp δ0x ⊆ supp δx,
for all δ ∈ S

δ0x
. This is because, if there exists some d ∈ supp δ0x \ supp δx then

(0/d)δx = δx, and so δx ∈ B, which is impossible. We prove case (2). The
other case is proved similarly. Suppose πδx = π′δ′x. Let d′ ∈ suppπδx0. Then,
π−1d′ ∈ supp δ0x, and so

π(0/π−1d′)δx = (0/d′)πδx = (0/d′)π′δ′x = π′(0/π′−1d′)δ′x.

Now, since π−1d′ ∈ supp δ0x, we get (0/π−1d′)δx ∈ B, and so (0/π′−1d′)δ′x ∈ B.
Therefore, π′−1d′ ∈ supp δ0x. Similarly suppπ′δ0x ⊆ suppπδ0x, and so the result
holds.

Remark 2.8. Let Cbx0 be a non-discrete �x-simple sub Cb-set of Cbx with two
zero elements θ1, θ2 ∈ FixCbx0. Then, by Theorem 2.6,

Cbx0 = Permf(D)δ0x ∪ {θ1, θ2}.

Take supp δ0x = {d}, (0/d)δ0x = θ1, and (1/d)δ0x = θ2. Then,

(1) the sets

B0 = {πδx | δ(d) = 0, δ ∈ S′x, π ∈ Permf(D)}

and

B1 = {πδx | δ(d) = 1, δ ∈ S′x, π ∈ Permf(D)}

are non-empty sub Cb-sets of Cbx.

(2) δx ∈ B0 ∪B1 if and only if d ∈ D
δ
if and only if D

δ
∩ supp δ0x 6= ∅.

(3) If δx ∈ FixCbx then δx ∈ B0 ∪ B1. This is because, supp δx = ∅ and
so d /∈ supp δx. Thus (b/d)δx = δx. Now, since (b/d)δx ∈ B0 ∪ B1, we get
δx ∈ B0 ∪B1.

(4) Let a /∈ B0 ∪ B1. Then, a = πδx, for some δ ∈ S
δ0x

and π ∈ Permf(D) or
a = πx, for some π ∈ Permf(D).
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Theorem 2.9. Let Cbx0 = Permf(D)δ0x ∪ {θ1, θ2} be a non-discrete �x-simple

sub Cb-set of Cbx with two zero elements θ1, θ2 ∈ FixCbx0, and supp δ0x = {d},
(0/d)δ0x = θ1, (1/d)δ0x = θ2. Then,

Cbδ0x is a retract of Cbx if and only if for all δ ∈ Cb, δx ∈ FixCbx implies

d ∈ D
δ
.

Proof. Let ϕ : Cbx→ Cbδ0x be a retraction. Then, by Lemma 2.1, ϕ(σx) = σδ0x,
for σ ∈ Cb. Suppose δx ∈ FixCbx. We show d ∈ D

δ
. On the contrary, if

d /∈ D
δ
then D

δ
∩ supp δ0x = ∅, and so by Remark 1.6(2), δδ0x = δ0x. Also,

notice that since δx ∈ FixCbx, we get supp δx = ∅, and so d /∈ supp δx. Thus
δx = (0/d)δx = (1/d)δx ∈ B. Now,

θ1 = (0/d)δ0x = (0/d)δδ0x = ϕ((0/d)δx) = ϕ(δx) = ϕ((1/d)δx)
= (1/d)δδ0x = (1/d)δ0x = θ2,

which is impossible.
To prove the converse, we show that the assignment ϕ mentiones in Theorem

2.4, is a map. Notice that, if a /∈ B0 ∪ B1, then by Remark 2.8(4), a = πx or
a = πδx, for some π ∈ Permf(D) and δ ∈ S

δ0x
. Thus, we have

ϕ(a) =

 θ1, if a ∈ B0

θ2, if a ∈ B1

πδ0x, if a /∈ B0 ∪B1

To show that ϕ is well-de�ned, let a = a′. Then, supp a = ∅ or supp a 6= ∅.
If supp a = ∅ then by Remark 2.8, a ∈ B0 ∪ B1, and so a = π′δ′x, for some
π′ ∈ Permf(D) and δ′ ∈ S

δ0x
. Now, by the assumption, d ∈ D

δ′ . Thus, if δ
′(d) = 0

then a′ = a ∈ B0, and so ϕ(a) = ϕ(a′) = θ1. Also, if δ
′(d) = 1 then a′ = a ∈ B1,

and so ϕ(a) = ϕ(a′) = θ2.
In the case that supp a 6= ∅ and a = a′ ∈ B0 ∪ B1, it is clear that the result

holds.
Let a /∈ B0 ∪ B1. Then, by Remark 2.8, a, a′ ∈ {πx, π′x, πδx, π′δ′x}, for some

π, π′ ∈ Permf(D) and δ, δ′ ∈ S
δ0x

. So by Remark 1.7(4), we have two following
cases:

Case (1): πx = a = a′ = π′x;
Case (2): πδx = π′δ′x.
In each case, we must show πδ0x = π′δ0x. To show this, it is su�cient to prove

that suppπδ0x = suppπ′δ0x. Notice that, supp δ0x ⊆ supp δx, for all δ ∈ S
δ0x

.
This is because, if d /∈ supp δx then (0/d)δx = δx and so δx ∈ B0 ∪ B1, which
is impossible. We prove case (2). The other case is proved similarly. Suppose
πδx = π′δ′x. Let d′ ∈ suppπδx0. Then, π

−1d′ ∈ supp δ0x, and so

π(0/π−1d′)δx = π′(0/π′−1d′)δ′x.

Now, since π−1d′ ∈ supp δ0x, we have (0/π−1d′)δx ∈ B0∪B1, and so (0/π′−1d′)δ′x ∈
B0 ∪B1. Therefore, π

′−1d′ ∈ supp δ0x. Similarly suppπ′δ0x ⊆ suppπδ0x, and the
proof is complete.
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Theorem 2.10. Let Cbδ0x be a non-zero and proper sub Cb-set of Cbx. Also, let

the following conditions hold:

(i) if d ∈ supp δ0x then (b/d)x ∈ Cbδ0x,
(ii) if Permf(D)(b1/d1)δ0x ∩ Permf(D)(b2/d2)δ0x 6= ∅, then d1 = d2.

Then, Cbδ0x is a retract of Cbx if and only if for all δx ∈ Cbδ0x we have δx =
δδ0x.

Proof. If Cbδ0x is a retract of Cbx then applying Corollary 2.2, for all δx ∈ Cbδ0x
we have δx = δδ0x. To prove the converse, let δx = δδ0x, for all δx ∈ Cbδ0x.
Then to get the result, using Theorem 2.4, we show that ϕ is a map. First, we
prove

a ∈ B ⇒ a ∈ Cbδ0x (∗).

Since a ∈ B, a = πδx, for some π ∈ Permf(D) and δ ∈ S′
δ0x

. So D
δ
∩ supp δ0x 6= ∅.

Thus there exists some d ∈ D with d ∈ D
δ
∩ supp δ0x, and so by (i), δx ∈ Cbδ0x.

Let a = a′ ∈ B. Then, πδx = a = a′ = π′δ′x, for some π, π′ ∈ Permf(D) and
δ, δ′ ∈ S′

δ0x
. So by (∗), a, a′ ∈ Cbδ0x. Thus a = π1δ1δ0x and a′ = π2δ2δ0x, for

some π1, π2 ∈ Permf(D) and δ1, δ2 ∈ S′δ0x . Now,

ϕ(a) = ϕ(πδx) = ϕ(π1δ1δ0x) = π1δ1δ0δ0x = π1δ1δ0x = a = a′ = π2δ2δ0x
= π2δ2δ0δ0x = ϕ(π2δ2δ0x) = ϕ(a′).

Let a = a′ /∈ B. Then, we have the following cases:
Case (1): πx = a = a′ = π′x.
Case (2): πδx = a = a′ = π′δ′x, for some π, π′ ∈ Permf(D) and δ, δ′ ∈ S′x.

In each case, we show πδ0x = π′δ0x. We prove case (1). The other case is
proved similarly. Let d ∈ supp δ0x. Then (b/πd)πx = (b/πd)π′x. So π(b/d)x =
π′(b/π′−1πd)x. Since d ∈ supp δ0x, by (i), we get (b/d)x ∈ Cbδ0x. So (b/π′−1πd)x ∈
Cbδ0x, and we have

π(b/d)δ0x = π(b/d)x (by the assumption)
= π′(b/π′−1πd)x
= π′(b/π′−1πd)δ0x (by the assumption).

Now, if π′−1πd /∈ supp δ0x then π(b/d)δ0x = π′δ0x, which is impossible, since in
this case, by Lemma 3.4 of [3], |supp (b/d)δ0x| < |supp δ0x|. Therefore π′−1πd ∈
supp δ0x, and so by (ii), π

′−1πd = d. Thus for all d ∈ supp δ0x, we have π
′−1πd = d

which implies that π′−1πδ0x = δ0x.

Theorem 2.11. Let Cbx be a cyclic �nitely supported Cb-set and Cbδ0x be a

proper sub Cb-set such that for all z, z′ ∈ Cb δ0x, supp z = supp z′ implies z = z′.
Also, suppose for all δ, δ′ ∈ S′x with Permf(D)δ x ∩ Permf(D)δ′ x 6= ∅ we have

|D
δ
∩ supp δ0x| = |D

δ′ ∩ supp δ0x|. Then, there exists a retraction from Cbx to

Cbδ0x.
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Proof. Applying Theorem 2.4, we show that ϕ is a map. If a = a′ /∈ B then by
Remark 2.8, we have the following cases:

Case (1) πx = a = a′ = π′x.
Case (2) πδx = a = a′ = π′δ′x, for some π, π′ ∈ Permf(D) and δ, δ′ ∈ S′x.

In each case, we must show πδ0x = π′δ0x. By the assumption, it is su�cient
to show that suppπδ0x = suppπ′δ0x. We prove case (1). The other case is
proved similarly. Let d ∈ suppπδ0x. Then (b/d)πx = (b/d)π′x. So π(b/π−1d)x =
π′(b/π′−1d)x. Since π−1d ∈ supp δ0x, by the assumption, π′−1d ∈ supp δ0x, and so
d ∈ sppπ′δ0x. Similarly, suppπ′δ0x ⊆ suppπδ0x. Thus suppπδ0x = suppπ′δ0x,
and so by the assumption, πδ0x = π′δ0x.

Now, suppose a = a′ ∈ B. Then, a = πδx and a′ = π′δ′x, for some π, π′ ∈
Permf(D) and δ, δ′ ∈ S′

δ0x
. We show that suppπδδ0x = suppπ′δ′δ0x, and so

by the assumption, πδδ0x = π′δ′δ0x. First, notice that supp δδ0x ⊆ supp δ x.
To show this, suppose d ∈ supp δδ

0
x. So d ∈ supp δ

0
x. If d /∈ supp δ x, then

(b/d)δ x = δ x, which is impossible. Let d ∈ suppπδδ0x. Then, d ∈ suppπδx.
Now, π(0/π−1d)δx = (0/d)πδx = (0/d)π′δ′x = π′(0/π′−1d)δ′x. Thus by the
assumption, π′−1d ∈ supp δ0x. Now, if d /∈ suppπ′δ′δ0x then π′(0/π′−1d)δ′δ0x =
(0/d)π′δ′δ0x = π′δ′δ0x, which is a contradiction.

Theorem 2.12. Let Z be a �nitely supported Cb-set, and Y = Cbx ∪ Z, where
Cbx ∩ Z = ∅ or Cbx ∩ Z = {θ} for θ ∈ FixCbx ∩ FixZ. Then, there exists a

retraction from Y to Cbx.

Proof. Let i : Cbx ↪→ Y be the inclusion map and θ ∈ Cbx, which exists by
Remark 1.6(7). Then, g : Y → Cbx which is de�ned by

g(z) =

{
z if z ∈ Cbx
θ if z ∈ Z

is a retraction.

Here, to have a better scenery, we summarize the results of this section. In
Lemma 2.1, assuming the existence of a retraction from Cbx to a sub Cb-set, we
found some necessary conditions to have a retraction. We gave a characterization
of retracts of cyclic �nitely supported Cb-sets in Theorem 2.4. In Lemma 2.7,
we showed that all simple sub Cb-sets of a cyclic �nitely supported Cb-sets are
retracts. Further, in Theorem 2.9, a su�cient and necessary condition for a �x-
simple �nitely supported Cb-set with two zero elements is stated to make it into
a retract of a cyclic Cb-set.

3. Retractable �nitely supported Cb-sets

In this section, we consider retractable cyclic �nitely supported Cb-set.

De�nition 3.1. A �nitely supported Cb-set X is called retractable if for every
non-empty sub Cb-set Y of X, there exists a retraction from X to Y .
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Example 3.2. (1) Discrete Cb-sets are retractable. The converse is not correct.
(2) Each �x-simple Cb-set with a unique zero is retractable.

Remark 3.3. Every sub Cb-set of a retractable Cb-set is retractable.

Lemma 3.4. A retractable cyclic �nitely supported Cb-set has a unique zero.

Proof. Take X = Cbx, for some x ∈ X. If suppx = ∅ then X is a singleton, and
so the result holds. Suppose suppx 6= ∅. By Remark 1.6(7), X has a zero element.
We show X has a uniuqe zero element. On the contrary, suppose θ1 6= θ2 ∈ FixX.
Since X is retractable, there exists an equivariant map f : X → {θ1, θ2} with fi =
id, where i : {θ1, θ2} ↪→ X is an inclusion arrow. Now, f(x) ∈ {θ1, θ2}. If f(x) =
θ1 then f(Cbx) ⊆ {θ1}. In particular, θ2 = f(θ2) = θ1, which is impossible.
Similarly, f(x) = θ2 is impossible. Thus X has a unique zero element.

Lemma 3.5. Every non-trivial cyclic sub Cb-set of a non-discrete retractable

Cb-set X has a unique in�nite θ-simple sub Cb-set.

Proof. Let Cbx be a non-trivial sub Cb-set of X. Then, by Remark 3.3, Cbx is
retractable, and so by Lemma 3.4, Cbx has a unique zero θ. Also, by Lemma 7.6
of [3], Cbx has a θ-simple sub Cb-set, say B. Now, if B,B′ are two θ-simple sub
Cb-sets of Cbx then B ∩B′ = {θ} or B = B′. Suppose B ∩B′ = {θ}. Since Cbx
is retractable, there exists a retraction f : Cbx → B ∪ B′, which is impossible,
because f(x) ∈ B or f(x) ∈ B′, and so f(Cbx) ⊆ B or f(Cbx) ⊆ B′. Now, since
f is a retraction, we get f(B ∪ B′) = B ∪ B′, and so B ∪ B′ ⊆ B. Thus B′ ⊆ B,
which is impossible.

Theorem 3.6. Let Cbx = Permf(D)x ∪ A, where A = Permf(D)δ0x ∪ {θ} is a

simple sub Cb-set of X, FixCbx = {θ} and δ0 ∈ S′x. Then,

(i) the non-empty sub Cb-sets of Cbx are {θ}, A, and Cbx;
(ii) Cbx is retractable;

(iii) (b/d)x = θ, for all d ∈ supp δ0x.

Proof. (i) Let C be a non-empty non-trivial proper sub Cb-set of Cbx. Then
x /∈ C, and so C ⊆ A. Now, since δ0x ∈ C, A ⊆ C, and so C = A.

(ii) It is su�cient to show that A is a retract of Cbx. Applying Theorem 2.4,
we show that ϕ : Cbx→ A is a map. First, we show ϕ = ψ, where

ψ(a) =

{
a, if a ∈ Cbδ0x
πδ0x, if a /∈ Cbδ0x

Let a ∈ A. Then, a = θ = (0/d)δ0x, where d ∈ supp δ0x or a = πδ0x, for some
π ∈ Permf(D). If a = θ = (0/d)δ0x then θ ∈ B, and so ϕ(θ) = θ = ψ(θ). Also, if
a = πδ0x then a /∈ B, and so

ϕ(πδ0x) = πδ0x = ψ(πδ0x).
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Let a /∈ A. Then, a = πx, for some π ∈ Permf(D), and so a /∈ B. Thus ϕ(a) =
πδ0x = ψ(a).

Now, we show that ψ is well-de�ned. Let a = a′ /∈ A = Cbδ0x. Then πx =
a = a′ = π′x, for some π, π′ ∈ Permf(D). Take π′−1π = π1. We must show that
π1δ0x = δ0x. First, notice that, since A is simple, it is su�cient to show that
suppπ1δ0x = supp δ0x. To prove this, let d ∈ suppπ1δ0x, then d ∈ suppπ1x, and
so (0/d)x = (0/d)π1x = π1(0/π−11 d)x. Now, since π−11 d ∈ supp δ0x, (0/π−1d)x ∈
B, and so (0/d)x ∈ B. Thus d ∈ supp δ0x. Similarly, supp δ0x ⊆ suppπ1δ0x, and
so suppπ1δ0x = supp δ0x.

Now, since ψ is a map, we get that ϕ is a retraction.
(iii) Let d ∈ supp δ0x. Then, Cb(b/d)x is a proper sub Cb-set of Cbx, for

b ∈ 2. Since otherwise, if Cbx = Cb(b/d)x then x = σ(b/d)x, and so by Remark
2.4(4) of [3], |suppx| = |suppσ(b/d)x| ≤ |supp (b/d)x| < |supp (b/d)x|, which is
impossible. Therefore, Cb(b/d)x = A or Cb(b/d)x = {θ}, and so (b/d)x ∈ A.
Since Cbx is retractable, there exists a retraction ϕ : Cbx→ A. Applying Lemma
2.1(ii), ϕ(x) = δ0x, (b/d)x = ϕ((b/d)x) = (b/d)δ0x = θ.
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The Cayley graph of commutative ring

on triangular subsets

Kazem Hamidizadeh and Gholamreza Aghababaei

Abstract. Let R be a commutative ring with nonzero identity, and T be a triangular subset of

Rn. We investigate the structure of the Cayley graph TCay(Rn, T ∗), where T ∗ = T \ {0} is the
triangular subset of Rn.

1. Introduction

The investigation of algebraic structures of graphs is a very large and growing
area of research. In particular, Cayley graphs and their generalizations have been
a main topic in algebraic graph theory (see [1], [2], [3], [4]). Several other classes
of graphs associated with algebraic structures, such as power graph, total graph
and zero divisor graph, have been investigated in [5] and [6].

Let R be a commutative ring with nonzero identity, Ln(R) be the set of all
lower triangular n × n matrices, and U be a subset of Rn, where n is a positive
integer. We say that U is a triangular subset of Rn if the following condition holds:

for all (u1, . . . , un) ∈ U , A ∈ Ln(R) and (w1, . . . , wn) ∈ Rn,

if A[(u1, . . . , un)]T = [w1, . . . , wn]T , then (w1, . . . , wn) ∈ U.

If T be a triangular subset of Rn, then for every (x1, . . . , xn) ∈ T , we have
Rx1 × . . . × Rxn ⊆ T . Hence T =

⋃
i∈Ω unj=1Iij , where Ii1 ⊆ . . . ⊆ Iin, for every

i ∈ Ω.
Let R be an arbitary commutative ring and T be a triangular subset of Rn.

In this paper, we study the Cayley graph TCay(Rn, T ∗), which is an undirected
graph with vertex set Rn, and two distinct vertices (x1, . . . , xn) and (y1, . . . , yn) are
adjacent if and only if (x1 − y1, . . . , xn − yn) ∈ T ∗. For simplicity our notations,
we denote the graph TCay(Rn, T ∗) by TCay(Rn). We study the structure of
TCay(Rn), in the cases that T is closed under addition and T is not closed under
addition. In sections 2 and 3, we investigate the diameter and the girth of the
TCay(Rn), where the proofs of the results in these two sections are similar to that
in [7]. In section 4, we investigate the planarity of graph TCay(Rn).

Now, we recall some de�nitions and notations on graphs. We use the standard
terminology of graphs in [9]. LetG be a simple graph. We say thatG is connected if

2010 Mathematics Subject Classi�cation: 05C10, 13A15.
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there is a path between any two distinct vertices of G, otherwise G is disconnected.
Also, we say that G is totally disconnected if no two vertices of G are adjacent. For
vertices x and y ofG, we use the notation x ∼ y to denote that x and y are adjacent.
Also, the length of a shortest path from x to y is denoted by d(x, y) if a path from x
to y exists. Also we de�ne d(x, y) = 0, and d(x, y) =∞ if there is no path between
x and y. The diameter of G is diam(G) = sup{d(x, y) : x, y ∈ V (G)}. The girth

of G, denoted by gr(G), is length of a smallest cycle in G (if G contains no cycles,
then gr(G) = ∞). A graph G is said to be complete bipartite if the vertices of G
can be partitioned into two disjoint sets V1, V2 such that no two vertices in any V1

or V2 are adjacent, but for every u ∈ V1, v ∈ V2, the vertices u and v are adjacent.
Then we use the symbol Km,n for the complete bipartite graph where the cardinal
numbers of V1 and V2 are m,n, respectively. A graph with n vertices in which
each pair of distinct vertices is joined by an edge is called a complete graph, and it
is denoted by Kn. A graph G is said to be planar if it can be drawn in the plane
so that its edges intersect only at their ends. A subdivision of a graph is any graph
that can be obtained from the original graph by replacing edges by paths.

We investigate this graph in case that n > 2. First, assume that T is closed
under addition.

2. The case that T is closed under addition

The proofs of the following theorems are similar to that in [7], and hence we omit
the proofs.

Theorem 2.1. Let R be a commutative ring and T be a triangular subst of Rn.
Then TCay(T ) is disjoint from TCay(Rn \ T ).

Proof. This is clear according to the de�nitions.

Theorem 2.2. Let R be a commutative ring, T be a triangular subset of Rn,
which is closed under addition, |T | = α and |Rn/T | = β. Then TCay(T ) is a

complete graph Kα and TCay(Rn \ T ) is the union of β − 1 disjoint Kα.

Theorem 2.3. Let R be a commutative ring, T be a triangular subset of Rn that

closed under addition, then the following statements hold.

(1) TCay(Rn \ T ) is complete if and only if Rn/T ∼= Z2.

(2) TCay(Rn \ T ) is connected if and only if Rn/T ∼= Z2.

The following corollary follows from Theorems 2.1 and 2.2.

Corollary 2.4. Let R be a commutative ring, T be a triangular subset of Rn that

closed under addition, then the following statements hold.

(1) diam(TCay(Rn \ T )) = 1 if and only if Rn/T ∼= Z2 and | T |> 2. Otherwise

diam(TCay(Rn \ T )) =∞.
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(2) gr(TCay(Rn \ T )) = 3 if and only if |T | > 3. Otherwise gr(TCay(Rn\T ))
=∞.

(3) gr(TCay(T )) = 3 if and only if |T | > 3. Otherwise gr(TCay(T )) =∞.

(4) diam(TCay(R)) = ∞, and gr(TCay(R)) = 3 if and only if |T | > 3, other-
wise gr(TCay(R)) =∞.

3. The case that T is closed under addition

The following results and their proofs are analogous to some of the results in [7].

Theorem 3.1. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition. Then the following statements hold.

(1) TCay(T ) is connected and diamTCay(T ) = 2.

(2) The graphs TCay(T ) and TCay(Rn \ T ) are not disjoint.

(3) If TCay(Rn \ T ) is connected, then so is TCay(Rn).

Proof. (1). Let (x1, . . . , xn) ∈ T . Then (x1, . . . , xn) is adjacent to (0, . . . , 0).
Thus (x1, . . . , xn) ∼ (0, . . . , 0) ∼ (y1, . . . , yn) is a path in TCay(T ) of length two
between any two distinct vertices (x1, . . . , xn), (y1, . . . , yn) ∈ T ∗. Moreover there
are nonzero distinct vertices (x1, . . . , xn), (y1, . . . , yn) ∈ T that are not adjacent,
because U is not closed under addition. Therefore diamTCay(T ) = 2.

(2). Since U is not closed under addition, there are nonzero distinct vertices
(x1, . . . , xn), (y1, . . . , yn) ∈ T such that (x1, . . . , xn) + (y1, . . . , yn) ∈ Rn \ T . We
have (x1, . . . , xn) ∈ T is adjacent to (x1, . . . , xn) + (y1, . . . , yn) ∈ Rn \ T because

((x1, . . . , xn) + (y1, . . . , yn))− (y1, . . . , yn) = (x1, . . . , xn) ∈ T .

(3). This follows from (1) and (2).

Theorem 3.2. Let R be a commutative ring and T be a triangular subset of

Rn that is not closed under addition. Then TCay(R) is connected if and only if

〈T 〉=Rn.

Proof. Suppose that TCay(Rn) is connected. Hence there is a path

(0, . . . , 0) ∼ (x1,1, . . . , x1,n) ∼ · · · ∼ (xk,1, . . . , xk,n) ∼ (1, . . . , 1)

from (0, . . . , 0) to (1, . . . , 1) in TCay(Rn) . Now clearly we have

(x1,1, . . . , x1,n), (x2,1 − x1,1, . . . , x2,n − x1,n), . . . , (1− xk,1, . . . , 1− xk,n) ∈ T .

Hence (1, . . . , 1) belongs to the set

〈(x1,1, . . . , x1,n),(x2,1 − x1,1, . . . , x2,n + x1,n),. . . ,(1− xk,1, . . . , 1− xk,n)〉 ⊆ 〈T 〉.



70 K. Hamidizadeh and G. Aghababaei

Conversly, suppose that 〈T 〉=Rn. We show that for each (x1, . . . , xn) ∈ T ,
there exists a path in TCay(Rn) from (0, . . . , 0) to (x1, . . . , xn). By assump-
tion, there are elements (x1,1, . . . , x1,n),(x2,1, . . . , x2,n),. . . ,(xk,1, . . . , xk,n) ∈ T
such that

(x1, . . . , xn) = (x1,1, . . . , x1,n)+· · ·+(xk,1, . . . , xk,n).

Let c0 = (0, . . . , 0) and cl = (x1,1, . . . , x1,n) + · · · + (xl,1, . . . , xl,n)) for every
integer l with 1 6 l 6 k. Thus cl − cl−1 = (xl,1, . . . , xl,n) for each integer l with
1 6 l 6 k and thus

(0, . . . , 0) = c0 ∼ c1 ∼ · · · ∼ ck = (x1, . . . , xn)

is a path from (0, . . . , 0) to (x1, . . . , xn) in TCay(Rn) of length at most k. Now, let
(x1, . . . , xn) and (y1, . . . , yn) be in Rn. Then, by the preceding argument, there are
paths from (x1, . . . , xn) to (0, . . . , 0) and (0, . . . , 0) to (y1, . . . , yn) in TCay(Rn).
Hence there is a path from (x1, . . . , xn) to (y1, . . . , yn) in TCay(Rn). Therefore
TCay(Rn) is connected.

Theorem 3.3. Let R be a commutative ring, T be a triangular subset of Rn

which is not closed under addition such that 〈T 〉=Rn. Let k > 2 be the least

integer that R = 〈(x1,1, . . . , x1,n), . . . , (xk,1, . . . , xk,n)〉, for some distinct elements

(x1,1, . . . , x1,n), . . . , (xk,1, . . . , xk,n) ∈ U . Then diam(TCay(Rn)) = k.

Proof. First, we show that any path from (0, . . . , 0) to (1, . . . , 1) has length at least
l. Suppose that

(0, . . . , 0) ∼ (y1,1, . . . , y1,n) ∼ · · · ∼ (yl−1,1, . . . , yl−1,n) ∼ (1, . . . , 1)

is a path from (0, . . . , 0) to (1, . . . , 1) in TCay(Rn) of length l. Thus

(y1,1, . . . , y1,n),(y2,1 − y1,1, . . . , y2,n − y1,n), (1− yl−1,1, . . . , 1− yl−1,n) ∈ T .

Therefore (1, . . . , 1) belongs to

〈(y1,1, . . . , y1,n), (y2,1 − y1,1, . . . , y2,n − y1,n), (1− yl−1,1, . . . , 1− yl−1,n)〉 ⊆ T .

Hence l > k. Now let (a1, . . . , an) and (b1, . . . , bn) be distinct elements in Rn.
We show that there is a path from (a1, . . . , an) to (b1, . . . , bn) in TCay(Rn) with
length at most k. Let (1, . . . , 1) = (x1,1, . . . , x1,n) + · · ·+ (xk,1, . . . , xk,n), for some
(x1,1, . . . , x1,n), . . . , (xk,1, . . . , xk,n) ∈ T . De�ne z0 = (a1, . . . , an) and

zl = (b1 − a1, . . . , bn − an)((x1,1, . . . , x1,n) + · · ·+ (xl,1, . . . , xl,n))(a1, . . . , an)

for every integer l with 1 6 l 6 k. Then

zk+1 − zk = (b1 − a1, . . . , bn − an)(bl+1,1, . . . , bl+1,n) ∈ T

for every integer l with 0 6 l 6 n− 1. Thus

(a1, . . . , an) ∼ z1 ∼ z2 ∼ · · · ∼ zk−1 ∼ (b1, . . . , bn)
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is a path from (a1, . . . , an) to (b1, . . . , bn) in TCay(Rn) with length at most n.
Specially, a shortest path between (0, . . . , 0) and (1, . . . , 1) in TCay(Rn) has length
at most k, and thus diam(TCay(R)) = k.

Corollary 3.4. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition and TCay(Rn) is connected. Then the following

statements hold.

(1) diam(TCay(Rn)) = d((0, . . . , 0), (1, . . . , 1)).

(2) If diam(TCay(Rn)) = k, then diam(TCay(Rn \ T )) > m− 2.

Proof. (1). This follows from Theorem 2.6.
(2). diam(TCay(Rn)) = d((0, . . . , 0), (1, . . . , 1)), by (1). So, let

(0, . . . , 0) ∼ (c1,1, . . . , c1,n) ∼ · · · ∼ (ck−1,1, . . . , ck−1,n) ∼ (1, . . . , 1)

be the shortest path from (0, . . . , 0) to (1, . . . , 1) in TCay(Rn).
Clearly (c1,1, . . . , c1,n) ∈ T ∗. If (ci,1, . . . , ci,n) ∈ T ∗, for 2 6 i 6 k − 1, then we

can construct the path

(0, . . . , 0) ∼ (ci,1, . . . , ci,n) ∼ · · · ∼ (ck−1,1, . . . , ck−1,n) ∼ (1, .., 1)

from (0, . . . , 0) to (1, . . . , 1) in TCay(Rn) which has length less than k, which is a
contradication. Thus (ci,1, . . . , ci,n) ∈ Rn \ T , for 2 6 i 6 k − 1. Hence

(c2,1, . . . , c2,n) ∼ · · · ∼ (ck−1,1, . . .k−1,n) ∼ (1, . . . , 1)

is the shortest path from (c2,1, . . . , c2,n) to (1, . . . , 1) in Rn \ T and it has length
k − 2. Thus diam(TCay(Rn \ T )) > m− 2.

Now, for each X ∈ T , let iX be a positive integer that the �rst nonzero com-
ponent of X is in the iX -th place. Also let

m := min{iX |X ∈ U}.

Lemma 3.5. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition. If m > 2, then

gr(TCay(Rn \ T )) = gr(TCay(T )) = 3.

Proof. If n > 3, since m > 2, then exist (0, . . . , 0, a, 0) ∈ T such that a 6= 0. Hence

(0, . . . , 0, a, 0), (0, . . . , 0, a), (0, . . . , 0)

are adjacent in T. Also

(1, . . . , 1, a, 0), (1, . . . , 1, 0, 0), (1, . . . , 1, 0, a)

are adjacent in Rn \ T.
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If n = 2, since m = 2 and Rn 6= T , then exist (a, 0) in T and (x, y) in
Rn \ T such that a, x 6= 0. Hence (a, 0), (a, a), (0, 0) ∈ T that are adjacent. Also
(x, 0), (x, a), (x+ a, 0) ∈ Rn \T that are adjacent. Therefore gr(TCay(Rn \T )) =
gr(TCay(T )) = 3.

Theorem 3.6. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition. If m = 1, then gr(TCay(Rn \ T )) 6 4 and

gr(TCay(T )) ∈ {3, 4,∞}.

Proof. Since T is traingular subset of Rn, then T =
⋃
i∈γ Ii1 × . . . × Iin, where

Ii1 ⊆ . . . ⊆ Iin and Iij are ideals of R, for 1 6 j 6 n and i ∈ γ. Also T is not
closed under addition and m = 1, therefore i > 2 and T =

⋃
i∈γ{0}× . . . {0}× Iin,

which Iin 6= {0}.
Case 1: If |Ikn|> 3 for some k ∈ γ, then gr(TCay(Rn\T ))= gr(TCay(T ))= 3.
Case 2: If |Iin| 6 2 for every i ∈ γ, then i > 2, since T is not closed under

addition. So, we have two subcases.
Case 2a: If exist nonzero element (0, . . . , 0, a), (0, . . . , 0, b), (0, . . . , 0, c) ∈ T

such that a, b, c 6= 0 and a+ b = c, then

(0, . . . , 0), (0, . . . , 0, a), (0, . . . , 0, a+ b), (0, . . . , 0, b), (0, . . . , 0)

is a cycle of length 4 in TCay(T ). Also

(1, . . . , 1), (1, . . . , 1, a), (1, . . . , 1, a+ b), (1, . . . , 1, b), (1, . . . , 1)

is a cycle of length 4 in TCay(R\T ). Thus gr(TCay(T )) = gr(TCay(R\T )) = 3.
Case 2b: If for every nonzero element (0, . . . , 0, x), (0, . . . , 0, y) ∈ T , then

(0, . . . , 0, x + y) /∈ T . Since i > 2, then exist (0, . . . , 0, a), (0, . . . , 0, b) ∈ T , such
that a, b 6= 0 and a 6= b. Now

(1, . . . , 1, 0) ∼ (1, . . . , 1, a) ∼ (1, . . . , 1, a+ b) ∼ (1, . . . , 1, b) ∼ (1, . . . , 1, 0)

is a cycle of length 4 in TCay(R \ T ), then gr(TCay(R \ T )) 6 4. The graph
TCay(T ) is isomorphic to K1,i. Hence gr(TCay(T )) =∞.

4. Planarity

The graph G is said to be planar if it can be drawn in the plane so that its
edges intersect only at their ends. A subdivision of a graph is any graph that can
be obtained from the original graph by replacing edges by paths. A remarkable
simple characterization of the planar graphs was given by Kuratowski in 1930.
Kuratowski,s Theorem says that a graph is planar if and only if it contains no
subdivision of K5 or K3,3.

Theorem 4.1. Let R be a commutative ring and T be a triangular subset of Rn

which is closed under addition, then TCay(Rn) is planar if and only if |T | 6 4.
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Proof. Let |T | = α and |Rn/T | = β. Since T is closed under addition, then T is
an ideal and by Theorem 2.2, TCay(T ) is a complete graph Kα and TCay(Rn \T )
is the union of β − 1 disjoint Kα. Therefore TCay(Rn) is planar if and only if
|T | 6 4.

Theorem 4.2. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition and m 6 n− 1, then TCay(Rn) is not planar.

Proof. Since T is not an ideal and m 6 n−1, then exist (0, . . . , 0, a, 0), (0, . . . , 0, b)
in T where a 6= b and a, b 6= 0. Then the vertices

(0, . . . , 0), (0, . . . , 0, a, 0), (0, . . . , 0, a), (0, . . . , 0, a, a),

(0, . . . , 0, a+ b, 0), (0, . . . , 0, b), (0, . . . , 0, a+ b), (0, . . . , 0, a+ b, a)

forms a subdivision of K5, hence TCay(Rn) is not planar.

Now, the only remaining case for investigating the planarity of TCay(Rn), is
the case that m = n. If T is not closed under addition, since T is a triangular
subset of Rn, then T =

⋃
i∈γ Ii1 × . . .× Iin, where Ii1 ⊆ . . . ⊆ Iin and i > 2.

Theorem 4.3. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition and m = n and i > 4, then TCay(Rn) is not

planar.

Proof. Since i > 4, there exist ideals of Rn such that {0} × . . . × {0} × {x1},
{0} × . . .× {0} × {x2}, {0} × . . .× {0} × {x3} and {0} × . . .× {0} × {x4} where
x1, x2, x3, x4 6= 0.

Case 1: If xr + xp = xq, for 1 6 r, p, q 6 4, then we may assume that
x1 + x2 = x3. Hence

(0, . . . , 0), (0, . . . , 0, x1), (0, . . . , 0, x2), (0, . . . , 0, x3), (0, . . . , 0, x4),

(0, . . . , 0, x1 + x4), (0, . . . , 0, x2 + x4), (0, . . . , 0, x3 + x4)

forms a subdivision of K5, and so TCay(Rn) is not planar.
Case 2: If xr + xp 6= xq for every 1 6 r, p, q 6 4, then

(0, . . . , 0), (0, . . . , 0, x1), (0, . . . , 0, x2), (0, . . . , 0, x3), (0, . . . , 0, x2 + x3),

(0, . . . , 0, x1 + x3), (0, . . . , 0, x1 + x2), (0, . . . , 0, x1 + x4), (0, . . . , 0, x3 + x4)

(0, . . . , 0, x2 + x3 + x4), (0, . . . , 0, x1 + x2 + x4), (0, . . . , 0, x1 + x2 + x3)

forms a subdivision of K3,3, and so TCay(Rn) is not planar.

Theorem 4.4. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition and m = n and i = 3, then TCay(Rn) is planar

if and only if |T | = 4.
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Proof. Since i = 3 , then

T = ({0} × . . .× {0} × I1) ∪ ({0} × . . .× {0} × I2) ∪ ({0} × . . .× {0} × I3)

where |I1|,|I2| and |I3| are at least 2.
Case 1: If |T | > 4, then there exists |Ii| > 3, for 1 6 i 6 3. Hence, the

elements (0, . . . , 0, a), (0, . . . , 0, 2a), (0, . . . , 0, b), (0, . . . , 0, c) are belong T , where
a, 2a, b, c 6= 0. Therefore

(0, . . . , 0), (0, . . . , 0, a), (0, . . . , 0, 2a), (0, . . . , 0, b), (0, . . . , 0, b), (0, . . . , 0, a+ b),

(0, ..., 0, 2a+b), (0, ..., 0, 2a+c), (0, ..., 0, b+c), (0, ..., 0, a+b+c), (0, ..., 0, 2a+b+c)

forms a subdivision of K3,3, and so TCay(Rn) is not planar.
Case 2: If |T | = 4, then |I1| = |I2| = |I3| = 2. Since

T = ({0} × . . .× {0} × {a}) ∪ ({0} × . . .× {0} × {b}) ∪ ({0} × . . .× {0} × {c}).

Hence the graph TCay(Rn) is the union of some copies of graph as Figure 1.

Figure 1.

The converse statement is clear.

The proof of following lemma is similar to the proof of Lemma 4.1 in [3] and
hence we omit it.

Lemma 4.5. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition, m = n and i = 2. Then

(1) if T contains ideals P1 and P2 with |P1| > 4, |P2| > 2 and |P1 ∪ P2| > 5,
then TCay(Rn) is not planar;

(2) If T contains ideals P1 and P2 with |P1|, |P2| > 3 and |P1 ∪ P2| > 5, then

TCay(Rn) is not planar.

Theorem 4.6. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition, m = n and i = 2, then TCay(Rn) is planar if

and only if |T | 6 4.
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Proof. Let |T | 6 4.
Case 1: |T | = 4, then T contains ideals P1 and P2 with |P1| = 3, |P2| =

2. We may assume that P1 = {(0, . . . , 0), (0, . . . , 0, a), (0, . . . , 0, 2a)} and P2 =
{(0, . . . , 0), (0, . . . , 0, b)}, where a, b 6= 0 and a 6= b. then TCay(Rn) is the union
of some copies of grpah as Figure 2. For every (x1, . . . , xn) ∈ Rn, we have

Figure 2.

x1 = (x1, . . . , xn + a), x2 = (x1, . . . , xn + 2a),

x3 = (x1, . . . , xn), x4 = (x1, . . . , xn + b),

x5 = (x1, . . . , xn + a+ b), x6 = (x1, . . . , xn + 2a+ b).

Therefore TCay(Rn) is planar.
Case 2: If |T | = 4, then T contains ideals P1 and P2 with |P1| = |P2| = 2 and

hence the graph TCay(Rn) is the union of some copies of C4. Therefore |T | = 4
is planar.

The converse statement is a consequence of Theorem 4.5.

Now we have the following corollary.

Corollary 4.7. Let R be a commutative ring and T be a triangular subset of Rn,
then TCay(Rn) is planar if and only if following statment is hod:

(1) T is closed under addition and |T | 6 4.

(2) T not closed under addition, i = 3 and |T | = 4.

(3) T not closed under addition, i = 2 and |T | 6 4.
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There exist semigroups which have bi-bases

with di�erent cardinalities

Dariush Heidari

Abstract. Kummoon and Changphas in Quasigroups and Related Systems 25(2017), 87 − 94
state the following question: "Is it true that for any two bi-bases of a semigroup have the same

cardinality?"

In this paper, we provide a semigroup of order n for every n ≥ 5 which has two bi-bases with

di�erent cardinalities that is shown the answer of question is negative.

1. Introduction

Let S be a semigroup, and A,B non-empty subsets of S. The set product AB of
A and B is de�ned to be the set of all elements ab with a in A and b in B. That is

AB = {ab | a ∈ A, b ∈ B}.
Kummoon and Changphas in [1] introduced the concept which is called bi-base of
semigroups and proved some properties.

De�nition. Let S be a semigroup. A subset B of S is called a bi-base of S if it
satis�es the following two conditions:

(i) S = B ∪BB ∪BSB;
(ii) if A is a subset of B such that S = A ∪AA ∪ASA, then A = B.

2. Main results

In [1] the authors asked the following question:

Is it true that for any two bi-bases of a semigroup have the same cardinality?

We would like to answer the question by providing a semigroup of order n > 5
which has two bi-bases with di�erent cardinalities.
Answer. Let Sn = {1, 2, . . . , n} for every n > 5 and consider the following binary
operation on Sn:

x · y =


1, if x /∈ {n− 2, n} and y /∈ {n− 1, n},
n− 1, if x /∈ {n− 2, n} and y ∈ {n− 1, n},
n− 2, if x ∈ {n− 2, n} and y /∈ {n− 1, n},
n, if x ∈ {n− 2, n} and y ∈ {n− 1, n}.

2010 Mathematics Subject Classi�cation: 20M20
Keywords: Semigroup, bi-base.
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To verify the associativity condition let x, y, z ∈ Sn. Then there are four cases:

Case 1. If x /∈ {n− 2, n} and z /∈ {n− 1, n} then x · (y · z) = 1 = (x · y) · z.

Case 2. If x /∈ {n− 2, n} and z ∈ {n− 1, n} then x · (y · z) = n− 1 = (x · y) · z.

Case 3. If x ∈ {n− 2, n} and z /∈ {n− 1, n} then x · (y · z) = n− 2 = (x · y) · z.

Case 4. If x ∈ {n− 2, n} and z ∈ {n− 1, n} then x · (y · z) = n = (x · y) · z.

In each case x · (y · z) = (x · y) · z so (Sn, ·) is a semigroup.

Now, let A ⊆ {2, 3, . . . , n− 3, n− 1} then AA = ASA = A so every bi-base of
(Sn, ·) contains {2, 3, . . . , n−3, n−1}. Also, if A = {2, n} or A = {n−2, n−1} then
AA = ASA = {1, n− 2, n− 1, n}. Therefore, the subsets B = {2, 3, . . . , n− 3, n}
and B′ = {2, 3, . . . , n − 1} are two bi-bases of (Sn, ·) with cardinality n − 3 and
n− 2, respectively.

Example. Consider n = 5. Then the Cayley table of (S5, ·) is as follows

· 1 2 3 4 5

1 1 1 1 4 4
2 1 1 1 4 4
3 3 3 3 5 5
4 1 1 1 4 4
5 3 3 3 5 5

Also, the subsets B = {2, 5} and B′ = {2, 3, 4} are two bi-bases of (S5, ·).
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A note on hyperideals

in ordered hypersemigroups

Niovi Kehayopulu

Abstract. For an ordered hypersemigroup H, we denote by N the semilattice congruence on H

de�ned by xNy if and only if the hyper�lters of H generated by the elements x and y coincide.

We �rst prove that this is a complete semilattice congruence on H. Moreover, if H is an ordered

hypersemigroup, T a hyper�lter of H and, for a class (z)N of H there is an element in the

intersection T ∩ (z)N , then the class (z)N is a subset of T . From these two statements, the

following two important results can be obtained: (1) If H is an ordered hypersemigroup, then

each hyperideal of some (z)N -class of H does not contain proper hyper�lters. As a consequence,

(2) every prime hyperideal of an ordered hypersemigroup is decomposable into its N -classes.

1. Introduction

The concept of the hypergroup introduced by the French Mathematician F. Marty
at the 8th Congress of Scandinavian Mathematicians in 1933 is as follows: A
hypergroup is a nonempty set H endowed with a multiplication xy such that the
following assertions are satis�ed: (i) xy ⊆ H; (ii) x(yz) = (xy)z; (iii) xH =
Hx = H for every x, y, z ∈ H (see [10]). The �rst researchers who investigate
hypergroups using the de�nition given by Marty were Mittas and Corsini. The
concept of the hypersemigroup follows at the usual way and in the recent years
many groups in the world investigate these two subjects, related subjects as well,
in research programs and hundreds of papers on hypergroups and hypersemigroups
appeared using the de�nition introduced by Marty. As it is no possible to refer
to all of them, we will mention only some, related to the present paper, in the
references such as the [1�5, 7�10, 12]. If H is a hypergroupoid, a relation σ on
H is called congruence if (a, b) ∈ σ and c ∈ H implies (c ◦ a, c ◦ b) ∈ σ and
(a ◦ c, b ◦ c) ∈ σ; in the sense that for every u ∈ c ◦ a and every v ∈ c ◦ b we
have (u, v) ∈ σ and for every u ∈ a ◦ c and every v ∈ b ◦ c we have (u, v) ∈ σ.
A congruence σ on H is called semilattice congruence if, for any a, b ∈ H, we
have (a, a ◦ a) ∈ σ and (a ◦ b, b ◦ a) ∈ σ; in the sense that for every a ∈ H and
every u ∈ a ◦ a we have (a, u) ∈ σ and for every a, b ∈ H, every u ∈ a ◦ b and
every v ∈ b ◦ a, we have (u, v) ∈ σ. An ordered hypergroupoid is an ordered set

2010 Mathematics Subject Classi�cation: 06F99.
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(H,≤) at the same time a hypergroupoid such that a ≤ b implies x ◦ a ≤ x ◦ b
and a ◦ x ≤ b ◦ x for all x ∈ H, in the sense that for every x ∈ H and every
u ∈ x ◦ a there exists v ∈ x ◦ b such that u ≤ v and for every u ∈ a ◦ x there exists
v ∈ b ◦ x such that u ≤ v [5]. A nonempty subset I of an ordered hypergroupoid
is called a hyperideal of H if the following hold: (1) H ◦ I ⊆ I and I ◦ H ⊆ I
and (2) if a ∈ I and b ∈ H such that b ≤ a, then b ∈ I. A hyperideal I of H is
called prime if (1) a, b ∈ H such that a ◦ b ⊆ I implies a ∈ I or b ∈ I and (2)
for every a, b ∈ H, either a ◦ b ⊆ I or (a ◦ b) ∩ I = ∅. A hyperideal (hyper�lter)
T of H is called proper if H is the only hyperideal (hyper�lter) of H. If I is
an ideal of an N -class of a semigroup, then I has no completely prime ideals.
As a consequence every complete prime ideal of a semigroup is a union of N -
classes [11]. In ordered semigroups, we always use the terms prime, weakly prime
instead of completely prime, prime given by Petrich and we will keep the same for
hypersemigroups as well. For an ordered hypersemigroup H, we denote by N the
semilattice congruence on H de�ned by xN y if and only if N(x) = N(y), where
N(a) is the hyper�lter of H generated by the element a of H. The present paper
deals with the decomposition of prime hyperideals of an ordered hypersemigroup
into its N -classes. First of all, the class N is a complete semilattice congruence on
H. If now H is an ordered hypersemigroup, T a hyper�lter of H and z an element
of H that belongs to T ∩ (z)N , then the class (z)N is a subset of T , that yields to
the following two important results: Firstly, if H is an ordered hypersemigroup,
z ∈ H and I a hyperideal of (z)N , then I does not contain proper hyper�lters, as
so does not contain proper prime hyperideals as well. Secondly, if H is an ordered
hypersemigroup and I a prime hyperideal of H, then I is decomposable into its
N -classes. The corresponding results on hypersemigroup (or semigroups) (without
order) can be also obtained as application of the results of the present paper as
each hypersemigroup (semigroup) endowed with the equality relation �=" is an
ordered hypersemigroup (ordered semigroup).

2. Main results

De�nition 2.1. Let (H, ◦,≤) be an ordered hypergroupoid. A nonempty subset
F of H is called a hyper�lter of H if the following assertions are satis�ed:

1) if x, y ∈ F , then x ◦ y ⊆ F ,

2) if x, y ∈ H such that x ◦ y ⊆ F , then x ∈ F and y ∈ F ,

3) for any x, y ∈ H, we have x ◦ y ⊆ F or (x ◦ y) ∩ F = ∅,

4) if x ∈ F and y ∈ H such that y ≥ x, then y ∈ F .

That is, it is a hypersubgroupoid of H satisfying the relations 2�4.

De�nition 2.2. Let H be a hypergroupoid. A nonempty subset T of H is called
a prime subset of H if the following assertions are satis�ed:
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1) if a, b ∈ H such that a ◦ b ⊆ T, then a ∈ T or b ∈ T and

2) for every a, b ∈ H, we have a ◦ b ⊆ T or (a ◦ b) ∩ T = ∅.

De�nition 2.3. Let (H, ◦,≤) be an ordered hypergroupoid. A semilattice con-
gruence σ on H is called complete if a ≤ b implies (a, a ◦ b) ∈ σ, in the sense that
if u ∈ a ◦ b, then (a, u) ∈ σ.
Proposition 2.4. Let (H, ◦,≤) be an ordered hypergroupoid. Then the semilattice

congruence N is a complete semilattice congruence on H.

Proof. Let a ≤ b. Then (a, a◦b) ∈ N . In fact: Let u ∈ a◦b. Then (a, u) ∈ N , that
isN(a) = N(u). Indeed: SinceN(a) 3 a ≤ b, we have b ∈ N(a). Since a, b ∈ N(a),
we have a ◦ b ⊆ N(a). Since u ∈ a ◦ b, we have u ∈ N(a), then N(u) ⊆ N(a). On
the other hand, since u ∈ a ◦ b and u ∈ N(u), we have u ∈ (a ◦ b) ∩N(u). Since
(a ◦ b) ∩ N(u) 6= ∅, we have a ◦ b ⊆ N(u). Then a ∈ N(u), and N(a) ⊆ N(u).
Hence we obtain N(u) = N(a) and the proof is complete.

In a similar way as in the Lemma in [6] we can prove the following:

Proposition 2.5. Let H be an ordered hypergroupoid and F a nonempty subset of

H. The following are equivalent:

(1) F is a hyper�lter of H.

(2) H\F = ∅ or H\F is a prime hyperideal of H.

Proposition 2.6. An ordered hypergroupoid H does not contain proper hyper�lters

if and only if H does not contain proper prime hyperideals.

Proof. (⇒). Let I be a prime hyperideal of H and I ⊂ H. Then ∅ 6=H\I⊆ H and
H\(H\I)(= I) is a prime hyperideal of H (H\I is the complement of I to H).
By Proposition 2.5, H\I is a hyper�lter of H. Then H\I = H and I = ∅ which is
impossible.

(⇐). Let F be a hyper�lter of H and F ⊂ H. Since H\F 6= ∅, by Proposition
2.5, H\F is a prime hyperideal of H. Then H\F = H and F = ∅ which is
impossible.

Remark 2.7. Let H be an ordered hypergroupoid, T a hyper�lter of H, z ∈ H and

a ∈ T ∩ (z)N . Then we have (z)N ⊆ T .

Proof. Let y ∈ (z)N . Then (y)N = (z)N = (a)N , so (y, a) ∈ N and N(y) = N(a).
Since T is a hyper�lter of H containing the element a, we have N(a) ⊆ T . Thus
we have y ∈ N(y) = N(a) ⊆ T and so y ∈ T .

Theorem 2.8. Let H be an ordered hypersemigroup and z ∈ H. If I is a hyperideal

of (z)N , then I does not contain proper hyper�lters.
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Proof. Let F be a hyper�lter of I. Then F = I. In fact: Take an element a ∈ F
(such an element exists as F is a nonempty set) and consider the set

T := {x ∈ H | a2 ◦ x ⊆ F}.

Then the following assertions are satis�ed:
(1). F = T ∩ I. Indeed: Let y ∈ F . Since a2 ⊆ F , we have a2 ◦ y ⊆ F and so

y ∈ T . Besides, F ⊆ I, so F ⊆ T ∩ I. Let now y ∈ T ∩ I. Since y ∈ T , we have
a2 ◦ y ⊆ F . Then, since a2 ⊆ F ⊆ I, we have y ∈ I and, since F hyper�lter of I,
we have y ∈ F .

(2). T is a hyper�lter of H. In fact: This is a nonempty subset of H because
a3 ⊆ F and a ∈ T . Let x, y ∈ T . Then x◦y ⊆ T . In fact: The following properties
are satis�ed:

(A). y ◦ a2 ⊆ F . Indeed: Since a2 ◦ y ⊆ F and a2 ⊆ F , we have

F ⊇ (a2 ◦ y) ◦ a2 = a2 ◦ (y ◦ a2), where a2 ⊆ I (∗)

Moreover, we have y ◦ a2 ⊆ I. Indeed: Since a2 ◦ y ⊆ F ⊆ I ⊆ (z)N , we have

(z)N = (a2 ◦ y)N := (a2)N ◦ (y)N = (a)N ◦ (y)N
= (y)N ◦ (a)N = (y ◦ a)N ,

so y ◦ a ⊆ (z)N . Then, since a ∈ F ⊆ I and I is a hyperideal of (z)N , we have

y ◦ a2 = (y ◦ a) ◦ a ⊆ (z)N ◦ I ⊆ I,

thus y ◦ a2 ⊆ I. Since a2 ⊆ I and y ◦ a2 ⊆ I, by (∗), we have y ◦ a2 ⊆ F .
(B). a2 ◦ x ◦ y ⊆ I. In fact: Clearly, a2 ◦ x ◦ y = a ◦ (a ◦ x ◦ y). On the other

hand, a ◦ x ◦ y ⊆ (z)N . Indeed: Since a2 ◦ x ⊆ F ⊆ I ⊆ (z)N , we have

(z)N = (a2 ◦ x)N = (a2)N ◦ (x)N = (a)N ◦ (x)N = (a ◦ x)N .

We have seen in (A) that (z)N = (y ◦ a)N (= (a ◦ y)N ). Thus we have

(z)N = (z2)N := (z)N ◦ (z)N = (a ◦ x)N ◦ (a ◦ y)N
= (a)N ◦

(
(x)N ◦ (a)N

)
◦ (y)N = (a)N ◦

(
(a)N ◦ (x)N

)
◦ (y)N

= (a2)N ◦ (x)N ◦ (y)N = (a)N ◦ (x ◦ y)N = (a ◦ x ◦ y)N

and so a ◦ x ◦ y ⊆ (z)N . Then, since I is a hyperideal of (z)N , we have

a ◦ (a ◦ x ◦ y) ⊆ I ◦ (z)N ⊆ I,

and so a2 ◦ x ◦ y ⊆ I.
Since x ∈ T , we have a2 ◦ x ⊆ F . Then, by (A), (a2 ◦ x) ◦ (y ◦ a2) ⊆ F , and

then we have
F ⊇ (a2 ◦ x) ◦ (y ◦ a2) = (a2 ◦ x ◦ y) ◦ a2,
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where a2 ⊆ I and a2 ◦ x ◦ y ⊆ I (by (B)). Since F is a hyper�lter of I, we have
a2 ◦ x ◦ y ⊆ F and so x ◦ y ⊆ T .

If x, y ∈ H such that x◦y ⊆ H, then x ∈ T and y ∈ T . In fact, since x◦y ⊆ T ,
we have a2 ◦ x ◦ y ⊆ F . We remark �rst that

F ⊇ (a2 ◦ x ◦ y) ◦ a2 = (a2 ◦ x) ◦ (y ◦ a2) (∗)

In addition, the following properties are satis�ed:

(A). a2 ◦ x ⊆ I. In fact: We have a2 ◦ x = a ◦ (a ◦ x), where a ∈ I. Moreover,
a ◦ x ⊆ (z)N . Indeed, since a2 ◦ x ◦ y ⊆ F ⊆ (z)N , we have (a2 ◦ x ◦ y) = (z)N .
Since a ∈ F ⊆ I ⊆ (z)N , we have (z)N = (a)N . Thus we get (a2 ◦x ◦ y)N = (a)N .
On the other hand,

(a ◦ x)N = (a)N ◦ (x)N = (a2 ◦ x ◦ y)N ◦ (x)N
= (a2)N ◦ (x)N ◦ (y)N ◦ (x)N = (a2)N ◦ (x)N ◦ (x)N ◦ (y)N
= (a2)N ◦ (x2)N ◦ (y)N = (a2)N ◦ (x)N ◦ (y)N
= (a2 ◦ x ◦ y)N = (z)N ,

thus a ◦ x ⊆ (z)N . Since I is a hyperideal of (z)N , we have a ◦ (a ◦ x) ⊆ I ◦ (z)N
and so a2 ◦ x ⊆ I.

(B). y ◦ a2 ⊆ I. In fact: First of all, y ◦ a2 = (y ◦ a) ◦ a and a ∈ I. Besides,
y ◦ a ⊆ (a)N , Indeed, since

(y ◦ a)N = (y)N ◦ (a)N = (y)N ◦ (a2 ◦ x ◦ y)N = (a2 ◦ x ◦ y)N ◦ (y)N
= (a2 ◦ x)N ◦ (y)N ◦ (y)N = (a2 ◦ x)N ◦ (y2)N
= (a2 ◦ x)N ◦ (y)N = (a2 ◦ x ◦ y)N = (z)N ,

y◦a is a subset of (z)N . Since a ∈ I and I a hyperideal of (z)N , we get (y◦a)◦a ⊆
(z)N ◦ I ⊆ I and so y ◦ a2 ⊆ I.

Since a2◦x ⊆ I, y◦a2 ⊆ I and F is a hyper�lter of I, by (∗), we have a2◦x ⊆ F
and y◦a2 ⊆ F . Finally, y◦a2 ⊆ F implies a2 ◦y ⊆ F . In fact: Since a2, y◦a2 ⊆ F ,
we have a2 ◦ (y ◦ a2) ⊆ F , then (a2 ◦ y) ◦ a2 ⊆ F . On the other hand, a2 ◦ y ⊆ I.
Indeed: Since a ◦ y ⊆ (a ◦ y)N = (z)N and a ∈ I (F ⊆ I), we have

a2 ◦ y = a ◦ (a ◦ y) ⊆ I ◦ (z)N ⊆ I,

so a2 ◦ y ⊆ I. Since (a2 ◦ y) ◦ a2 ⊆ F , a2 ◦ y ⊆ I, a2 ⊆ I and F is a hyper�lter of
I, we have a2 ◦ y ⊆ F .

For any x, y ∈ T it is clear that either a ◦ b ⊆ T or (a ◦ b) ∩ T = ∅. Finally, let
x ∈ T and y ∈ H such that y ≥ x. Then y ∈ T . In fact: We have a2 ◦ y ≥ a2 ◦ x
and a2 ◦x ⊆ F . It is enough to prove that a2 ◦y ⊆ I. Then, since F is a hyper�lter
of I, we have a2 ◦y ⊆ F and so y ∈ T . On the other site, a2 ◦y = a◦ (a◦y), where
a ∈ F ⊆ I ⊆ (z)N . We prove that a ◦ y ⊆ (z)N . Then, since I is a hyperideal
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of (z)N , we have a ◦ (a ◦ y) ⊆ I ◦ (z)N and so a2 ◦ y ⊆ I. First of all, since
a2 ◦ x ⊆ F ⊆ I ⊆ (z)N , we have

(z)N = (a2x)N := (a2)N (x)N = (a)N (x)N = (a ◦ x)N .

On the other hand, since x ≤ y, we have a ◦x ≤ a ◦ y then, by Proposition 2.4, we
have (a ◦ x, a ◦ x ◦ a ◦ y) ∈ N , hence we obtain

(a ◦ x)N = (a ◦ x ◦ a ◦ y)N := (a)N ◦ (x)N ◦ (a)N ◦ (y)N
= (a2)N ◦ (x)N ◦ (y)N = (a2 ◦ x)N ◦ (y)N = (z)N ◦ (y)N
= (a)N ◦ (y)N (since a ∈ (z)N )

= (a ◦ y)N .

Hence a ◦ y ⊆ (a ◦ y)N = (a ◦ x)N = (z)N . Since T is a hyper�lter of H, a ∈ T
and a ∈ (z)N , by Remark 2.7, we have (z)N ⊆ T . Thus we have

I ⊆ F = T ∩ I ⊇ (z)N ∩ I = I,

and then F = I.

By Proposition 2.5 and Theorem 2.8 we have the following

Corollary 2.9. If H is an ordered hypersemigroup, z ∈ H and I a hyperideal of

(z)N , then I does not contain proper prime hyperideals (of I).

Theorem 2.10. Let H be an ordered hypersemigroup and I a prime hyperideal of

H. Then we have I =
⋃
x∈I

{(x)N | x ∈ I}.

Proof. Let t ∈ (x)N for some x ∈ I. Since (x)N is a hyperideal of (the hypersemi-
group) (x)N , by Corollary 2.9, (x)N does not contain proper prime hyperideals.
We prove that (x)N∩I is a prime hyperideal of (x)N . Then we get (x)N∩I = (x)N ,
and then t ∈ I. First of all, (x)N ∩ I is a nonempty subset of (x)N and this is
because x ∈ (x)N and x ∈ I. Moreover we have

(x)N ◦ ((x)N ∩ I) ⊆ (x)2N ∩ (x)N ◦ I = (x2)N ∩ (x)N ◦ I
= (x)N ∩ (x)N ◦ I ⊆ (x)N ∩H ◦ I
⊆ (x)N ∩ I

and ((x)N ∩ I) ◦ (x)N ⊆ (x)2N ∩ I ◦ (x)N ⊆ (x)N ∩ I ◦H ⊆ (x)N ∩ I. In addition,
if a ∈ (x)N ∩ I and b ∈ (x)N such that b ≤ a then, since b ≤ a ∈ I and I is a
hyperideal of H, we have b ∈ I. Thus we have b ∈ (x)N ∩ I.

Let now y, z ∈ (x)N such that y ◦z ⊆ (x)N ∩I. Since y ◦z ⊆ I and I is a prime
hyperideal of H, we have y ∈ I or z ∈ I. Hence y ∈ (x)N ∩ I or z ∈ (x)N ∩ I and
the proof is complete.
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Symmetry groups and Graovac−Pisanski index
of some linear polymers

Fatemeh Koorepazan-Moftakhar, Ali Reza Ashra� and Ottorino Ori

Abstract. Suppose G is a graph with vertex set V (G). The Graovac�Pisanski index of G is
de�ned as GP (G) = 1

2
|V (G)|2δ(G), where

δ(G) =
1

|Γ||V (G)|
∑

u∈V (G)

∑
g∈Γ

d(u, g(u)).

This is a type of graph invariant that is combined distance and symmetry of molecules under

consideration. The aim of this paper is to compute the symmetry groups and Graovac�Pisanski

index of some linear polymers.

1. Introduction

Throughout this paper all graphs will be assumed to be simple and undirected.
This means that they don't have loops, multiple and directed edges. Suppose G
is such a graph with vertex set V (G) and edge set E(G). An edge e ∈ E(G) will
be written as e = xy, where x, y ∈ V (G). A graph G is called r-regular if degrees
of all vertices are equal to r.

The molecular graph of a molecule M is a simple graph in which atoms and
chemical bonds are in one-to-one correspondences with vertices and edges, respec-
tively. A path Pn is a sequence x1, x2, . . . , xn of di�erent vertices in which xi and
xi+1, 1 6 i 6 n − 1, are adjacent. The number of edges in a path is called its
length. A cycle graph Cn is a graph constructed from the path Pn by adding a
new edge x1xn. The complete graph Kn is an n−vertex graph in which all pairs
of di�erent vertices are adjacent. A graph G is connected if for each vertex x, y in
G, there exists a path connecting them.

A permutation on a set X is a one-to-one function from X onto X. The set
of all permutations on a set X is denoted by SX . It is well-known that SX is a
group under composition of functions. The order of an element x in a group G
is denoted by O(x). An element θ ∈ SV (G) is said to be an automorphism if the
following condition is satis�ed:

∀x, y ∈ V (G) xy ∈ E(G)⇐⇒ θ(x)θ(y) ∈ E(G).

2010 Mathematics Subject Classi�cation: 05C12, 20B25.
Keywords: Automorphism group, Graovac−Pisanski index, linear polymer, Wiener index.
The research of the �rst and second authors are partially supported by the University of
Kashan under grant no 785149/1.
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The set of all automorphisms of G is denoted by Aut(G) which is a group under
composition of functions. It is easy to see that Aut(G) is a subgroup of SV (G).
The graph G is called vertex-transitive if and only if for each x, y ∈ V (G) there
exists an automorphism g ∈ Aut(G) such that g(x) = y. It is easy to see that
vertex-transitive graphs are regular. We refer the interested readers to the famous
book of Biggs [3], for more information on this topic.

Suppose G is a group containing two subgroups H and K in such a way
that H E G, |H ∩ K| = 1 and G = HK = {xy | x ∈ H, y ∈ K}. Then
we say that G is a semi-direct product of H by K and write G = H : K.
For an example, we consider the set of all permutations on X = {1, 2, 3}, i.e.,
SX = {(), (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3)}, where () is the identity permuta-
tion. Then by choosing H = {(), (1, 2, 3), (1, 3, 2)} and K = {(), (1, 2)}, we can
see that HESX , K 6 SX , |H ∩K| = 1 and SX = HK. Hence, SX can be written
as the semi-direct product H : K of its subgroups.

Suppose G is a graph and x, y ∈ V (G). The length of a minimum path con-
necting x and y is denoted by d(x, y). It is easy to see that (V (G), d) is a metric
space with distance function d(−,−). If G is connected then the Wiener index

W (G) is de�ned as the sum of distances between all pairs of vertices in G [18].

Graovac and Pisanski [8] in an innovating work applied the symmetry group of
the graph under consideration to generalize the Wiener index and obtain a good
correlation with some physico-chemical properties of molecules. To explain, we
assume that G is a graph, Γ 6 Aut(G) and g ∈ Γ. De�ne the distance number

of g, δ(g), to be the average of d(u, g(u)) overall vertices u ∈ V (G) and δ(G) =
1
|Γ|
∑

g∈G δ(g) = 1
|Γ||V (G)|

∑
u∈V (G)

∑
g∈Γ d(u, g(u)). The Graovac−Pisanski index

(GP index for short) of G with respect to Γ, GPΓ(G), is de�ned as GPΓ(G) =
|V (G)|2

2|Γ|
∑

g∈Γ δ(g). If Γ = Aut(G) then we write GP (G) as GPΓ(G). It is easy to

see that the GP index of G can be computed by GP (G) = 1
2 |V (G)|2δ(G). Ashra�

and Shabani [2] computed the GP index of graphs that can be represented as some
graph operations and in [12], some upper and lower bounds for this graph invari-
ant are presented. In 2016, Ghorbani and Klavžar [7] computed this topological
index by cut method and Tratnik [17] generalized their method and calculated
the closed formulas for the GP index of zig-zag tubulenes. In [13], the GP index
of the cycle Cn with respect to all subgroups of Aut(Cn) and the GP index of
(3, 6)− and (5, 6)−fullerene graphs with respect to a subgroup of their symme-
try groups are computed. Finally in [15], the Graovac-Pisanski polynomial of a
graph was presented by which the authors extended some well-known results from
Hosoya polynomial to its symmetry-based version. In the mentioned paper, this
polynomial for some classes of chemical graphs containing linear phenylene and
its hexagonal squeeze, and the ortho-, meta- and para-polyphenylene chains were
calculated.

Phenylenes are polycyclic conjugated molecules possessing both six- and four-
membered rings [9]. Following Došli¢ and Litz [5], a polymer with phenylene as
the basic building block is called a polyphenylene. In the mentioned paper, some
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exact formulas for the numbers of matchings and independent sets in three types of
uniform chains are given. The authors also presented some results on polypheny-
lene dendrimers. In this paper, the GP index of the molecular graphs presented
in [6, 9] are computed. Our calculations are done with the aid of TopoCluj [4],
HyperChem [11] and GAP [16]. Our group theory notations are standard and can
be taken mainly from [1, 10, 14, 16].

2. Main result

The aim of this section is to compute the symmetry groups, their orbits and
GP index of the para chain of length n, 3−uniform cactus chain, caterpilar
CAT (n1, . . . , nr), corona product Pn◦P2, an ortho-chain of length n, ladder graph
Ln and the 2−connected linear polymer with triangular faces Rn. These graphs
will be de�ned later. We start by computing the GP index of a para chain of
length n, Figure 1.

Suppose G is a group and X is a set. An action of G on X is a function
? : G ×X −→ X such that for all g, h ∈ G and x ∈ X, e ? x = x and (gh) ? x =
g ? (h ? x). The orbit of an element x ∈ X is de�ned as G ? x = {g ? x | g ∈ G}.
We usually write gx as g ? x when there is no confusion. The size of an orbit is
called its length.

Let G be a connected graph, A∪B ⊆ V (G) and V1, V2, . . . , Vr be the orbits of
Aut(G) under its natural action on V (G). De�ne d(A,B) =

∑
u∈A

∑
v∈B d(u, v).

Then it can easily seen that W (G) = 1
2d(V, V ). Graovac and Pisanski [8], proved

that GP (G) = |V |
∑r

i=1
W (Vi)
|Vi| , where W (Vi) = 1

2d(Vi, Vi). We apply this result

to compute the GP index of all polymers presented in this paper.

Theorem 2.1. The Graovac-Pisanski index of a para chain Qn of length n can

be computed as follows:

GP (Qn) =

{
9
4n

3 + 15
4 n

2 + 7
4n+ 1

4 n is odd and n 6= 1,

9
4n

3 + 15
4 n

2 + n n is even.

1 2 n

a1 a2 a3 an

b1
b2 b3

bn

x1
x2 x3

xn+1

Figure 1: A para chain of length n.
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Proof. The case of n = 1 is clear. Suppose n > 1 is even and consider the
subset X = {x1, x2, . . . , xn+1} ⊆ V (Qn), see Figure 1. It is easy to see that
for each automorphism α, α({x1, xn+1}) = {x1, xn+1}. Hence (α(x1) = x1 and
α(xn+1) = xn+1) or (α(x1) = xn+1 and α(xn+1) = x1). If α(x1) = x1 and
α(xn+1) = xn+1 then by de�nition of graph automorphism, α|X = (), where α|X
denotes the restriction of α on the set X and () is the identity permutation. If
α(x1) = xn+1 and α(xn+1) = x1 then α|X = (x1 xn+1)(x2 xn) . . . (xn

2
xn+4

2
).

De�ne H = 〈(a1 b2), . . . , (an bn)〉. There are two permutations β1 and β2 induced
by the unique automorphism of order two in the path graph Pn+1 with vertex set
V (Pn+1) = {1, 2, . . . , n+1} and edge set E(Pn+1) = {12, 23, 34, 45, . . . , (n)(n+1)}.
These permutations can be de�ned as follows:

β1 =

{
(a1 an)(a2 an−1) . . . (an

2
an+2

2
) 2 | n.

(a1 an)(a2 an−1) . . . (an−1
2

an+3
2

) 2 - n, ,

β2 =

{
(b1 bn)(b2 bn−1) . . . (bn

2
bn+2

2
) 2 | n,

(b1 bn)(b2 bn−1) . . . (bn−1
2

bn+3
2

) 2 - n.

It is now easy to prove γ = αβ1β2 is an automorphism of order 2 in Qn.
De�ne K = 〈γ〉. Since all generators of H has order two and they are disjoint
permutations,

H ∼= Z2 × · · · × Z2︸ ︷︷ ︸
n times

.

It is clear |H ∩K| = 1 and for each element t ∈ X and each automorphism γ ∈ H,
γ(t) = t. Thus, HEAut(Qn). If an automorphism γ ∈ Aut(Qn) �xes elementwise
each element of X then γ ∈ H and in other case γ can be written as the product
of an element of H by αβ1β2. This proves that G = H : K ∼= (Z2× · · · ×Z2) : Z2.
Therefore, the automorphism group of Qn can be generated by automorphisms
γ and (ai bi), for 1 6 i 6 n. A similar argument shows that, when n is odd,
the group Aut(Qn) can be generated by αβ1β2 and n permutations (ai bi) for
1 6 i 6 n. Therefore,

Aut(Qn) ∼=


(Z2 × · · · × Z2︸ ︷︷ ︸)

n times

: Z2 n is even,

Z2 ×

(Z2 × · · · × Z2︸ ︷︷ ︸)
n-1 times

: Z2

 n is odd and n 6= 1.

This proves that |Aut(Qn)| = 2n+1, n 6= 1, and Aut(Q1) ∼= D8. If n is even,
then the orbits of Aut(Qn) on V (Qn) are V1 = {x1, xn+1}, V2 = {a1, b1, an, bn},
V3 = {x2, xn}, V4 = {a2, b2, an−1, bn−1}, V5 = {x3, xn−1}, . . ., Vn−1 = {xn/2,
xn/2+2}, Vn = {an/2, an/2+1, bn/2, bn/2+1} and Vn+1 = {xn/2+1}. If n is odd
and n 6= 1, then the orbits of Aut(Qn) on V (Qn) will be U1 = {x1, xn+1},
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U2 = {a1, b1, an, bn}, U3 = {x2, xn}, U4 = {a2, b2, an−1, bn−1}, . . ., Un−1 =
{a(n−1)/2, b(n−1)/2, a(n+3)/2, b(n+3)/2}, Un = {x(n+1)/2, x(n+3)/2} and Un+1 =
{a(n+1)/2, b(n+1)/2}. To compute the Graovac-Pisanski index of this graph, we
consider the following cases:

1. n is even. In this case, Aut(Qn) has exactly n + 1 orbits under its natural
action on V (Qn). Since |Vn+1| = 1, W (Vn+1) = 0. On the other hand,
we have exactly n

2 orbits of size 2 and n
2 orbits of size 4. Now a simple

calculation shows that W (V1) = 2n, W (V2) = 8n − 4, . . ., W (Vn−3) = 8,
W (Vn−2) = 28, W (Vn−1) = 4 and W (Vn) = 4. Therefore,

GP (Qn) = |V |
n+1∑
i=1

W (Vi)

|Vi|

= (3n+ 1)

(
4 + 8 + · · ·+ 2n

2
+

12 + 28 + · · ·+ 8n− 4

4

)
=

9

4
n3 +

15

4
n2 + n.

2. n is odd and n 6= 1. In this case, again Aut(Qn) has exactly n + 1 orbits
under its natural action on V (Qn). On the other hand, by above calculations
n+3

2 orbits have length 2 and other orbits have length 4. For orbits of length
2, we have W (Un+1) = 2, W (Un) = 2, W (Un−2) = 6, . . ., W (U1) = 2n, and
for orbits of length 4, W (Un−1) = 20, W (Un−3) = 36, . . ., W (U2) = 8n− 4.
Therefore,

GP (Qn) = |V |
n+1∑
i=1

W (Vi)

|Vi|

= (3n+ 1)

(
2

2
+

2 + 6 + . . .+ 2n

2
+

20 + 36 + . . .+ 8n− 4

4

)
=

9

4
n3 +

15

4
n2 +

7

4
n+

1

4
.

This completes the proof.

1 2 n...

x1 x2 x3 xn+1xn

a1 a2 anan-1

Figure 2: A 3-uniform cactus chain Tn.
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Theorem 2.2. The Graovac-Pisanski index of a 3-uniform cactus chain Tn, Fig-
ure 2, can be computed as follows:

GP (Tn) =

{
1
2n

3 + 5
4n

2 + n+ 1
4 n is odd and n 6= 1,

1
2n

3 + 5
4n

2 + 3
2n+ 1

2 n is even.

Proof. If n is odd and n 6= 1, then the automorphism group of Tn can be generated
by (x1 an)(a1 xn+1) (x2 xn)(x3 xn−1) · · · (xn+1

2
xn+3

2
)(a2 an−1) · · · (an−1

2
an+3

2
),

(x1 a1) and (an xn+1). Moreover, if n is even, then Aut(Tn) is generated by α =
(x1 an)(a1 xn+1)(x2 xn) · · · (xn

2
xn

2 +2)(a2 an−1) · · · (an
2
an

2 +1) and β = (x1 a1).
Since αβ 6= βα and αβ has order 4, Aut(Tn) ∼= D8. Note that two non-commuting
elements δ and τ of order two generate a dihedral group of order 2O(δτ). Therefore,

Aut(Tn) ∼=
{
S3 n = 1
D8 n 6= 1

.

To compute the GP index of Tn, we �rst calculate the orbits of Aut(Tn) under
its natural action on V (Tn). If n is even, then Aut(Tn) has exactly n orbits
containing one orbit of length 1, one orbit of length 4 and n − 2 orbits of length
2. These are V1 = {xn

2 +1}, V2 = {a1, x1, an, xn+1}, Vi = {xi, xn−i+2} and V ′i =
{ai, an−i+1}, 2 6 i 6 n

2 . Our calculations show that W (V1) = 0, W (V2) = 4n+ 2
and W (Vi) = W (V ′i ) = n− 2i+ 2, 2 6 i 6 n

2 . Therefore,

GP (Tn) = |V |
n∑

i=1

W (Vi)

|Vi|

= (2n+ 1)

(
4n+ 2

4
+

1

2
× 2× (2 + 4 + · · ·+ (n− 2))

)
=

1

2
n3 +

5

4
n2 +

3

2
n+

1

2
.

We now assume that n is odd. Then we have one orbit of length 1, one
orbit of length 4 and n − 2 orbits of length 2. These are U1 = {an+1

2
}, U2 =

{a1, x1, an, xn+1}, U3 = {xn+1
2
, xn+3

2
}, U4 = {x2, xn}, U5 = {a2, an−1}, U6 =

{x3, xn−1}, U7 = {a3, an−2}, . . ., Un−1 = {an−1
2
, an+3

2
} and Un = {xn−1

2
, xn+5

2
}.

By our calculations, W (U1) = 0, W (U2) = 4n+2, W (U3) = 1, W (U4) = W (U5) =
n− 2, W (U6) = W (U7) = n− 4, . . ., W (Un−1) = W (Un) = 3. Therefore,

GP (Tn) = |V |
n∑

i=1

W (Vi)

|Vi|

= (2n+ 1)

(
4n+ 2

4
+

1

2
+

1

2
× 2× (3 + 5 + · · ·+ (n− 2))

)
=

1

2
n3 +

5

4
n2 + n+

1

4
,

which completes our proof.
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The caterpilar CAT (n1, . . . , nr) is a tree with vertex set

{v1, . . . , vr}︸ ︷︷ ︸
A

∪{v11, . . . , v1n1}︸ ︷︷ ︸
A1

∪ . . . ∪ {vr1, . . . , vrnr}︸ ︷︷ ︸
Ar

in which A is the vertex set for a path v1, v2, . . ., vr and Ai, 1 6 i 6 r, is a set of
pendant vertices that all of them are adjacent with vi, see Figure 3.

v11
v1 v21

v2
vr1 vr

v1 v2 vr

n1 n2
nr

Figure 3: The caterpilar CAT (n1, . . . , nr).

Theorem 2.3. The Graovac-Pisanski index of CAT (n1, . . . , nr) can be computed

as follows:

(1) If for some i and j with i+ j = r + 1, we have ni 6= nj then

GP (CAT (n1, . . . , nr)) =

(
r∑

i=1

ni

)2

− r2.

(2) If n1 = n2 = · · · = nr = n, then

GP (CAT (n, . . . , n)) =


f(n, r) r is even,

g(n, r) r is odd,

where f(n, r) =

(
1

8
r3 + r2

)
n2 +

(
1

2
r2 +

1

4
r3

)
n− 1

2
r2 +

1

8
r3 and

g(n, r) =

(
1

8
r3 + r2 − 1

8
r

)
n2 +

(
−3

4
r +

1

2
r2 +

1

4
r3

)
n− 5

8
r − 1

2
r2 +

1

8
r3.

Proof. Set L = CAT (n1, . . . , nr) and P is the induced subgraph of A. It is easy
to see that SAi 6 Aut(L), 1 6 i 6 r. Since Ai ∩ Aj = ∅, 1 6 i 6= j 6 r, one
can easily seen that SA1

SA2
. . . SAr

∼= SA1
× SA2

× · · · × SAr
and so Aut(L) has a

subgroup H isomorphic to SA1
× SA2

× · · · × SAr
. Our main proof will consider

two separate cases as follows:
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1. Suppose for some i and j with i+ j = r + 1, we have ni 6= nj . From Figure
3, one can easily seen that H = Aut(L) and H has exactly 2r orbits under
its natural action on V (L). These orbits are {v1}, {v2}, . . ., {vr} and A1,
. . . , Ar. Since W (Ai) = ni

2 − ni, |Ai| = ni and |V | = r +
∑r

i=1 ni,

GP (L) = |V |
2r∑
i=1

W (Vi)

|Vi|

=

(
r +

r∑
i=1

ni

)(
r∑

i=1

ni
2 − ni
ni

)

=

(
r∑

i=1

ni

)2

− r2.

2. n1 = n2 = · · · = nr = n. Choose f to be the automorphism of order 2 in
Aut(P ) and extend f to an automorphism f of L by de�ning f(x) = x, for
each x ∈

⋃r
i=1Ai. If r is even then Aut(L) = H∪fH and so Aut(L) ∼= (SA1

×
SA2
× · · · × SAr

) : Z2. Furthermore, Aut(L) can be generated by (vi1 vi2),
(vi1 vi3), . . . , (vi1 vini

) and
∏

(vi vj)(vi1 vj1)(vi2 vj2)(vi3 vj3) · · · (vini
vjni

),
where 1 6 i 6 n

2 ,
n
2 + 1 6 j 6 n and i + j = r + 1. Therefore, Aut(L) has

exactly r orbits such that r
2 of them have length 2 and others have length 2n.

These are Vi = {vi, vj} and V ′i = {vi1, vi2, vi3, . . . , vin, vj1, vj2, vj3, . . . , vjn},
where 1 6 i 6 r

2 ,
r
2 + 1 6 j 6 r and i + j = r + 1. Our calculations show

that, W (Vi) ∈ {1, 3, 5, 7, . . . , r − 1} and W (V ′i ) ∈ {5n2 − 2n, 5n2 − 2n +
2n2, . . . , (r + 3)n2 − 2n}, where 1 6 i 6 r

2 . Therefore,

GP (L) = |V |
r∑

i=1

W (Vi)

|Vi|

= (n+ 1)r

[
1 + 3 + · · ·+ r − 1

2
+

5n2 − 2n+ · · ·+ (r + 3)n2 − 2n

2n

]
=

(
1

8
r3 + r2

)
n2 +

(
1

2
r2 +

1

4
r3

)
n− 1

2
r2 +

1

8
r3.

If r is odd then SA r+1
2

will be a characteristic subgroup and

Aut(L) ∼=
[(

SA1 × SA2 × · · · × SA r−1
2

× SA r+3
2

× · · · × SAr

)
: Z2

]
× SA r+1

2

∼=

(Sn × Sn × · · · × Sn × Sn × · · · × Sn)︸ ︷︷ ︸
r-1 times

: Z2

× Sn.

Moreover, Aut(L) can be generated by (vi1 vi2), . . . , (vi1 vini
) and

∏
(vi vj)

(vi1 vj1) · · · (vini
vjni

), where 1 6 i 6 n−1
2 , n+3

2 6 j 6 n and i + j = r + 1.
On the other hand, Aut(L) has exactly r + 1 orbits, one orbit of length 1,
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one orbit of length n, r−1
2 orbits of length 2, and r−1

2 orbits of length 2n.
These are U1 = {v r+1

2
}, U2 = {v r+1

2 1, v r+1
2 2, · · · , v r+1

2 n}, Ui = {vi, vj} and
U ′i = {vi1, vi2, . . . , vin, vj1, vj2, . . . , vjn}, where 1 6 i 6 r−1

2 , r+3
2 6 j 6 r

and i + j = r + 1. By our calculations, W (U1) = 0, W (U2) = n(n − 1),
W (Ui) ∈ {2, 4, . . . , r−1} andW (U ′i) ∈ {6n2−2n, 8n2−2n, . . . , (r+3)n2−2n}.
Therefore,

GP (L) = |V |
r+1∑
i=1

W (Vi)

|Vi|

= (n+ 1)r

[
n(n− 1)

n
+

2 + 4 + · · ·+ r − 1

2

+
6n2 − 2n+ · · ·+ (r + 3)n2 − 2n

2n

]
=

(
1

8
r3 + r2 − 1

8
r

)
n2 +

(
−3

4
r +

1

2
r2 +

1

4
r3

)
n− 5

8
r − 1

2
r2 +

1

8
r3.

This completes our argument.

Note that our previous theorem covers the case when for some i, j with i+ j =
r + 1, ni is not equal to nj and another case when all ni are the same. It is
easy to see that Aut(L) = H or H : Z2. For example, we do not cover the
case that CAT (2, 3, 4, 3, 2). Our method shows that Aut(CAT (2, 3, 4, 3, 2)) ∼=
(Z2 × S3 × S4 × S3 ×Z2) : Z2 and a simple GAP program shows that in this case
GP (L) = 399.

Suppose G and H are two graphs. The corona product G ◦ H is a graph
constructed from G and |V (G)| copies of H by connecting the ith vertex of G to
each vertex of the ith copy of H, 1 6 i 6 |V (G)|.

vi2v11

v1

v12

vi

vi1 v
n2

vn

v
n1

Figure 4: The corona product Pn ◦ P2.

Theorem 2.4. The Graovac-Pisanski index of Pn ◦P2, Figure 4, can be computed

by the following formula:

GP (Pn ◦ P2) =


9
8n

3 + 15
4 n

2 n is even,

9
8n

3 + 15
4 n

2 − 27
8 n n is odd,

3 n = 1.
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Proof. Depending on whether n is an even or odd number, our proof will consider
two cases.

1. n is even. In this case, the generators of Aut(Pn◦P2) are (vk1 vk2), 1 6 k 6 n,
and

∏
(vi vj)(vi1 vj1)(vi2 vj2), 1 6 i 6 n

2 ,
n
2 + 1 6 j 6 n and i+ j = n+ 1.

Our calculations show that the orbits of this action are Vi = {vi, vj} and
V ′i = {vi1, vi2, vj1, vj2}. Furthermore, W (V1) = n − 1, W (V2) = n − 3, . . .,
W (Vn

2
) = 1, W (V ′1) = 4n+ 6, W (V ′2) = 4n−2, . . ., W (V ′n

2
) = 14. Therefore,

GP (Pn ◦ P2) = |V |
n∑

i=1

W (Vi)

|Vi|

= 3n

[
1 + 3 + · · ·+ n− 1

2
+

14 + 22 + 30 + · · ·+ 4n+ 6

4

]
=

9

8
n3 +

15

4
n2.

2. n is odd. The generators of Aut(Pn ◦ P2) are (vk1 vk2), 1 6 k 6 n and∏
(vi vj)(vi1 vj1)(vi2 vj2), 1 6 i 6 n−1

2 , n+3
2 6 j 6 n and i+ j = n+ 1. This

group has exactly n + 1 orbits under its natural action. These orbits are
U = {vn+1

2
}, U ′ = {vn+1

2 1, vn+1
2 2},

n+1
2 orbits Ui = {vi, vj} of size 2 and n−1

2

orbits U ′i = {vi1, vi2, vj1, vj2} of size 4. Moreover, W (U) = 0, W (U ′) = 1,
W (U1) = n − 1, W (U2) = n − 3, . . ., W (Un−1

2
) = 2, W (U ′1) = 4n + 6,

W (U ′2) = 4n− 2, . . ., W (U ′n−1
2

) = 18. Therefore,

GP (Pn ◦ P2) = |V |
n+1∑
i=1

W (Vi)

|Vi|

= 3n

[
0 +

1

2
+

2 + 4 + · · ·+ n− 1

2
+

18 + 26 + · · ·+ 4n+ 6

4

]
=

9

8
n3 +

15

4
n2 − 27

8
n.

This completes the proof.

Theorem 2.5. The Graovac-Pisanski index of an ortho-chain On, Figures 5− 7,
of length n is computed as follows:

GP (On) =

{
9
8n

3 + 33
8 n

2 + 17
4 n+ 1 n is even,

9
8n

3 + 33
8 n

2 + 19
8 n+ 3

8 n is odd.

Proof. There are two possible cases, depending on whether n is even or odd.

1. n is even. It can be proved that the automorphism group Aut(On) is gen-
erated by the permutations (1 a2), (n+ 1 bn−1) and (a1 bn)(1 bn−1)(a2 n+
1)(2 n)(b1 an)(a3 bn−2)(3 n−1) (b2 an−1)(a4 bn−3)· · · (n

2
n
2 +2)(bn

2−1 an
2 +2)
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(an
2 +1 bn

2
). Moreover, the group has exactly 3n

2 orbits. These orbits are
U1 = {n2 + 1}, U2 = {an

2 +1, bn
2
}, U3 = {n2 ,

n
2 + 2}, U4 = {an

2
, bn

2 +1},
U5 = {n2 − 1, n2 + 3}, U6 = {bn

2−1, an
2 +2}, U7 = {an

2−1, bn
2 +2}, U8 =

{n2 − 2, n2 + 4}, U9 = {bn
2−2, an

2 +3}, . . ., U 3n−10
2

= {a3, bn−2}, U 3n−8
2

=

{2, n}, U 3n−6
2

= {b2, an−1}, U 3n−4
2

= {b1, an}, U 3n−2
2

= {a1, bn} and U 3n
2

=

{1, a2, bn−1, n + 1}. On the other hand, W (U1) = 0, W (U2) = W (U3) = 2,
W (U4) = W (U5) = W (U6) = 4, W (U7) = W (U8) = W (U9) = 6, W (U 3n−10

2
)

= W (U 3n−8
2

) = W (U 3n−6
2

) = n− 2, W (U 3n−4
2

) = n, W (U 3n−2
2

) = n+ 2 and

W (U 3n
2

) = 4n+ 4.

Therefore,

GP (On) = |V |

3n
2∑

i=1

W (Vi)

|Vi|

= (3n+ 1)

[
0

1
+

2 + 2

2
+

4 + 4 + 4

2
+

6 + 6 + 6

2

+ · · ·+
n− 2 + n− 2 + n− 2

2
+
n

2
+
n+ 2

2
+

4n+ 4

4

]

= (3n+ 1)

0 + 2 +
3

2

4 + 6 + · · ·+ n− 2︸ ︷︷ ︸
n−4
2

+
n

2
+
n+ 2

2
+ n+ 1


=

9

8
n3 +

33

8
n2 +

17

4
n+ 1.

1 2 3 2+n/2 n

1

2 n

n/2 1+n/2

a1 a2 a3 an
an/2 a1+n/2

b1 b2 bn/2-1 bn/2
bn-1bn-2

1+n

bnbn/2 + 1

Figure 5: An ortho-chain of length n, n is even.

2. n is odd. The generators ofAut(On) are (1 1+n)(2 n) · · · ( 1+n
2

3+n
2 ) (a1 a1+n)

(a2 an) · · · (a 1+n
2

a 3+n
2

) (b1 bn−1) (b2 bn−2) · · · (bn−1
2

bn+1
2

), (1 a2) and

(1+n an). Furthermore, the number of orbits of this group under its natural
action is 3n−1

2 and the orbits are V1 = {an+1
2
, an+3

2
}, V2 = {n+1

2 , n+3
2 }, V3 =

{bn−1
2
, bn+1

2
}, V4 = {n−1

2 , n+5
2 }, V5 = {an−1

2
, an+5

2
}, V6 = {n−3

2 , n+7
2 }, V7 =

{bn−3
2
, bn+3

2
}, V8 = {an−3

2
, an+7

2
}, V9 = {n−5

2 , n+9
2 }, V10 = {bn−5

2
, bn+5

2
},

. . ., V 3n−11
2

= {a3, an−1}, V 3n−9
2

= {2, n}, V 3n−7
2

= {b2, bn−2}, V 3n−5
2

=

{b1, bn−1}, V 3n−3
2

= {a1, an+1} and V 3n−1
2

= {1, a2, 1 + n, an}.
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1 2 3 n 1+n

1

2

n

(1+n)/2 (3+n)/2

a1 a2 a3 a1+n
ana(1+n)/2 a(3+n)/2

b1 b2 b(n-1)/2 b(n+1)/2
bn-1bn-2

Figure 6: An ortho-chain of length n, n
4≡ 1.

1 2 3 n 1+n

1

2

n

(1+n)/2 (3+n)/2

a1 a2 a3 a1+n
an

a(1+n)/2 a(3+n)/2

b1 b2 b(n-1)/2 b(n+1)/2
bn-1bn-2

Figure 7: An ortho-chain of length n, n
4≡ 3.

To compute the Graovac-Pisanski index of this graph, n 6= 3, we note that
W (V5) =W (V6) =W (V7) = 5,W (V8) =W (V9) =W (V10) = 7,W (V 3n−11

2
) =

W (V 3n−9
2

) =W (V 3n−7
2

) = n−2,W (V 3n−5
2

) = n,W (V 3n−3
2

) = n+2,W (V 3n−1
2

)

= 4n+ 4. Finally, if n
4≡ 1 then W (V1) = W (V2) = 1, W (V3) = W (V4) = 3,

and if n
4≡ 3 then W (V2) = W (V3) = 1 and W (V1) = W (V4) = 3.

Therefore,

GP (On) = |V |

3n−1
2∑

i=1

W (Vi)

|Vi|

= (3n+ 1)

[
1 + 1

2
+

3 + 3

2
+

5 + 5 + 5

2
+

7 + 7 + 7

2

+ · · ·+
n− 2 + n− 2 + n− 2

2
+
n

2
+
n+ 2

2
+

4n+ 4

4

]
= (3n+ 1)

[
1 + 3 +

3

2
(5 + 7 + · · ·+ n− 2) +

n

2
+
n+ 2

2
+ n+ 1

]
=

9

8
n3 +

33

8
n2 +

19

8
n+

3

8
.

This completes the proof of our theorem.

In the next theorem the Graovac-Pisanski index of ladder graph Ln, Figures
8− 9, which is also known as the linear polyomino is computed [6].
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Theorem 2.6. The Graovac-Pisanski index of the ladder graph Ln can be com-

puted as follows:

GP (Ln) =

{
n3

2 + 5n2

2 + 3n+ 1 n is even,

n3

2 + 5n2

2 + 7n
2 + 3

2 n is odd.

Proof. We �rst note that Aut(L1) ∼= D8 and Aut(Ln) ∼= Z2×Z2, for n 6= 1. If n is

even, then Aut(Ln) can be generated by
∏n+1

k=1(ak bk) and
∏n−1

i=1 (ai ai+1)(bi bi+1),

i is odd. If n is odd, then the permutations
∏n+1

t=1 (at bt) and
∏n

j=1(aj aj+1)
(bj bj+1) will generate the group Aut(Ln), where j is odd positive integer.

a1

b1 b3

a3

bn -1

an -1

bn

an

b4

a4

b2

a2

an+1

bn+1

1 n

Figure 8: The graph Ln, when n is even.

If n is even, then this group has n
2 + 1 orbits, and the orbits are V1 =

{an+1, bn+1} of length 2 and other orbits which have length 4 are V2 ={a1, b1, a2, b2},
V3 = {a3, b3, a4, b4}, . . ., Vn

2 +1 = {an−1, bn−1, an, bn}. On the other hand,W (V1) =
1, W (Vn

2 +1) = 12, W (Vn
2

) = 20, W (Vn
2−1) = 28, . . ., W (V2) = 4n+ 4. Therefore,

GP (Ln) = |V |
n
2 +1∑
i=1

W (Vi)

|Vi|

= (2n+ 2)

(
1

2
+

12 + 20 + 28 + · · ·+ 4n+ 4

4

)
=
n3

2
+

5n2

2
+ 3n+ 1.

a1

b1 b3

a3

bn

an

bn+1

an+1

b4

a4

b2

a2

1 n

Figure 9: The graph Ln, when n is odd.

If n is odd, then this group has n+1
2 orbits of length 4, and the orbits are V1 =

{a1, b1, a2, b2}, V2 = {a3, b3, a4, b4}, . . ., Vn+1
2

= {an, bn, an+1, bn+1}. Furthermore,
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W (Vn+1
2

) = 8, W (Vn−1
2

) = 16, W (Vn−3
2

) = 24, . . ., W (V1) = 4n+ 4. Therefore,

GP (Ln) = |V |

n+1
2∑

i=1

W (Vi)

|Vi|

= (2n+ 2)

(
8 + 16 + 24 + · · ·+ 4n+ 4

4

)
=
n3

2
+

5n2

2
+

7n

2
+

3

2
,

which completes our argument.

We end this paper by computing the Graovac-Pisanski index of a 2-connected
linear polymer with triangular faces Rn.

Theorem 2.7. The Graovac-Pisanski index of a 2−connected linear polymer with

triangular faces Rn, Figure 10, is computed as

GP (Rn) =

{
n3

16 + n2

2 + 5n
4 + 1 n is even,

n3

16 + 3n2

8 + 11n
16 + 3

8 n is odd.

b2

b3

b4

b1

b(n+1)/2

c

a(n+1)/2 a4

a3

a2

a1

b2

b3b1 bn/2+1

an/2+1

a4

a3

a2

a1

1
2

3 n

1
2 n

(b)

(a)

Figure 10: (a) Rn, n is odd; (b) Rn, n is even.

Proof. It is clear that Aut(R1) ∼= S3, Aut(R2) ∼= Z2×Z2 and Aut(Rn) ∼= Z2, when
n ≥ 3. To compute the Graovac-Pisanski index, we �rst assume that n is even.
Then Vi = {ai, bi}, 1 6 i 6 n

2 + 1, W (V1) = n
2 + 1, W (V2) = n

2 , . . ., W (Vn
2

) = 2
and W (Vn

2 +1) = 1. Therefore,

GP (Rn) = |V |
n
2 +1∑
i=1

W (Vi)

|Vi|

= (n+ 2)

(
1 + 2 + 3 + · · ·+ n

2 + 1

2

)
=
n3

16
+
n2

2
+

5n

4
+ 1.
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If n is odd then Vj = {aj , bj}, 1 6 j 6 n+1
2 , Vn+3

2
= {c}, W (V1) = n+1

2 ,

W (V2) = n−1
2 , . . ., W (Vn−1

2
) = 2, W (Vn+1

2
) = 1 and W (Vn+3

2
) = 0. Therefore,

GP (Rn) = |V |

n+3
2∑

j=1

W (Vj)

|Vj |

= (n+ 2)

(
0

1
+

1 + 2 + 3 + · · ·+ n+1
2

2

)
=
n3

16
+

3n2

8
+

11n

16
+

3

8
.

Acknowledgment. We are indebted to the referee for several corrections and
useful comments.

References

[1] A. R. Ashra�, F. Koorepazan-Moftakhar, M.V. Diudea, Distance under

symmetry: (3, 6)-fullerenes, In: Distance, Symmetry, and Topology in Carbon Nano-
materials, A.R. Ashra� and M.V. Diudea(Eds.), Springer International Publishing,
AG Switzerland, (2016) pp. 51− 60.

[2] A.R. Ashra�, H. Shabani, The modi�ed Wiener index of some graph operations,
Ars Math. Contemp. 11 (2016), 277− 284.

[3] N. Biggs, Algebraic Graph Theory, Second edition, Cambridge Math. Library, Cam-
bridge Univ. Press, Cambridge, (1993).

[4] M.V. Diudea, O. Ursu, L.Cs. Nagy, TOPOCLUJ, Babes Bolyai University,
Cluj, Romania, (2002).

[5] T. Do²li¢, M.S. Litz, Matchings and independent sets in polyphenylene chains,
MATCH Commun. Math. Comput. Chem. 67 (2012), 313− 330.

[6] T. Do²li¢, I. Zubac, Counting maximal matchings in linear polymers, Ars Math.
Contemp. 11 (2016), no. 2, 255− 276.

[7] M. Ghorbani, S. Klavºar, Modi�ed Wiener index via canonical metric represen-

tation, and some fullerene patches, Ars Math. Contemp. 11 (2016), 247− 254.

[8] A. Graovac, T. Pisanski, On the Wiener index of a graph, J. Math. Chem. 8
(1991), 53− 62.

[9] I. Gutman, A.R. Ashra�, On the PI index of phenylenes and their hexagonal

squeezes, MATCH Commun. Math. Comput. Chem. 60 (2008), 135− 142.

[10] I. Gutman, S.J. Cyvin, J. Brunvoil, Enumeration of the isomers of phenylenes,
Monatshefte für Chemie 125 (1994), 887− 894.

[11] HyperChem package Release 7.5 for Windows, Hypercube Inc., Florida, USA, 2002.



102 F. Koorepazan-Moftakhar, A. R. Ashra� and O. Ori

[12] F. Koorepazan-Moftakhar, A.R. Ashra�, Distance under symmetry, MATCH
Commun. Math. Comput. Chem. 74 (2015), 259− 272.

[13] F. Koorepazan-Moftakhar, A.R. Ashra�, Combination of distance and sym-

metry in some molecular graphs, Appl. Math. Comput. 281 (2016), 223− 232.

[14] F. Koorepazan-Moftakhar, A.R. Ashra�, O. Ori, M.V. Putz, An alge-

braic modi�cation of Wiener and hyper-Wiener indices and their calculations for

fullerenes, In: Distance, Symmetry, and Topology in Carbon Nanomaterials, A.R.
Ashra� and M.V. Diudea (Eds.), Springer International Publishing, AG Switzerland,
(2016) pp. 33− 50.

[15] H. Shabani, A.R. Ashra�, Symmetry-moderated Wiener index, MATCH Com-
mun. Math. Comput. Chem. 76 (2016), 3− 18.

[16] The GAP Team, GAP-Groups, Algorithms, and Programming, Lehrstuhl De für
Mathematik, Rheinisch Westf �alische Technische Hochschule, Aachen, Germany,
1997.

[17] N. Tratnik, The Graovac-Pisanski index of zig-zag tubulenes and the generalized

cut method, J. Math. Chem. 55 (2017), no. 8, 1622− 1637.

[18] H. Wiener, Structural determination of the para�n boiling points, J. Am. Chem.
Soc. 69 (1947), 17− 20.

Received November 08, 2017
F. Koorepazan-Moftakhar
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan,
Kashan 87317-53153, I. R. Iran
e-mail: f.k.moftakhar@gmail.com

A. R. Ashra�
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan,
Kashan 87317-53153, I. R. Iran
e-mail: ashra�@kashanu.ac.ir

O. Ori
Actinium Chemical Research, Via Casilina 1626/A, 00133 Rome, Italy
e-mail: ottorino.ori@gmail.com



Quasigroups and Related Systems 26 (2018), 103− 108

Retractive nil-extensions of completely simple

semirings

Sunil Kumar Maity, Rumpa Chatterjee and Rituparna Ghosh

Abstract. A semiring S is said to be a quasi completely regular semiring if for any a ∈ S

there exists a positive integer n such that na is completely regular. The study of completely

Archimedean semirings have shown that completely Archimedean semirings are nil-extensions of

completely simple semirings. In this paper we introduce retractive nil-extensions of completely

simple semirings and establish a relation with completely Archimedean semirings.

1. Introduction

In the year 1984, S. Bogdanovic and S. Milic [5] �rst studied nil-extensions of com-
pletely simple semigroups. Decomposition of completely π-regular semigroups into
a semilattice of Archimedean semigroups was discussed by S. Bogdanovic in [1].
The study of nil-extensions of completely regular semigroups has been proven of
great importance in semigroup theory. A completely Archimedean semigroup has
been proven to be a nil-extension of a completely simple semigroup and further-
more it is Archimedean and completely π - regular. Furthermore, characterization
of retractive nil-extensions of class of regular semigroups, union of groups and band
of groups have been studied in the papers [2], [3] and [4]. Retractive nil-extension
of a completely simple semigroup has been proved to be a rectangular band of
π-groups. Therefore, retractive extension of a semigroup has been an area of great
attraction in recent years of study.

In recent years, semirings have been studied by many authors, for example, by
F. Pastijn, Y. Q. Guo, M. K. Sen, K. P. Shum and others (See [10], [13]). In the
paper [13], completely regular semirings were introduced and it was derived that
a completely regular semiring is a union of skew-rings and also a b-lattice of com-
pletely simple semirings. After this work, many interesting results on completely
regular semigroups and inverse semigroups have been extended to semirings by
M. K. Sen, S. K. Maity and K. P. Shum in ([12], [14]). Furthermore, extension
of completely π-regular semigroups to quasi completely regular semirings in [9]
have further enriched the study of analogous results. It has also been derived
that quasi completely regular semiring can be described as the b-lattice of com-
pletely Archimedean semirings. In the paper [8], we had shown that a semiring

2010 Mathematics Subject Classi�cation: 16A78, 20M10, 20M07.

Keywords: ideal extension, nil-extension, completely Archimedean semiring, completely sim-

ple semiring, retractive nil-extension, b-lattice of skew-rings, quasi skew-ring



104 S.K. Maity, R. Chatterjee, R. Ghosh

is completely Archimedean if and only if it is nil-extension of a completely simple
semiring if and only if it is Archimedean and quasi completely regular.

In this paper we further study retractive extension of a semiring. We charac-
terize completely Archimedean semirings as retractive nil-extension of completely
simple semirings. Thus we establish a relation between retractive nil-extensions
of completely simple semirings and nil-extensions of completely simple semirings.
The preliminaries and prerequisites for this article are discussed in section 2. In
section 3 we prove some characterization theorems of completely Archimedean
semirings as retractive nil-extensions of completely simple semirings. Further, we
study properties on retractive nil-extension of b-lattice of skew-rings.

2. Preliminaries

A semiring (S,+, ·) has both the additive reduct (S,+) and the multiplicative
reduct (S, ·) as semigroups and multiplication distributes over addition, that is,
a(b + c) = ab + ac and (b + c)a = ba + ca for all a, b, c ∈ S. We do not assume
that the additive reduct (S,+) is commutative. An element a of a semiring S is
said to be in�nite [7] if and only if a + x = a = x + a for all x ∈ S. In�nite
element in a semiring is unique and is denoted by ∞. An in�nite element ∞ in a
semiring S having the property that x ·∞ =∞ =∞·x for all x( 6= 0) ∈ S is called
strongly in�nite [7]. A semiring S is additively regular if for every element a ∈ S
there exists an element x ∈ S such that a+ x+ a = a. A semiring S is said to be
additively quasi regular if for every element a ∈ S there exists a positive integer n
such that the element na = a+ a+ · · ·+ a︸ ︷︷ ︸

n times

is additively regular. A semiring S is

completely regular [13] if for every element a ∈ S, there exists an element x ∈ S
such that a = a+ x+ a, a+ x = x+ a and a(a+ x) = a+ x. A semiring (S,+, ·)
is a quasi completely regular semiring [9] if for every element a ∈ S, there exists a
positive integer n such that na is completely regular, that is, na = na + x + na,
na+x = x+na and na(na+x) = na+x for a suitable element x ∈ S. A semiring
(S,+, ·) is called a skew-ring if its additive reduct (S,+) is a group, not necessarily
an abelian group. In [13] we proved that an element a in a semiring S is completely
regular if and only if it is contained in a subskew-ring of S. Let S be a semiring
and R be a subskew-ring of S. If for every a ∈ S there exists a positive integer n
such that na ∈ R, then S is said to be a quasi skew-ring. A semiring S is said to be
a b-lattice [13] if (S, ·) is a band and (S,+) is a semilattice. A semiring S is said to
be an idempotent semiring if all the elements of S are additive idempotent as well
as multiplicative idempotent, i.e., a + a = a = a2 for all a ∈ S. An idempotent
semiring satisfying the identity a = a+x+a is called a rectangular band semiring.
Throughout this paper, we let E+(S) be the set of all additive idempotents of
the semiring S. We observe that the set E+(S) is non-empty and it forms an
ideal of the multiplicative reduct (S, ·) of the semiring S. If (S,+, ·) is a semiring,
we denote the Green's relations on the semigroup (S,+) by L +, R+, J +, and
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H +. In fact, the relations L +, R+, J + and H + are all congruences of the
multiplicative reduct (S, ·). Thus, if any one of these happens to be a congruence
on the additive reduct (S,+), it will be a congruence on the semiring (S,+, ·). Let
(S,+, ·) be an additively quasi regular semiring. We consider the relations L ∗+,
R∗+, and J ∗+ on S de�ned by: for a, b ∈ S,

aL ∗+ b if and only if paL + qb,

aR∗+ b if and only if paR+ qb,

aJ ∗+ b if and only if paJ + qb;

where p and q are the smallest positive integers such that pa and qb are respectively
additively regular. We also let H ∗+ = L ∗+ ∩R∗+. A quasi completely regular
semiring (S,+, ·) is said to be completely Archimedean if J ∗+ = S × S.

A nonempty subset I of a semiring (S,+, ·) is said to be a bi-ideal of S if a ∈ I
and x ∈ S imply that a+ x, x+ a, ax, xa ∈ I. Let I be a bi-ideal of a semiring S.
We de�ne a relation ρ

I
on S by aρ

I
b if and only if either a, b ∈ I or a = b where

a, b ∈ S. It is easy to verify that ρ
I
is a congruence on S. This congruence is said

to be Rees congruence on S and the quotient semiring S/ρ
I
contains a strongly

in�nite element, namely I. This quotient semiring S/ρ
I
is said to be the Rees

quotient semiring and is denoted by S/I. In this case the semiring S is said to be
an ideal extension of I by the semiring S/I. An ideal extension S of a semiring I
is a nil-extension of I if for any a ∈ S there exists a positive integer n such that
na ∈ I.

A subsemiring T of a semiring S is a retract of S if there exists a homomorphism
φ : S −→ T such that φ(t) = t for all t ∈ T . Such a homomorphism is called a
retraction. A nil-extension S of T is said to be a retractive nil-extension of T if T
is a retract of S.

3. Retractive nil-extension

In this section we characterize completely Archimedean semirings as a retractive
nil-extensions of completely simple semirings. For this �rst we state the following
two results.

Theorem 3.1 ([6], [9]). The following conditions on a semiring (S,+, ·) are equiv-

alent.

(i) S is a quasi completely regular semiring.

(ii) Every H ∗+- class is a quasi skew-ring.

(iii) S is (disjoint) union of quasi skew-rings.

(iv) S is a b-lattice of completely Archimedean semirings.

(v) S is an idempotent semiring of quasi skew-rings.
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Theorem 3.2 ([8]). The following conditions on a semiring are equivalent:

(i) S is a completely Archimedean semiring;

(ii) S is a nil-extension of a completely simple semiring;

(iii) S is Archimedean and quasi completely regular.

Remark. Let a be a quasi completely regular element in a semiring (S,+, ·). Then
there exists a positive integer n such that na is completely regular and hence na
lies in a subskew-ring of S. The zero of the subskew-ring containing na is denoted
by a0. Here it is interesting to mention that if S is a quasi completely regular
semiring then S is (disjoint) union of quasi skew-rings. We know that every quasi
skew-ring contains a unique additive idempotent. According to our notation a0 is
the unique additive idempotent in the quasi skew-ring containing a.

Theorem 3.3. Let S be a completely Archimedean semiring. Then S is a retrac-

tive nil-extension of a completely simple semiring.

Proof. Since S is a completely Archimedean semiring, hence S is a quasi completely
regular semiring. Therefore, S is an idempotent semiring I of quasi skew-rings Si,
i ∈ I. Let a, b ∈ S. Then a ∈ Si and b ∈ Sj for some i, j ∈ I. This implies
a + b, 2a + b, a + 2b ∈ Si+j . Since Si+j is a quasi skew-ring, we must have a
positive integer n such that n(a + b) ∈ (2a + b) + S + (a + 2b). Hence for any
two elements a, b ∈ S, there exists a positive integer n such that n(a + b) ∈
(2a+ b)+S+(a+2b) ⊆ 2a+S+2b. Let a ∈ S. Then a ∈ Si for some i ∈ I. Let e
be the unique additive idempotent in the quasi skew-ring Si. Let f ∈ E+(S). We
�rst prove that a+f = e+a+f and f+a = f+a+e. First we prove that for every
m ∈ N, there exists n ∈ N and u ∈ S such that n(a+f) = ma+u+f . Clearly, the
result holds if m = 1. Let us assume that n(a+ f) = ma+ u+ f for some n ∈ N
and u ∈ S. Now for the elements ma and u + f there exists a positive integer k
and v ∈ S such that k(ma+u+f) = 2ma+v+2(u+f) = (m+1)a+w+f , where
w = (m− 1)a+ v+ u+ f + u ∈ S. Hence for every m ∈ N, there exists n ∈ N and
u ∈ S such that n(a+ f) = ma+ u+ f . Let r ∈ N be such that ra is completely
regular and hence ra lies in a subskew-ring Ri. Clearly, e is the zero of Ri. Then
there exists p ∈ N and x ∈ S such that p(a + f) = ra + x + f . Now since S is a
completely Archimedean semiring, so S is a nil-extension of a completely simple
semiring K. Clearly, f ∈ K and since K is a bi-ideal of S, it follows a + f ∈ K.
Hence (a+ f)H + p(a+ f) and (a+ f) = p(a+ f) + y for some y ∈ S. Therefore,
a+ f = p(a+ f) + y = ra+ x+ f + y = e+ ra+ x+ f + y = e+ a+ f . Similarly,
we can prove that f + a = f + a + e. We de�ne a mapping φ : S −→ K by
φ(a) = a0 + a, for all a ∈ S. Let a, b ∈ S. Then φ(a + b) = (a + b)0 + a + b
= (a + b)0 + a + a0 + b = (a + b)0 + a + a0 + b + b0 = (a + b)0 + a + b + b0

= a + b + b0 = a + b0 + b = a0 + a + b0 + b = φ(a) + φ(b). Again, φ(a)φ(b) =
(a0 + a)(b0 + b) = a0b0 + a0b + ab0 + ab = (ab)0 + ab = φ(ab). Therefore, φ is a
homomorphism and since φ(a) = a for all a ∈ K, then φ is a retraction. Hence S
is a retractive nil-extension of a completely simple semiring K.
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Corollary 3.4. The following conditions on a semiring S are equivalent:

(i) S is a completely Archimedean semiring.

(ii) S is a retractive nil extension of a completely simple semiring.

(iii) S is a nil-extension of a completely simple semiring.

Theorem 3.5. A semiring S is a completely Archimedean semiring if and only if

S is a rectangular band semiring of quasi skew-rings.

Proof. Let S be a completely Archimedean semiring. Hence S is a quasi completely
regular semiring and hence S is an idempotent semiring I(= S/H ∗+) of quasi
skew-rings Si (i ∈ I). To show I is a rectangular band semiring, let x = aH ∗+,
y = bH ∗+ ∈ I, where a, b ∈ S. Since S is completely Archimedean, we must
have a0 = (a + b + a)0. Then x = aH ∗+ = a0H ∗+ = (a + b + a)0H ∗+ =
(a+ b+ a)H ∗+ = aH ∗+ + bH ∗+ + aH ∗+ = x+ y + x. Thus I is a rectangular
band semiring and consequently, S is a rectangular band semiring of quasi skew-
rings.

Conversely, let S be a rectangular band semiring Y of quasi skew-rings, Ti
(i ∈ Y ). Then clearly S is a quasi completely regular semiring and Y = S/H ∗+.
To show S is completely Archimedean, we only show that J ∗+ = S × S. Let
a, b ∈ S. Then aH ∗+ = aH ∗+ + bH ∗+ + aH ∗+ = (a + b + a)H ∗+ implies
a0 = (a+ b+a)0. Since J ∗+ is b-lattice congruence, we have aJ ∗+ = a0J ∗+ =
(a + b + a)0J ∗+ = (a + b + a)J ∗+ = (a + b)J ∗+ = (b + a + b)J ∗+ = (b +
a + b)0J ∗+ = b0J ∗+ = bJ ∗+. Therefore, J ∗+ = S × S and hence S is a
completely Archimedean semiring.

Corollary 3.6. A semiring S is a completely simple semiring if and only if S is

a rectangular band semiring of skew-rings.

Theorem 3.7. The following conditions on a semiring S are equivalent:

(i) S is a nil-extension of a b-lattice of skew-rings.

(ii) S is a retractive nil-extension of b-lattice of skew-rings.

Proof. (i) ⇒ (ii): Let S be a nil-extension of K, where K is a b-lattice Y of
skew-rings Rα(α ∈ Y ). Then (K,+) is a semilattice (Y,+) of groups (Rα,+) and
hence (K,+) is a Cli�ord semigroup. Thus for any k ∈ K and e ∈ E+(K) we
must have e+ k = k + e. Now we de�ne a mapping φ : S −→ K by: for a ∈ S,

φ(a) = a0 + a.

Let a, b ∈ S. Then φ(a + b) = (a + b)0 + (a + b) = (a0 + b0) + (a + b) =
(b0 + a0) + (a + b) = b0 + (a0 + a) + b = (a0 + a) + (b0 + b) = φ(a) + φ(b) and
φ(a)φ(b) = (a0 + a)(b0 + b) = a0b0 + a0b+ ab0 + ab = (ab)0 + ab = φ(ab). Hence φ
is a homomorphism. Moreover for any x ∈ K, φ(x) = x0 + x = x. Consequently,
S is a retractive nil-extension of b-lattice of skew-rings K.

(ii)⇒ (i): This part is obvious.
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Non-commutative �nite associative algebras

of 3-dimensional vectors

Dmitriy Moldovyan, Nicolai Moldovyan and Victor Shcherbacov

Abstract. Properties of the non-commutative �nite associative algebras of 3-dimensional vectors

are presented. An interesting feature of these algebras is mutual associativity of all modi�cations

of the de�ned parameterized multiplication operation and existence of a large set of single-side

unit elements. In the ordinary case one unique two-side unit element is connected with every

element of the algebra, except the elements that are square roots of zero element. It is shown

that the used method suites for de�ning �nite non-commutative associative algebras of arbitrary

dimension m > 2. The considered �nite associative algebras are interesting for cryptographic

applications.

1. Introduction

Finite non-commutative associative algebras (FNAAs) are interesting for appli-
cations in design of public-key cryptoschemes characterized in using hidden con-
jugacy search problem (called also discrete logarithm problem in hidden cyclic
group) [2, 3, 6]. In literature there are considered di�erent FNAAs de�ned over
�nite vector spaces with dimensions m = 4, 6, and 8. The main attention was
paid to the case m = 4 that provides lower computational di�culty of multiplica-
tion operation in the FNAA while de�ning vector spaces over the same �nite �eld
GF (p). Recently it has been introduced the 2-dimension FNAA [4].

In the present paper it is shown that the method for de�ning 2-dimension
FNAA can be generalized and used to de�ne m-dimensional FNAAs for an ar-
bitrary value m > 2. Some properties of the FNAA relating to the case m = 3
are investigated. Other types of 3-dimension non-commutative algebras with as-
sociative multiplication operation are de�ned as well. All investigated FNAAs
contain only local unit elements, therefore de�ning the discrete logarithm problem
in a hidden group [2] on the base of such FNAAs has some peculiarities that are
discussed in relation of cryptographic application of the considered �nite algebras.
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Keywords: �nite associative algebra, di�cult problem, homomorphism, non-commutative
group, non-commutative ring, public-key cryptoscheme.
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2. Unit elements in 3-dimensional FNAA

Suppose e, i, and j are some formal basis vectors and a, b, c ∈ GF (p), where prime
p > 3, to be coordinates. Three-dimensional vectors are denoted as ae+ bi+ cj or
as (a, b, c). Terms τv, where τ ∈ GF (p) and v ∈ {e, i, j} are called components of
the vector.

Addition of two vectors (a, b, c) and (x, y, z) is de�ned as addition of the
corresponding coordinates, i.e., with the following formula (a, b, c) + (x, y, z) =
(a+ x, b+ y, c+ z).

The multiplication operation in �nite 3-dimensional vector space is de�ned
with the formula

(ae+ bi+ cj) ◦ (xe+ yi+ zj) =
= ax(e◦e)+bx(i◦e)+cx(j◦e)+ay(e◦i)+by(i◦i)+cy(j◦i)+az(e◦j)+bz(i◦j)+cz(j◦j),
where products of di�erent pairs of formal basis vectors e, i, and j are to be replaced
by some one-component vector in accordance with the basis-vector multiplication
table (BVMT) shown in Table 1. The left basis vector de�nes the row and the
right one de�nes the column. At the intersection of the row and column we have
the value of the product of two formal basis vectors.

Table 1 de�nes non-commutative associative multiplication of the vectors V =
(a, b, c) = ae + bi + cj and X = (x, y, z) = xe + yi + zj. The BVMT contains
structural coe�cients µ, τ, λ ∈ GF (p) de�ning di�erent modi�cations of the mul-
tiplication operation, i.e., the last is parameterized. The de�ned non-commutative
multiplication operation is characterized in the mutual associativity of all its mod-
i�cations, i.e., for the considered FNAA of 3-dimensional vectors the following
statement is valid:

Proposition 1. Suppose ◦ and ? are two arbitrary modi�cations of the vector
multiplication operation, which correspond to di�erent triples of structural coe�-
cients (µ1, τ1, λ1) and (µ2, τ2, λ2) 6= (µ1, τ1, λ1). Then for arbitrary three vectors
A, B, and C the following formula (A ◦B) ? C = A ◦ (B ? C) holds.

Proof of this statement consists in straightforward using of the de�nition of
the multiplication operation and Table 1.

Table 1: The BVMT de�ning associative multiplication in the �nite vector space
of the dimension m = 3 (µ 6= 0; τ 6= 0; λ 6= 0)

◦ e i j
e µe τe λe
i µi τ i λi
j µj τ j λj

Structure of Table 1 is similar to structure of the BVMT used for de�ning the
2-dimension FNAA [4] (see Table 2), i.e., every cell in every �xed row contains the
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same formal basis vector and every cell in every �xed column contains the same
structural coe�cient.

Table 2: The basis-vector multiplication table for the case m = 2 [4]

◦ e i
e µe τe
i µi τ i

Finding the right-side unit elements in the considered 3-dimension FNAA is
connected with solving the vector equation

(ae+ bi+ cj) ◦ (xe+ yi+ zj) = ae+ bi+ cj, (1)

where V = ae+ bi+ cj is an arbitrary vector and X = xe+ yi+ zj is the unknown
one.

Equation (1) can be reduced to the following system of three linear equations:
µax+ τay + λaz = a,

µbx+ τby + λbz = b,

µcx+ τcy + λcz = c.

(2)

Solution of the system (2) de�nes the following set of the local right-side unit
elements

Er = (x, y, z) =
(
x, y, λ−1(1− µx− τy)

)
, (3)

where x and y take on all possible values in GF (p). Every value Er from set (3)
represents a global right-side unit element acting on all 3-dimensional vectors of
the considered FNAA.

The vector equation

(xe+ yi+ zj) ◦ (ae+ bi+ cj) = ae+ bi+ cj (4)

that de�nes the left-side unit elements can be reduced to the following system of
three linear equations: 

(µa+ τb+ λc)x = a,

(µa+ τb+ λc)y = b,

(µa+ τb+ λc)z = c.

(5)

Solving the system (5) one gets the following statement.

Proposition 2. To every vector V = (a, b, c), such that µa + τb + λc 6= 0, there
corresponds a unique local left-side unit vector

El = (x, y, z) =

(
a

µa+ τb+ λc
,

b

µa+ τb+ λc
,

c

µa+ τb+ λc

)
. (6)
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It is easy to show that the local left-side unit element is contained in the set (3),
i.e., it is equal to the local bi-side unit of the vector V.

Let us consider the sequence V, V 2, . . . , V i (for i = 1, 2, 3, . . .). If the vector
V is not a zero-divisor relatively some of its power (zero-divisors are considered
below, where it is shown that vectors satisfying the condition aµ + bτ + cλ 6= 0
are not zero-divisors), then for some two integers h and k > h we have V k = V h

and V k = V k−h ◦ V h = V h ◦ V k−h = V k−h ◦ V h. Thus, the mentioned sequence
is periodic and for some integer ω (that can be called order of the vector V )
the equality V ω = V k−h = E′ holds, where E′ is a bi-side local unit such that
V i ◦ E′ = E′ ◦ V i = V i holds for all integers i.

Thus, taking into account that the local right-side unit element corresponding
to the vector V is a unique one, we can conclude the following:

Proposition 3. Suppose V = (a, b, c) is a vector such that aµ+bτ +cλ 6= 0. Then
the vector Er described with the formula (6) acts as a unique bi-side local unit
element E′ in the subset

{
V, V 2, . . . , V i, . . .

}
, and the value E′ can be computed

as some power of V.

Thus, the element El de�ned by the vector V = (a, b, c) acts on vectors
V, V 2, . . . , V i as a local bi-side unit for an arbitrary integer i > 1.

Example. The last fact can be illustrated by the following computations using
the values

p = 991615146597818046071879, µ = 3176589117, τ = 1, λ = 8766554, and

N = (a, b, c) = (8654389874321123, 35172879913271, 185758463523115).

Computation of the value E′ as E′ = Np2−1 and using formula (6) from State-
ment 2 gives the same result

E′ =

(73697875749428423568471, 450511442110889243261952,

501366196117758720690571).

Finding the right-side zero-divisors for the vector V = (a, b, c) is connected
with consideration of the vector equation

(ae+ bi+ cj) ◦ (xe+ yi+ zj) = (0, 0, 0)

that can be reduced to the following system of equations:
(µx+ τy + λz)a = 0,

(µx+ τy + λz)b = 0,

(µx+ τy + λz)c = 0.

(7)

Solution of system (7) de�nes the following set of the right-side zero-divisors

Dr = (x, y, z) =
(
x, y, λ−1(−µx− τy)

)
, (8)
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where x and y take on all values in GF (p). Every value Dr from set (8) represents a
global right-side zero-divisor acting on all 3-dimensional vectors of the considered
FNAA. Formula (8) describes the vectors to which no left-side unit corresponds.
Below it is shown that formula (8) describes square roots of zero vector (0, 0, 0).

The vector equation

(xe+ yi+ zj) ◦ (ae+ bi+ cj) = (0, 0, 0)

that de�nes the left-side zero-divisor can be reduced to the following system of
three linear equations: 

(µa+ τb+ λc)x = 0,

(µa+ τb+ λc)y = 0,

(µa+ τb+ λc)z = 0.

(9)

Solving system (9) one gets the following statement.

Proposition 4. To every vector V = (a, b, c) such that µa + τb + λc 6= 0, there
corresponds no left-side zero-divisor, except (0, 0, 0). Every vector of the considered
FNAA acts on vectors V ′ = (a′, b′, c′), such that µa′ + τb′ + λc′ = 0, as a left-side
zero-divisor.

Consideration of the vector equation

D ◦D = (0, 0, 0),

where D = (x, y, z) is unknown, leads to solving the system
(µx+ τy + λz)x = 0,

(µx+ τy + λz)y = 0,

(µx+ τy + λz)z = 0,

that de�nes the following set of square roots of the zero vector (0, 0, 0) :

D =
(
x, y, − λ−1(µx+ τy)

)
,

where x and y take on all values inGF (p). Thus, vectors V = (a′, b′, c′), coordinates
of which satisfy condition µa′ + τb′ + λc′ = 0, are square roots of zero.

Taking into account Proposition 4 and �niteness of the considered vector space
it is easy to see that the vector V, such that µa+ τb+ λc 6= 0, generates periodic
sequence V, V 2, . . . , V i, where i = 1, 2, 3, . . . , and for some value i = ω we have
V ω = E′, where E′ = El is the local bi-side unit determined by coordinates of the
vector V in accordance with the formula (6) from Proposition 2.

Like in the case of FNAA of two-dimensional vectors, non-commutative as-
sociative multiplication of the 3-dimensional vectors can be de�ned alternatively
with Table 3 that represents transposition of the Table 1. It is easy to see that
Table 3 de�nes the FNAA having the properties very close to the properties of the
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considered FNAA of 3-dimensional vectors. Indeed, suppose V and W to be arbi-
trary 3-dimensional vectors and ◦ and ? to be the vector multiplication operations
de�ned with Table 1 and Table 3 respectively. Then

V ◦W =W ? V.

The proof of this fact consists in straightforward using of the de�nition of the
multiplication operation and the indicated two BVMTs.

Table 3: Alternative BVMT de�ning associative multiplication in the �nite vector
space of the dimension m = 3

◦ e i j
e µe µi µj
i τe τ i τ j
j λe λi λj

4. Particular variants of 3-dimensional FNAAs

Except Tables 1 and 3, other particular BVMTs de�ning 3-dimension FNAAs
are possible, which can be attributed to the type of unbalanced BVMTs. If the
BVMT is such that while multiplying two input vectors the e-coordinate does not
in�uence the i- and j-coordinates of the output vector, then the BVMT is called e-
unbalanced. Similar de�nitions can be formulated for i- and j-unbalanced BVMTs.
In such sense the BVMTs presented by Table 1 and 3 can be called balanced. Four
di�erent unbalanced BVMTs and formulas for describing local unit elements (left-
side El, right-side Er, and bi-side E′ ones) for the vector V = (a, b, c) relating to
the FNAAs de�ned with these BVMTs, are presented bellow.

Table 4: The j-unbalanced BVMT

◦ e i j
e µe µi 0
i τe τ i 0
j µj τ j 0

Case of Table 4. The set of the left-side local unit elements of the vector
V = (a, b, c) such that τ 6= 0 and µa+ τb 6= 0, is described as follows:

El =

(
h,

1− µh
τ

,
c

µa+ τb

)
,
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where h = 0, 1, . . . , p− 1.
The set of the right-side local units of the vector V is described as follows

(where h = 0, 1, . . . , p− 1):

Er =

(
a

µa+ τb
,

b

µa+ τb
, h

)
.

For the vector V there exists only one local bi-side unit:

E′ =

(
a

µa+ τb
,

b

µa+ τb
,

c

µa+ τb

)
.

Table 5: The e-unbalanced BVMT

◦ e i j
e 0 0 0
i µe µi τ i
j τe µj τ j

Case of Table 5. The set of the left-side local units corresponding to the vector
V = (a, b, c) such that µb + τc 6= 0, is described by the following formula (where
h = 0, 1, . . . , p− 1):

El =

(
h,

b

µb+ τc
,

c

µb+ τc

)
.

The set of the right-side local units of the vector V is described by the following
formula (h = 0, 1, . . . , p− 1):

Er =

(
a

µb+ τc
, h,

1

τ
− µ

τ
h

)
.

The single local bi-side unit of the vector V is

E′ =

(
a

µb+ τc
,

b

µb+ τc
,

c

µb+ τc

)
.

Table 6: The i-unbalanced BVMT

◦ e i j
e e i j
i 0 0 0
j j i e
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Case of Table 6. The set of the left-side local units corresponding to the vector
V = (a, b, c) such that a + b 6= 0, is described by the following formula (where
h = 0, 1, . . . , p− 1):

El = (1, h, 0) .

There exists only one local right-side unit Er corresponding to the vector V =
(a, b, c), which is equal to the local bi-side unit E′:

Er = E′ =

(
1,

b

a+ b
, 0

)
.

Table 7: Alternative i-unbalanced BVMT

◦ e i j
e µe µi τe
i µi 0 τ i
j µj τ i τ j

Case of Table 7. The set of the right-side local units of the vector V = (a, b, c),
where τ 6= 0 and µa+ τc 6= 0, is described as follows (where h = 0, 1, . . . , p− 1):

El =

(
h, 0,

1

τ
− µ

τ
h

)
.

There exists only one local left-side unit El for the vector V , which is equal to
the local bi-side unit E′:

Er = E′ =

(
a

µa+ τc
, 0,

c

µa+ τc

)
.

We note that Tables 1 and 3 de�ne some new unbalanced BMVTs, when one
of structural coe�cients is equal to zero. For FNAAs de�ned with every one of
the considered unbalanced BVMTs (see Tables 4 to 7) Proposition 1 is not valid.
However Proposition 1 is valid for FNAAs de�ned by unbalanced BVMTs obtained
by taking one structural coe�cient equal to zero in Tables 1 and 3.

5. Discussion and potential application

One of the interesting properties of the investigated FNAAs is mutual associa-
tivity of all modi�cations of the parameterized non-commutative multiplication
operation.

In the literature, parameterized commutative multiplication operation for the
cases m = 2 and m = 3 [5] does not possess such property. Like in BVMTs used
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in [4] for de�ning 2-dimensional FNAAs, each of Tables 1 and 3 represents m
repetitions of the sequence of m basis vectors which are written as strings or as
columns of the table. Every cell of the given column in Table 1 and every cell of
the given row in Table 3 contains the same structural coe�cient. In general case
coe�cients relating to di�erent columns in Table 1 and di�erent rows in Table 3
are di�erent.

It is easy to check that BVMT with such structure de�nes associative non-
commutative multiplication in �nite vector space having arbitrary dimension m.
We have preliminary considered the properties of the FNAA of the vectors having
dimensions m = 4, 5, 6. Properties of such FNAAs resemble the results described
in Sections 2 and 3, including mutual associativity of the modi�cations of the
multiplication operation parameterized with di�erent sets of structural coe�cients.
Detailed consideration of the cases m > 3 represents interest for independent
research. One can expect that for m > 3 there are signi�cantly more variants of
di�erent BVMT de�ning associative non-commutative multiplication operation.
An example relating to the casem = 4 is presented in [2], though the modi�cations
of the parameterized multiplication operation of that example are not mutually
associative.

The FNAA considered in [2] represents a �nite non-commutative ring with
(global) bi-side unit. One can expect that in the cases m ≥ 4, when designing
di�erent types of BVMTs, it is possible to construct FNAAs having qualitatively
di�erent properties.

During execution of the described research we have performed many di�erent
computational experiments to check practically the results of analytic considera-
tion. Only results of computing local bi-side unit elements as an integer power of
the corresponding vectors have been presented in the paper, since such computa-
tional experiment is more interesting due to its indirect connection with the results
of analytic consideration of the systems of linear equations de�ning properties of
the multiplication operation.

In the case of FNAA de�ned with balanced BVMT described by Table 1 one
can remark the following. If some vector V = (a, b, c) satis�es the condition
µa+τb+λc 6= 0, then for arbitrary integer i the vector V i can not act as the right
zero-divisor relatively all 3-dimensional vectors, except (0, 0, 0).

Indeed, assumption D◦V i = (0, 0, 0) leads to contradiction with Proposition 4.
Therefore the sequence V, V 2, . . . V i, . . . , does not contain the vector (0, 0, 0) and
is periodic. The last leads to conclusion that such sequence contains local bi-side
unit element E′ corresponding to V, i.e., for some integer ω we have V ω = E′.
Thus, the subset

{
V, V 2, . . . V ω

}
of 3-dimensional vectors represents a cyclic �nite

group contained in the FNAA.
Mutual associativity of the multiplication modi�cations represent interest as

cryptographic primitive for designing secret key cryptoschemes in which operations
are used as key elements.

Regarding the public-key cryptoschemes it is interesting to consider designs
based on computational complexity of the hidden conjugacy search problem (that
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can be called alternatively the discrete logarithm problem in a hidden cyclic sub-
group) in FNAAs of 3-dimensional vectors.

Suppose W to be some vector generating commutative �nite multiplicative
group having su�ciently large order ω, in which the bi-side local unit element E′′

connected with W is the unit of such group.
One can de�ne the following homomorphism ϕW,t over the subset of elements

{VE′′} of the FNAA which are described as follows VE′′ = V ◦E′′, where V takes
on all values in the FNAA.

Like standard automorphisms ψU of some �nite non-commutative ring, which
are described by formula ψU (V ) = U−1 ◦V ◦U, where U is an invertible element of
the ring and V takes on all values in the ring, one can de�ne the homomorphism
ϕW,t as follows:

ϕW,t (VE′′) =Wω−t ◦ VE′′ ◦W t.

To construct public-key cryptoschemes, like that described in [2, 3], one can
select some vector G generating a cyclic group (that is a subset of elements of the
FNAA) having su�ciently large order g, which satis�es the condition G ◦W 6=
W ◦G and use the formula

Y =Wω−t ◦ (G ◦ E′′)x ◦W t,

where Y is public key and the pair of numbers (t, x) is private key (the integers
t < ω and x < ω are to be selected at random).

Suppose YA and YB are public keys of the users A and B respectively. Then
they are able to generate a common secret key

ZAB =Wω−tA ◦ (YB)xA ◦W tB =Wω−tB ◦ (YA)xB ◦W tB ,

where (tA, xA) and (tB , xB) are private keys of the users A and B respectively.
It should be noted that the used balanced BVMTs for de�ning 3-dimensional

FNAAs are particular cases of the BVMTs for de�ning m-dimensional FNAAs,
which are presented as Tables 8 and 9, where µi ∈ GF (p), (i = 1, 2, . . . ,m) are
structural coe�cients.

Proposition 5. The multiplication of the m-dimensional vectors

V = (v1, v2, . . . , vi, . . . , vm) = v1e1 + v2e2 + . . .+ viei + . . .+ vmem

for an arbitrary integer m > 2, de�ned by Tables 8 and 9, is an associative opera-
tion.

Table 8: The BVMT for de�ning m-dimensional FNAA

◦ e1 e2 . . . em
e1 µ1e1 µ2e1 . . . µme1
e2 µ1e2 µ2e2 . . . µme2
. . . . . . . . . . . . . . .
em µ1em µ2em . . . µmem
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Table 9: Alternative BVMT for de�ning m-dimensional FNAA

◦ e1 e2 . . . em
e1 µ1e1 µ1e2 . . . µ1em
e2 µ2e1 µ2e2 . . . µ2em
. . . . . . . . . . . . . . .
em µme1 µme2 . . . µmem

To prove the last statement it is su�cient to show that for arbitrary ordered
set of three basis vectors ei, ej and ek the following formula holds:

(ei ◦ ej) ◦ ek = ei ◦ (ej ◦ ek) .

In the case of Table 8 we have

(ei ◦ ej) ◦ ek = (µjei) ◦ ek = µjµkei

and
ei ◦ (ej ◦ ek) = ei ◦ (µkej) = µjµkei.

In the case of Table 9 we have

(ei ◦ ej) ◦ ek = (µiej) ◦ ek = µiµjek

and
ei ◦ (ej ◦ ek) = ei ◦ (µjek) = µiµjek.

5. Conclusion

In the present paper, the 3-dimensional FNAAs are introduced. The used BVMTs
de�ne the parameterized non-commutative multiplication operation in �nite space
of 3-dimensional vectors. They have su�ciently simple structure and represent
particular cases of two general-type BVMTs (see Tables 8 and 9) that can be used
for de�ning FNAAs of arbitrary dimension m > 2.

An interesting feature of the considered FNAAs is existence of di�erent sets
of elements that act (on some other sets of elements) as the single-side unit el-
ements. Except the elements that are square roots of zero, to every element W
of the FNAAs corresponds one two-side unit E′′W . Usually, to di�erent elements
correspond di�erent two-side units and therefore the lasts are called local.

For the given local unit E′′W over the subset {V ◦ E′′W } a homomorphism can
be de�ned and used for constructing public-key cryptoschemes based on computa-
tional di�culty of the discrete logarithm problem in a hidden cyclic group of the
FNAAs.

Future research in the context of the concerned topic is connected with study
of the m-dimensional FNAAs for the cases m > 4, which are de�ned by Tables 8
and 9. It is also interesting to consider other variants of BVMTs for de�ning
3-dimensional FNAAs and to investigate the properties of the lasts.
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Torsion-unitary Cayley graph of an R-module

as a functor

Ali Ramin and Ahmad Abbasi

Abstract. Let R be a commutative ring with 1 6= 0 and U(R) be the set of unit elements.

Let M be an R-module and T (M) the set of torsion elements. In this paper, we introduce and

investigate the torsion-unitary Cayley graph of M , denoted by ΥR(M). It is a simple graph

with vertex set M × R, and two elements (m, r), (n, s) ∈ M × R are adjacent if and only if

(m, r) − (n, s) ∈ T (M) × U(R). We observe that ΥR(−) acts as a functor on the category of

modules. We also introduce the exact sequence of Cayley graphs and determine the properties

of functor ΥR(−).

1. Introduction

The Cayley graph introduced by Arthur Cayley in 1878 is a useful tool for connec-
tion between group theory and the theory of algebraic graphs. Let G be an abelian
additive group, C be a subset of G. Whenever 0 /∈ C and −C = {−c | c ∈ C} ⊆ C,
then the Cayley graph Cay(G,C) is the graph with vertex set G and edge set
{{a, b} | a− b ∈ C}. The Cayley graphs as a subcategory of category of graphs is
denoted by C. We refer the reader to [8] for general properties of Cayley graphs.

In recent years, for a ring R and M as an R-module, Cayley graphs of the
abelian group (R,+) and (M,+) with respect to subsets of R and M have re-
ceived much attention in the literature. Suppose that Z(R), U(R), J(R) and
Nil(R) are the set of zero-divisors, the set of unit elements, the Jacobson radical
of R and the ideal of nilpotent elements, respectively. In [4] and [12], the authors
obtained some basic properties of Cay(R,U(R)), denoted by GR, which is usu-
ally called the unitary Cayley graph. Also in [11], D. Kiani and M. Molla Haji
Aghaei show that if GR ∼= GS , then R/J(R) ∼= S/J(S) where R and S are �nite
commutative rings. Moreover, in [13], J. Sato and K. Baba studied the chromatic
number of Cay(R,Z(R) \ {0}). In [14], Shekarriz et al. tried to answer the nat-
urally arising question: Under what conditions on a �nite commutative ring R,
do we have τ(R) ∼= Cay(R,Z(R) \ {0})? where τ(R) is the total graph de�ned
in [5]. Also G. G. Aalipour and S. Akbari continued to investigate the properties
of Cay(R,Z(R) \ {0}) in [1] and [2]. Let M be an R-module where the collec-
tion of prime submodules is non-empty. Let NΛ be an arbitrary union of prime
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submodules and T (M) = {m ∈ M | rm = 0 for some 0 6= r ∈ R} be the set of
torsion elements of M . Also, suppose that c ∈ U(R) such that c−1 = c. In [3], we
de�ne the extended total graph of M as a simple graph TΓc(M,NΛ) with vertex
set M , and two distinct elements x, y ∈M are adjacent if and only if x+ cy ∈ NΛ

and study some graph theoretic results of it. Also In [6], the authors show that if
M 6= T (M), then T (M) is a union of prime submodules of M . Hence in [3], we
investigate some properties of TΓ−1(M,T (M)) = Cay(M,T (M)\{0}) too. These
provide a motivation to introduce a graph over an R-module as a functor from
category of modules to subcategory of graphs.

In this paper, we introduce the torsion-unitary Cayley graph of M , denoted
by ΥR(M). It is a simple graph with vertex set M × R, and two elements
(m, r), (n, s) ∈ M × R are adjacent if and only if (m, r)− (n, s) ∈ T (M)× U(R).
We show that it acts as a functor over an R-module. Also we introduce two func-
tors, unitary Cayley graph and torsion graph and study some category theoretic
properties of them. The motivation is based the fact that any ring homomor-
phism and R-module homomorphism preserves the unit elements and the torsion
elements, respectively. Of course, any ring homomorphism preserves idempotent
and nilpotent elements too. But to make a simple graph (without loop), the set
of unit elements is used in de�nition.

In Section 2, we determine some basic properties of ΥR(M). In section 3, the
graph ΥR(M) will be studied in �nite mode. Also in the end of this section, an ex-
ample will be provided to demonstrate defects of proof given in [14, Theorem 5.2].
It is not counterexample for [14, Theorem 5.2], which is only indicated counting the
number of vertices of a maximal clique of τ(R) is very complicated in this case (a
clique in a graph G is a subset of pairwise adjacent vertices). We also show errors
underlying their proof. In the last section, we de�ne the functor ΥR : MR → C
with ΥR(M) = Cay(M ×R, T (M)× U(R)) where MR is the R-module category.
Let φ : M → N be an R-module homomorphism, then ΥR(φ) : ΥR(M)→ ΥR(N)
given by ΥR(φ)((m, r)) = (φ(m), r) is a homomorphism of graphs. Also let R be
the category of ring and let TΓR(M) be Cay(M,T (M) \ {0}) with loop on all
vertices. Then Υu : R → C and Υt : MR → C are functors, with Υu(R) = GR
and Υt(M) = TΓR(M) respectively. In this section, we investigate the properties
of these functors and introduce an exact sequence of cayley graphs.

Throughout this article, all rings are assumed to be commutative with non-
zero identity. Let R be an Artinian ring, the structure theorem [7, Theorem 8.7]
implies that R ∼= R1×. . .×Rt, where each Ri is a local ring with maximal ideal mi;
this decomposition is unique up to permutation of factors. We denote by ki the
residue �eld Ri/mi and fi = |ki|. We also assume (after appropriate permutation
of factors) that f1 6 f2 6 . . . 6 ft. As usual, Z, Q, Zn, and Fq will denote the
integers, rational numbers, integers modulo n, and the �nite �eld with q elements,
respectively. R is reduced if Nil(R) = {0}. For more notations, we refer the reader
to [7].

Let G be a graph with the vertex set V (G). A graph G is totally disconnected
if no two vertices of G are adjacent. The complement of G is denoted by G.
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For vertices x and y of G, the length of a shortest path from x to y is denoted by
dG(x, y) (dG(x, x) = 0 and dG(x, y) =∞ if there is no such path). The diameter of
G is diam(G) = sup{dG(x, y)|x and y are vertices of G}. The girth of G, denoted
by gr(G), is the length of a shortest cycle in G (gr(G) = ∞ if G contains no
cycles). The complete graph on n vertices is denoted by Kn. A graph G is called
bipartite if its vertex set can be represented as the union of two disjoint sets V1 and
V2, such that every edge of G connects an element of V1 with one of V2. We call V1,
V2 a bipartition of V (G). The union of two simple graphs (with loop) G and H is
the graph G∪H with the vertex set V (G)∪V (H) and the edge set E(G)∪E(H).
Also

⋃t
i=1G is denoted by tG. Let P = {V1, ..., Vk} be a partition of the vertex

set of G into non-empty classes. The quotient G/P of G by P is the graph whose
vertices are the sets V1, ..., Vk and whose edges are the pairs [Vi, Vj ] such that there
are ui ∈ Vi, uj ∈ Vj with [ui, uj ] ∈ E(G). The mapping πP : V (G) → V (G/P)
de�ned by πP(u) = Vi such that u ∈ Vi, is the natural map for P. Quotients often
provide a way of deriving the structure of an object from the structure of a larger
one. Observe that πP is a homomorphism and it is automatically faithful. If ϕ
is a homomorphism of graph from X to Y , then the preimages ϕ−1(y) of each
vertex y in Y are called the �bres of ϕ. The �bres of ϕ determine a partition Kϕ
of V (X) called the kernel of ϕ. If Y has no loops, then the kernel is a partition
into independent sets. Given a graph X together with a partition Kϕ of V (X),
de�ne a graph X/Kϕ with vertex set the cells of Kϕ and with an edge between
two cells if there is an edge of X with an endpoint in each cell (and a loop if there
is an edge within a cell). The set of �nite simple graphs, denoted by Θ. A graph
with loop on all vertices, denoted by G◦. The set of �nite simple graphs in which
loops are admitted is denoted by Θ◦. The categorical product of G and H is the
graph, denoted by G×H, and vertex set V (G)× V (H), such that vertices (g, h)
and (g′, h′) are adjacent precisely if gg′ ∈ E(G) and hh′ ∈ E(H). Other names for
the categorical product that have appeared in the literature are tensor product,
Kronecker product or direct product. We know that the categorical product is
commutative and associative. Let G1 and G2 be graphs. Also let G be a subgraph
of G1 and V ⊆ V (G2) be the set of disjoint vertices, then G × V is denoted by
GV .

2. Torsion-unitary Cayley graph

In this section, we de�ne the torsion-unitary Cayley graph of M and we obtain
some its basic properties and categorical product. Also, the relationship between
the torsion-unitary Cayley graph and the unitary Cayley graph will be expressed.

De�nition 2.1. Let R be a commutative ring with nonzero identity andM be an
R-module. The torsion-unitary Cayley graph of M is a simple graph with vertex
set M × R, and two elements (m, r), (n, s) ∈ M × R are adjacent if and only if
(m, r)− (n, s) ∈ T (M)× U(R). This graph is denoted by ΥR(M).
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De�nition 2.2. Let R be a commutative ring with nonzero identity and M be
an R-module. The torsion graph of M , denoted by TΓR(M), is the graph, whose
vertex set is M , and in which {m,n} is an edge if and only if m− n ∈ T (M) (i.e.,
TΓR(M) ∼= Cay(M,T (M) \ {0})◦).

In what follows, the some properties of categorical product is recalled.

Remark 2.3. Let K◦1 ∈ Θ◦ denote the graph with exactly one vertex, on which
there is a loop. Observe that K◦1 ×G ∼= G for any G ∈ Θ◦. Therefore, under the
operations × and +, the set Θ◦ is a commutative semiring with unit K◦1 . Also if G
has no loop at g, then H{g} is totally disconnected; whereas if G has a loop at g,
then H{g} is isomorphic to H. Let G = G1×G2×· · ·×Gk =

∏k
i=1Gi. By simple

rewording of the de�nitions, each projection pi : G → Gi is a homomorphism.
Furthermore, given a graph H and a collection of homomorphisms ϕi : H → Gi,
for 1 6 i 6 k, observe that the map ϕ : x 7→ (ϕ1(x), ϕ2(x), . . . , ϕk(x)) is a
homomorphism H → G. From the two facts just mentioned, we see that every
homomorphism ϕ : H → G has the form ϕ : x 7→ (ϕ1(x), ϕ2(x), . . . , ϕk(x)), for
homomorphisms ϕi : H → Gi, where ϕi = piϕ. Clearly ϕ is uniquely determined
by the pi and ϕi.

Proposition 2.4. [9, Proposition 5.7] Suppose (g, h) and (g′, h′) are vertices of a
categorical product G×H, and n is an integer for which G has a g, g′-walk of length
n and H has an h, h′-walk of length n. Then G×H has a walk of length n from
(g, h) to (g′, h′). The smallest such n (if it exists) equals dG×H((g, h), (g′, h′)). If
no such n exists, then dG×H((g, h), (g′, h′)) =∞.

Proposition 2.5. [9, Proposition 5.8] Suppose x and y are vertices of G =
G1 × G2 × · · · × Gk. Then dG(x, y) = min{n ∈ N | each factor Gi has a walk of
length n from pi(x) to pi(y)}, where it is understood that dG(x, y) =∞ if no such
n exists.

Theorem 2.6. (Weichsel's Theorem, [9, Theorem 5.9]) Suppose G and H are
connected nontrivial graphs in Θ◦. If at least one of G or H has an odd cycle, then
G×H is connected.

In view of the above theorem, we have the following corollary.

Corollary 2.7. A categorical product of connected nontrivial graphs is connected
if and only if at most one of the factors is bipartite.

Remark 2.8. (1). ΥR(M) ∼= TΓR(M) × GR. Since every vertex m ∈ TΓR(M)

has a loop, every G
{m}
R is isomorphic to GR, also since every vertex r ∈ GR has

no loop, every TΓR(M){r} is totally disconnected.
(2). Let R be an Artinian ring and suppose that f1 = 2, then GR is a bipartite

graph. Note that GR =
∏
GRi .

Theorem 2.9. GR is a bipartite graph if and only if ΥR(M) is a bipartite graph.
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Proof. Suppose that GR is bipartite. Let V1 and V2 be bipartition of V (GR),
then TΓR(M)V1 and TΓR(M)V2 are bipartition of V (ΥR(M)). Therefore ΥR(M)
is bipartite. Conversely, if GR is not bipartite, then it has an odd cycle namely
O. Hence O{m} is an odd cycle in ΥR(M), since m has a loop in TΓR(M), a
contradiction. Therefore GR is a bipartite graph.

Proposition 2.10. Let R be a commutative ring with identity and let T (M) 6=
{0}, then gr(ΥR(M)) ≤ 4. In particular, if T (M) = {0}, then ΥR(M) is the
union of |M | disjoint GR's, and gr(ΥR(M)) = gr(GR).

Proof. GR is not totally disconnected, also since T (M) 6= {0}, ΥR(M) is not
totally disconnected too. Since K◦2 ×K2 is a cycle of length four, gr(ΥR(M)) 6 4.
In particular, if T (M) = {0}, then ΥR(M) ∼=

⋃
M K◦1 × GR ∼=

⋃
M GR and it is

clear that gr(ΥR(M)) = gr(GR).

By Remark 2.3, G
{m}
R is isomorphic to GR for all m ∈ M . Therefore we have

the following corollary in the light of Proposition 2.4.

Corollary 2.11. gr(ΥR(M)) 6 gr(GR). In particular, gr(ΥR(M)) = 3 if and
only if gr(GR) = 3. Moreover gr(ΥR(M)) = 4, if gr(GR) = 4.

Lemma 2.12. [8, Lemma 3.7.4] Cay(G,C) is connected if and only if C is a
generating set for G.

Remark 2.13. Let GR = {V1(GR), . . . , Vk(GR)} be a partition of the vertex
set of ΥR(M) where Vi(GR) = mi × R for mi ∈ M and |M | = k (k can

be in�nite). Since mi has a loop in TΓR(M), GR
{mi} ∼= GR by Remark 2.3.

Hence the vertices Vi(GR), Vj(GR) ∈ ΥR(M)/GR are adjacent if and only if the
vertices mi,mj ∈ TΓR(M) are adjacent since (mi, 0) ∈ Vi(GR) and (mj , 1) ∈
Vj(GR) are adjacent in ΥR(M) if and only if mi − mj ∈ T (M). Therefore,
ΥR(M)/GR ∼= TΓR(M).

As usual, if A ⊆M , then < A > denotes the Z-submodule of M generated by
A.

Theorem 2.14. Let R be a commutative ring and M an R-module. Then ΥR(M)
is connected if and only if M =< T (M) > and R =< U(R) >.

Proof. Let ΥR(M) be connected. By Lemma 2.12,M×R =< T (M)×U(R) > and
so M =< T (M) > and R =< U(R) >. Conversely, suppose that M =< T (M) >
and R =< U(R) >. By Lemma 2.12, GR is connected and also TΓR(M) is

connected with loops. Consider GR
{mi} for some mi ∈ M , then GR

{mi} ∼= GR
by Remark 2.3. Hence there is a path in ΥR(M) from (mi, r) to (mi, r

′) for
r, r′ ∈ R since GR is connected. Also since TΓR(M) is connected, there is a path
in ΥR(M)/GR from Vi(GR) to Vj(GR) for every mj ∈ M by the above remark.
Therefore there is a path from (mi, r) to (mj , r

′) and ΥR(M) is a connected
graph.
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As an applications of the algebraic graph theory in modules theory, the follow-
ing corollary hold by Lemma 2.12 and the above theorem.

Corollary 2.15. Let M be an R-module, then M ×R =< T (M)×U(R) > if and
only if M =< T (M) > and R =< U(R) >.

Theorem 2.16. Let R be a commutative ring and M an R-module. Suppose that
ΥR(M) is a connected graph (i.e., M×R =< T (M)×U(R) >). If there is k which
is a greatest integer i such that m = n1 + n2 + · · · + ni where, m ∈ M × R and
n1, ..., ni ∈ T (M)×U(R) with n1 +n2 + · · ·+ni is a shortest representation of m,
then diam(ΥR(M)) = k. Otherwise, diam(ΥR(M)) =∞. Moreover, if ΥR(M) is
a connected graph, then diam(ΥR(M)) = dM×R(0,m).

Proof. The proof is similar to the proof of [3, Theorem 14].

Remark 2.17. Let u ∈ U(R) and j ∈ J(R), then u+ j ∈ U(R). Hence, whenever
x and y are adjacent vertices in GR, then every element of x+J(R) is adjacent to
every element of y+J(R). Moreover, x+m is a totally disconnected subgraph ofGR
where m is a maximal ideal. Therefore

⋃
m∈M (x+m){m} is a totally disconnected

subgraph of ΥR(M). Also, suppose that M 6= T (M) and {Nλ}λ∈Ω is the set of
all prime submodules of M . We know that T (M) =

⋃
λ∈ΛNλ for Λ ⊆ Ω as shown

in [6]. Let NΛ =
⋂
λ∈ΛNλ, then every element of m + NΛ is adjacent to every

element of n + NΛ if m and n are adjacent vertices in TΓR(M). Furthermore,
m+Nλ is a clique with loop in TΓR(M), where λ ∈ Λ.

Lemma 2.18. Let R be a commutative ring and M be an R-module. Then :

(i) ΥR(M) is complete graph if and only if M = 0 and R is a �eld,

(ii) ΥR(M) is vertex transitive,

(iii) ΥR(M) is a regular graph of degree |T (M)| × |U(R)| with isomorphic com-
ponents.

Proof. Let ΥR(M) is complete graph. Then M = 0 since (m, r) and (n, r) are
not adjacent for every m,n ∈ M and r ∈ R. Also R is a �eld since if there
exists a nonunit x 6= 0 in R, then (m, 0) and (n, x) are not adjacent. Part (ii)
holds for every Cayley graph of a group. To prove the last part, note that under
an automorphism of graph G, any component of G is isomorphically mapped
to another component. Since ΥR(M) is vertex-transitive, we conclude that the
components of ΥR(M) are isomorphic and so part (iii) is proved.

3. The case when M and R are �nite

In this section, all graphs considered to be �nite. It is natural to seek the conditions
under which A×C ∼= B×C implies A ∼= B. We call this the cancellation problem



Torsion-unitary Cayley functor 127

for the categorical product. In general, cancellation for the categorical product fails
dramatically. If C is any bipartite graph, then there are always non-isomorphic
graphs A and B for which A×C ∼= B×C. Indeed, just take A = K2 and B = 2K◦1
(two loops), then A × C ∼= 2C ∼= B × C. But we say that cancellation holds for
the torsion-unitary Cayley graphs in this section. Finally, we examine the validity
of the proof of Theorem 5.2 in [14].

Remark 3.1. Let R be a �nite commutative ring, then ΥR(R) = GR
◦

×GR since
R is an union of zero divisor and unit elements. Therefore if GR ∼= GS , then
ΥR(R) ∼= ΥS(S).

Corollary 3.2. Let R be a �nite commutative reduced ring and let S be a com-
mutative ring. Then TΓR(R) ∼= TΓS(S) if and only if R ∼= S.

Proof. Let R be a �nite commutative ring, then GR
◦ ∼= TΓR(R). By [11, Corollary

5.4], R ∼= S if and only if TΓR(R) ∼= TΓS(S).

Theorem 3.3. Suppose that R and S are commutative ring and let M be an R-
S-bimodule. Then ΥS(M) ∼= ΥR(M) if and only if GS ∼= GR where ΥS(M) ∈ Θ.

Proof. It is clear by [9, Proposition 9.6].

Corollary 3.4. Suppose that R and S are commutative reduced ring. let M be
an R-S-bimodule such that ΥR(M) ∈ Θ. Then ΥS(M) ∼= ΥR(M) if and only if
R ∼= S.

Proof. This follow directly from [11, Corollary 5.4] and the above theorem.

Theorem 3.5. Suppose that there is a ring homomorphism ψ : S → R and
ΥR(M),ΥS(M) ∈ Θ. Also let M and N be R-modules. If ΥR(M) ∼= ΥR(N), then
ΥS(M) ∼= ΥS(N).

Proof. It is clear by [9, Proposition 9.9].

By Theorem 2.9 and [9, Proposition 9.10], if ΥR(M) ∈ Θ and it has an odd
cycle, then ΥR(M) ∼= ΥR(N) if and only if TΓR(M) ∼= TΓR(N). Also by Lemma
2.18(iii), if M is a torsion or torsion-free module, then ΥR(M) ∼= ΥR(N) if and
only if TΓR(M) ∼= TΓR(N) since TΓR(M) and TΓR(N) have loop on all ver-
tices and minimum and maximum degree of TΓR(M) and TΓR(N) equal two and
|T (M)|+ 1 respectively (a loop is incident to only one vertex, when measuring the
degree of such a vertex, the loop is counted twice). By the following theorem, the
condition that ΥR(M) has an odd cycle can be omitted.

Theorem 3.6. Let M and N be R-modules and let ΥR(M) ∈ Θ, then

ΥR(M) ∼= ΥR(N) if and only if TΓR(M) ∼= TΓR(N).
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Proof. Suppose that ΥR(M) ∼= ΥR(N). Since ΥR(M) = TΓR(M) × GR and
ΥR(N) = TΓR(N)×GR, |T (M)| = |T (N)| by Lemma 2.18(iii). Hence

TΓR(M)×GR/GR ∼= TΓR(N)×GR/GR,

where GR is as mentioned in Remark 2.13. Therefore TΓR(M) ∼= TΓR(N) by
Remark 2.13.

Also, by the similar proof, the following corollary is obtained in the cancellation
for the categorical product.

Corollary 3.7. Let A,B,C ∈ Θ◦. Suppose that A and B have loop on all vertices
and C has at least one edge. Then A× C ∼= B × C if and only if A ∼= B.

Shekarriz et al. answered the isomorphic question in [14, Theorem 5.2]: Let
R be a �nite commutative ring, then τ(R) ∼= Cay(R,Z(R) \ {0}) if and only if
at least one of the following conditions is true: (a) R ∼= R1 ⊕ · · · ⊕ Rk, where
k ≥ 1 and each Ri is a local ring of an even order; (b) R ∼= R1 ⊕ · · · ⊕ Rk, where
k ≥ 2 and each Ri is a local ring and f1 = 2. But, they have errors in its proof
when they conclude τ(R) � Cay(R,Z(R)\{0}), supposed (a) and (b) do not hold
for a �nite commutative ring R. In the following, an example will be provided to
demonstrate defects of proof given in [14, Theorem 5.2], and we investigate the
method of proof too. The equivalence class Z(Ri) + ai, is denoted by [ai].

Example 3.8. Let R = F4 ⊕ F4 ⊕ Z3 and (1, 1, 1), (0, 0,−1) ∈ R, denoted by 1
and x, respectively. Then τ(F4⊕F4⊕Z3) has �ve maximal cliques, all containing
the edge {1, x}, which are given separately as follows:

(a). Let c1 = ([1], [0],Z3), c2 = (F4, [0], [−1]) and c3 = ([1],F4, [1]), then
c1 ∪ c2 ∪ c3 forms a maximal clique, where |c1 ∪ c2 ∪ c3| = |c1|+ |c2|+ |c3| − |c1 ∩
c2| − |c1 ∩ c3| − |c2 ∩ c3|+ |c1 ∩ c2 ∩ c3| = 3 + 4 + 4− 1− 1− 0 + 0 = 9.

By permuting the �rst two components, a new maximal clique will be gener-
ated: ([0], [1],Z3) ∪ ([0],F4, [−1]) ∪ (F4, [1], [1]). Since, |R|/f1 = |R|/f2, these two
cliques will be equal in size. Moreover, in these maximal cliques, vertices 1 and x
are already counted.

(b). Let c1 = ([1],F4, [1]) and c2 = ([0],F4, [−1]), then c1 ∪ c2 forms a maximal
clique, where |c1 ∪ c2| = |c1|+ |c2| − |c1 ∩ c2| = 4 + 4− 0 = 8. By permuting the
�rst two components, a new maximal clique will be generated:

(F4, [1], [1]) ∪ (F4, [0], [−1]).

Since, in this example, |R|/f1 = |R|/f2, these two cliques will be equal in size.
Moreover, in these maximal cliques, vertices 1 and x are already counted.

(c). Let c1 = ([1], [0], [0]), c2 = ([0], [1], [0]), c3 = ([1], [1], [1]) and c4 =
([0], [0], [−1]), then c1 ∪ c2 ∪ c3 ∪ c4 forms a clique of maximal size 4. It should be
noted that, the mutual intersection of every pair of ci's is empty, for i = 1, . . . , 4,
and vertices 1 and x are already counted.
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Remark 3.9. Note that this example is not contra example for [14, Theorem
5.2], this is an example which determines the method of counting the number of
vertices of a maximal clique of τ(R) is not true. Let R = R1 ⊕ R2 ⊕ R3 where
R1 and R2 are even such that Ri/Z(Ri) ∼= F2t , for i = 1, 2 and t > 2, and R3

is odd. Then the layouts of equivalence classes of maximal cliques containing the
edge {1, x} are as the above example.

Now, let us return to the main subject concerning the �aws in the proof of [14,
Theorem 5.2].

The �ndings discussed in the proof are well-reasoned until they were going to
show that for i = 1, . . . , k, the edge {1, x} does not belong to a maximal (|R|/fi)-
clique in τ(R). In that proof, it is supposed that {ys|s ∈ S} is a set of elements
of R of maximal size which are adjacent to both 1 and x and also to themselves.
It is also cited that if {ys | s ∈ S} ∪ {1, x} forms a clique of maximal size |R|/fi,
then there must be 1 6 m1 < m2 < · · · < mq 6 k; 0 6 q 6 k such that all ys's
belong to

R1⊕· · ·⊕Rm1−1⊕ [am1
]⊕Rm1+1⊕· · ·⊕Rmq−1⊕ [amq ]⊕Rmq+1⊕· · ·⊕Rk. (1)

Now, according to this direct sum and ambiguity in the assumption, ys's could
be chosen in three following ways:

(1) ys's belong to (1) in which ami and mi are �xed for all i = 1, . . . , q. Based on
maximal cliques in the example 3.8(a), 3.8(b) and 3.8(c), {ys|s ∈ S}∪{1, x}
is not a maximal clique. It shows that the argument can not be true.

(2) ys's belong to (1) in which only mi are �xed for all i = 1, . . . , q. Now,
example 3.8(a) shows that {ys|s ∈ S} ∪ {1, x} is not a maximal clique.

(3) ys's belong to (1) in such away ami , mi and q can vary. Thus q will
be replaced with qλ in (1), for some λ ∈ Λ such that 1 6 qλ 6 k, and
ySλ = {ys|s ∈ Sλ}'s are contained in the representation (1), where Sλ ⊆ S
such that for all s ∈ Sλ, the elements of ySλ in (1) have a �xed representation
(i.e., miλ and qλ are �xed). In Example 3.8, ySλ is the set of vertices of a
clique ci. Based on deduction in [14, Theorem 5.2], qλ 6= 1. If qλ > 2, then

|ySλ | =
|R|∏qλ
i=1 fmi

, and the required number is calculated by |
⋃
ySλ | as in

Example 3.8.

The counting method given in [14, Theorem 5.2] implies that the authors have
considered either conditions (1) or (2). Moreover, in the proof, where it is supposed
that 2 6 q 6 k, if [amp ] = [−1mp ] and [amv ] = [−xmv ] for some v 6= p, 1 6 p 6 j
and j+1 6 v 6 k, then 1 may belong to {ys|s ∈ S}. Correspondingly, if 1 6 v 6 j
and j + 1 6 p 6 k, then x may belong to {ys|s ∈ S}. Therefore, it is generally
incorrect to add 2 in counting the total number of vertices of maximal cliques.



130 A. Ramin and A. Abbasi

4. Torsion-unitary Cayley functor

In this section, we de�ne torsion-unitary Cayley functor and determine some of its
categorical properties.

De�nition 4.1. Let R be a commutative ring with nonzero identity andM be an
R-module. The functor ΥR : MR → C with ΥR(M) = Cay(M ×R, T (M)× U(R))
is a covariant functor. It is easily veri�ed that if φ : M → N is an R-module homo-
morphism, then ΥR(φ) : ΥR(M)→ ΥR(N) given by ΥR(φ)((m, r)) = (φ(m), r) is
a homomorphism of graph.

Remark 4.2. In general, let R and S be commutative rings, ψ : S → R a
ring homomorphism. Suppose that MR and NR are R-modules and φ : M →
N is an R-module homomorphism. Then MR × S and NR × S are S-modules,
ΥR(φ, ψ) : ΥS(MR) → ΥR(NR) given by ΥS(φ, ψ)((m, r)) = (φ(m), ψ(r)) is a
homomorphism of graph ((φ, idR) replace by (φ, ψ) in the above de�nition) and
the following diagram commutes:

MR × S NR × S

MR ×R NR ×R

ΥS(M) ΥS(N)

ΥR(M) ΥR(N)

(φ, idS)

(idM , ψ)
(φ, ψ)

(idN , ψ)

(φ, idR)

(φ, idS)

(idM , ψ)
(φ, ψ)

(φ, idR)

(idN , ψ)

where, (−→) denotes S-module homomorphisms, (=⇒) denotes homomorphisms
of graph and ( ) denotes functors.

By Remark 2.3, if R = M = 0, then GR = TΓR(M) = K◦1 . So the followings
hold:

(a) Let M = 0, then M ×R ∼= R, ΥR(M) ∼= GR, Υ−(0) is a functor from cate-
gory of rings to unitary Cayley graphs as a subcategory of graphs category,
denoted by Υu(−), and the following diagram commutes:

S R

GS GR

Υu(S)

ψ

ψ

Υu(R)

.

(b) Let M be an R-module, then Υ0(−) is a functor from MR to torsion graphs
as a subcategory of category of graphs, denoted by Υt(−). Note that, in this
case, graphs are not simple such that every vertex has a loop.
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We say that a functor F : C → D preserves a property P of a morphism f
in C if F (f) in D also has the property P. We say that F re�ects a property
P if f has P in C whenever F (f) has P in D. Analogous de�nitions can be
made with respect to properties of objects. It is clear that every functor preserves
commutative diagrams. A homomorphism f from G to f(G) ⊆ H is called a
retraction if there exists an injective homomorphism g from f(G) to G such that
fg = idf(G). In this case f(G) is called a retract of G, and then G is called a
coretract of f(G) while g is called a coretraction. According to the de�nition of
the functor Υ, we have the following corollary.

Corollary 4.3. The functor Υ preserves and re�ects injective mappings and sur-
jective mappings. It preserves retractions and coretractions.

A homomorphism ϕ : G→ H is called faithful if ϕ(G) is an induced subgraph
of H. It will be called full if {g, g′} ∈ E(G) if and only if {ϕ(g), ϕ(g′)} ∈ E(H).
Let G be a simple graph and ϕ a full homomorphism, then ϕ−1(h) ∪ ϕ−1(h′)
induces a complete bipartite graph whenever {h, h′} ∈ E(H).

Corollary 4.4. Let S be a commutative ring and M be an R-module. Suppose
that ψ′ : S → S/J(S) and φ′ : M → M/NΛ are the canonical homomorphism,
where NΛ is as mentioned in Remark 2.17. Then Υu(ψ′) and Υt(φ′) are full
homomorphism of graph.

Let m′ ∈ T (M), then σm′ : GR → TΓR(M) given by σm′(r) = rm′ is a
homomorphism since Im(σm′) is a complete graph with loop.

Proposition 4.5. Let m ∈ M \ T (M) such that U(R) = R \ (T (M) : m), then
φm : GR → TΓR(M) given by φm(r) = rm is a full homomorphism. In partic-
ular, if R is a �nite commutative ring, then φm is a full homomorphism for all
m ∈M \ T (M).

Proof. It is clear that φm is a homomorphism of graphs. Suppose that {r1m, r2m}
is an edge in TΓR(M) for some r1, r2 ∈ R, then u = r2 − r1 ∈ U(R) since
um ∈ T (M) if and only if u ∈ R \ U(R) = (T (M) : m) for m ∈ M \ T (M).
Therefore φm is full. For the �in particular� statement, suppose that R is �nite.
Hence U(R) = R \ (T (M) : m) for all m ∈M \ T (M) since every regular element
of a �nite commutative ring is a unit.

Remark 4.6. In Remark 4.2, ψ is a faithful homomorphism if and only if ψ−1(ψ(s))∩
U(S) 6= ∅ for all ψ(s) ∈ U(R) because if {ψ(s1), ψ(s2)} is an edge in GR for some
s1, s2 ∈ S, then (s2 + k2) − (s1 + k1) ∈ U(S) for some k1, k2 ∈ Ker(ψ). Accord-
ing to the same reason, φ is a faithful homomorphism if and only if φ−1(φ(s)) ∩
T (M) 6= ∅ for all φ(s) ∈ T (N). Also, ψ is a full homomorphism if and only if

ψ−1(ψ(s)) ⊆ U(S) for all ψ(s) ∈ U(R) because if ψ(s) ∈ U(R), then {ψ(s), ψ(0)}
is a edge in GR and so s − 0 ∈ U(S) since ψ is a full homomorphism. According

to the same reason, φ is a full homomorphism if and only if φ−1(φ(m)) ⊆ T (M)
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for every φ(m) ∈ T (N). Moreover, the homomorphism (φ, ψ) is faithful (full) if
and only if each of φ and ψ is faithful (full).

Proposition 4.7. Let ψ : S → R be a ring homomorphism such that the induced
map Spec(R) → Spec(S) is surjective. Then ψ : GS → GR is a full homomor-
phism.

Proof. Let ψ(x) is an unit, then ψ(x) /∈ q for all q ∈ Spec(R). Hence x /∈ ψ−1(q)
for all q ∈ Spec(R). Since induced map is surjective, x is an unit and ψ is full
homomorphism by the above remark.

Theorem 4.8. In Remark 4.2, ψ is a surjective full homomorphism of graph if
and only if ψ is surjective and Ker(ψ) ⊆ J(S). In particular, if ψ is a surjective
ring homomorphism and S is a local commutative ring, then ψ is a full surjective
homomorphism.

Proof. Suppose that ψ is full. Hence, ψ−1(ψ(s)) ⊆ U(S) for all ψ(s) ∈ U(R) by
Remark 4.6. Let s ∈ Ker(ψ). Then ψ(1 + ss′) = 1 for all s′ ∈ S, hence 1 + ss′ has
inverse and it follows that s ∈ J(S). Therefore Ker(ψ) ⊆ J(S) and ψ is a surjec-
tive ring homomorphism by Corollary 4.3. Conversely, let ψ(s) ∈ U(R), then there
is s′ ∈ S such that (s′+Ker(ψ))(s+Ker(ψ)) = 1 +Ker(ψ) since S/Ker(ψ) ∼= R.
Hence ss′ − 1 ∈ Ker(ψ) and so (ss′ − 1) ∈ J(S) since Ker(ψ) ⊆ J(S). There-
fore ss′ ∈ U(S) and so s ∈ U(S) since 1 + J(R) ⊆ U(R) and U(S) is a sat-
urated multiplicatively closed subset of S. Moreover, if ψ is surjective, then ψ
is surjective too by Corollary 4.3. The �in particular� statement is clear since
Ker(ψ) ⊆ J(S) = mS , where mS is a maximal ideal.

Corollary 4.9. Let ψ : S → R be a surjective ring homomorphism. Then
ψ : GS → GR is a full homomorphism if and only if the map ψ∗ : Max(R) →
Max(S) is surjective.

Proof. Let ψ be a surjective full homomorphism. Then Ker(ψ) ⊆ J(S) by the
above theorem. Now, ψ∗ is a surjective map because if Ker(ψ) contained in the
every maximal ideal and ψ is surjective, then ψ(mS) and ψ−1(mR) are maximal
ideals for mS ∈Max(S) and mR ∈Max(R). Conversely, by the proof of Proposi-
tion 4.7, ψ is a full homomorphism.

Recall that a ring homomorphism S → R is called �at (faithfully �at) if R is
�at(faithfully �at) as an S-module.

Theorem 4.10. Let ψ : S → R be a surjective �at homomorphism. Then
ψ : GS → GR is full if and only if ψ is faithfully �at.

Proof. Let ψ be a surjective full homomorphism, then Ker(ψ) ⊆ J(S), by Theo-
rem 4.8. Also, ψ∗ : Max(R) → Max(S) is surjective and so for all m ∈ Max(S),
R/ψ(m) is nonzero by Corollary 4.9. Therefore, by [10, Lemma 10.38.15], ψ : S →
R is faithfully �at. Conversely, the induced map on Spec is surjective by [10,
Lemma 10.38.16]. Therefore, by Proposition 4.7, ψ is a full homomorphism.
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Lemma 4.11. If φ in Remark 4.2 is an injective homomorphism of modules, then
φ is a full injective homomorphism of graphs. Moreover, ΥR(φ) is a full injective
homomorphism of graphs too.

Proof. It is clear by Corollary 4.3 and Remark 4.6.

Theorem 4.12. Let M and N be R-modules where R is an integral domain and
let φ : M → N be an R-module homomorphism. Then Ker(φ) ⊆ T (M) if and
only if Υt(φ) = φ : TΓR(M)→ TΓR(N) is a full homomorphism of graph.

Proof. Suppose φ(m) ∈ T (N) for some m ∈ M . Then rφ(m) = φ(rm) = 0
for some r ∈ R. Hence rm ∈ T (M) since Ker(φ) ⊆ T (M). Therefore m ∈
T (M) since R is an integral domain. Conversely, if φ is full, then inverse map
of any torsion elements of N is a torsion element in M by Remark 4.6. Hence,
φ−1(0) = Ker(φ) ⊆ T (M).

Remark 4.13. A homomorphism ϕ of a graph G into H gives rise to an equiv-
alence relation ≡ϕ. In other words, the kernel of ϕ, de�ned on V by u ≡ϕ v if
and only if ϕ(u) = ϕ(v). Therefore, a homomorphism of graphs ϕ : G → H is
surjective and faithful if and only if ω : G/Kϕ → H is an isomorphism.

Theorem 4.14. According to the assumptions of Remark 4.2, let ψ and φ be
faithful homomorphisms of graphs. Then

(1) Υu(S/Ker(ψ)) ∼= GS/Kψ,

(2) Υt(M/Ker(φ)) ∼= TΓR(M)/Kφ,

(3) ΥR(M/Ker(φ)) ∼= ΥR(M)/Kφ×id.

Proof. (1). By the above remark, if ψ : GS → GR is a faithful homomor-
phism, then GS/Kψ ∼= ψ(GS). Since the diagram commutes in Remark 4.2(a),

ψ(Υu(S)) = Υu(ψ(S)). Therefore GS/Kψ ∼= ψ(GS) ∼= Υu(S/Ker(ψ)).

(2) The proof is similar to the proof of part (1).
(3) Let φ be faithful and φ×id : ΥR(M)→ ΥR(N) be the graph homomorphism

induced by φ. Then φ× id is faithful by Remark 4.6. Hence

(φ× id)(ΥR(M)) ∼= ΥR(M)/Kφ×id,

by the above remark. Since the diagram is commutative in Remark 4.2,

(φ× id)(ΥR(M)) = ΥR(φ(M)) ∼= ΥR(M/Ker(φ)).

Therefore ΥR(M/Ker(φ)) ∼= ΥR(M)/Kφ×id.

Corollary 4.15. Let I and N be the partitions of ring S and R-module M which
generated by the equivalence relation modulo I as an ideal of S and N as a sub-
module of M , respectively. Let ψ : GS → GS/I and φ : TΓR(M) → TΓR(M/N)
be faithful. Then
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(1) Υu(S/I) ∼= GS/I,

(2) Υt(M/N) ∼= TΓR(M)/N ,

(3) ΥR(M/N) ∼= TΓR(M)/N ×GR.

Proof. Let ψ : S → S/I and φ : M →M/N are ring and module homomorphism,
respectively. Then I = Kψ and N = Kφ. Hence the three parts are clear by the
above theorem.

Example 4.16. (a). Let n ≥ 4 be an integer and ψ : Z → Z/nZ be a ring
homomorphism. Then ψ−1(m̄) ∩ U(Z) = ∅, where −1, 1 6= m̄ ∈ U(Zn). Hence
ψ : GZ → GZn is not faithful by Remark 4.6.

(b). Let θ : Z6 → Z6/3Z6 be the canonical homomorphism of rings. Then
θ−1(m̄) ∩ U(Z6) 6= ∅ and θ−1(m̄) * U(Z6) for m = 1, 2. Hence the graph ho-
momorphism θ : GZ6

→ GZ3
is faithful, but is not full by Remark 4.6. Also,

consider θ as a homomorphism of Z6-modules, then θ−1(m̄) ∩ T (Z6) 6= ∅ and
θ−1(m̄) * T (Z6) for m = 0, 1, 2. Therefore, θ : TΓZ6

(Z6) → TΓZ6
(Z3) is faith-

ful, but is not full by Remark 4.6. Moreover, let θ × idZ6 : ΥZ6(Z6)→ ΥZ6(Z3).
Since idZ6 is a full homomorphism of graph and θ is faithful, θ× idZ6 is a faithful
homomorphism of graph by Remark 4.6.

(c). Let R be a Noetherian ring and let f =
∑∞
n=0 anx

n ∈ R[[x]], where
an is nilpotent and Let R be the partition of ring R[[x]] which generated by
the equivalence relation modulo Nil(R) as an ideal of nilpotent elements. Then
{f |an ∈ Nil(R)} = Nil(R[[x]]) ⊆ J(R[[x]]) =

∑∞
n=0 bnx

n where b0 ∈ J(R) by Ex-
ercise 2 in [7, p. 84] and Exercise 5 in [7, p. 11]. Therefore ψ : GR[[x]] → GR[[x]]/R
is a full homomorphism of graphs by Theorem 4.8 and Corollary 4.15.

Let C and D be categories. A covariant functor F : C → D is said to be
faithful if the mapping HomC(A,A′)→ HomD(F (A), F (A′)) is injective for all
A,A′ ∈ C, and it will be called full if this mapping is surjective.

Example 4.17. Let φ : Z2 → Z2 × Z2 be an Z2-module homomorphism and
let ϕ : ΥZ2

(Z2)→ ΥZ2
(Z2 × Z2) be a graph homomorphism with ϕ(x0) = a0,

ϕ(x1) = a2 and ϕ(yi) = a1 for i = 1, 2 by the following �gure:
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then there is not a module homomorphism such that φ× idZ2 = ϕ since Im(φ) is
a submodule of Z2 × Z2.

Corollary 4.18. The functor ΥR : MR → Cay(G,C) is faithful. But is not full.

Proof. The �rst part follows directly from the de�nition. By the above example,
a homomorphism of graph is not a module homomorphism in general. Therefore
the functor Υ is not full.

Let Ri be a commutative ring for 1 6 i 6 t. The element (u1, u2, . . . , ut) is a
unit of

⊕
Ri if and only if each ui is a unit element in Ri. Hence G⊕

Ri
∼=

∏
GRi .

Remark 4.19. (1). Note that unlike in group theory, the inverse of a bijective
homomorphism of graph need not be a homomorphism. For example, any bijec-
tive homomorphism from Kn to Kn. A faithful bijective homomorphism is an
isomorphism of graphs.

(2). Since T (N ⊕M) ⊆ T (N)× T (M), the map

i : TΓR(N ⊕M)→ TΓR(N)× TΓR(M)

is a graph homomorphism.

Proposition 4.20. Let R be an integral domain and let M and N be R-modules.
Then ΥR(N ⊕M) ∼= TΓR(N)×ΥR(M).

Proof. Consider the map ι : ΥR(N⊕M)→ TΓR(N)×ΥR(M) given by ι(n,m, r) =
(n, (m, r)). Hence by Remark 4.19(2), it is a bijective homomorphism of graph.
Since R is an integral domain, (n,m) ∈ T (N ⊕M) if and only if n ∈ T (N) and
m ∈ T (M). Therefore ι is faithful and ΥR(N ⊕M) ∼= TΓR(N)×ΥR(M).

De�nition 4.21. Suppose that {Gi}i∈Z is a family of groups where ei is the
identity element of Gi. A sequence of Cayley graphs

· · · → Cay(Gi−1, Ci−1)
ϕi−1−−−→ Cay(Gi, Ci)

ϕi−→ Cay(Gi+1, Ci+1)→ · · · , (2)

is called exact if ϕ−1
i (ei+1) = Im(ϕi−1) and ϕj(Cj) ⊆ Cj+1 for all i, j ∈ Z. In

particular, the short exact sequence of Cayley graph is an exact sequence in the
form

Cay(G1, C1)
ϕ1−→ Cay(G2, C2)

ϕ2−→ Cay(G3, C3),

such that ϕ1 and ϕ2 are injective and surjective, respectively.

The above de�nition may be extended to the Cayley graph with loop on all
vertices (i.e., ei ∈ Ci).

Remark 4.22. By the above de�nition and Corollary 4.3, the functors Υu and
Υt are exact. Let

· · · →Mi−1
φi−1−−−→Mi

φi−→Mi+1 → · · ·
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is an exact sequence of R-modules and R-homomorphisms, then

· · · → ΥR(Mi−1)
φi−1

−−−→ ΥR(Mi)
φi
−→ ΥR(Mi+1)→ · · ·

is not the exact sequence since Ker(φi) $ Im(φi−1), where φ = (φ, id). Also if

(2) is the sequence of Cayley graphs such that Im(ϕi−1) = ϕ−1
i (gi+1) for some

gi+1 ∈ Gi+1 and every i ∈ Z, then it can be turned into an exact sequence
whenever ϕi's replace with σi+1ϕiσ

−1
i , where σi is an automorphism of vertex

transitive graph Cay(Gi, Ci) with σi(gi) = ei+1, for all i ∈ Z.

Theorem 4.23. Let R be a commutative ring and

0 M1 M2 M3 0

0 M ′1 M ′2 M ′3 0

η1

φ1

η2

φ2

η3

φ′1 φ′2

a commutative diagram of R-modules and R-module homomorphisms such that
each row is a short exact sequence. Consider the commutative diagram:

TUCR(M1) TUCR(M2) TUCR(M3)

TUCR(M ′1) TUCR(M ′2) TUCR(M ′3)

(η1,idR)

(φ1,idR)

(η2,idR)

(φ2,idR)

(η3,idR)

(φ′1,idR) (φ′2,idR)

.

(1) If η1 and η3 are injective then so is (η2, idR).

(2) If η1 and η3 are surjective then so is (η2, idR).

(3) If η1 and η3 are isomorphism of module then (η2, idR) is an isomorphism of
graph.

Proof. Parts (1) and (2) follow directly from Corollary 4.3 and Short Five Lemma
(Note that by the above remark, rows of the second diagram in this theorem is
not the short exact sequences of Cayley graphs).

(3). This follows directly from parts above, Lemma 4.11 and Remark 4.6.

Let R be a ring and let 0→M1
φ1−→M2

φ2−→M3 → 0 be a short exact sequence
of R-modules. The sequence is said to be split if φ1(M1) is a direct summand of
M2. Up to isomorphism, one has M2 = M1 ⊕M3.
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Theorem 4.24. Let

0→M1
φ1−→M2

φ2−→M3 → 0 (3)

be a split short exact sequence of R-modules and let T (M2) be a submodule of M2.
Then

ΥR(M2) ∼= TΓR(M1)×ΥR(M3) ∼= TΓR(M3)×ΥR(M1).

Proof. Since (3) is a split short exact sequence of R-module, there are R-module
homomorphisms ψ1 : M2 → M1 and ψ2 : M3 → M2 such that ψ1 ◦ φ1 = idM1

and φ2 ◦ ψ2 = idM3 . Consider map ϕ : ΥR(M2) → TΓR(M1) × ΥR(M3) given
by ϕ(m2, r) = (ψ1(m2), φ2 × idR(m2, r)). Since ψ1 and φ2 × idR are homomor-
phisms of graph, so is ϕ. Let ϕ(m2, r) = ϕ(m′2, r

′), then ψ1(m2) = ψ1(m′2) and
φ2 × idR(m2, r) = φ2 × idR(m′2, r

′). So ψ1(m2 − m′2) = 0, m2 − m′2 ∈ Ker(φ2)
and r = r′ since (φ2(m2), r) = (φ2(m′2), r′). Hence m2 −m′2 ∈ Im(φ1) since (3)
is a short exact sequence of R-modules. So m2 = m′2 since ψ1 ◦ φ1 = idM1 and
ψ1(m2−m′2) = 0. Therefore (m2, r) = (m′2, r

′) and ϕ is injective. Moreover, ϕ is a
surjective homomorphism of graph because if (m1, (m3, r)) ∈ TΓR(M1)×ΥR(M3),
then ϕ(φ1(m1) + ψ2(m3)− φ1 ◦ ψ1 ◦ ψ2(m3), r) = (m1, (m3, r)) since φ2 ◦ φ1 = 0,
ψ1◦φ1 = idM1 and φ2◦ψ2 = idM3 . Also we need to prove that ϕ is faithful for being
an isomorphism of graphs. Suppose that vertices a = (ψ1(m2), φ2 × idR(m2, r))
and b = (ψ1(m′2), φ2 × idR(m′2, r

′)) are adjacent in TΓR(M1) × ΥR(M3), then
m′1 = ψ1(m2 −m′2) ∈ T (M1) and m′3 = φ2(m2 −m′2) ∈ T (M3). Since T (M2) is
a submodule of M2, (φ1(m′1) + ψ2(m′3) − φ1 ◦ ψ1 ◦ ψ2(m′3) ∈ T (M2). Therefore
the vertices ϕ−1(a) = (φ1 ◦ ψ1(m2) + ψ2 ◦ φ2(m2)− φ1 ◦ ψ1 ◦ ψ2 ◦ φ2(m2), r) and
ϕ−1(b) = (φ1 ◦ ψ1(m′2) + ψ2 ◦ φ2(m′2) − φ1 ◦ ψ1 ◦ ψ2 ◦ φ2(m′2), r′) are adjacent in
ΥR(M2).

Corollary 4.25. Let (3) be a split short exact sequence of R-module and T (M2)
is a submodule of M2. Then

ΥR(M2) ∼= ΥR(M1 ⊕M3) ∼= TΓR(M1)×ΥR(M3) ∼= TΓR(M3)×ΥR(M1).

Proof. By Theorem 4.23 and the above theorem, it is clear.

Example 4.26. Let T (M) be a proper submodule of R-module M such that
|T (M)| = α and |M/T (M)| = β. If R is a principal ideal domain, then the short
exact sequence of R-modules

0→ T (M)→M →M/T (M)→ 0 (4)

splits, so M ∼= T (M) ⊕M/T (M) as a direct sum of a torsion module and a free
module. Then

ΥR(M) ∼= TΓR(T (M))× TΓR(M/T (M))×GR = βK◦α ×GR

by the above corollary and [3, Theorem 7(1)]. But if ring R is not a domain,
then M/T (M) is torsion by [6, Theorem 2.8]. By [3, Theorem 7(1)], TΓR(M) =
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K◦α × βK◦1 = βK◦α. Hence Υt(M) � TΓR(T (M)) × TΓR(M/T (M)) because if
ring R is not a domain, then TΓR(T (M)) × TΓR(M/T (M)) = K◦α × K◦β (let
K◦α × K◦β = K◦α × βK◦1 . By [9, Proposition 9.6], K◦β = βK◦1 , so β = 1 and
M = T (M)).

As an applications of the algebraic graph theory in modules theory, the follow-
ing corollary hold by the above example.

Corollary 4.27. Suppose that the short exact sequence of R-modules (4) splits,
then R is a domain.
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Action of the group
〈
x, y : x2 = y6 = 1

〉
on imaginary quadratic �elds

Abdul Razaq

Abstract. Let H =< x, y : x2 = y6 = 1 > be acting on Q
(√
−n
)
and denote the subset{

a+
√
−n

3c
: a, a2+n

3c
, c ∈ Z� {0}

}
of Q

(√
−n
)
by Q∗

(√
−n
)
. Also d (n) denotes the arithmetic

function which is de�ned as the number of positive divisors of n which are multiple of 3. In this

paper, we show that the total number of orbits of Q∗
(√
−n
)
under the action of H are 4 if n = 3,

d (n) if n ≡ 0 (mod 3), but n 6= 3,
2d (n+ 1) if n ≡ 2 (mod 3).

1. Introduction

Let F be an extension �eld of degree two over the �eld Q of rational num-
bers. Then any element x ∈ F�Q is of degree two over Q and is a primi-
tive element of F (that is F = Q [x] and {1, x} is a base of F over Q). Let
p(x) = x2 + bx + c, where b, c ∈ Q, be the minimal polynomial of such an ele-
ment x ∈ F . Then 2x = −b ±

√
b2 − 4c and so, F = Q(

√
b2 − 4c). Since b2 − 4c

is a rational number u
v = uv

v2 with u, v ∈ Z, we obtain F = Q(
√
uv). In fact

it is possible to write F = Q(
√
n), where n is a square-free integer. If n is a

negative square-free integer, then Q(
√
n) is called an imaginary quadratic �eld

and the elements of Q(
√
n) are of the form a + b

√
n with a, b ∈ Q. The imagi-

nary quadratic �elds are usually denoted by Q(
√
−n) =

{
a+ b

√
−n : a, b ∈ Q

}
,

where n is a square-free positive integer. Imaginary quadratic �elds are the only
type (apart from Q) with a �nite unit group. This group has order 4 for Q(

√
−1)(

and generator
√
−1
)
, order 6 for Q(

√
−3)

(
and generator 1+

√
−3

2

)
, and order

2 (and generator − 1) for all other imaginary quadratic �elds. We denote the

subset
{
a+
√
−n

3c : a, a
2+n
3c ∈ Z and c ∈ Z� {0}

}
of Q

(√
−n
)
by Q∗

(√
−n
)
. Some

fundamental properties of imaginary quadratic �elds have been discussed in [2]
and [3].

Let G be a group generated by the linear fractional transformations x and y
satisfying the relations x2 = ym = 1. If y : z −→ az+b

cz+d is to act on all imaginary

2010 Mathematics Subject Classi�cation: 20G40, 05C25

Keywords: Imaginary quadratic �eld, orbits, coset diagrams.
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quadratic �elds, then a, b, c, d must be rational numbers and can taken to be inte-

gers, so that (a+d)2

ad−bc is rational. But if y : z −→ az+b
cz+d is of order m, one must have

(a+d)2

ad−bc = w + w−1 + 2, where w is a primitive mth root of unity. Now w + w−1

is rational, for a primitive mth root w, only if m = 1, 2, 3, 4 or 6. So these are the
only possible orders of y. The group < x, y > is cyclic of order 2, when m = 1.
When m = 2, it is an in�nite dihedral group and does not give inspiring informa-
tion while studying its action on imaginary quadratic numbers. For m = 3, the
group < x, y > is the modular group PSL (2,Z) and its action on real quadratic
numbers has been discussed in detail in [4] and [5].

In this paper, we are interested in the action of the group H =< x, y : x2 =
y6 = 1 >, where (z)x = −1

3z and (z) y = −1
3(z+1) are linear fractional transfor-

mations, on Q∗
(√
−n
)

=
{
a+
√
−n

3c : a, a
2+n
3c ∈ Z and c ∈ Z� {0}

}
. Note that,

Q∗
(√
−n
)
remains invariant under the action of H. We show that the total num-

ber of orbits of Q∗
(√
−n
)
under the action of H are 4 if n = 3

d (n) if n ≡ 0 (mod 3), but n 6= 3
2d (n+ 1) if n ≡ 2 (mod 3)

.

2. Coset Diagrams

We use coset diagrams for the group H and study its action on the projective line
over imaginary quadratic �elds. The coset diagrams for the group H are de�ned
as follows. The six cycles of transformation y are represented by six unbroken
edges of a hexagon (may be irregular) permuted counter-clockwise by y. Any two
vertices which are interchanged by involution x, is joined by an edge. The �xed
points of x and y, if they exist, are denoted by heavy dots. This graph can
be interpreted as a coset diagram,with the vertices identi�ed with the cosets of
Stabv (H) , the stabilizer of some vertex v of the graph, or as 1-skeleton of the cover
of the fundamental complex of the presentation which corresponds to the subgroup
Stabv (H) . For more details about coset diagrams, one can refer to [1],[6],[7] and
[8].

A general fragment of the coset diagram of the action of H on Q∗
(√
−n
)
will

look as follows.
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De�nition 2.1. If α = a+
√
−n

3c ∈ Q∗
(√
−n
)
is such that ac < 0 then α is called

a totally negative imaginary quadratic number and it is called a totally positive

imaginary quadratic number if ac > 0.

As d = a2+n
3c , so dc is always positive. Thus d and c will have the same

sign. Hence an imaginary quadratic number α = a+
√
−n

3c ∈ Q∗
(√
−n
)
is totally

negative if either a < 0 and d, c > 0 or a > 0 and d, c < 0. Similarly α = a+
√
−n

3c ∈
Q∗
(√
−n
)
is totally positive if either a, d, c > 0 or a, d, c < 0.

For α = a+
√
−n

3c ∈ Q∗
(√
−n
)
, norm of α is denoted by ‖ α ‖ and ‖ α ‖=| a | .

3. Main results

Theorem 3.1. If α = a+
√
−n

3c ∈ Q∗
(√
−n
)
, then n does not change its value in

the orbit αH.

Proof. Let α = a+
√
−n

3c and d = a2+n
3c . Since (α)x = −1

3α = −1
3
(

a+
√
−n

3c

) = −c
a+
√
−n =

=
−c(a−

√
−n)

a2+n = −a+
√
−n

3d , therefore the new values of a and c for (α)x are −a and

d respectively. The new value of d for (α)x is a2+n
3d = a2+n

3
(

a2+n
3c

) = c. Since (α)y =

−1
3(α+1) = −1

3
(

a+
√
−n

3c +1
) = −1

3
(

a+
√
−n+3c
3c

) =
−3c(a+3c−

√
−n)

3[(a+3c)2+n]
= −a−3c+

√
−n

3(2a+d+3c) , therefore

the new values of a and c for (α)y are −a − 3c and (2a+ d+ 3c) respectively.

Moreover, the new value of d for (α)y is (−a−3c)2+n
3(2a+d+3c) = a2+n+9c2+6ac

3(2a+d+3c) = c. Similarly

we can calculate the new values of a, d and c for (α) yj , where j = 2, 3, 4, 5.

α a d 3c

(α)x −a c 3d

(α)y −a− 3c c 3 (2a+ d+ 3c)

(α)y2 −5a− 3d− 6c 2a+ d+ 3c 3 (4a+ 3d+ 4c)

(α)y3 −7a− 6d− 6c 4a+ 3d+ 4c 3 (4a+ 4d+ 3c)

(α)y4 −5a− 6d− 3c 4a+ 4d+ 3c 3 (2a+ 3d+ c)

(α)y5 −a− 3d 2a+ 3d+ c 3d

(α)yx a+ 3c (2a+ d+ 3c) 3c

(α)y2x 5a+ 3d+ 6c 4a+ 3d+ 4c 3 (2a+ d+ 3c)

(α)y3x 7a+ 6d+ 6c 4a+ 4d+ 3c 3 (4a+ 3d+ 4c)

(α)y4x 5a+ 6d+ 3c 2a+ 3d+ c 3 (4a+ 4d+ 3c)

(α)y5x a+ 3d d 3 (2a+ 3d+ c)

(α)xy a− 3d d 3 (−2a+ 3d+ c)

(α)xy2 5a− 6d− 3c −2a+ 3d+ c 3 (−4a+ 4d+ 3c)

(α)xy3 7a− 6d− 6c −4a+ 4d+ 3c 3 (−4a+ 3d+ 4c)

(α)xy4 5a− 3d− 6c −4a+ 3d+ 4c 3 (−2a+ d+ 3c)

(α)xy5 a− 3c −2a+ d+ 3c 3c

(Table 1)
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From above information we see that all the elements in αH are of the form a+
√
−n

3c .
Hence non square positive integer n does not change its value in αH.

Theorem 3.2. The �xed points under the action of H on Q∗
(√
−n
)
exist only if

n = 3.

Proof. Let g be a linear fractional transformation in H. Therefore (z)g can be
taken as az+bcz+d , where ad−bc = 1 or 3. Let az+bcz+d = z which yields quadratic equation

cz2 + (d− a) z − b = 0. It has imaginary roots only if (a+ d)
2 − 4 (ad− bc) < 0.

If ad − bc = 1, then (a+ d)
2
< 4 implies a + d = 0,±1, and if ad − bc = 3, then

(a+ d)
2
< 12 implies a+ d = 0,±1,±2,±3. Hence we have the following cases.

(i) If a+ d =trace(g) = 0, then g is involution and hence it is conjugate to the
linear fractional transformation x or y3.

(ii) If trace(g) = ±1 and det (g) = 1, then (trace (g))
2
= det (g) implying that

order of g is 3 and hence g is conjugate to y2 or y4.
(iii) If trace(g) = ±3 and det (g) = 3, then (trace (g))

2
= 3det (g) imply-

ing that order of g will be six and hence it is conjugate to the linear fractional
transformation y or y5.

(iv) If trace(g) = ±1, det (g) 6= 1 or trace(g) = ±3, det (g) 6= 3 or trace(g) =
±2, then the order of g is in�nite and it is conjugate to the linear fractional
transformation (xy)

n
.

Hence �xed points of g are imaginary if it is conjugate to the linear fractional

transformation x, y, y2, y3, y4 or y5. Since �xed points of x and y are ±
√
−3
3 and

−3±
√
−3

6 respectively, and the conjugates of x and y having the same discriminant.
Hence �xed points exist only if n = 3.

Example 3.3. Let g = xyx ∈ H. Then (z)g = z yields the quadratic equation

3z2 − 3z + 1 = 0, which has roots 3±
√
−3

6 which are �xed points of g = xyx.

Example 3.4. Let g = yxy−1 ∈ H. Then (z)g = z yields the quadratic equation

3z2 + 6z + 4 = 0. This equation has roots −3±
√
−3

3 , which are �xed points of
g = yxy−1.

Theorem 3.5.

(i) x maps a totally negative imaginary quadratic number onto a totally positive

imaginary quadratic number and vice versa.

(ii) If α = a+
√
−n

3c ∈ Q∗
(√
−n
)
is totally positive imaginary quadratic number,

then (α)yj is totally negative imaginary quadratic number for j = 1, 2, 3, 4, 5.

Proof. (i) Let α be a totally negative imaginary quadratic number, then ac < 0
implies that either a > 0 and c, d < 0 or a < 0 and c, d > 0. Now we have the
following table.

α a d 3c

(α)x −a c 3d



Certain orbits in imaginary quadratic �elds 143

If a < 0 and c, d > 0, then from above information we can see that new values of
a, d, c for (α)x are all positive. This implies that (α)x is totally positive imaginary
quadratic number.

On the other hand, if a > 0 and c, d < 0 then new values of a, d, c are all
negative. So (α)x is a totally positive imaginary quadratic number.

Similarly x maps a totally positive imaginary quadratic number to a totally
negative imaginary quadratic number.
(ii) Following table gives the new values of a, d, c for (α)yj , where j = 1, 2, 3, 4, 5.

α a d 3c

(α)y −a− 3c c 3 (2a+ d+ 3c)

(α)y2 −5a− 3d− 6c 2a+ d+ 3c 3 (4a+ 3d+ 4c)

(α)y3 −7a− 6d− 6c 4a+ 3d+ 4c 3 (4a+ 4d+ 3c)

(α)y4 −5a− 6d− 3c 4a+ 4d+ 3c 3 (2a+ 3d+ c)

(α)y5 −a− 3d 2a+ 3d+ c 3d

Since α is a totally positive, so either a, d, c > 0 or a, d, c < 0. If a, d, c > 0,
then (α)yj are all totally negative imaginary quadratic numbers. Now if a, d, c < 0,
then again from above table, we can see (α)yj are all totally negative imaginary
quadratic numbers. Thus (α)yj are all totally negative imaginary quadratic num-
bers.

Theorem 3.6.

(i) If α = a+
√
−n

3c ∈ Q∗
(√
−n
)
, then ‖α‖ = ‖(α)x‖.

(ii) If α = a+
√
−n

3c ∈ Q∗
(√
−n
)
is totally positive imaginary quadratic number,

then ‖α‖ < ‖(α)yj‖ for j = 1, 2, 3, 4, 5.

Proof. (i) Consider the following table.

α a d 3c

(α)x −a c 3d

which implies ‖α‖ =| a |= ‖(α)x‖.
(ii) The values of (α)yj for j = 1, 2, 3, 4, 5 are given in the following table.

α a d 3c

(α)y −a− 3c c 3 (2a+ d+ 3c)

(α)y2 −5a− 3d− 6c 2a+ d+ 3c 3 (4a+ 3d+ 4c)

(α)y3 −7a− 6d− 6c 4a+ 3d+ 4c 3 (4a+ 4d+ 3c)

(α)y4 −5a− 6d− 3c 4a+ 4d+ 3c 3 (2a+ 3d+ c)

(α)y5 −a− 3d 2a+ 3d+ c 3d

Since α is a totally positive imaginary quadratic number, so ac > 0. Therefore
either a, d, c > 0 or a, d, c < 0. This implies ‖(α)y‖ =| a + c |>| a |. Also,
‖(α)y2‖ =| 5a + 3d + 2c |>| a |, ‖(α)y3‖ =| 7a + 6d + 2c |>| a |, ‖(α)y4‖ =
| 5a+ 6d+ c |>| a |, ‖(α)y5‖ =| a+ 3d |>| a | .

Thus ‖α‖ < ‖(α)yj‖ for j = 1, 2, 3, 4, 5.
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Theorem 3.7. If α = a+
√
−n

3c ∈ Q∗
(√
−n
)
, then denominator of every element

in αH has the same sign.

Proof. Consider the following table.

α a d 3c

(α)x −a c 3d

(α)y −a− 3c c 3 (2a+ d+ 3c)

(α)y2 −5a− 3d− 6c 2a+ d+ 3c 3 (4a+ 3d+ 4c)

(α)y3 −7a− 6d− 6c 4a+ 3d+ 4c 3 (4a+ 4d+ 3c)

(α)y4 −5a− 6d− 3c 4a+ 4d+ 3c 3 (2a+ 3d+ c)

(α)y5 −a− 3d 2a+ 3d+ c 3d

If α = a+
√
−n

3c ∈ Q∗
(√
−n
)
with c > 0, then d is also positive. So it can be

easily observed from the above information that every element in αH has positive

denominator. If α = a+
√
−n

3c ∈ Q∗
(√
−n
)
with c < 0, then d is also negative. So

it can be easily observed from the above information that every element in αH
has negative denominator.

Theorem 3.8. If α = a+
√
−n

3c ∈ Q∗
(√
−n
)
, then there exists a sequence of positive

integers ‖α0‖, ‖α1‖, ‖α2‖, . . . , ‖αm‖ such that ‖α0‖ > ‖α1‖ > ‖α2‖ > . . . > ‖αm‖,

where ‖αm‖ =

 0, 3 if n = 3
0 if n ≡ 0 (mod 3), but n 6= 3
1 if n ≡ 2 (mod 3)

.

Proof. Let α = α1 be a totally positive imaginary quadratic number so (α1)x is a
totally negative imaginary quadratic number and ‖ (α1)x ‖=‖ α1 ‖. Since (α1)x
is a totally negative imaginary quadratic number, then by Theorem 3.5 (ii), one
of (α1)xy

j for j = 1, 2, 3, 4, 5 is a totally positive imaginary quadratic number. If
(α)xyj = α2 is a totally positive imaginary quadratic number, then by Theorem 3.6
‖ α2 ‖< ‖ (α1)x ‖=‖ α1 ‖. Similarly, we obtain another totally positive imaginary
quadratic number α3 in the adjacent hexagon to that containing α2 such that
‖α0‖ > ‖α1‖ > ‖α2‖. Ultimately, we get a decreasing sequence of positive integers
‖α0‖, ‖α1‖, ‖α2‖, . . . , ‖αm‖ such that ‖α‖ = ‖α0‖ > ‖α1‖ > ‖α2‖ . . . > ‖αm‖.
After a �nite number of steps it must terminate.

(i) If n = 3, then after a �nite number of steps we reach to αm such that

‖αm‖ = 0 or 3. If αm = −3±
√
−3

6 , then because −3±
√
−3

6 are �xed points of y,
therefore, we can not reach at an imaginary quadratic number whose norm is

equal to zero. Otherwise we reach at αm =
√
−3
±3 .

(ii) If n ≡ 0 (mod 3), but n 6= 3, then we reach at an imaginary quadratic
number αm such that ‖αm‖ = 0.

(iii) If n ≡ 2 (mod 3) , then we reach at an imaginary quadratic number αm
such that ‖αm‖ = 1.

Example 3.9. Let α1 = 7+
√
−2

3 , which is totally positive imaginary quadratic

number. Then (α1)x = −7+
√
−2

51 , which is totally negative imaginary quadratic
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number. Also in the hexagon containing (α1)x, (α1)xy
5 = 4+

√
−2

3 is totally

positive imaginary quadratic number. Take α1 = 4+
√
−2

3 , so ‖α1‖ > ‖α2‖.
Now (α2)x = −4+

√
−2

18 is totally negative imaginary quadratic number, then in

the hexagon containing (α2)x, (α2)xy
5 = 1+

√
−2

3 is totally positive imaginary

quadratic number. Take α3 = 1+
√
−2

3 , implying that ‖α0‖ > ‖α1‖ > ‖α3‖.

Theorem 3.10. There are exactly four orbits of Q∗
(√
−3
)
under the action of

H.

Proof. Since we know that there exists a sequence of positive integers ‖α0‖, ‖α1‖,
‖α2‖, . . . , ‖αm‖ such that ‖α0‖ > ‖α1‖ > ‖α2‖ > ‖α3‖ > ‖α4‖ > . . . > ‖αm‖,
where ‖αm‖ = 0 or 3. If αm = ±

√
−3
3 or −3±

√
−3

6 , then ±
√
−3
3 and −3±

√
−3

6 are
�xed points of x and y respectively. Therefore in this case there are four orbits

of Q∗
(√
−3
)
. That is,

√
−3
3 H, −

√
−3
3 H, −3+

√
−3

6 H and 3+
√
−3

−6 H. Hence there are

exactly four orbits of Q∗
(√
−3
)
under the action of H.

Theorem 3.11. Let α ∈ Q∗
(√
−n
)
, where n 6= 3.

(i) If α =
√
−n
3 , where n ≡ 0 (mod 3) then

√
−n
3 and

√
−n
n lie in αH.

(ii) If α = 1+
√
−n

3 , where n ≡ 2 (mod 3) then 1+
√
−n

3 and −1+
√
−n

n+1 lie in αH.

(iii) If α = −1+
√
−n

3 , where n ≡ 2 (mod 3) then −1+
√
−n

3 and 1+
√
−n

n+1 lie in αH.

(iv) If α =
√
−n
3c , where n ≡ 0 (mod 3) and c 6= ±1,±n3 , n = 3cc1 then

√
−n
3c and

√
−n

3c1
lie in αH.

(v) If α = 1+
√
−n

3c where n ≡ 2 (mod 3) and n + 1 = 3cc1 , then
1+
√
−n

3c and
−1+

√
−n

3c1
lie in αH.

(vi) If α = −1+
√
−n

3c where n ≡ 2 (mod 3) and n + 1 = 3cc1 , then
−1+

√
−n

3c and
1+
√
−n

3c1
lie in αH.

Proof. (i) If α =
√
−n
3 , then we have the following information.

α 0 n
3

3

(α)x 0 1 n

(α)y −3 1 n+ 9

(α)y2 −6− n n+9
3

3 (4 + n)

(α)y3 −2n− 6 4 + n 9 + 4n

(α)y4 −2n− 3 9+4n
3

3 (n+ 1)

(α)y5 −n n+ 1 n

Hence from the above table, we see that
√
−n
3 and

√
−n
n lie in the same orbit.
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(ii) If α = 1+
√
−n

3 , then we have the following information.

α 1 n+1
3

3

(α)x −1 1 1 + n

(α)y −4 1 16 + n

(α)y2 −12− n 16+n
3

27 + 3n

(α)y3 −15− 2n 9 + n 25 + 4n

(α)y4 −10− 2n 25+4n
3

12 + 3n

(α)y5 −2− n 4 + n 1 + n

Hence from the above table, we see that 1+
√
−n

3 and −1+
√
−n

n+1 lie in αH.

(iii) If α = −1+
√
−n

3 , then we have the following information.

α −1 n+1
3

3

(α)x 1 1 1 + n

(α)y −2 1 4 + n

(α)y2 −2− n 4+n
3

3 (1 + n)

(α)y3 −1− 2n 1 + n 1 + 4n

(α)y4 −2n 1+4n
3

3n

(α)y5 −n n n+ 1

Hence from the above table, we see that −1+
√
−n

3 and 1+
√
−n

n+1 lie in the same orbit.

(iv) If α =
√
−n
3c , then we have the following information.

α 0 c1 3c

(α)x 0 c 3 c1
(α)y −3c c 3 (3c+ c1 )

(α)y2 −6c− 3c1 3c+ c1 3 (4c+ 3c1 )

(α)y3 −6c− 6c1 4c+ 3c1 3 (3c+ 4c1 )

(α)y4 −3c− 6c1 3c+ 4c1 3 (c+ 3c1 )

(α)y5 −3c1 c+ 3c1 3c1

Hence from the above table, we see that
√
−n
3c and

√
−n

3c1
lie in the same orbit.

(v) If α = 1+
√
−n

3c , then we have the following information.

α 1 c1 3c

(α)x −1 c 3 c1
(α)y −1− 3c c 3 (2 + 3c+ c1 )

(α)y2 −5− 6c− 3c1 2 + 3c+ c1 3 (4 + 4c+ 3c1 )

(α)y3 −7− 6c− 6c1 4 + 4c+ 3c1 3 (4 + 3c+ 4c1 )

(α)y4 −5− 3c− 6c1 4 + 3c+ 4c1 3 (2 + c+ 3c1 )

(α)y5 −1− 3c1 2 + c+ 3c1 3c1

Hence from the above table, we see that 1+
√
−n

3c and −1+
√
−n

3c1
lie in αH.

(vi) If α = −1+
√
−n

3c , then we have the following information.
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α −1 c1 3c

(α)x 1 c 3 c1
(α)y 1− 3c c 3 (2 + 3c+ c1 )

(α)y2 5− 6c− 3c1 2 + 3c+ c1 3 (4 + 4c+ 3c1 )

(α)y3 7− 6c− 6c1 4 + 4c+ 3c1 3 (4 + 3c+ 4c1 )

(α)y4 5− 3c− 6c1 4 + 3c+ 4c1 3 (2 + c+ 3c1 )

(α)y5 1− 3c1 2 + c+ 3c1 3c1

Hence from the above table, we see that −1+
√
−n

3c and 1+
√
−n

3c1
lie in αH.

Example 3.12. By using Theorem 9, the orbits of Q∗
(√
−30

)
are

(i)
√
−30
3 and

√
−30
30 lie in

√
−30
3 H. (ii)

√
−30
−3 and

√
−30
−30 lie in

√
−30
−3 H.

(iii)
√
−30
6 and

√
−30
15 lie in

√
−30
6 H. (iv)

√
−30
−6 and

√
−30
−15 lie in

√
−30
−6 H.

So, there are four orbits of Q∗
(√
−30

)
.

Example 3.13. By using Theorem 9, the orbits of Q∗
(√
−11

)
are

(i) 1+
√
−11
3 and −1+

√
−11

12 lie in 1+
√
−11
3 H.

(ii) 1+
√
−11
−3 and −1+

√
−11

−12 lie in 1+
√
−11
−3 H.

(iii) −1+
√
−11

3 and 1+
√
−11

12 lie in −1+
√
−11

3 H.

(iv) −1+
√
−11

−3 and 1+
√
−11

−12 lie in −1+
√
−11

−3 H.

(v) 1+
√
−11
6 and −1+

√
−11

6 lie in 1+
√
−11
6 H.

(vi) 1+
√
−11
−6 and −1+

√
−11

−6 lie in 1+
√
−11
−3 H.

So, there are six orbits of Q∗
(√
−11

)
.

De�nition 3.14. If n is a positive integer, then d (n) denotes the arithmetic
function de�ned by the number of positive divisors of n which are multiple of 3.

Theorem 3.15. If n 6= 3 then the total number of orbits of Q∗
(√
−n
)
under the

action of H are {
d (n) if n ≡ 0 (mod 3), but n 6= 3.
2d (n+ 1) if n ≡ 2 (mod 3).

Proof. If n ≡ 0 (mod 3), then the divisors of n which are multiples of 3 are
±3,±m1,±m2,±m3, . . . ,±n. Then by Theorem 3.11 (i) there exist two orbits
of Q∗

(√
−n
)
corresponding to the divisors ±3,±n of n. We therefore left with
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2d (n) − 4 divisors of n. Then by Theorem 3.11 (iv) , there exist 2d(n)−4
2 or-

bits corresponding to the remaining 2d (n) − 4 divisors of n. Hence there are

2 + 2d(n)−4
2 = d (n) orbits of Q∗

(√
−n
)
.

If n ≡ 2 (mod 3), then the divisors of n+1 which are multiples of 3 are ±3,±n1,
±n2, ±n3, . . . ,±(n+1). By Theorem 3.11 (ii) and (iii) , there exist four orbits cor-
responding to the divisors ±3,±(n+1) of n+1. Thus we are left with 2d (n+ 1)−4
divisors of n + 1. By Theorem 3.11 (v) and (vi) corresponding to the remaining
2d (n+ 1)− 4 divisors of n+ 1, there exist 2d (n+ 1)− 4 orbits. Hence there are
4 + 2d (n+ 1)− 4 = 2d (n+ 1) orbits of Q∗

(√
−n
)
.

Example 3.16. Consider Q∗
(√
−30

)
. Then the positive divisors of 30 which are

multiple of 3 are 3, 6, 15, 30. Therefore d (30) = 4, which implies that the total
number of orbits are four.

Example 3.17. In Q∗
(√
−11

)
. The number of positive divisors of 12 which are

multiple of three are 3, 6, 12. Therefore d (12) = 3. Hence the total number of
orbits are 2d (12) = 2× 3 = 6.

Corollary 3.18. The action of H on Q∗
(√
−n
)
is intransitive.
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On bi-ideals of ordered semigroups

Ze Gu

Abstract. The concepts of strongly quasi-prime, quasi-prime, quasi-semiprime, strongly irre-

ducible and irreducible bi-ideals of an ordered semigroup are introduced. Moreover, we chara-

cterize regular and intra-regular ordered semigroups using bi-ideals, and investigate the ordered

semigroups in which every bi-ideal is strongly quasi-prime.

1. Introduction and preliminaries

Ideal theory play an important role in characterizations of semigroups and ordered
semigroups. Lajos �rst introduced the concept of bi-ideals in semigroups (see [7]).
Li and He characterized the semigroups whose all bi-ideals are prime in [8]; the
semigroups whose all bi-ideals are strongly prime were determined by Shabir in
[9]. Kehayopulu did much work on characterizations of regular and intra-regular
ordered semigroups by ideals, quasi-ideals and bi-ideals (see [1, 2, 3, 4, 5, 6]).
The characterizations of regular and intra-regular ordered semigroups in terms of
fuzzy subsets were given by Xie and Tang in [10]. In this paper, we �rst intro-
duce the notions of strongly quasi-prime, quasi-prime, quasi-semiprime, strongly
irreducible and irreducible bi-ideals in ordered semigroups, and then characterize
regular and intra-regular ordered semigroups by bi-ideals. Finally, we characterize
those ordered semigroups in which all bi-ideals are strongly quasi-prime.

We recall some basic notions in ordered semigroups. An ordered semigroup is
a semigroup (S, ·) endowed with an order relation 6 such that

(∀a, b, x ∈ S) a 6 b⇒ xa 6 xb and ax 6 bx.

Let (S, ·,6) be an ordered semigroup. A non-empty subset B of S is called a
bi-ideal of S if it satis�es the following conditions: (1) BSB ⊆ B; (2) a ∈ B and
b ∈ S, b 6 a implies b ∈ B. For a nonempty subset H of S, we denote

(H] = {t ∈ S | t 6 h for some h ∈ H}.

2010 Mathematics Subject Classi�cation: 06F05, 20M12
Keywords: ordered semigroup, (strongly) quasi-prime bi-ideals, quasi-semiprime bi-ideals,
(strongly) irreducible bi-ideals.
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11701504), the Young Innovative Talent Project of Department of Education of Guangdong
Province (No. 2016KQNCX180) and the University Natural Science Project of Anhui Pro-
vince (No. KJ2018A0329).
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It is well known that the intersection of any number of bi-ideals of S is either
empty or a bi-ideal of S. For any bi-ideals B1, B2 of S, (B1B2] is a bi-ideal of S.

An ordered semigroup S is called regular ([2, 5]) if for every a ∈ S there exists
x ∈ S such that a 6 axa. Equivalent de�nitions: (1) A ⊆ (ASA] (∀A ⊆ S);
(2) a ∈ (aSa] (∀a ∈ S). An ordered semigroup S is called intra-regular ([2, 3]) if
for every a ∈ S there exist x, y ∈ S such that a 6 xa2y. Equivalent de�nitions:
(1) A ⊆ (SA2S] (∀A ⊆ S); (2) a ∈ (Sa2S] (∀a ∈ S).

2. Several classes of bi-ideals

In this section, we mainly introduce and study quasi-prime, strongly quasi-prime,
quasi-semiprime, irreducible and strongly irreducible bi-ideals in ordered semi-
groups.

De�nition 2.1. Let S be an ordered semigroup and B a bi-ideal of S. B is called
quasi-prime (strongly quasi-prime) if B1B2 ⊆ B ((B1B2] ∩ (B2B1] ⊆ B) implies
B1 ⊆ B or B2 ⊆ B for any bi-ideals B1 and B2 of S. B is called quasi-semiprime

if B2
1 ⊆ B implies B1 ⊆ B for any bi-ideal B1 of S.

Remark 2.2. From De�nition 2.1, we know that every strongly quasi-prime bi-
ideal of an ordered semigroup S is quasi-prime, and every quasi-prime bi-ideal
is quasi-semiprime. However, a quasi-prime bi-ideal is not necessarily strongly
quasi-prime and a quasi-semiprime bi-ideal is not necessarily quasi-prime.

Example 2.3. (See [2]) Consider the ordered semigroup S = {a, b, c, d, e} with
the multiplication “ · ” and the order “ 6 ” below:

· a b c d e
a a a a a a
b a b a d a
c a e c c e
d a b d d b
e a e a c a

6:= {(a, a), (a, b), (a, c), (a, d), (a, e), (b, b), (c, c), (d, d), (e, e)}.

We can deduce that the bi-ideals of S are

{a}, {a, b}, {a, c}, {a, d}, {a, e}, {a, b, d}, {a, c, d}, {a, b, e}, {a, c, e}, S.

It is easy to see that the bi-ideal {a, b, e} is quasi-prime. But it is not strongly
quasi-prime. Indeed: we have

({a, c}{a, d}] = ({a, c}] = {a, c};

({a, d}{a, c}] = ({a, d}] = {a, d};
{a, c} ∩ {a, d} = {a} ⊆ {a, b, e}.

But neither {a, c} nor {a, d} is contained in {a, b, e}.
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Example 2.4. (See [2]) Consider the ordered semigroup S = {a, b, c, d, e} with
the multiplication “ · ” and the order “ 6 ” below:

· a b c d e
a a b a a a
b a b a a a
c a b c a a
d a b a a d
e a b a a e

6:= {(a, a), (a, b), (b, b), (c, a), (c, b), (c, c)(d, a), (d, b), (d, d), (e, e)}.

We can obtain that the bi-ideals of S are

{a, c, d}, {a, b, c, d}, {a, c, d, e}, S.

It is easy to deduce that the bi-ideal {a, c, d} is quasi-semiprime. But it is not
quasi-prime. Indeed: we have

{a, b, c, d}{a, c, d, e} = {a, c, d}.

However, neither {a, b, c, d} nor {a, c, d, e} is contained in {a, c, d}.
De�nition 2.5. A bi-ideal B of an ordered semigroup S is called irreducible

(strongly irreducible) if B1 ∩ B2 = B (B1 ∩ B2 ⊆ B) implies B1 = B or B2 = B
(B1 ⊆ B or B2 ⊆ B) for any bi-ideals B1 and B2 of S.

Remark 2.6. Clearly, every strongly irreducible bi-ideal of an ordered semigroup
is irreducible. The following example shows that the converse is not true.

Example 2.7. Consider the ordered semigroup S in Example 2.3. The bi-ideal
{a, b, d} is irreducible but not strongly irreducible because

{a, c} ∩ {a, e} = {a} ⊆ {a, b, d}.

But neither {a, c} nor {a, e} is contained in {a, b, d}.
Proposition 2.8. The intersection of any family of quasi-prime bi-ideals of an

ordered semigroup is either empty or a quasi-semiprime bi-ideal.

Proof. Let Γ be a family of quasi-prime bi-ideals and B a bi-ideal. It is well-
known that

⋂
α∈ΓBα is either empty or a bi-ideal. Suppose that

⋂
α∈ΓBα 6= ∅

and B2 ⊆
⋂

α∈ΓBα. Then B
2 ⊆ Bα for every α ∈ Γ. Since Bα is quasi-prime, we

have B ⊆ Bα. Thus B ⊆
⋂

α∈ΓBα and so
⋂

α∈ΓBα is quasi-semiprime.

Proposition 2.9. Let B be a strongly irreducible quasi-semiprime bi-ideal of an

ordered semigroup S. Then B is strongly quasi-prime.

Proof. Let B1, B2 be two bi-ideals of S such that (B1B2] ∩ (B2B1] ⊆ B. Since
(B1 ∩ B2)2 ⊆ B1B2 and (B1 ∩ B2)2 ⊆ B2B1, we have (B1 ∩ B2)2 ⊆ B1B2 ∩
B2B1 ⊆ (B1B2] ∩ (B2B1] ⊆ B. Moreover, since B is a quasi-semiprime bi-ideal,
B1 ∩B2 ⊆ B. In addition, from the strong irreducibility of B, we have B1 ⊆ B or
B2 ⊆ B. Thus B is a strongly prime bi-ideal of S.
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3. Regular and intra-regular ordered semigroups

In this section, we mainly characterize regular and intra-regular ordered semi-
groups by bi-ideals, and investigate the ordered semigroups in which all bi-ideals
are strongly quasi-prime.

Theorem 3.1. Let S be an ordered semigroup. Then the following statements are

equivalent:

(i) S is both regular and intra-regular;

(ii) (B2] = B for every bi-ideal B of S;

(iii) B1 ∩B2 = (B1B2] ∩ (B2B1] for all bi-ideals B1 and B2 of S;

(iv) Every bi-ideal of S is quasi-semiprime.

Proof. (i)⇒ (ii). Let B be a bi-ideal of S. Then BSB ⊆ B. Since S is regular and
intra-regular, B ⊆ (BSB] and B ⊆ (SB2S]. Thus B ⊆ (BSB] ⊆ ((BSB](SB]] =
(BSBSB] ⊆ ((BS](SB2S](SB]] ⊆ (BSSB2SSB] ⊆ (BSBBSB] ⊆ (B2]. Also,
(B2] ⊆ ((BSB](BSB]] = (BSBBSB] ⊆ (BSB] ⊆ (B] = B.

(ii) ⇒ (i). Let a ∈ S. Then B(a) = (a ∪ aSa]. Since B = (B2] for every
bi-ideal B of S, we have a ∈ B(a) = (B2(a)] = ((B2(a)](B(a)]] = (B3(a)] =
((a ∪ aSa](a ∪ aSa](a ∪ aSa]] ⊆ ((a ∪ aSa)(a ∪ aSa)(a ∪ aSa)] ⊆ (aSa]. Hence S
is regular.

Similarly, we have a ∈ B(a) = (B2(a)] = ((B2(a)](B2(a)]] = (B4(a)] = ((a ∪
aSa](a∪aSa](a∪aSa](a∪aSa]] ⊆ ((a∪aSa)(a∪aSa)(a∪aSa)(a∪aSa)] ⊆ (Sa2S].
Thus S is intra-regular.

(ii) ⇒ (iii). Let B1 and B2 be two bi-ideals of S. Then B1 ∩ B2 is either
empty or a bi-ideal of S.

Case 1). Suppose that B1∩B2 = ∅. Next we prove that (B1B2]∩ (B2B1] = ∅.
Otherwise, (B1B2]∩ (B2B1] is a bi-ideal (Since (B1B2] and (B2B1] are bi-ideals).
Thus (B1B2]∩(B2B1] = (((B1B2]∩(B2B1])((B1B2]∩(B2B1])] ⊆ ((B1B2](B2B1]] ⊆
((B1B2B2B1]] = (B1B2B2B1] ⊆ (B1SB1] ⊆ (B1] = B1. Similarly, (B1B2] ∩
(B2B1] ⊆ B2. Hence (B1B2] ∩ (B2B1] ⊆ B1 ∩B2 = ∅, which is impossible.

Case 2). Suppose that B1∩B2 6= ∅. By hypothesis, B1∩B2 = ((B1∩B2)2] =
((B1 ∩ B2)(B1 ∩ B2)] ⊆ (B1B2]. In the same way, we have B1 ∩ B2 ⊆ (B2B1].
Thus,

B1 ∩B2 ⊆ (B1B2] ∩ (B2B1]. (1)

Hence (B1B2] ∩ (B2B1] 6= ∅ and so (B1B2] ∩ (B2B1] is a bi-ideal. Similar to the
proof of Case 1), we have

(B1B2] ∩ (B2B1] ⊆ B1 ∩B2. (2)
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By (1) and (2), we obtain that

B1 ∩B2 = (B1B2] ∩ (B2B1].

(iii) ⇒ (iv). Let B1 and B be two bi-ideals of S such that B2
1 ⊆ B. By

hypothesis, B1 = B1 ∩ B1 = (B2
1 ] ∩ (B2

1 ] = (B2
1 ]. Thus, we have B1 = (B2

1 ] ⊆
(B] = B. Hence every bi-ideal of S is quasi-semiprime.

(iv) ⇒ (ii). Let B be a bi-ideal of S. Then (B2] is a bi-ideal. By hypothesis,
(B2] is quasi-semiprime. Since B2 ⊆ (B2], we have B ⊆ (B2]. Furthermore,
(B2] ⊆ ((B2](B]] = (B3] ⊆ (BSB] ⊆ (B] = B. Hence B = (B2].

The following result can be directly obtained from Theorem 3.1.

Proposition 3.2. Let S be a regular and intra-regular ordered semigroup and B
a bi-ideal of S. Then the following statements are equivalent:

(i) B is strongly irreducible;

(ii) B is strongly quasi-prime.

Next we characterize those ordered semigroups in which every bi-ideal is strongly
quasi-prime and also those ordered semigroups in which every bi-ideal is strongly
irreducible.

Lemma 3.3. Let S be an ordered semigroup. Then the following statements are

equivalent:

(i) The set of bi-ideals of S is totally ordered under inclusion;

(ii) Every bi-ideal of S is strongly irreducible and B1 ∩ B2 6= ∅ for any bi-ideals

B1 and B2 of S;

(iii) Every bi-ideal of S is irreducible and B1 ∩ B2 6= ∅ for any bi-ideals B1 and

B2 of S.

Proof. (i)⇒ (ii). By condition (i), it is obvious that B1∩B2 6= ∅ for any bi-ideals
B1 and B2 of S. Let B be a bi-ideal of S and B1, B2 two bi-ideals such that
B1 ∩B2 ⊆ B. Since the set of bi-ideals of S is totally ordered, either B1 ⊆ B2 or
B2 ⊆ B1. Thus either B1∩B2 = B1 or B1∩B2 = B2. Hence B1∩B2 ⊆ B implies
that B1 ⊆ B or B2 ⊆ B. This shows that B is strongly irreducible.

(ii)⇒ (iii). The conclusion is obvious.
(iii)⇒ (i). Let B1 and B2 be two bi-ideals of S. Since B1∩B2 6= ∅, B1∩B2 is

a bi-ideal. By hypothesis, either B1 = B1 ∩B2 or B2 = B1 ∩B2, that is, B1 ⊆ B2

or B2 ⊆ B1. Hence the set of bi-ideals of S is totally ordered.

Theorem 3.4. Let S be an ordered semigroup. Then every bi-ideal of S is strongly

quasi-prime and B1 ∩B2 6= ∅ for any bi-ideals B1 and B2 of S if and only if S is

regular, intra-regular and the set of bi-ideals of S is totally ordered.
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Proof. (⇒). Let every bi-ideal of S be strongly quasi-prime. Then every bi-ideal
of S is quasi-semiprime. From Theorem 3.1, we have S is regular and intra-
regular. Furthermore, we know that every bi-ideal of S is strongly irreducible
from Proposition 3.2. Thus by Lemma 3.3, the set of bi-ideals of S is totally
ordered under inclusion.

(⇐). Since the set of bi-ideals of S is totally ordered under inclusion, we
have B1 ∩ B2 6= ∅ for any bi-ideals B1 and B2 of S and every bi-ideal of S is
strongly irreducible from Lemma 3.3. Since S is regular and strongly regular, from
Proposition 3.2, we obtain that every bi-ideal of S is strongly quasi-prime.
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