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Transversals in loops. 3. Loop transversals

Eugene Kuznetsov

Abstract. The investigation of the new notion of a transversal in a loop to its
subloop (begun in [10]) is continued in the present article. This notion generalized
the well-known notion of a transversal in a group to its subgroup and can be correctly
defined only in the case when some specific condition (Condition A) for a loop and its
subloop holds. The connections between loop transversals in some loop to its subloop
and loop transversals in multiplicative group of this loop to some suitable subgroup
are investigated in this work.
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1 Introduction

In group theory, in group representations theory and in quasigroup theory the
following notion is well-known – the notion of a left (right) transversal in a group
to its subgroup [1, 5, 6, 11].

Definition 1. Let G be a group and H be a subgroup in G. A complete set
T = {ti}i∈E of representatives of the left (right) cosets Hi in G to H (e = t1 ∈ H,
ti ∈ Hi) is called a left (right) transversal in G to H.

In the present work we continue to study a variant of natural generalization of
the notion of transversal to the class of loops, begun in [10]. As the elements of a
left (right) transversal in a group to its subgroup are representatives of every left
(right) coset to the subgroup, the notion of a left (right) transversal in a loop to its
subloop can be correctly defined only in the case when this loop admits a left (right)
coset decomposition by its subloop (see the Condition A below).

In Section 2 of this article we remember the most important notions and theorems
from the first part of this investigation [10].

In Section 3 different structural theorems are proved. They demonstrate a con-
nection between transversals in a loop to its subloop and transversals in a multi-
plicative group of this loop to its suitable subgroup.

In Section 4 one of the most important particular cases of transversals in a loop
to its subloop is investigated – the case of a loop transversal. Some criteria of the
existence of a loop transversal in a given loop to its subloop are proved.
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Further we shall use the following notations:
〈L, ·, e〉 is an initial loop with the unit e;
〈R, ·, e〉 is its proper subloop;
E is a set of indexes (1 ∈ E) of the left (right) cosets Ri in L to R

(moreover, R1 = R).

2 Preliminaries

Definition 2. A system 〈E, ·〉 is called [2] a right (left) quasigroup if for arbitrary
a, b ∈ E the equation x · a = b (a · y = b) has a unique solution in the set E. If the
system 〈E, ·〉 is both a right and left quasigroup, then it is called a quasigroup. If in
a right (left) quasigroup 〈E, ·〉 there exists an element e ∈ E such that x·e = e·x = x
for every x ∈ E, then the system 〈E, ·〉 is called a right (left) loop (the element
e is called a unit or identity element). If a system 〈E, ·〉 is both a right and left
loop, then it is called a loop.

At the beginning let us define a partition of a loop by left (right) cosets to its
proper subloop.

Definition 3 (see [12]). Let 〈L, ·〉 be a loop and 〈R, ·〉 be its proper subloop. Then
a left coset in L to R is a set of the form xR = {xr | r ∈ R}, and a right coset
is a set of the form Rx = {rx | r ∈ R}.

In a general case the cosets in a loop to its subloop do not necessarily form a
partition of the loop. This leads us to the following definition.

Definition 4 (see [12]). A loop L has a left (right) coset decomposition by its
proper subloop R, if the left (right) cosets form a partition of the loop L, i.e. for
some set of indexes E:

1. ∪
i∈E

(aiR) = L;

2. For every i, j ∈ E, i 6= j, (aiR) ∩ (ajR) = ∅.

In order to define correctly the notion of a left (right) transversal in a loop to
its proper subloop, the following condition must be necessarily fulfilled.

Definition 5 ( see [10]). (Left Condition A) Let R be a subloop of a loop L. For
all a, b ∈ L there exists an element c ∈ L such that

a(bR) = cR. (1)

The right Condition A is defined analogously.
Let us denote (see [13]) ∀a, b ∈ L: a left inner mapping

la,b (x) = (a · b) \ (a · (b · x)) , x ∈ L, (2)



TRANSVERSALS IN LOOPS. 3. LOOP TRANSVERSALS 5

where ”\” is a left division in the loop 〈L, ·, e〉, and a right inner mapping

ra,b (x) = ((x · b) · a) / (b · a) , x ∈ L, (3)

where ”/” is a right division in the loop 〈L, ·, e〉.
Lemma 1 (see [10]). Let the left Condition A be fulfilled. Then ∀a, b ∈ L:
la,b (R) = R.

Lemma 2 (see [10]). Let the right Condition A be fulfilled. Then ∀a, b ∈ L:
ra,b (R) = R.

Definition 6 (see [9]). Let 〈L, ·, e〉 be a loop, 〈R, ·, e〉 be its subloop and the left
Condition A be fulfilled. Let {Rx}x∈E be the set of all left cosets in L to R that
form a left coset decomposition of the loop L. A set T = {tx}x∈E ⊂ L is called a
left transversal in L to R if T is a complete set of representatives of the left cosets
Rx in L to R, i.e. there exists a unique element tx ∈ T such that tx ∈ Rx for every
x ∈ E.

A right and two-sided transversal in L to R is defined analogously.
On a set E it is possible to define correctly the following operations:

x
(T )· y = z

def⇔ tx · ty = tz · r, where tx, ty, tz ∈ T, r ∈ R, (4)

if T is a left transversal in L to R, and

x
(T )◦ y = z

def⇔ tx · ty = r · tz, where tx, ty, tz ∈ T, r ∈ R, (5)

if T is a right transversal in L to R.

Definition 7. Let T be a left (right) transversal in L to R. If the transversal

operation 〈E,
(T )· , 1〉 (〈E,

(T )◦ , 1〉) is a loop then the transversal T is called a left
(right) loop transversal in L to R.

Let still 〈L, ·, e〉 be a loop, 〈R, ·, e〉 be its subloop, and the left Condition A be
fulfilled. Let T = {tx}x∈E be a left transversal in L to R. Define the following map:

f : L× E → E,

f : (g, x) → y = ĝ (x) , (6)

ĝ (x) = y
def⇔ g · (tx ·R) = ty ·R.

By virtue of the left Condition A this definition (a left action of the loop L on a
set E) is correct.

Lemma 3 (see [10]). A map ĝ is a permutation on a set E for every element
g ∈ L.
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Lemma 4 (see [10]). For an arbitrary left transversal T = {tx}x∈E in a loop L =
〈L, ·, e〉 to its subloop R = 〈R, ·, e〉 the following propositions are true:

1. ∀r ∈ R: r̂(1) = 1;

2. ∀x, y ∈ E: t̂x(y) = x
(T )· y, t̂−1

x (y) = x\y,
where t̂−1

x is an inverse permutation to a permutation t̂x in SE, and ”\” is a left

division in a left loop 〈E,
(T )· , 1〉. Moreover,

t̂x(1) = x, t̂1(x) = x, t̂−1
x (1) = x\1, t̂−1

x (x) = 1.

Lemma 5 (see [10]). The following conditions are equivalent:

1. A set T = {tx}x∈E is a left loop transversal in a loop L to its subloop R;

2. A set T̂ = {t̂x}x∈E is a sharply transitive set of permutations in the group SE.

3 Semidirect products of loops and suitable subgroups

Remind the definition (see [8, 13]) of the semidirect product of a left loop
L = 〈E, ·, 1〉 with two-sided unit 1 on a suitable permutation group H on the set E
(H ⊆ St1(SE)). Let the following conditions hold:

1. ∀a, b ∈ E : l−1
a, bLaLb ∈ H;

2. ∀u ∈ E and ∀h ∈ H : ϕ(u, h)L−1
h(u)hLuh−1 ∈ H,

where La is the left translation by an element a in 〈E, ·, 1〉 (i.e. La(x) = a · x).
Then on the set

E ×H = {(u, h)|u ∈ E, h ∈ H}
it is possible to define correctly the operation

(u, h1) ∗ (v, h2)
def
= (u · h1(v), lu,h1(v)ϕ(v, h1)h1h2).

The system G = 〈E ×H, ∗, (1, id)〉 is a group, which is called the semidirect
product G = L h H of the left loop L on the group H. This product satisfies the
following properties:

1. The map (û, h) : E → E :

(û, h)) (x)
def
= u · h(x)

is an action, i.e.

(a) It is a permutation on E;

(b) If (û, h1)(x) = (v̂, h2)(x) ∀x ∈ E, then u = v and h1 = h2;
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(c) If (û, h)(x) = (x) ∀x ∈ E, then (u, h) ≡ (1, id).

2. ∀x ∈ E it is true that

( ̂(u, h1) ∗ (v, h2))(x) = (û, h1)((v̂, h2)(x)) = Luh1Lvh2(x).

3. (u, h)−1 = (h−1(u\1), L−1
h−1(u\1)

h−1L−1
u ),

and, in particular (u, id)−1 = (u\1, L−1
u\1L

−1
u ).

4. The system Ĥ = 〈H∗, ∗, (1, id)〉 (where H∗ = {(1, h)|h ∈ H}) is a subgroup
in G, isomorphic to the group H.

5. The set T̂ = {(u, id)|u ∈ E} is a left transversal in G to Ĥ, and the operation〈
E,

(T )· , 1
〉

coincides with the operation 〈E, ·, 1〉.

We remind the definitions of the left multiplicative group of a left loop L:

LM(L)
def
= 〈Lx|x ∈ L,Lx(u) = x · u〉 ,

and the left inner permutation group of a left loop L:

LI(L)
def
= 〈la, b|a, b ∈ L〉 .

It was shown in [8] that:

LI(L) = St1(LM(L)) ⊂ LM(L), LM(L) = L h LI(L).

Lemma 6. Let L = 〈E, ·, 1〉 be a loop, R = 〈E1, ·, 1〉 be its subloop, and the left
Condition A be fulfilled for them. Let T0 = {tx}x∈E0 be a left transversal in L to
R.

Assume
G = LM(L) = L h LI(L), H = LI(L).

Then:

1. The set K = {(r, h)| r ∈ R, h ∈ H} is a subgroup in G, and H ⊆ K ⊂ G;

2. The set T ∗0 = {(tx, id)| tx ∈ T0, x ∈ E0} is a left transversal in G to K, and
〈

E0,
(T0)· , 1

〉
≡

〈
E0,

(T ∗0 )· , 1
〉

.

Proof. 1. Let the conditions of the lemma hold. According to properties of semidi-
rect product we have

H = {(1, h)|h ∈ H = LI(L)} ⊂ {(u, h)|u ∈ L, h ∈ H} = G.
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Since R ⊆ L, then

∀a, b ∈ R : la,b ∈ LI(L) = H,

∀u ∈ R ∀h ∈ H : ϕ(u, h) ∈ {ϕ(u, h)|u ∈ R, h ∈ H} ⊆
⊆ {ϕ(u, h)|u ∈ L, h ∈ H} ⊆ LI(L) = H.

Then it is possible to define correctly a semidirect product on the set

K = R×H = {(r, h)| r ∈ R, h ∈ H} ⊆ G.

It is obvious that H ⊆ K.
Besides for any two elements (r1, h1) and (r2, h2) from K we have:

(r1, h1) ∗ (r2, h2) = (r1
(R)· h1(r2), lr1,h1(r2)ϕ(r2, h1)h1h2).

In order that the group K be a subgroup in G it is necessary and sufficient that the
following condition be fulfilled:

∀r1, r2 ∈ R ∀h ∈ H : (r1
(R)· h(r2)) ∈ R.

But it is equivalent to the following: ∀h ∈ H : h(R) ⊆ R, i.e. ∀a, b ∈ L :
la,b(R) ⊆ R. According to Lemma 1 the last conditions are equivalent to the left
Condition A for loops L and R.

2. Let T0 = {tx}x∈E0 be a left transversal in L to R. Then we consider the set

T ∗0 = {(tx, id)| tx ∈ T0, x ∈ E0}.

For an arbitrary x ∈ E0 we consider the set:

(tx, id) ∗K = {(tx, id) ∗ (r, h)|r ∈ R, h ∈ H} = (7)

= {(tx
(L)· r, ltx,rh)|r ∈ R, h ∈ H}.

Let us show that this set is a left coset in G to K. Since the set

{tx
(L)· r| r ∈ R} = tx

(L)· R

is a left coset in L to R, if x1 6= x2 then by (7) we have:

((tx1 , id) ∗K) ∩ ((tx2 , id) ∗K) = ∅.

Further, let g0 be an arbitrary element from G; by virtue of the representation
G = L×H we have that g0 = (u0, h0), where u0 ∈ L, h0 ∈ H. Since T0 = {tx}x∈E0

is the left transversal in L to R, then u0 = tx0

(L)· r0, where tx0 ∈ T0, r0 ∈ R.
Therefore supposing h1 = l−1

tx0 ,r0
h0 ∈ H, we obtain

(tx0 , id)∈T ∗0 ∗ (r0, h1)∈K = (tx0

(L)· r0, ltx0 ,r0h1) = (u0, h0) = g0.
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So, sets of the form (tx, id) ∗K, x ∈ E0 are left cosets in G to K. Therefore the set

T ∗0 = {(tx, id)| tx ∈ T0, x ∈ E0}

is a left transversal in G to K. The corresponding transversal operation is〈
E0,

(T ∗0 )· , 1
〉

, for which we have:

x
(T ∗0 )· y = z ⇔ (tx, id) ∗ (ty, id) = (tz, id) ∗ (r, h), (r, h ∈ K),

(tx
(L)· ty, ltx,ty) = (tz

(L)· r, ltz ,rh),

tx
(L)· ty = tz

(L)· r; r ∈ R,

x
(T0)· y = z,

i.e.
x

(T ∗0 )· y = x
(T0)· y, ∀x, y ∈ E0,

as required.

Let us prove one additional lemma.

Lemma 7. Let T0 = {tx}x∈E0 be a left transversal in L to R. Then ∀tu, tx ∈ T0

and ∀r ∈ R it is true that:

(tu · r) · tx = tu · (r · l−1
tu,r(tx)),

where la,b ∈ LI(L).

Proof. Really, by virtue of the definition of la,b,

l
(z)
a,b = (a · b)\(a · (b · z)).

Then
(tu · r)\(tu · (r · l−1

tu,r(rx))) = ltu,rl
−1
tu,r(tx) = tx,

i.e.
(tu · r) · tx = tu · (r · l−1

tu,r(tx)),

as required.

Let us consider the permutation representations of loop L by left cosets to a
subloop R and group G by left cosets to a subgroup K.

Lemma 8. Let L̂ be the permutation representation of a loop L by left cosets to a
subloop R, i.e. ∀g ∈ L:

ĝ(x) = y ⇔ g
(L)· (tx

(L)· R) = ty
(L)· R,



10 EUGENE KUZNETSOV

where T0 = {tx}x∈E0 is a left transversal in L to R. Then in the group G to
its subgroup K (see Lemma 6) there exists such a left transversal T ∗0 = {t∗x}x∈E0

that for a suitable permutation representation Ğ of the group G by left cosets to its
subgroup K the following is true:

∀g ∈ L ∃ g′ ∈ G such that ĝ(x) = ğ′(x) ∀x ∈ E0.

Proof. Let the conditions of the lemma hold. According to Lemma 6, we can consider
the following left transversal

T ∗0 = {(tx, id)| tx ∈ T0}.
We have in the loop L: if g = tu · r (where tu ∈ T0, r ∈ R), then

ĝ(x) = y ,

g · (tx ·R) = ty ·R ,

g · tx = ty · r′; r′ ∈ R;
(tu · r) · tx = ty · r′.

By virtue of Lemma 7 we obtain:

tu · (r · l−1
tu,r(tx)) = ty · r′. (8)

Now pass to the group G. As an element g′ we take

g′ = (tu, k′) = (tu, id) · (r, l−1
tu,r),

where k′ ∈ K, k′ = (r, l−1
tu,r). Then we have:

ğ′(x) = z ⇔ g′t∗xK = t∗zK ⇔ g′t∗x = t∗zk
′, k′ ∈ K. (9)

And so

(tu, id) ∗ (r, l−1
tu,r) ∗ (tx, id) =

(tu, id) ∗ (r · l−1
tu,r(tx), lr,l−1

tu,r(t∗)ϕ(tx, l−1
tu,r)l

−1
tu,r) =

(tu · (r · l−1
tu,r(tx)), ltu,r·l−1

tu,r(tx)lr,l−1
tu,r(tx)ϕ(tx, l−1

tu,r)l
−1
tu,r) =

(8)
= (ty · r′, ltu,r·l−1

tu,r(tx)lr,l−1
tu,r(tx)ϕ(tx, l−1

tu,r)l
−1
tu,r︸ ︷︷ ︸

h′

) = (ty, id) ∗ (r′, h′′)︸ ︷︷ ︸
∈K

,

where h′, h′′ ∈ LI(L).
Since (r′, h′′) ∈ K, then from (9) we obtain

t∗zk
′ = g′t∗x = (ty, id)︸ ︷︷ ︸

t∗y

∗ (r′, h′′)︸ ︷︷ ︸
∈K

.

Since T ∗0 = {t∗x}x∈E0 is a left transversal in G to K then

t∗z ≡ t∗y ⇔ tz = ty; ⇔ z = y,

i. e. ğ′(x) = ĝ(x), as required.
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4 Loop transversal in loop by its subloop

Let again L be a loop, R be its subloop, and Condition A be fulfilled for them.
Define under what conditions a left transversal T0 = {tx}x∈E0 will be a left loop
transversal in a loop L by its subloop R.

First prove one preliminary lemma.

Lemma 9. Let L be a loop, R be its subloop and Condition A be fulfilled for them.
Then

1. ∀a, b, c ∈ L:
c\(a · (b ·R)) = (c\(a · b)) ·R; (10)

2. ∀a, b, c ∈ L:
a · (b · (c\R)) = (a · (b · (c\1))) ·R.

3. ∀h ∈ LI(L):
h(a ·R) = h(a) ·R, ∀a ∈ L. (11)

Proof. 1. ∀a, b, c ∈ L by virtue of Condition A we have:

c · [(c\(a · b)) ·R] = (c · (c\(a · b)) ·R = (a · b) ·R = a · (b ·R),

i.e.
c\(a · (b ·R) = (c\(a · b) ·R.

2. Using 1 we have for a · b = 1:

c\R = c\(1 ·R) = c\((a · b) ·R) = (c\(a · b)) ·R = (c\1) ·R. (12)

Then by virtue of Condition A and (12) we have:

a · (b · (c\R)) = a · (b · ((c\1) ·R)) = a · ((b · (c\1)) ·R) =

= (a · (b · (c\1))) ·R.

3. For arbitrary la,b ∈ LI(L) using 1 and Condition A we have: ∀c ∈ L

la,b(c ·R) = (a · b)\(a · (b · (c ·R))) = (a · b)\((a · (b · c)) ·R) =

= ((a · b)\(a · (b · c))) ·R = la,b(c) ·R.

Besides ∀a, b ∈ L we have: ∀c ∈ L

l−1
a,b(c ·R) = b\(a\((a · b) · (c ·R))) =

= b\(a\(((a · b) · c) ·R)) = b\((a\((a · b) · c)) ·R) =

= (b\((a · b) · c))) ·R = l−1
a,b(c) ·R.



12 EUGENE KUZNETSOV

Since any h ∈ LI(L) may be represented in the form

h = l±1
a1,b1

· ... · l±1
ak,bk

,

then ∀h ∈ LI(L) we have: ∀a ∈ L

h(a ·R) = l±1
a1,b1

· ... · l±1
ak,bk

(a ·R) = l±1
a1,b1

· ... · l±1
ak,bk

(a) ·R = h(a) ·R.

Lemma 10. Let L be an arbitrary loop, R be its subloop, and Condition A be
fulfilled for them. Then the following conditions for an arbitrary left transversal
T0 = {tx}x∈E0 in L to R are equivalent:

1. T0 is a left transversal in L to R;

2. ∀u ∈ L and ∀h ∈ LI(L) the set Tu,h{u·h(tx·h−1(u\1))}x∈E0 is a left transversal
in L to R;

3. ∀v ∈ E0 the set Tv{tv · (tx(tv\1))}x∈E0 is a left transversal in L to R;

4. ∀u ∈ L the set T ∗u{(u\(tx · u))}x∈E0 is a left transversal in L to R;

5. ∀v ∈ E0 the set T ∗v {tv\(tx · tv)}x∈E0 is a left transversal in L to R.

Proof. Let conditions of the lemma hold. Using the results of the previous section
we have the following sequence of equivalent statements (according to Lemma 6):

– a left transversal T0 = {tx}x∈E0 in L to R is a left loop by a transversal in
L to R

⇔ the operation
〈

E0,
(T0)· , 1

〉
is a loop ⇔

– the left transversal T ∗0 = {(tx, id)︸ ︷︷ ︸
t∗x

}x∈E0 in a group G to its subgroup K is a

loop transversal (where G = L h LI(L), K = R h LI(L)), and
〈

E0,
(T ∗0 )· , 1

〉
is a

loop, coincides with the loop
〈

E0,
(T0)· , 1

〉
.

The last statement is equivalent to every of the following statements
(see [1, 6, 11]):

1. ∀g ∈ G the set gT ∗0 g−1 is a left transversal in G to K;

2. ∀x ∈ E0 the set t∗xT ∗0 t∗−1
x is a left transversal in G to K;

3. ∀g ∈ G the set g−1T ∗0 g is a left transversal in G to K;

4. ∀x ∈ E0 the set t∗−1
x T ∗0 t∗x is a left transversal in G to K.
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Further we have: if g ∈ G, g = (u, h), where u ∈ L, h ∈ H = LI(L), therefore
∀x ∈ E0:

((u, h) ∗ (tx, id) ∗ (u, h)−1(z) = (Luh) ∗ Ltx ∗ (Luh)−1(z) =

= LuhLtxh−1L−1
u (z). (13)

The set gT ∗0 g−1 is a left transversal in G to K if and only if
1)

⋃
x∈E0

(gt∗xg−1) ∗K = G;

2) ∀x1 6= x2 from E0:

(gt∗x1
g−1) ∗K ∩ (gt∗x2

g−1) ∗K = ∅. (14)

So ∀v ∈ L and h ∈ H we have

(v, h) ∗K =
⋃

r∈R, h1∈H

((v, h) ∗ (r, h1)) =

=
⋃

r∈R, h1∈H

(v · h(r), lv,h(v)ϕ(r, h)hh1) =

= (v · h(R),H) = (Lvh(R),H).

Then the conditions (14) (using (13)) are equivalent to the following:
1)

⋃
x∈E0

(LuhLtxh−1L−1
u (R)) = L;

2) ∀x1, x2 ∈ E0, x1 6= x2:

(LuhLtx1
(R)) ∩ (LuhLtx2

h−1L−1
u (R)) = ∅. (15)

By virtue of item 2 from Lemma 9 we obtain that the conditions (15) are equivalent
to the following:

1)
⋃

x∈E0

[(u · h(tx · h−1(u\1))) ·R] = L;

2) ∀x1, x2 ∈ E0, x1 6= x2:

[(u · h(tx1 · h−1(u\1))) ·R] ∩ [(u · h(tx2 · h−1(u\1))) ·R] = ∅. (16)

The conditions (16) are equivalent to that the set Tu,h{u · h(tx · h−1(u\1))} is a left
transversal in L by R. Remembering that the reasoning was carried out ∀g ∈ G, i.e.
∀u ∈ L and ∀h ∈ H = LI(L), we obtain item 2 of the present lemma.

The items 3, 4 and 5 are proved similarly to the previous reasoning, using the
corresponding statements and Lemma 9.

Corollary 1. Let L be a loop, R be its subloop, and Condition A be fulfilled for
them. Let T0 = {tx}x∈E0 be a left loop transversal in L to R. Then ∀u ∈ L the set
Tu{u · (tx · (u\1))}x∈E0 is a left transversal in L to R.

Proof. The proof easily follows from Lemma 10, 2, when h = id.



14 EUGENE KUZNETSOV

References

[1] Baer R. Nets and groups. Trans. Amer. Math. Soc., 1939, 46, 110–141.

[2] Belousov V.D. Foundations of quasigroup and loop theory, Moscow, Nauka, 1967
(in Russian).

[3] Bonetti F., Lunardon G., Strambach K. Cappi di permutazioni. Rend. Math., 1979,
12, No. 3-4, 383–395.

[4] Foguel T., Kappe L.C. On loops covered by subloops. Expositiones Matematicae, 2005,
23, 255–270.

[5] Johnson K.W. S-rings over loops, right mapping groups and transversals in permutation
groups. Math. Proc. Camb. Phil. Soc., 1981, 89, 433–443.

[6] Kuznetsov E.A. Transversals in groups.1.Elementary properties. Quasigroups and related
systems, 1994, 1, No. 1, 22–42.

[7] Kuznetsov E.A. About some algebraic systems related with projective planes. Quasigroups
and related systems, 1995, 2, No. 1, 6–33.

[8] Kuznetsov E.A. Transversals in groups.Semidirect product of a transversal operation and
subgroup. Quasigroups and related systems, 2001, 8, 37–44.

[9] Kuznetsov E.A. Transversals in loops. Abstracts of International Conference ”Loops-03”,
Prague, August 10–17, 2003, 18–20.

[10] Kuznetsov E.A. Transversals in loops. 1. Elementary properties. Quasigroups and related
systems, 2010, 18, No. 1, 43–58.

[11] Niemenmaa M., Kepka T. On multiplication groups of loops. J. of Algebra, 1990, 135,
112–122.

[12] Pflugfelder H. Quasigroups and loops: Introduction. Sigma Series in Pure Math., 7,
Helderman Verlag, New York, 1972.

[13] Sabinin L.V., Mikheev O. I. Quasigroups and differential geometry, Chapter XII in the
book “Quasigroups and loops: Theory and Applications“, Helderman-Verlag, Berlin, 1990,
357–430.

Eugene Kuznetsov
Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
5 Academiei str.
Chishinau MD-2028, Moldova

E-mail: kuznet1964@mail.ru

Received January 10, 2010



BULETINUL ACADEMIEI DE ŞTIINŢE
A REPUBLICII MOLDOVA. MATEMATICA
Number 3(67), 2011, Pages 15–28
ISSN 1024–7696

Spectra of semimodules

Reza Ebrahimi Atani, Shahabaddin Ebrahimi Atani

Abstract. The purpose of this paper is to investigate possible structures and useful
properties of prime subsemimodules of a semimodule M over a semiring R and show
various applications of the properties. The main part of this work is to introduce a new
class of semimodules over R called strong primeful R-semimodules. It is shown that
every non-zero strong primeful semimodule possesses the non-empty prime spectrum
with the surjective natural map. Also, it is proved that this class contains the family
of finitely generated R-semimodules properly.

Mathematics subject classification: 16Y60.
Keywords and phrases: Prime subsemimodule, primeful semimodule, strong
primeful semimodule, prime spectrum.

1 Introduction

Semimodules over semirings also appear naturally in many areas of mathematics.
For example, semimodules are useful in the area of theoretical computer science as
well as in the solution of problems in the graph theory and cryptography [13, 18].
This paper generalizes some well know results on prime submodules in commutative
rings to commutative semirings. The main difficulty is figuring out what additional
hypotheses the ideal or subsemimodule must satisfy to get similar results. The two
new key notions are that of a "strong ideal" and a "strong subsemimodule". More-
over, quotient semimodules are determined by equivalence relations rather than by
subsemimodules as in the module case. Allen [1] has presented the notion of a parti-
tioning ideal (= Q-ideal) I in the semiring R and constructed the quotient semiring
R/I. Quotient semimodules over a semiring R have already been introduced and
studied by present authors in [10]. Chaudhari and Bonde extended the definition of
QM -subsemimodule of a semimodule and some results given in Section 2 in [10] to a
more general quotient semimodules case in [3]. Of course "quotient semimodule" is a
natural extension of "quotient semiring" and, hence, ought to be in the literature. So
quotient semimodules are particularly important in the study of the representation
theory of semimodules over semiring. The representation theory of semimodules over
semirings has developed greatly in the recent years. One of the aims of the modern
representation theory of semimodules is to generalize the properties of modules over
rings to semimodules over semirings. The aim of present paper is to extend some
basic results of C. P. Lu [15, 16, 17] to semimodules over semirings. We know (at
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least as far as we are aware) of no systematic study of the topological space Spec(M)
in the semimodule over semiring context. Our results is particularly important in
the topological space Spec(M) equipped with a topology called the Zariski topology
in the semimodule context and, we hope to address in a later paper.

2 Preliminaries

In order to make this paper easier to follow, we recall in this section various
notions from semimodule theory which will be used in the sequel. For the definitions
of monoid, semirings, semimodules and subsemimodules we refer to [4, 9, 10, 13, 14].
All semiring in this paper are commutative with non-zero identity.

Definition 1. (a) A semiring R is said to be semidomain whenever a, b ∈ R with
ab = 0 implies that either a = 0 or b = 0.

(b) A semifield is a semiring in which non-zero elements form a group under
multiplication.

(c) An R-semimodule M is said to be semivector space if R is a semifield.
(d) Let M be a semimodule over a semiring R. A subtractive subsemimodule

(= k-subsemimodule) N is a subsemimodule of M such that if x, x + y ∈ N , then
y ∈ N (so {0M} is a k-subsemimodule of M).

(e) A prime subsemimodule (resp. primary subsemimodule) of M is a proper
subsemimodule N of M in which x ∈ N or rM ⊆ N (resp. x ∈ N or rnM ⊆ N for
some positive integer n) whenever rx ∈ N . The collection of all prime (resp. max-
imal) subsemimodules of M is called the spectrum (resp. the maximal spectrum)
of M and denoted by Spec(M) (resp. Max(M)). Similarly, the collection of all
P -prime subsemimodules of M for any prime k-ideal P of R is designated by
SpecP (M). We define k-ideals and prime ideals of a semiring R in a similar fashion.

(f) We say that r ∈ R is a zero-divisor for a semimodule M if rm = 0 for some
non-zero element m of M . The set of zero-divisors of M is written ZR(M).

(g) An R-semimodule M is called multiplication semimodule provided that for
every subsemimodule N of M there exists an ideal I of R such that N = IM .

(h) We say that M is a torsion-free R-semimodule whenever r ∈ R and m ∈ M
with rm = 0 implies that either m = 0 or r = 0 (so every semivector space over a
semifield R is a torsion-free R-semimodule).

(i) A proper ideal I of a semiring R is said to be strong ideal (or strongly zero-sum
ideal) if for each a ∈ I there exists b ∈ I such that a + b = 0 (see [11, Example 2.3]
and [8]).

A subsemimodule N of a semimodule M over a semiring R is called a partitioning
subsemimodule (= QM -subsemimodule) if there exists a subset QM of M such that
M = ∪{q +N : q ∈ QM} and if q1, q2 ∈ QM then (q1 +N)∩ (q2 +N) 6= ∅ if and only
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if q1 = q2. Let N be a QM -subsemimodule of M and let M/N = {q + N : q ∈ QM}.
Then M/N forms an R-semimodule under the operations ⊕ and ¯ defined as follows:
(q1 + N) ⊕ (q2 + N) = q3 + N , where q3 ∈ QM is the unique element such that
q1 + q2 + N ⊆ q3 + N and r ¯ (q1 + N) = q4 + I, where r ∈ R and q4 ∈ QM

is the unique element such that rq1 + N ⊆ q4 + N . This R-semimodule M/N is
called the quotient semimodule of M by N [3]. By [3, Lemma 2.3], there exists a
unique element q0 ∈ QM such that q0 + N = N . Thus q0 + N is the zero element
of M/N . Also, [3, Theorem 2.4] show that the structure (M/N,⊕,¯) is essentially
independent of QM (see [3, Example 2.6]).

3 Spec(M)

In this section we extend some results of C. P. Lu [15] to semimodules over
semirings.

Remark 1. (Change of semirings.) Assume that I is a Q-ideal of a semiring R and
let N be a QM -subsemimodule of an R-semimodule M . We show now how M/N
can be given a natural structure as a semimodule over R/I. Let q1, q2 ∈ Q be such
that q1 + I = q2 + I, and let m1,m2 ∈ QM be such that m1 + N = m2 + N . Then
q1m1 + N = q2m2 + N . By assumption, there exist the unique elements t1, t2 ∈ QM

such that q1m1 + N ⊆ t1 + N and q2m2 + N ⊆ t2 + N ; so t1 = t2. Hence we can
unambiguously define a mapping R/I ×M/N into M/N (sending (q + I, m + N) to
t + N), where qm + N ⊆ t + N for some unique element t ∈ QM , and it is routine to
check that this turns the commutative additive semigroup with a zero element M/N
into an R/I-semimodule.

Definition 2. A proper subsemimodule N of a semimodule M over a semiring R
is said to be strong subsemimodule if for each x ∈ N there exists y ∈ N such that
x + y = 0.

Example 1. Let that E+
0 be the set of all non-negative integers. The monoid

M = (Z6, +6) is a semimodule over (E+
0 ,+, .) (see [13, p. 151]). An inspection will

show that N = {0̄, 2̄, 4̄} is a strong QM -subsemimodule of M , where QM = {0̄, 1̄}.
Lemma 1. Let N be a strong QM -subsemimodule of a module M over a semiring
R. Then the following hold:

(i) If q0 ∈ QM and q0 + N is the zero in M/N , then q0 ∈ N .
(ii) If q ∈ N ∩QM and q0 + N is the zero in M/N , then q = q0.
(iii) If q0 + N is the zero in M/N , then m ∈ N if and only if m + N =

{m + a : a ∈ N} and N + m = N are equal as sets.

Proof. (i) By [3, Lemma 2.3], q0 + N = N ; hence q0 ∈ N since every
QM -subsemimodule is a k-subsemimodule of M by [3, Theorem 3.2].

(ii) Since q + q0 ∈ (q + N)∩ (q0 + N), we must have q = q0. (iii) follows from (i)
and (ii).
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(iii) Let m ∈ N . Since the inclusion m + N ⊆ N is clear, we will prove the
reverse inclusion. Assume that x ∈ N . There exist a, b, b′ ∈ N such that x = q0 + a,
m = q0 + b and b + b′ = 0; so x = m + a + b′ ∈ m + N , and so we have equality. The
other implication is obvious.

Theorem 1. Let N be a proper strong QM -subsemimodule of a semimodule M over
a semiring R with (N : M) = P a Q-ideal of R. Then the following statements are
equivalent:

(i) N is a prime subsemimodule of M ;
(ii) M/N is a torsion-free R/P -semimodule;
(iii) (N :M< r >) = N for every r ∈ R− P ;
(iv) (N :M J) = N for every ideal J * P ;
(v) (N :R< m >) = P for every m ∈ M −N ;
(vi) (N :R L) = P for every subsemimodule L of M properly containing N ;
(vii) ZR(M/N) = P .

Proof. (i) ⇒ (ii) Note that M/N is an R/P -semimodule by Remark 1. Assume
that q0 is the unique element in QM such that q0 + N is the zero in M/N and let
(q + P )(m + N) = q0 + N , where qm + N ⊆ q0 + N for some q ∈ Q and m ∈ QM , so
qm ∈ N since N is a k-subsemimodule of M . Therefore, N prime gives either q ∈ P
or m ∈ N . If q ∈ P , then q + P is the zero in R/P by [6, Lemma 2.3]. If m ∈ N ,
then m+N is the zero in M/N by Lemma 1. Thus M/N is torsion-free semimodule
as an R/P -semimodule.

(ii) ⇒ (iii) Assume that q0 + P is the zero element in R/P . It suffices to show
that (N :M< r >) ⊆ N . Let m ∈ (N :M< r >). Then rm ∈ N , r = q + a and
m = t + x for some q ∈ Q, a ∈ P , t ∈ QM and x ∈ N (so q /∈ P ); hence qt ∈ N
since N is a k-subsemimodule. Since (q + P )(t + N) = q0 + N by Lemma 1 and
q + P 6= q0 + P , we must have t + N = q0 + N ; hence t = q0 ∈ N . Therefore,
m = t + x ∈ N , and so we have equality.

(iii) ⇒ (iv) Clearly, N ⊆ (N :M J). For the reverse inclusion, assume that
m ∈ (N :M J). By assumption, there exists r ∈ J such that r ∈ R−P and rm ∈ N ;
so (N :M< r >) = N by (iii). This completes the proof.

(iv) ⇒ (v) Since PM ⊆ N , we conclude that P ⊆ (N :R< m >) for every m ∈
M −N . For the other containment, assume that m ∈ M −N and r ∈ (N :R< m >);
we show that r ∈ P . Suppose not. Then J =< r >* P , and so m ∈ (N :M J) = N
by (iv), which is a contradiction, as required.

(v) ⇒ (vi) If a ∈ P , then aL ⊆ aM ⊆ N ; so P ⊆ (N :R L). Now suppose that
b ∈ (N :R L). By assumption, there exists m ∈ L such that m ∈ M − N . Then
b ∈ (N :R< m >) = P by (v), as needed.

(vi) ⇒ (vii) Let r ∈ ZR(M/N). Then there exists t ∈ QM − N such that
r(t+N) = q0 +N , where rt+N ⊆ q0 +N , so rt ∈ N since N is a k-subsemimodule;
hence r ∈ (N :R Rt + N) = P by (vi). Thus ZR(M/N) ⊆ P . For the reverse
conclusion, assume that a ∈ P . By assumption, there is an element m ∈ M − N
such that am ∈ N . There exist s ∈ QM − N and y ∈ N such that m = s + y (so
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s /∈ N) such that as ∈ N ; hence a(s+N) = q0+N by Lemma 1. Thus a ∈ ZR(M/N).
This completes the proof.

(vii) ⇒ (i) Let rm ∈ N for some r ∈ R and m ∈ M −N ; we show that r ∈ P .
By assumption, there are elements t ∈ QM −N and z ∈ N such that m = t + z, so
rt ∈ N . Then r(t + N) = q0 + N by Lemma 1; hence r ∈ ZR(M/N) = P by (vii),
as required.

Proposition 1. Let N be a proper strong QM -subsemimodule of a semimodule M
over a semiring R with (N : M) = P a maximal Q-ideal of R. Then N is a prime
subsemimodule. In particular, P ′M is a prime subsemimodule of an R-semimodule
M for every maximal Q-ideal P ′ of R such that P ′M 6= M .

Proof. By [4, Theorem 2.10], R/P is a semifield, so M/N is a semivector space over
the semifield R/P by Remark 1; hence it is a torsion-free R/P -semimodule. Thus N
is prime by Theorem 1. Finally, suppose that (P ′M : M) = J 6= R. Then P ′ ⊆ J ,
so J = P ′ since P ′ is maximal, as required.

Theorem 2. Let N be a proper strong QM -subsemimodule of a semimodule M over
a semiring R with (N : M) = P a Q-ideal of R and let P be a maximal ideal of
R. Then N is P -prime if and only if PM ⊆ N . In particular, if N is a P -prime
subsemimodule of M , then so is every proper subsemimodule of M containing N .

Proof. It suffices to show that if PM ⊆ M , then N is P -prime. Let p ∈ P . Then
p ∈ (N : M), so P = (N : M) by maximality of P . Now apply Proposition 1.

Proposition 2. Let M be a finitely generated semimodule over a semiring R and
let I be a strong k-ideal of R such that I = rad(I). Then (IM : M) = I if and only
if ann(M) ⊆ I.

Proof. The necessity is clear. Assume that ann(M) ⊆ I and let x ∈ (IM : M). First
we show that if M is generated by n elements, then there exists a y ∈ I such that
xn+y ∈ ann(M). To see that, we use induction on n. Consider first the case in which
n = 1. Here we have x < m >⊆ I < m >. So xm = sm for some s ∈ I; hence there is
an element s′ ∈ I such that (x+s′)m = sm+s′m = 0. It follows that (x+s′)M = 0.
We now turn to the inductive step. Assume, inductively, that n = k + 1, where
k ≥ 1, and that the result has been proved in the case where n = k. Then we must
have (x + a)(xk + b)M = (xk+1 + axk + bx + ab)(< m1, ..., mk > + < mk+1 >) = 0
for some a, b ∈ I, so (xk+1 +c)M = 0, where axk +bx+ab = c ∈ J . Thus xn +y ∈ I.
Since I is a k-ideal, we must have xn ∈ I and, therefore, (IM : M) ⊆ rad(I) = I.
Now we can see easily that (IM : M) = I.

Theorem 3. If M is a finitely generated semimodule over a semiring R and P is
a strong maximal Q-ideal of R containing ann(M), then PM 6= M so that PM is
a prime subsemimodule of M . In particular, if M is a finitely generated faithful
R-semimodule, then PM is a prime subsemimodule of M for every strong maximal
Q-ideal P of R.
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Proof. Apply Proposition 1 and Proposition 2 (note that every Q-ideal is a
k-ideal).

4 Spec(MS)

Assume that S is a multiplicatively closed subset of the commutative semiring R
and let M be an R-semimodule. We introduce a useful relationship between Spec(M)
and Spec(MS) (Theorem 6) and exhibit its application through the remaining of the
paper.

Lemma 2. Let R be a semiring. If N is a primary subsemimodule of an
R-semimodule M , then (N : M) (or equivalently ann(M/N)) is a primary ideal.

Proof. Since M * N , the ideal (N ; M) is a proper ideal. Now suppose that a, b ∈ R
such that ab ∈ (N : M), b /∈ (N : M). Since b /∈ (N : M), there exists m ∈ M
such that bm /∈ N . But N is a primary submodule, consequently asM ⊆ N for some
integer s. This completes the proof.

If N is a primary subsemimodule of an R-semomodule M , then Lemma 2 shows
that P ′ = (N : M) is a primary ideal. Consequently, P = rad(P ′) is a prime ideal.
In this case, we shall say that N is P -primary.

Lemma 3. Let R be a semiring. A primary subsemimodule N of any R-semimodule
M is prime if and only if (N : M) is a prime ideal. In particular, if K is a P -primary
subsemimodule of M containing a P -prime subsemimodule, then K is prime.

Proof. The proof is straightforward.

Definition 3. Let S be a multiplicatively closed subset of the commutative semi-
ring R, and let M be an R-semimodule. M is called a S-cancellative semimodule
whenever am = an for some 0 6= a ∈ S and m,n ∈ M , then m = n. A semiring is
called a S-cancellative semiring if it is a S-cancellative semimodule over itself.

Example 2. Assume that E+
0 is the set of all non-negative integers and let

S = E+
0 − {0}. Then (E+

0 ,+, .) is a S-cancellative semiring. Let M = (E+
0 , gcd).

Clearly, M is a commutative monoid in which every element is idempotent. More-
over, M is a S-cancellative semimodule over E+

0 with scalar multiplication defined
by rm = 0 if r = 0 and rm = m if r > 0 for all r ∈ E+

0 and m ∈ M [13, p. 151].

Let R be a S-cancellative semiring. Define a relation ∼ on R× S as follows: for
(a, s), (b, t) ∈ R × S, we write (a, s) ∼ (b, t) if and only if ad = bc. Then ∼ is an
equivalence relation on R× S. For (a, s) ∈ R× S, denote the equivalence class of ∼
which contains (a, s) by a/s, and denote the set of all equivalence classes of ∼ by RS .
Then RS can be given the structure of a commutative semiring under operations for
which a/s + b/t = (ta + sb)/st, (a/s)(b/t) = (ab)/st for all a, b ∈ r and s, t ∈ S.
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This new semiring RS is called the semiring of fractions of R with respect to S; its
zero element is 0/1, its multiplicative identity element is 1/1 and each element of S
has a multiplicative inverse in RS (see [9, 13, 19]). Assume that R is a semidomain
and let S = R − {0R}. Then RS is a semifield. The semifield F constructed from
the semidomain R is referred to as the semifield of fractions of the semidomain R.
Moreover, assume that P is a prime ideal of R. Then S = R−P is a multiplicatively
closed subset of R. In this case we set RS = RP and IS = IRP , where I is an ideal
of R.

Let M be a S-cancellative semimodule over a S-cancellative semiring R. The
relation ∼′ on M × S defined by, for (m, s), (n, t) ∈ M × S, (m, s) ∼′

(n, t) if
and only if tm = sn is an equivalence relation on M × S; for (m, s) ∈ M × S,
the equivalence class of ∼′ which contains (m, s) is denoted by m/s. Similarly, a
simple argument will show that the set MS of all equivalence classes of ∼′ has the
structure of a semimodule over the semiring RS of fractions of R with respect to S
under operations for which m/s + n/t = (tm + sn)/st, (r/s)(n/t) = (rn)/st for all
m,n ∈ M , s, t ∈ S and r ∈ R. The RS-semimodule MS is called the semimodule of
fractions of M with respect to S; its zero element is 0M/1, and this is equal to 0M/s
for all s ∈ S.

Convention. Throughout this section we shall assume unless otherwise stated,
that R denotes a commutative S-cancellative semiring with an identity element
and S a non-empty multiplicatively closed subset of R. M will designate a fixed
S-cancellative semimodule over R. If N is a subsemimodule of M , then NS will be
regarded as an RS-subsemimodule of MS .

Proposition 3. Let N be a P -primary subsemimodule of M . If P ∩ S 6= ∅, then
NS = MS. On the other hand if P ∩S = ∅, then NS is a PS-primary subsemimodule
of MS and N = NS ∩M = {m ∈ M : m/1 ∈ NS}.
Proof. First suppose that there is an element s which is common to P and S. Since
P = rad(N : M), there is an integer n such that snM ⊆ N . Suppose now that
m/s′ ∈ MS . Then m/s′ = (snm)/(sns′) ∈ NS . This shows that MS = NS and the
first assertion follows. From here on we assume that P does not meet S. Since the
inclusion N ⊆ M ∩NS is clear, we will prove the reverse inclusion. Let m ∈ NS ∩M .
Then there are elements n ∈ N and t ∈ S such that m/1 = n/t; hence tm ∈ N .
Using the facts that N is P -primary in M and t /∈ P , we conclude that m ∈ N , and
so we have equality. This shows, in particular, that NS is a proper subsemimodule
of MS . Assume next that (r/s)(m/t) ∈ NS and m/t /∈ NS . Then m /∈ N . Multi-
plying (rm)/(st) by (s2t2)/(st), we obtain (rm)/1 = (s2t2rm)/(s2t2) ∈ NS . Thus
rm ∈ N . It now follows that rvM ⊆ N for some integer v, which in turn implies
that (r/s)vMS ⊆ NS . This establishes that NS is a primary subsemimodule of MS .
By [5, Lemma 2.3] it must be P ′

S-primary, where P ′ is a prime ideal of R with
P ′ ∩ S = ∅. Let a ∈ P . Then anM ⊆ N for some integer n; hence if s ∈ S, then
((sa)/s)nMS ⊆ NS . It follows that (sa)/s ∈ P ′

S and therefore a ∈ P ′
S ∩ R = P ′ by
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[5, Lemma 2.3] again; thus P ⊆ P ′. For the other containment, assume that b ∈ P ′.
If now t ∈ S, then there exists an integer u such that ((tb)/t)uMS ⊆ NS . Select
m ∈ M so that m /∈ N . Then (tu−1bum)/tu+1 = ((tb)/t)u(tm)/t ∈ NS and therefore
tum ∈ NS ∩M = N ; hence t ∈ P , and so we have equality, as required.

Let N be a subsemimodule of a semimodule M . An inspection will show that
NS ∩M = {m ∈ M : sm ∈ N for some s ∈ S}. Let P be a prime ideal of R. The
saturation SP (N) = NP ∩M of N with respect to P is known in the literature as
the S-component of N in M for the multiplicatively closed subset S = R − P , but
designated in various way. A subsemimodule K of M is said to be saturated with
respect to P if SP (K) = K.

Theorem 4. Every P -primary subsemimodule of a semimodule M is a saturated
subsemimodule.

Proof. Apply Proposition 3.

Theorem 5. Let P be a prime ideal of R with P ∩ S = ∅, and let M be an
R-semimodule. Then there is a one-to-one correspondence between the P -primary
subsemimodules N of M and the PS-primary subsemimodules L of MS. This is such
that, when N and L correspond, L = NS and N = L ∩M .

Proof. Let L be a PS-primary subsemimodule of MS . By Proposition 3, it is enough
to show that there is a P -primary subsemimodule N of M such that N = L ∩M .
Suppose that L ∩ M = N ; we show that NS = L. Since the inclusion NS ⊆ L
is clear, we will prove the reverse inclusion. Let x ∈ L. Then x = m/s for some
m ∈ M and s ∈ S, so (s2/s)(m/s) = m/1 ∈ L and therefore m ∈ N . It follows
that m/s ∈ NS . This shows that L = NS and N is a proper subsemimodule of
M . Now assume that rm ∈ N , where r ∈ R, m ∈ M and m /∈ N . If s is an
arbitrary element of S, then (rs)/s)((sm)/s2) = (rs2m)/s2 ∈ NS = L. On the other
hand, (sm)/s /∈ L for the contrary assumption would imply that m ∈ N . So there
exists an integer w such that ((rs)/s)wMS ⊆ L since L is primary. Let m′ ∈ M
then (sw+1rwm′)/sw+1 = ((rs)/s)w(sm′)/s ∈ L, whence rwm′ ∈ N . As this holds
for every m′ ∈ M , we may conclude that rwM ⊆ N . This proves that N is a
primary subsemimodule of M . Let it be P ′-primary. Since NS = L and L 6= MS ,
Proposition 3 shows that P ′ ∩ S 6= ∅. The same proposition shows that NS = L is
P ′

S-primary. Thus P ′
S = PS and therefore P = P ′ by [4, Lemma 2.3]. This completes

the proof.

Lemma 4. Let M be an R-semimodule. Then the following hold:
(i) If N1, N2, ..., Nk are subsemimodules of M , then (N1 + N2 + ... + Nk)S =

(N1)S +(N2)S + ...+(Nk)S and (N1∩N2∩ ...∩Nk)S = (N1)S ∩ (N2)S ∩ ...∩ (Nk)S.
(ii) If m ∈ M and N is a subsemimodule of M , then (N : m)S = (NS : m/1).
(iii) If m1,m2, ..., mn are elements which generate M , then the RS-semimodule

generated by m1/1,m2/2, ..., mn/1 is just MS.



SPECTRA OF SEMIMODULES 23

(iv) If I is an ideal of R, then IS = RS if and only if I ∩ S 6= ∅.
(v) If M is finitely generated and N a subsemimodule of M , then (N : M)S =

(NS : MS). In particular, (ann(M))S = ann(MS).
(vi) If M is finitely generated and N a subsemimodule of M , then NS = MS if

and only if (N : M) ∩ S 6= ∅.
Proof. The proofs of (i), (ii), (iii) and (iv) are straightforward. To see that (v),
let m1,m2, ...,mk be elements which generate M . Then (N : M) = (N : m1) ∩ ...
∩(N : mk) and therefore, by (i) and (ii), (N : M)S = (N : m1)S ∩ ... ∩ (N : mk)S =
(NS : RSm/1 + ... + RSmk/1). This completes the proof by (iii).

(vi) We have NS = MS if and only if (NS : MS) = RS . By (v), (N : M)S =
(NS : MS) and, by (iv), this equals RS if and only if S meets (N : M), as
required.

Theorem 6. Let P be a prime ideal of R with P ∩ S = ∅, and let M be an
R-semimodule. Then there is a one-to-one correspondence between the P -prime sub-
semimodules N of M and the PS-prime subsemimodules L of MS. This is such that,
when N and L correspond, L = NS and N = L ∩M .

Proof. By Theorem 5, we need to show that, under this correspondence of primary
subsemimodules, N is prime if and only if L = NS is prime. By Lemma 4, it
suffices to show that (N :R M) = P if and only if (NS :RS

MS) = PS provided
that P = rad(N : M) and PS = rad(NS : MS) as N and NS are, respectively,
P -primary and PS-primary. If P = (N : M), then PS = (N : M)S ⊆ (NS : MS) ⊆
rad(NS : MS) = PS whence (NS : MS) = PS . Conversely, if (NS : MS) = PS , then
PSMS ⊆ NS so that (p/s)(m/t) ∈ PS for every p ∈ P , m ∈ M , and s, t ∈ S. Since
(pm/st)(s2t2/st) ∈ NS , pm ∈ N for every m ∈ M . Thus p ∈ (N : M) for every
p ∈ P = rad(N : M). Therefore, (N : M) = rad(N : M) = P .

Corollary 1. If N is a prime subsemimodule of an R-semimodule M , then
(N : M)S = (NS : MS).

Proof. In the proof of Theorem 6 we have seen that if (N : M) ∩ S = ∅, then
(N : M)S = (NS : MS). On the other hand if (N : M) ∩ S 6= ∅, then NS = MS by
Proposition 9 so that (N : M)S = (NS : MS) = RS .

Corollary 2. Let M be an R-semimodule and P a prime ideal of R. Then the prime
subsemimodules of the RP -semimodule MP are in a one-to-one correspondence with
those prime subsemimodules N of M with (N : M) ⊆ P .

Proof. Set S = R− P and apply Theorem 6.

Proposition 4. Let R be a semiring and N a subsemimodule of an R-semimodule
M . If NS 6= MS, then (N : M) ∩ S = ∅. Conversely, if (N : M) ∩ S = ∅,
then NS 6= MS provided that either i) M is finitely generated or ii) N is a primary
subsemimodule.
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Proof. Assume that (N : M) ∩ S 6= ∅ and r ∈ (N : M) ∩ S. Let m/s ∈ MS .
Then rm ∈ N so that m/s = (rm)/(rs) ∈ NS , which proves that NS = MS , a
contradiction. Thus (N : M) ∩ S = ∅. Conversely, assume that (N : M) ∩ S = ∅.
Note that (N : M) ∩ S = ∅ if and only if rad(N : M) ∩ S = ∅. Now the assertion
follows from Lemma 4 (vi) and Proposition 3.

Proposition 5. Let R be a semiring and N a subsemimodule of an R-semimodule
M such that (N : M) is a primary ideal (resp. (N : M) = P ) for some prime ideal
P of R. Then N is a P -primary (resp. P -prime) subsemimodule of M if and only
if NP ∩M = N .

Proof. The necessity is due to Proposition 3 (resp. Theorem 6). To see the suffi-
ciency, suppose that rm ∈ N such that m ∈ M −N and r ∈ R; we show that r ∈ P .
Suppose not. Then m/1 = (rm)/r ∈ NP , so m ∈ NP ∩ M = N , which is a con-
tradiction. Thus, r ∈ P so that N is a P -primary (resp. P -prime) subsemimodule
of M .

Theorem 7. Let R be a semidomain which is not a semifield and F the field of
fractions of R. Then the R-semimodule F has Spec(F ) = {0}.
Proof. Let N be a proper subsemimodule of F . Then (N : F ) = 0 since aF = F
for every non-zero element a of R. Let r.a/b = (ra)/b ∈ {0/1} such that r ∈ R
and a/b 6= 0/1. Then a 6= 0R and ra = 0R; so r = 0 since R is a semidomain.
It follows that {0/1} is a 0F -prime subsemimodule of F . To show that {0/1} is
the only prime subsemimodule of F , we assume the contrary and let L be a non-
zero prime subsemimodule of F . Since L is a non-zero subsemimodule, there exists
0/1 6= x = c/d ∈ L, where c, d ∈ R, such that (d/1)x = c/1 ∈ L. On the other
hand, there exists 0 6= y ∈ R such that 1/y /∈ L since L 6= F . Now we have
(c/1)(y/1) = (cy)/1 /∈ (L : F ) and 1/y /∈ L, but (cy/1)(1/y) = c/1 ∈ L, which is a
contradiction. Thus Spec(F ) = {0}.

5 Strong primeful semimodules

In this section we extend some definitions and results of C. P. Lu [16, 17] to
semimodules over semirings. Let M be a semimodule over a semiring R with ann(M)
a Q-ideal of R. The map ψ : Spec(M) → Spec(R/ann(M)) defined by ψ(N) =
(N : M)/ann(M) for every N ∈ Spec(M) will be called the natural map of
Spec(M). The surjectivity of the natural map ψ is particularly important in the
topological space Spec(M) equipped with a topology called the Zariski topology. An
R-semimodule M is called primeful if either M = 0 or the natural map of Spec(M)
is surjective [17].

We continue to use the notation already established, so R denotes a commutative
S-cancellative semiring with an identity element and S a non-empty multiplicatively
closed subset of R. M will designate a fixed S-cancellative semimodule over R.
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Moreover, assume that P is a prime ideal of R. Then S = R−P is a multiplicatively
closed subset of R. In this case we set RS = RP and IS = IRP , where I is an ideal
of R.

Lemma 5. Assume that P is a prime k-ideal of a semiring R and let R be a
S-cancellative semiring, where S = R−P . Then RP is a local semiring with unique
maximal k-ideal of PRP .

Proof. By [8, Lemma 5 and Theorem 2], it suffices to show that PRP is exactly the
set of non-semi-units of RP . Let y ∈ RP−PRP , and take any representation y = a/s
with a ∈ R, s ∈ S. We must have a /∈ P , so that a/s is a unit of RP with inverse s/a
(so a/s is a semi-unit by [11, Remark 2.4]. On the other hand, if y is a semi-unit of
RP , and y = b/t for some b ∈ R, t ∈ S, then there exist c, d ∈ R and u,w ∈ S such
that 1/1 + (bc)/(tu) = (bd)/(tw). It follows that t2uw + bctw = tubc; hence b /∈ P
since P is a k-ideal, and since this reasoning applies to every representation y = b/t
with b ∈ R, t ∈ S, of y as a formal fraction, it follows that y /∈ PRS , and so the
proof is complete (see [9, Theorem 3]).

Example 3. The monoid M = (Z6, +6) is a semimodule over (E+
0 , +, .) (see [13,

p. 151]) with ann(M) = {60k : k ∈ E+
0 }. It is easy to see that ann(M) is a Q-ideal

of E+
0 with respect to Q = {1, 2, ..., 59}.

Proposition 6. Let M be a non-zero semimodule over a semiring R with ann(M)
a Q-ideal of R. Then the following hold:

(i) M is a primeful semimodule if and only if for every prime k-ideal P with
ann(M) ⊆ P , there exists a prime subsemimodule N of M such that (N : M) = P .

(ii) If M is a primeful semimodule, then PMP 6= MP for every prime k-ideal P
with ann(M) ⊆ P .

Proof. (i) Assume that M is primeful and let P be a prime k-ideal of R with
ann(M) ⊆ P . Then P/ann(M) is a prime ideal of R/ann(M) by [4, Theo-
rem 2.5]. By assumption, there exists a prime subsemimodule N of M such that
ψ(N) = (N : M)/ann(M) = P/ann(M); hence (N : M) = P by [4, Lemma 2.13].
The reverse implication is clear.

(ii) For any prime k-ideal P of R with ann(M) ⊆ P , let N be a P -prime subsemi-
module of M . Then PM ⊆ N with N 6= M so that NP is a PRP -prime subsemi-
module of MP by Theorem 6. Since PMP ⊆ NP with NP 6= MP , MP 6= PMP .

We begin this section by proving the following fundamental theorems of this
paper:

Theorem 8. Let M be a non-zero semimodule over a semiring R with ann(M) a
Q-ideal of R. Then the following are equivalent:

(i) M is primeful;
(ii) Let P be a prime partitioning ideal of R such that ann(M) ⊆ P and PRP is

a partitioning ideal of RP . Then there exists a prime subsemimodule N of M such
that (N : M) = P ;
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(iii) Let P be a prime partitioning ideal of R such that ann(M) ⊆ P and PRP

is a partitioning ideal of RP . Then PMP 6= MP ;
(iv) Let P be a prime partitioning ideal of R such that ann(M) ⊆ P and PRP is

a partitioning ideal of RP . Then SP (PM) is a P -prime subsimimodule;
(v) Let P be a prime partitioning ideal of R such that ann(M) ⊆ P and PRP is

a partitioning ideal of RP . Then SpecP (M) 6= ∅.
Proof. By Proposition 6, we prove (iii) ⇒ (iv) ⇒ (v) ⇒ (i). (iii) ⇒ (iv): Since by
assumption and Lemma 5, PRP is a maximal partitioning ideal of RP and PMP 6=
MP , (PRP )MP is a PRP -prime subsemimodule of MP by Proposition 1. Hence
SP (PM) = PMP ∩M is a P -prime subsemimodule of M by Theorem 6. Thus (iv)
follows. (iv) ⇒ (v) and (v) ⇒ (ii) are clear.

Let M be a semimodule over a semiring R with ann(M) a Q-ideal of R. The
collection of all prime (resp. maximal) k-subsemimodules of M with (N : M) a
strong ideal of R (resp. with (N : M) a strong Q-ideal of R) is called the k-spectrum
(resp. the maximal k-spectrum) of M and denoted by Speck(M) (resp. Maxk(M)).
Set

Speck(R/ann(M)) = {P/ann(M) ∈ Spec(R/ann(M)) : P is a strong k-ideal of R}.

Definition 4. Let M be a semimodule over a semiring R with ann(M) a Q-ideal
of R:

(i) M is called strong primeful if either M = 0 or the natural map
ψ : Speck(M) → Speck(R/ann(M)) defined by ψ(N) = (N : M)/ann(M) for every
N ∈ Speck(M) is surjective.

(ii) M is called strong fulmaximal if either M = 0 or the natural map
ψ : Maxk(M) → Maxk(R/ann(M)) defined by ψ(N) = (N : M)/ann(M) for
every N ∈ Maxk(M) is surjective.

Theorem 9. Let M be a non-zero semimodule over a semiring R with ann(M) a
Q-ideal of R 6= {0}. Then the following hold:

(i) If M is finitely generated, then M is a strong primeful semimodule and, si-
milarly, M is a strong fulmaximal semimodule. Consequently, Speck(M) 6= ∅ and
Maxk(M) 6= ∅.

(ii) If M is multiplication, then M is a strong primeful semimodule. Conse-
quently, Speck(M) 6= ∅.

Proof. (i) Let P/ann(M) ∈ Speck(R/ann(M)). Then by assumption and [4, The-
orem 2.5], P is a strong prime k-ideal containing ann(M). Since M is a non-zero
finitely generated R-semimodule, MP is a non-zero finitely generated RP -semimodule
with ann(MP ) = (ann(M))P and ann(MP ) ⊆ PRP by Lemma 4. If a/s ∈ PRP for
some a ∈ P and s /∈ P , then a+ b = 0 for some b ∈ P , and so a/s+ b/s = 0/1; hence
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PRP is a strong prime k-ideal of RP (see [9, Lemma 5]). According to Proposition 2
and Theorem 3, PMP 6= MP so that PMP is a PRP -prime subsemimodule of MP .
Applying Theorem 6, we can conclude that N = PMP ∩M is a prime subsemimodule
of M ; hence ψ(N) = (N : M)/ann(M) = P/ann(M). This proves that ψ is surjec-
tive. Finally, assume that P/ann(M) ∈ Maxk(R/ann(M)). Then by assumption and
[4, Theorem 2.14], P is a strong maximal k-ideal containing ann(M). Let T (P ) be
the set of all P -prime k-subsemimodules N of M with (N : M) a strong Q-ideal. In
the proof above, we have seen that T (P ) 6= ∅. With the aid of Zorn’s lemma, we can
see that there exists a maximal element L in T (P ). Since (L : M) = P is a maximal
Q-ideal, L is a maximal subsemimodule. (ii) follows from [12, Theorem 3.8].
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1 Introduction

If an, bn ≥ 0 satisfy
∑∞

n=1 a2
n < ∞ and

∑∞
n=1 b2

n < ∞, then the well known
Hilbert’s inequality (see [1]) is given by

∞∑

m=1

∞∑

n=1

ambn

m + n
< π

{ ∞∑

n=1

a2
n

∞∑

n=1

b2
n

} 1
2

(1)

and an equivalent form is given by

∞∑

n=1

( ∞∑

m=1

am

m + n

)2

< π2
∞∑

n=1

a2
n, (2)

where the constant factors π and π2 are the best possible. In 1925, Hardy [2]
gave some extensions of (1) and (2) by introducing the (p, q)-parameters as: if
p > 1, 1

p + 1
q = 1, an, bn ≥ 0 satisfy

∑∞
n=1 ap

n < ∞ and
∑∞

n=1 bq
n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

m + n
<

π

sin(π/p)

{ ∞∑

n=1

ap
n

}1/p { ∞∑

n=1

bq
n

}1/q

(3)

and an equivalent form is given by

∞∑

n=1

( ∞∑

m=1

am

m + n

)p

<

[
π

sin(π/p)

]p ∞∑

n=1

ap
n, (4)
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where the constant factors π
sin(π/p) and [ π

sin(π/p) ]
p are the best possible. Inequality (3)

is called Hardy-Hilbert’s inequality and is important in analysis and its applications
(cf. Mintrinovic et al. [4]). Recently many generalizations and refinements of these
inequalities were also obtained. Some of them are given in [5–15].

If p > 1, 1
p + 1

q = 1, an, bn ≥ 0 satisfy 0 <
∑∞

m=2
1
m ap

m < ∞ and 0 <
∑∞

n=2
1
n bq

n <
∞, then the Mulholland’s inequality (cf. [1, 3]) is given by

∞∑

m=2

∞∑

n=2

ambn

mn lnmn
<

π

sin(π/p)

{ ∞∑

n=2

1
n

ap
n

}1/p { ∞∑

n=2

1
n

bq
n

}1/q

; (5)

where the constant factor π
sin(π/p) is the best possible. Replacing am with mam and

bn with nbn we have the following inequality:
If p > 1, 1

p + 1
q = 1, am, bn ≥ 0 satisfy 0 <

∑∞
n=2 np−1ap

n < ∞ and 0 <∑∞
n=2 nq−1bq

n < ∞, then the inequality

∞∑

m=2

∞∑

n=2

ambn

lnmn
<

π

sin(π/p)

{ ∞∑

n=2

np−1ap
n

} 1
p

{ ∞∑

n=2

nq−1bq
n

} 1
q

(6)

holds, where the constant factor π
sin(π/p) is the best possible. The inequality (6) is

also referred to as Mulholland’s inequality. Some generalizations of these inequalities
are given in [16,17].

Most of the recent generalizations of inequalities (1) and (3) (cf. [5–15]) estimate
the upper bounds of the double sum of the form

∑∑
K(m, n)ambn, where the

kernel K(m, n) is homogeneous in m and n. In this paper, we give a generalization
of Hardy-Hilbert’s inequality for non-homogeneous kernel K(m,n) = (sm + tn)−1

by considering the sequences (sn), (tn), the functions φp, φq and parameter λ. This
inequality generalizes both Hardy-Hilbert’s inequality and Mulholland’s inequality,
from which all the inequalities given in [5–17] are obtained as particular cases. As
applications, the equivalent form, some particular results and a generalized Hardy-
Littlewood inequality are established.

2 Some Lemmas

We first set the following notations. Suppose p > 1, 1
p + 1

q = 1 and φr (r = p, q)
is a function of r such that 0 < φr < λ (r = p, q). Let m0, n0 ∈ N and s(x), t(x) are
differentiable strictly increasing functions in (m0−1,∞) and (n0−1,∞), respectively,
such that s((m0 − 1)+) = t((n0 − 1)+) = 0 and s(∞) = t(∞) = ∞, s′(x)

(s(x))1−φq
and

t′(x)

(t(x))1−φp
are decreasing in (m0 − 1,∞) and (n0 − 1,∞), respectively. We write

s(m) = sm, s′(m) = s′m, t(n) = tn and t′(n) = t′n.
We need the formula of the β−function as (cf. Wang et al. [18]):

B(p, q) =
∫ ∞

0

1
(1 + u)p+q

up−1du = B(q, p) (p, q > 0). (7)
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Lemma 1. Define the weight functions ωλ(s, t, p, m) and ωλ(t, s, q, n) as

ωλ(s, t, p,m) =
∞∑

n=n0

1
(sm + tn)λ

t′n
(tn)1−φp

, (m ≥ m0); (8)

ωλ(t, s, q, n) =
∞∑

m=m0

1
(sm + tn)λ

s′m
(sm)1−φq

, (n ≥ n0). (9)

Then

ωλ(s, t, p,m) < B(φp, λ− φp)(sm)φp−λ, (m ≥ m0); (10)

ωλ(t, s, q, n) < B(φq, λ− φq)(tn)φq−λ, (n ≥ n0). (11)

Proof. Since λ > 0, s(x), t(x) are differentiable, strictly increasing functions and
s′(x)

(s(x))1−φq
and t′(x)

(t(x))1−φp
are decreasing in (m0 − 1,∞) and (n0 − 1,∞), respectively.

So

ωλ(s, t, p,m) <

∞∑
n=n0

∫ n

n−1

1
(sm + t(y))λ

t′(y)
(t(y))1−φp

dy

=
∫ ∞

n0−1

(t(y))φp−1t′(y)
(sm + t(y))λ

dy

= (sm)φp−λ

∫ ∞

0

1
(1 + u)λ

uφp−1du

(
setting u =

t(y)
sm

)
.

Then by (7), we get (10). Similarly, (11) can be proved. The lemma is proved.

Lemma 2. If φp + φq = λ and 0 < ε < qφp, then

∑
1

: =
∞∑

m=m0

∞∑
n=n0

1
(sm + tn)λ

× s′m
(sm)1−φq+ ε

p

× t′n
(tn)1−φp+ ε

q

>
1

ε(sm0)ε
B

(
φp − ε

q
, φq +

ε

q

)
−©(1).

(12)

Proof. Since λ > 0, s(x), t(x) are differentiable strictly increasing functions and
s′(x)

(s(x))1−φq
and t′(x)

(t(x))1−φp
are decreasing in (m0 − 1,∞) and (n0 − 1,∞), respectively,
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we have
∑

1
>

∫ ∞

m0

∫ ∞

n0

1
(s(x) + t(y))λ

× s′(x)

(s(x))1−φq+ ε
p

× t′(y)

(t(y))1−φp+ ε
q

dxdy

=
∫ ∞

m0

s′(x)
(s(x))1+ε

[∫ ∞

t(n0)
s(x)

1
(1 + u)λ

u
φp− ε

q
−1

du

]
dx

(
setting u =

t(y)
s(x)

)

=
∫ ∞

m0

s′(x)
(s(x))1+ε

dx

∫ ∞

0

u
φp− ε

q
−1

(1 + u)λ
du−

∫ ∞

m0

s′(x)
(s(x))1+ε

[∫ t(n0)
s(x)

0

u
φp− ε

q
−1

(1 + u)λ
du

]
dx

>
1

ε(s(m0))ε

∫ ∞

0

u
φp− ε

q
−1

(1 + u)λ
du−

∫ ∞

m0

s′(x)
(s(x))1+ε

[∫ t(n0)
s(x)

0
u

φp− ε
q
−1

du

]
dx

=
1

ε(sm0)ε

∫ ∞

0

u
φp− ε

q
−1

(1 + u)λ
du− (tn0)

φp− ε
q

(um0)
φp− ε

q
+ε

(
φp − ε

q

)−1(
φp − ε

q
+ ε

)−1

.

Then by (7), (12) is valid. The lemma is proved.

3 Main Result

Theorem 1. If p > 1, 1
p + 1

q = 1, 0 < φr < λ (r = p, q) and an, bn ≥ 0 satisfy

0 <
∑∞

m=m0

(sm)φp−λ+(p−1)(1−φq)

(s′m)p−1 ap
m < ∞ and 0 <

∑∞
n=n0

(tn)φq−λ+(q−1)(1−φp)

(t′n)q−1 bq
n < ∞,

then

∞∑
m=m0

∞∑
n=n0

ambn

(sm + tn)λ
< Hλ(φp, φq)

{ ∞∑
m=m0

(sm)φp−λ+(p−1)(1−φq)

(s′m)p−1
ap

m

} 1
p

×
{ ∞∑

n=n0

(tn)φq−λ+(q−1)(1−φp)

(t′n)q−1
bq
n

} 1
q

(13)

where Hλ(φp, φq) = B
1
p (φp, λ− φp)B

1
q (φq, λ− φq).

Proof. By Hölder’s inequality with weight (cf. Kuang [19]), we have

∞∑
m=m0

∞∑
n=n0

ambn

(sm + tn)λ

=
∞∑

m=m0

∞∑
n=n0

1
(sm + tn)λ

{
(tn)(φp−1)/p(t′n)1/p

(sm)(φq−1)/q(s′m)1/q
am

}{
(sm)(φq−1)/q(s′m)1/q

(tn)(φp−1)/p(t′n)1/p
bn

}

≤
{ ∞∑

m=m0

[ ∞∑
n=n0

1
(sm + tn)λ

t′n
(tn)1−φp

]
(sm)(p−1)(1−φq)

(s′m)p−1
ap

m

} 1
p

×
{ ∞∑

n=n0

[ ∞∑
m=m0

1
(sm + tn)λ

s′m
(sm)1−φq

]
(tn)(q−1)(1−φp)

(t′n)q−1
bq
n

} 1
q

.
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Then by (8) and (9), we have

∞∑
m=m0

∞∑
n=n0

ambn

(sm + tn)λ
≤

{ ∞∑
m=m0

ωλ(s, t, p, m)
(sm)(p−1)(1−φq)

(s′m)p−1
ap

m

} 1
p

×
{ ∞∑

n=n0

ωλ(t, s, q, n)
(tn)(q−1)(1−φp)

(t′n)q−1
bq
n

} 1
q

and in view of (10) and (11), it follows that (13) is valid. The theorem is proved.

Theorem 2. If p > 1, 1
p + 1

q = 1, 0 < φr < λ (r = p, q) and an ≥ 0 satisfy

0 <
∑∞

m=m0

(sm)φp−λ+(p−1)(1−φq)

(s′m)p−1 ap
m < ∞, then we obtain an equivalent inequality of

(13) as follows:

∞∑
n=n0

t′n
(tn)1−φp+(p−1)(φq−λ)

[ ∞∑
m=m0

am

(sm + tn)λ

]p

< [Hλ(φp, φq)]
p

∞∑
m=m0

(sm)φp−λ+(p−1)(1−φq)

(s′m)p−1
ap

m.

(14)

Proof. Setting bn = t′n
(tn)1−φp+(p−1)(φq−λ)

[∑∞
m=m0

am

(sm+tn)λ

]p−1
and using (13) we

obtain

0 <
∞∑

n=n0

(tn)φq−λ+(q−1)(1−φp)

(t′n)q−1
bq
n

=
∞∑

n=n0

t′n
(tn)1−φp+(p−1)(φq−λ)

[ ∞∑
m=m0

am

(sm + tn)λ

]p

=
∞∑

m=m0

∞∑
n=n0

ambn

(sm + tn)λ

≤ Hλ(φp, φq)

{ ∞∑
m=m0

(sm)φp−λ+(p−1)(1−φq)

(s′m)p−1
ap

m

} 1
p

×
{ ∞∑

n=n0

(tn)φq−λ+(q−1)(1−φp)

(t′n)q−1
bq
n

} 1
q

.

(15)
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Hence

0 <

[ ∞∑
n=n0

(tn)φq−λ+(q−1)(1−φp)

(t′n)q−1
bq
n

] 1
p

=

{ ∞∑
n=n0

t′n
(tn)1−φp+(p−1)(φq−λ)

[ ∞∑
m=m0

am

(sm + tn)λ

]p} 1
p

≤ Hλ(φp, φq)

{ ∞∑
m=m0

(sm)φp−λ+(p−1)(1−φq)

(s′m)p−1
ap

m

} 1
p

< ∞.

(16)

By using (13) it follows that (15) takes the form of strict inequality; so does (16).
Hence we get (14).

On the other hand, if (14) holds, then by Hölder’s inequality, we have

∞∑
m=m0

∞∑
n=n0

ambn

(sm + tn)λ

=
∞∑

n=n0

[
(t′n)1/p

(tn)(1−φp+(p−1)(φq−λ))/p

∞∑
m=m0

am

(sm + tn)λ

][
(tn)(1−φp+(p−1)(φq−λ))/p

(t′n)1/p
bn

]

≤
{ ∞∑

n=n0

t′n
(tn)1−φp+(p−1)(φq−λ)

[ ∞∑
m=m0

am

(sm + tn)λ

]p}1
p
{ ∞∑

n=n0

(tn)φq−λ+(q−1)(1−φp)

(t′n)q−1
bq
n

}1
q

.

Hence by (14), (13) yields. Thus it follows that (13) and (14) are equivalent. The
theorem is proved.

Theorem 3. If p > 1, 1
p + 1

q = 1, φr > 0 (r = p, q), φp + φq = λ, an, bn ≥ 0 satisfy

0 <
∑∞

m=m0

(sm)p(1−φq)−1

(s′m)p−1 ap
m < ∞ and 0 <

∑∞
n=n0

(tn)q(1−φp)−1

(t′n)q−1 bq
n < ∞, then

∞∑
m=m0

∞∑
n=n0

ambn

(sm + tn)λ
< B(φp, φq)

{ ∞∑
m=m0

(sm)p(1−φq)−1

(s′m)p−1
ap

m

}1
p
{ ∞∑

n=n0

(tn)q(1−φp)−1

(t′n)q−1
bq
n

}1
q

(17)

where the constant factor B(φp, φq) is the best possible.

Proof. Since φp + φq = λ, then by Theorem 1, (17) is valid. For 0 < ε < qφp, we
take

ãm = (sm)−1+φq−ε/p s′m (m ≥ m0),

b̃n = (tn)−1+φp−ε/q t′n (n ≥ n0).
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Since s′(x)
(s(x))1+ε = s′(x)

(s(x))1−φq
1

(s(x))φq+ε is decreasing in (m0 − 1,∞), we have

∞∑
m=m0

(sm)p(1−φq)−1

(s′m)p−1
ãp

m =
s′m0

(sm0)1+ε
+

∞∑

m=m0+1

s′m
(sm)1+ε

≤ s′m0

(sm0)1+ε
+

∫ ∞

m0

s′(x)
(s(x))1+ε

dx

=
1
ε

[
ε

s′m0

(sm0)1+ε
+

1
(sm0)ε

]
.

(18)

Similarly,
∞∑

n=n0

(tn)q(1−φp)−1

(t′n)q−1
b̃q
n ≤

1
ε

[
ε

t′n0

(tn0)1+ε
+

1
(tn0)ε

]
. (19)

If the constant factor B(φp, φq) in (17) is not the best possible, then there exists a
positive constant K < B(φp, φq) such that (17) is still valid if we replace B(φp, φq)
by K. In particular by (12), (18) and (19), we have

1
(sm0)ε

B

(
φp − ε

q
, φq +

ε

q

)
− ε© (1)

< ε
∑

1
= ε

∞∑
m=m0

∞∑
n=n0

ãmb̃n

(sm + tn)λ

< εK

{ ∞∑
m=m0

(sm)p(1−φq)−1

(s′m)p−1
ãp

m

} 1
p

{ ∞∑
n=n0

(tn)q(1−φp)−1

(t′n)q−1
b̃q
n

} 1
q

< K

{
ε

s′m0

(sm0)1+ε
+

1
(sm0)ε

} 1
p

{
ε

t′n0

(tn0)1+ε
+

1
(tn0)ε

} 1
q

and taking ε → 0+, we get B(φp, φq) ≤ K. This contradiction leads to the conclusion
that the constant factor B(φp, φq) in (17) is the best possible. The theorem is
proved.

Corollary 1. If p > 1, 1
p + 1

q = 1 and am ≥ 0 satisfy 0 <
∑∞

m=m0
(s′m)1−rar

m < ∞
(r = p, q), then

∞∑
m=m0

∞∑
n=m0

aman

sm + sn
<

π

sin π
p

( ∞∑
m=m0

(s′m)1−pap
m

) 1
p

( ∞∑
m=m0

(s′m)1−qaq
m

) 1
q

(20)

where the constant factor π
sin(π/p) is the best possible.

Proof. Taking an = bn, sn = tn, λ = 1, φr = 1
r (r = p, q) in (17), we get (20). The

corollary is proved.
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Corollary 2. If p > 1, 1
p + 1

q = 1 and am ≥ 0 satisfy 0 <
∑∞

m=m0

(sm)
r
2−1

(s′m)r−1 ar
m < ∞

(r = p, q), then

∞∑
m=m0

∞∑
n=m0

aman

sm + sn
< π

( ∞∑
m=m0

(sm)
p
2
−1

(s′m)p−1
ap

m

) 1
p

( ∞∑
m=m0

(sm)
q
2
−1

(s′m)q−1
aq

m

) 1
q

(21)

where the constant factor π is the best possible.

Proof. Taking an = bn, sn = tn, λ = 1, φr = 1
2 (r = p, q) in (17), we get (21). The

corollary is proved.

Theorem 4. If p > 1, 1
p + 1

q = 1, φr > 0 (r = p, q), φp + φq = λ, an ≥ 0 satisfy

0 <
∑∞

m=m0

(sm)p(1−φq)−1

(s′m)p−1 ap
m < ∞, then we obtain an equivalent inequality of (17)

as follows:
∞∑

n=n0

t′n
(tn)1−pφp

[ ∞∑
m=m0

am

(sm + tn)λ

]p

< [B(φp, φq)]
p

∞∑
m=m0

(sm)p(1−φq)−1

(s′m)p−1
ap

m (22)

where the constant factor [B(φp, φq)]
p is the best possible.

Proof. Since φp + φq = λ, then by Theorem 2, we get inequalities (17) and (22) are
equivalent. By Theorem 3, the constant factor in (17) is best possible, hence the
constant factor in (22) is best possible. The theorem is proved.

4 Generalization of Hardy-Hilbert’s Inequality

Theorem 5. If p > 1, 1
p + 1

q = 1, 0 < φr < λ(r = p, q), A,B > 0, 0 < α ≤ 1
φq

,

0 < β ≤ 1
φp

, an, bn ≥ 0 satisfy 0 <
∑∞

m=1 mα(φp−λ+(1−p)φq)+p−1ap
m < ∞ and

0 <
∑∞

n=1 nβ(φq−λ+(1−q)φp)+q−1bq
n < ∞, then the following two equivalent inequali-

ties hold:

∞∑

m=1

∞∑

n=1

ambn

(Amα + Bnβ)λ
< µHλ(φp, φq)

{ ∞∑

m=1

mα(φp−λ+(1−p)φq)+p−1ap
m

} 1
p

×
{ ∞∑

n=1

nβ(φq−λ+(1−q)φp)+q−1bq
n

} 1
q

;

(23)

∞∑

n=1

nβ(φp+(1−p)(φq−λ))−1

[ ∞∑

m=1

am

(Amα + Bnβ)λ

]p

< [µHλ(φp, φq)]
p
∞∑

m=1

mα(φp−λ+(1−p)φq)+p−1ap
m

(24)

where µ =
(

Aφp−λ

βBφp

) 1
p

(
Bφq−λ

αAφq

) 1
q and Hλ(φp, φq) = B

1
p (φp, λ−φp)B

1
q (φq, λ−φq). The

constant factors µHλ(φp, φq) and [µHλ(φp, φq)]
p are the best possible if φp +φq = λ.
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Proof. Setting sm = Amα, tn = Bnβ in Theorem 1 and Theorem 2, we get both
the inequalities (23) and (24) are valid and equivalent. From Theorem 3 and Theo-
rem 4, it follows that the constant factors are the best possible. This completes the
proof.

We discuss a number of special cases of inequality (23). Similar inequalities can
also be derived from inequality (24).

Example 1. Setting φp = 1 − A2p, φq = 1 − A1q in Theorem 5, we have the
following inequality: If p > 1, 1

p + 1
q = 1, A,B > 0, A1 < 1

q , A2 < 1
p , 0 <

α ≤ 1
1−A1q , 0 < β ≤ 1

1−A2p , λ > max {1−A2p, 1−A1q} , am, bn ≥ 0 satisfy 0 <∑∞
m=1 mα(2−p−λ+p(A1−A2))+p−1ap

m <∞ and 0 <
∑∞

n=1 nβ(2−q−λ+q(A2−A1))+q−1bq
n <

∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα + Bnβ)λ
< L

{ ∞∑

m=1

mα(2−p−λ+p(A1−A2))+p−1ap
m

} 1
p

×
{ ∞∑

n=1

nβ(2−q−λ+q(A2−A1))+q−1bq
n

} 1
q

(25)

where L =
(

A1−A2p−λ

βB1−A2p

) 1
p

(
B1−A1q−λ

αA1−A1q

) 1
q
Hλ (1−A2p, 1−A1q). For A = B = α =

β = 1, we get the result of Brnetic and Pecaric [5, Theorem 2].

Example 2. Setting φr = λ
r (r = p, q) in Theorem 5, we have the following inequal-

ity: If p > 1, 1
p + 1

q = 1, A, B > 0, 0 < α ≤ q
λ , 0 < β ≤ p

λ , λ > 0, am, bn ≥ 0
satisfy 0 <

∑∞
m=1 m(p−1)(1−αλ)ap

m < ∞ and 0 <
∑∞

n=1 n(q−1)(1−βλ)bq
n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα+Bnβ)λ
<µB

(
λ

p
,
λ

q

){ ∞∑

m=1

m(p−1)(1−αλ)ap
m

}1
p
{∞∑

n=1

n(q−1)(1−βλ)bq
n

}1
q

(26)

where µ =
(
A

λ
q B

λ
p α

1
q β

1
p

)−1
and the constant factor µB

(
λ
p , λ

q

)
is the best possible.

For A = B = λ = 1, α = β, we get the result of Yang [7]. Setting α = β = 1, p =
q = 2, we get the result of Yang [13] and setting α = β = 1, we get the result of
Yang [15].

Example 3. Setting φr = λ(1 − 1
r ) (r = p, q) in Theorem 5, we have the following

inequality: If p > 1, 1
p + 1

q = 1, A, B > 0, 0 < α ≤ p
λ , 0 < β ≤ q

λ , λ > 0 and
am, bn ≥ 0 satisfy 0 <

∑∞
m=1 mp−αλ−1ap

m < ∞ and 0 <
∑∞

n=1 nq−βλ−1bq
n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα+Bnβ)λ
< µB

(
λ

p
,
λ

q

){ ∞∑

m=1

mp−αλ−1ap
m

}1
p
{ ∞∑

n=1

nq−βλ−1bq
n

}1
q

(27)
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where µ =
(
A

λ
p B

λ
q α

1
q β

1
p

)−1
and the constant factor µB

(
λ
p , λ

q

)
is the best possible.

For λ = 1, α = β, we get the result of Yang [8]. Setting A = B = α = β = 1, we
recover the result of Yang [9].

Example 4. Setting φr = 1 + λ−2
r (r = p, q) in Theorem 5, we have the following

inequality: If p > 1, 1
p + 1

q = 1, A, B > 0, 0 < α ≤ q
q+λ−2 , 0 < β ≤ p

p+λ−2 ,

λ > 2 − min{p, q}, am, bn ≥ 0 satisfy 0 <
∑∞

m=1 m(p−1)(1−α(q+λ−2))ap
m < ∞ and

0 <
∑∞

n=1 n(q−1)(1−β(p+λ−2))bq
n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα + Bnβ)λ
<L1

{ ∞∑

m=1

m(p−1)(1−α(q+λ−2))ap
m

}1
p
{∞∑

n=1

n(q−1)(1−β(p+λ−2))bq
n

}1
q

(28)

where the constant factor L1 =
(
A

q+λ−2
q B

p+λ−2
p α

1
q β

1
p

)−1

×B
(

p+λ−2
p , q+λ−2

q

)
is the

best possible. In particular for α = β = 1, p = q = 2, we get the result of Yang [13].

Example 5. Setting φr = 1 + (1 − 1
r )(λ − 2) (r = p, q) in Theorem 5, we have

the following inequality: If p > 1, 1
p + 1

q = 1, A, B > 0, 0 < α ≤ p
p+λ−2 ,

0 < β ≤ q
q+λ−2 , λ > 2−min{p, q}, am, bn ≥ 0 satisfy 0 <

∑∞
m=1 mα(2−λ−p)+p−1ap

m <

∞ and 0 <
∑∞

n=1 nβ(2−λ−q)+q−1bq
n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα + Bnβ)λ
<L2

{ ∞∑

m=1

mα(2−λ−p)+p−1ap
m

}1
p
{ ∞∑

n=1

nβ(2−λ−q)+q−1bq
n

}1
q

(29)

where the constant factor L2 =
(
A

p+λ−2
p B

q+λ−2
q α

1
q β

1
p

)−1

×B
(

p+λ−2
p , q+λ−2

q

)
is the

best possible. For α = β = 1, we get the result of Yang and Debnath [6]. Setting
A = B = λ = 1, α = β, we recover the result of Yang [7].

Example 6. Setting φr = λ−1
2 + 1

r (r = p, q), in Theorem 5, we have the
following inequality: If p > 1, 1

p + 1
q = 1, A,B > 0, 0 < α ≤ (λ−1

2 +
1
q )−1, 0 < β ≤ (λ−1

2 + 1
p)−1, λ > 1 − 2 min{1

p , 1
q}, am, bn ≥ 0 satisfy 0 <∑∞

m=1 mp−1+α(2−pλ−p)/2ap
m < ∞ and 0 <

∑∞
n=1 nq−1+β(2−qλ−q)/2bq

n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα + Bnβ)λ
<L3

{ ∞∑

m=1

mp−1+α(2−pλ−p)/2ap
m

}1
p
{∞∑

n=1

nq−1+β(2−qλ−q)/2bq
n

}1
q

(30)

where the constant factor L3 =
(
A

λ−1
2

+ 1
q B

λ−1
2

+ 1
p α

1
q β

1
p

)−1
×B

(
λ−1

2 + 1
p , λ−1

2 + 1
q

)

is the best possible. Setting A = B = λ = 1, α = β, we recover the result of
Yang [7].
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Example 7. Setting φp = λ( 1
α + (1 − 1

p)(α − 2)), φq = λ( 1
β + (1 − 1

q )(β − 2))
in Theorem 5, we have the following inequality: If p > 1, 1

p + 1
q = 1, A, B, λ > 0,

2 − p < α ≤ 2 + p(λ−1
λ ), 2 − q < β ≤ 2 + q(λ−1

λ ), am, bn ≥ 0 satisfy
0 <

∑∞
m=1 mλ(2−α−p)+p−1ap

m < ∞ and 0 <
∑∞

n=1 nλ(2−β−q)+q−1bq
n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα + Bnβ)λ
< L4

{ ∞∑

m=1

mλ(2−α−p)+p−1ap
m

}1
p
{ ∞∑

n=1

nλ(2−β−q)+q−1bq
n

}1
q

(31)

where the constant factor L4 =
(

A
λ(p+α−2)

pα B
λ(q+β−2)

qβ α
1
q β

1
p

)−1

× B
(

λ(p+α−2)
pα ,

λ(q+β−2)
qβ

)
is the best possible. For A = B = λ = 1, α = β, we get the result

of Yang [12].

Remark 1. Setting (i) φr = 1
r (r = p, q), (ii) φr = 1 − 1

r (r = p, q),
(iii) φr = λ+1

2 − 1
r (r = p, q) in Theorem 5, we get new inequalities.

Remark 2. Taking α = β, A = B = 1, φr = ϕr

α (r = p, q) in (23), we get the result
of Yang [10].
Remark 3. Taking sm = tm = u(m) in Theorem 3, we get the result of Yang [14].

For other appropriate values of λ, φp, φq and suitably choosing sequences sm and
tn in Theorem 1 and Theorem 3, one can obtain many new inequalities.

5 Generalization of Mulholland’s Inequality

Theorem 6. If p > 1, 1
p + 1

q = 1, 0 < φr ≤ 1 (r = p, q), λ > max{φp, φq},
α, β > 0 and an, bn ≥ 0 satisfy 0 <

∑∞
m=2 mp−1(lnm)φp−λ+(p−1)(1−φq)ap

m < ∞
and 0 <

∑∞
n=2 nq−1(lnn)φq−λ+(q−1)(1−φp)bq

n < ∞, then the following two equivalent
inequalities holds:

∞∑

m=2

∞∑

n=2

ambn

(lnmαnβ)λ
< ηHλ(φp, φq)

{ ∞∑

m=2

mp−1(lnm)φp−λ+(p−1)(1−φq)ap
m

} 1
p

×
{ ∞∑

n=2

nq−1(lnn)φq−λ+(q−1)(1−φp)bq
n

} 1
q

;

(32)

∞∑

n=2

(lnn)φp−1+(p−1)(λ−φq)

n

[ ∞∑

m=2

am

(lnmαnβ)λ

]p

< [ηHλ(φp, φq)]
p
∞∑

m=2

mp−1(lnm)φp−λ+(p−1)(1−φq)ap
m

(33)

where η =
(

αφp−λ

βφp

) 1
p

(
βφq−λ

αφq

) 1
q and Hλ(φp, φq) = B

1
p (φp, λ − φp)B

1
q (φq, λ − φq).

The constant factors ηHλ(φp, φq) and [ηHλ(φp, φq)]
p are the best possible if

φp + φq = λ.
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Proof. Setting sm = lnmα, tn = lnnβ in Theorem 1 and Theorem 2, we get both
the inequalities (32) and (33) are valid and equivalent. The constant factors are
the best possible obtained from Theorem 3 and Theorem 4. This completes the
proof.

Example 8. Setting φr = 1
r (r = p, q) in Theorem 6, we obtain the following

inequality: If p > 1, 1
p + 1

q = 1, α > 0, β > 0, λ > max
{

1
p , 1

q

}
, am, bn ≥ 0 satisfy

0 <
∑∞

m=2 mp−1(lnm)1−λap
m < ∞ and 0 <

∑∞
n=2 nq−1(lnn)1−λbq

n < ∞, then

∞∑

m=2

∞∑

n=2

ambn

(lnmαnβ)λ
<ηHλ

(
1
p
,
1
q

){ ∞∑

m=2

mp−1(lnm)1−λap
m

}1
p
{ ∞∑

n=2

nq−1(lnn)1−λbq
n

}1
q

.

(34)

In particular for α = β = λ = 1, we get the result of Yang [16, Theorem 2.1].

Example 9. Setting φr = λ
r (r = p, q) in Theorem 6, we have the following

inequality: If p > 1, 1
p + 1

q = 1, α > 0, β > 0, 0 < λ ≤ min{p, q}, am, bn ≥ 0 satisfy
0 <

∑∞
m=2 mp−1(lnm)(p−1)(1−λ)ap

m < ∞ and 0 <
∑∞

n=2 nq−1(lnn)(q−1)(1−λ)bq
n < ∞,

then

∞∑

m=2

∞∑

n=2

ambn

(lnmαnβ)λ
<

1

α
λ
q β

λ
p

B

(
λ

p
,
λ

q

){ ∞∑

m=2

mp−1(lnm)(p−1)(1−λ)ap
m

} 1
p

×
{ ∞∑

n=2

nq−1(lnn)(q−1)(1−λ)bq
n

} 1
q

(35)

where the constant factor 1
αλ/qβλ/p B

(
λ
p , λ

q

)
is the best possible. In particular for

α = β = λ = 1, we get the result of Yang [16, Theorem 2.1].

Example 10. Setting φr = λ(1− 1
r ) (r = p, q) in Theorem 6, we have the following

inequality: If p > 1, 1
p + 1

q = 1, α > 0, β > 0, 0 < λ ≤ min{p, q}, am, bn ≥ 0 satisfy
0 <

∑∞
m=2 mp−1(lnm)p−λ−1ap

m < ∞ and 0 <
∑∞

n=2 nq−1(lnn)q−λ−1bq
n < ∞, then

∞∑

m=2

∞∑

n=2

ambn

(lnmαnβ)λ
<

1

α
λ
p β

λ
q

B

(
λ

p
,
λ

q

){ ∞∑

m=2

mp−1(lnm)p−λ−1ap
m

} 1
p

×
{ ∞∑

n=2

nq−1(lnn)q−λ−1bq
n

} 1
q

(36)

where the constant factor 1
αλ/pβλ/q B

(
λ
p , λ

q

)
is the best possible.

In particular for α = β = λ = 1, it reduces to

∞∑

m=2

∞∑

n=2

ambn

(lnmn)λ
<

π

sin π
p

{ ∞∑

m=2

mp−1(lnm)p−2ap
m

}1
p
{ ∞∑

n=2

nq−1(lnn)q−2bq
n

}1
q

(37)
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and we obtain a new inequality in (p, q)-parameter form other than (6), with the
same best constant factor.

Example 11. Setting φr = 1+(1− 1
r )(λ−2)(r = p, q) in Theorem 6, we have the fol-

lowing inequality: If p > 1, 1
p+ 1

q = 1, α > 0, β > 0, 2−min{p, q} < λ ≤ 2, am, bn ≥
0 satisfy 0 <

∑∞
m=2 mp−1(lnm)1−λap

m < ∞ and 0 <
∑∞

n=2 nq−1(lnn)1−λbq
n < ∞,

then

∞∑

m=2

∞∑

n=2

ambn

(lnmαnβ)λ
<ηkλ(p)

{ ∞∑

m=2

mp−1(lnm)1−λap
m

}1
p
{∞∑

n=2

nq−1(lnn)1−λbq
n

}1
q

(38)

where η = α
2−λ−p

p β
2−λ−q

q , kλ(p) = B
(

p+λ−2
p , q+λ−2

q

)
and the constant factor

ηkλ(p) is the best possible.

In particular for α = β = 1 , we get

∞∑

m=2

∞∑

n=2

ambn

(lnmn)λ
<kλ(p)

{ ∞∑

m=2

mp−1(lnm)1−λap
m

}1
p
{ ∞∑

n=2

nq−1(lnn)1−λbq
n

}1
q

(39)

where the constant factor kλ(p) is the best possible. For λ = 1, it reduces to the
result of Yang [16, Theorem 2.1]. Replacing am, bn by am

mr , bn
ns respectively, we get

the result of Yang and Debnath [17, Theorem 1]).

Example 12. Setting φr = λ−1
2 + 1

r (r = p, q) in Theorem 6, we have the fol-
lowing inequality: If p > 1, 1

p + 1
q = 1, α > 0, β > 0, 1 − 2min{1

p , 1
q} < λ <

1 + 2 min{1
p , 1

q}, am, bn ≥ 0 satisfy 0 <
∑∞

m=2 mp−1(lnm)p(1−λ)/2ap
m < ∞ and

0 <
∑∞

n=2 nq−1(lnn)q(1−λ)/2bq
n < ∞, then

∞∑

m=2

∞∑

n=2

ambn

(lnmαnβ)λ

< ηk̃λ(p)

{ ∞∑

m=2

mp−1(lnm)p(1−λ)/2ap
m

} 1
p

{ ∞∑

n=2

nq−1(lnn)q(1−λ)/2bq
n

} 1
q

(40)

where η = α
1−λ

2
− 1

q β
1−λ

2
− 1

p , k̃λ(p) = B
(

λ−1
2 + 1

p , λ−1
2 + 1

q

)
and the constant factor

ηk̃λ(p) is the best possible. In particular for α = β = λ = 1, it reduces to (6).

Remark 4. Setting (i) φr = 1 − 1
r (r = p, q), (ii) φr = 1 + λ−2

r (r = p, q),
(iii) φr = λ+1

2 − 1
r (r = p, q) in Theorem 6, we get new inequalities.
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6 Applications

In this section, we will give the generalizations of Hardy-Littlewood’s inequality.
Let f ∈ L2(0, 1) and f(x) 6= 0. If

an =
∫ 1

0
xnf(x)dx, n = 0, 1, 2, 3, . . .

then we have the Hardy-Littlewood’s inequality (see [1]) of the form

∞∑

n=0

a2
n < π

∫ 1

0
f2(x)dx (41)

where the constant factor π is the best possible. Yang [11] gave a generalization of
(41) for p ≥ 2 as

( ∞∑

n=0

ap
n

)1+ 1
p

<
π

sin π
p

( ∞∑

n=0

ap(p−1)
n

) 1
p ∫ 1

0
f2(x)dx. (42)

Theorem 7. Let p > 1, 1
p + 1

q = 1, f ∈ L2(0, 1), f(x) 6= 0 and

an = (s′n)
1
p

∫ 1

0
xsn− 1

2 f(x)dx, n ≥ m0.

If 0 <
∑∞

n=m0
(s′n)2−pa

p(p−1)
n < ∞, then

( ∞∑
n=m0

ap
n

)1+ 1
p

<
π

sin π
p

( ∞∑
n=m0

(s′n)2−pap(p−1)
n

) 1
p ∫ 1

0
f2(x)dx. (43)

Proof. Applying Schwartz inequality, we have

( ∞∑
n=m0

ap
n

)2

=

( ∞∑
n=m0

ap−1
n (s′n)

1
p

∫ 1

0
xsn− 1

2 f(x)dx

)2

=

{∫ 1

0

( ∞∑
n=m0

ap−1
n (s′n)

1
p xsn− 1

2

)
f(x)dx

}2

≤
∫ 1

0

( ∞∑
n=m0

ap−1
n (s′n)

1
p xsn− 1

2

)2

dx

∫ 1

0
f2(x)dx

=

{ ∞∑
n=m0

∞∑
m=m0

ap−1
n (s′n)

1
p ap−1

m (s′m)
1
p

sn + sm

} ∫ 1

0
f2(x)dx.

(44)



A GENERALIZATION OF HARDY-HILBERT’S INEQUALITY 43

Since f(x) 6= 0, s′n > 0. So, an 6= 0. Hence it is impossible to get equality in (44).
Again by Corollary 1, we have

∞∑
n=m0

∞∑
m=m0

ap−1
n (s′n)

1
p ap−1

m (s′m)
1
p

sn + sm

≤ π

sin π
p

( ∞∑
n=m0

(s′n)1−pap(p−1)
n s′n

) 1
p

( ∞∑
n=m0

(s′n)1−qaq(p−1)
n (s′n)

q
p

) 1
q

=
π

sin π
p

( ∞∑
n=m0

(s′n)2−pap(p−1)
n

) 1
p

( ∞∑
n=m0

ap
n

) 1
q

.

Hence we obtain the inequality (43). This complete the proof of the theorem.

Theorem 8. Let p > 1, 1
p + 1

q = 1, f ∈ L2(0, 1), f(x) 6= 0 and

an =
(s′n)

1
p

(sn)
1
p
− 1

2

∫ 1

0
xsn− 1

2 f(x)dx, n ≥ m0.

If

0 <
∞∑

n=m0

(
s′n
sn

)2−p

ap(p−1)
n < ∞

then ( ∞∑
n=m0

ap
n

)1+ 1
p

< π

( ∞∑
n=m0

(
s′n
sn

)2−p

ap(p−1)
n

) 1
p ∫ 1

0
f2(x)dx. (45)

Proof. Proceeding as in Theorem 7 and using Corollary 2, the proof of the theorem
follows.

Remark 5. For sn = n, (43) becomes (42). Taking p = 2 in Theorem 7 and Theorem
8, we get

∞∑
n=m0

a2
n < π

∫ 1

0
f2(x)dx (46)

which reduces to (41) for sn = n.
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Topologies on Specg(M)

Ahmad Yousefian Darani

Abstract. Let R be a G-graded commutative ring with identity and let M be a
graded R-module. We endow Specg(M), the collection of all graded prime submo-
dules of M , analogous to that for Spec(R), the spectrum of prime ideals of R, by
two topologies: quasi-Zariski topology and Zariski topology. Then we study some
properties of these topological spaces.
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Keywords and phrases: Graded prime ideal, Zariski topology, quasi-Zariski
topology.

1 Introduction

Throughout this paper all rings are commutative with a nonzero identity, and
all modules are unitary. Let R be a commutative ring and consider Spec(R), the
spectrum of all prime ideals of R. The Zariski topology on Spec(R) is a useful
implement in algebraic geometry. For each ideal I of R, the variety of I is the set
V (I) = {P ∈ Spec(R)|I ⊆ P}. Then the set {V (I)|I ¥ R} satisfies the axioms for
the closed sets of a topology on Spec(R), called the Zariski topology on Spec(R) [1].

Let M be an R-module and let N be a submodule of M . We denote the anni-
hilator of M/N by (N :R M), i.e. (N :R M) = {r ∈ R|rM ⊆ N}. We recall that
a proper submodule N of M is called a prime submodule of M if, for every a ∈ R
and m ∈ M , am ∈ N implies that either m ∈ N or a ∈ (N :R M). The notion
of prime submodules was first introduced and studied in [2] and recently it has re-
ceived a good deal of attention from several authors. We denote the set of all prime
submodules of M by Spec(M). In [7], the Spec(M) topologized with the Zariski
topology (quasi-Zariski topology by the notions of [6]) in a similar way to that of
Spec(R). For any submodule N ≤ M , denote by V ∗(N) the variety of N , which is
the set V ∗(N) = {P ∈ Spec(M)|N ⊆ P}. Then the set τ∗(M) = {V ∗(N)|N ≤ M}
is not closed under finite unions. The R-module M is called a Top-module provided
that τ∗(M) is closed under finite unions, whence τ∗(M) constitute the closed sets
in a Zariski topology on Spec(M).

A grading on a ring and its modules usually aids computations by allowing
one to focus on the homogeneous elements, which are presumably simpler or more
controllable than random elements. However, for this to work one needs to know
that the constructions being studied are graded. One approach to this issue is to
redefine the constructions entirely in terms of the category of graded modules and

c© Ahmad Yousefian Darani, 2011
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thus avoid any consideration of non-graded modules or non-homogeneous elements;
Sharp gives such a treatment of attached primes in [10]. Unfortunately, while such
an approach helps to understand the graded modules themselves, it will only help
to understand the original construction if the graded version of the concept happens
to coincide with the original one. Therefore, notably, the study of graded modules
is very important.

For the sake of completeness, we recall some definitions and notations used
throughout. Let G be an arbitrary group. A commutative ring R with a non-
zero identity is G-graded if it has a direct sum decomposition R =

⊕
g∈G Rg such

that for all g, h ∈ G, RgRh ⊆ Rgh. The G-graded ring R is called a graded in-
tegral domain provided that ab = 0 implies that either a = 0 or b = 0 where
a, b ∈ h(R) :=

⋃
g∈G Rg. If R is G-graded, then an R-module M is said to be

G-graded if it has a direct sum decomposition M =
⊕

g∈G Mg such that for all
g, h ∈ G, RgMh ⊆ Mgh . For every g ∈ G, an element of Rg or Mg is said to be
a homogeneous element. We denote by h(M) the set of all homogeneous elements
of M , that is h(M) =

⋃
g∈G Mg. Let M be a G-graded R-module. A submodule

N of M is called graded (or homogeneous) if N =
⊕

g∈G(N ∩Mg) or equivalently
N is generated by homogeneous elements. Moreover, M/N becomes a G-graded
R-module with g-component (M/N)g = (Mg + N)/N for each g ∈ G. An ideal I of
R is called a graded ideal if it is a graded submodule of R and a graded R-module.

Let R be a G-graded ring. A proper graded ideal I of R is said to be a graded
prime ideal if whenever ab ∈ I, we have a ∈ I or b ∈ I, where a, b ∈ h(R). The
graded radical of I , denoted by Gr(I), is the set of all x ∈ R such that for each g ∈ G
there exists ng > 0 with xng ∈ I. A graded R-module M is called graded finitely
generated if M =

∑n
i=1 Rxgi , where xgi ∈ h(M) for every 1 ≤ i ≤ n. It is clear that

a graded module is finitely generated if and only if it is graded finitely generated. For
M , consider the subset T g(M) = {m ∈ M : rm = 0 for some nonzero r ∈ h(R)}. If
R is a graded integral domain, then T g(M) is a graded submodule of M . M is called
graded torsion-free (g-torsion-free for short) if T g(M) = 0, and it is called graded
torsion (g-torsion for short) if T g(M) = M . It is clear that if M is torsion-free, then
it is g-torsion-free. Moreover, if M is g-torsion, then it is torsion.

Most of our results are related to the references [6,7] which have been proved for
the graded case.

2 Results

Let R be a G-graded R-module and consider Specg(R), the spectrum of all
graded prime ideals of R. The Zariski topology on Specg(R) is defined in a similar
way to that of Spec(R). For each graded ideal I of R, the graded variety of I is the
set V g

R(I) = {P ∈ Specg(R)|I ⊆ P}. Then the set {V g
R(I)|I is a graded ideal of R}

satisfies the axioms for the closed sets of a topology on Specg(R), called the Zariski
topology on Specg(R) (see [9]).

Let R be a G-graded ring and M a graded R-module. We recall from [3] that a
proper graded submodule N of M is called graded prime if rm ∈ N , then m ∈ N
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or r ∈ (N :R M) = {r ∈ R|rM ⊆ N}, where r ∈ h(R), m ∈ h(M). It is shown in [3,
Proposition 2.7] that if N is a graded prime submodule of M , then P := (N :R M)
is a graded prime ideal of R. Let N be a graded submodule of M . Then N is a
graded prime submodule of M if and only if P := (N :R M) is a graded prime ideal
of R and M/N is a g-torsion-free R/P -module. Note that some graded R-modules
M have no graded prime submodules. We call such graded modules g-primeless.
For example, the zero module is clearly g-primeless. A submodule S of M will be
called graded semiprime if S is an intersection of graded prime submodules of M .
Let Specg(M) denote the set of all graded prime submodules of M . Our goal is to
endow Specg(M) with some topologies. To this end, for each subset E ⊆ h(M), let

V g
∗ (E) = {P ∈ Specg(M)|E ⊆ P}.

Let N be a graded submodule of M . The graded radical of N in M , denoted
by GrM (N) is defined to be the intersection of all graded prime submodules of M
containing N [5]. In the other words, GrM (N) =

⋂
P∈V g

∗ (N) P , and it is equal to M

if V g
∗ (M) = ∅. It is obvious that N ⊆ GrM (N) and that GrM (N) = M or GrM (N)

is a graded semiprime submodule of M .
Assume that N is the graded submodule generated by E ⊆ h(M). Then from

E ⊆ N ⊆ GrM (N) we clearly have V g
∗ (GrM (N)) ⊆ V g

∗ (N) ⊆ V g
∗ (E). On the other

hand, N is the smallest graded submodule of M containing E, so that if P ∈ V g
∗ (E),

then P ∈ V g
∗ (N). Therefore V g

∗ (E) = V g
∗ (N). Moreover GrM (N) is the intersection

of all graded prime submodules of M containing N ; so V g
∗ (N) = V g

∗ (GrM (N)).
Therefore V g

∗ (E) = V g
∗ (N) = V g

∗ (GrM (N)). Consider the cases when E = {0} or
E = M . Then V g

∗ (0) = Specg(M) and V g
∗ (M) = ∅. Now let {Nλ}λ∈Λ be a family of

graded submodules of M . Then
⋂

λ∈Λ V g
∗ (Nλ) = V g

∗ (
∑

λ∈Λ Nλ). Moreover, for every
pair N and K of graded submodules of M , we have V g

∗ (N) ∪ V g
∗ (K) ⊆ V g

∗ (N ∩K).
Summarizing, we have proved:

Proposition 1. Let M be a graded R-module. Then

(1) For each subset E ⊆ h(M), V g
∗ (E) = V g

∗ (N) = V g
∗ (GrM (N)), where N is

the graded submodule of M generated by E.

(2) V g
∗ (0) = Specg(M), and V g

∗ (M) = ∅.
(3) If {Nλ}λ∈Λ is a family of graded submodules of M , then

⋂
λ∈Λ V g

∗ (Nλ) =
V g
∗ (

∑
λ∈Λ Nλ).

(4) For every pair N and K of graded submodules of M , we have V g
∗ (N) ∪

V g
∗ (K) ⊆ V g

∗ (N ∩K).

Therefore if we set

ζg
∗ (M) = {V g

∗ (N)|N is a graded submodule of M}

then ζg
∗ (M) contains the empty set and Specg(M), and τ g

∗ (M) is closed under arbi-
trary intersections, but it is not necessarily closed under finite unions.
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Definition 1. Let M be a graded R-module.
(1) We shall say that M is a g−Top module if ζg

∗ (M) is closed under finite unions,
i.e. for any graded submodules N and L of M there exists a graded submodule K
of M such that V g

∗ (N) ∪ V g
∗ (L) = V g

∗ (K).
(2) A graded prime submodule N of M will be called graded extraordinary, or

g-extraordinary for short, if whenever K and L are graded semiprime submodules
of M with K ∩ L ⊆ N then K ⊆ N or L ⊆ N .

Assume that M is a g−Top module. In this case ζg
∗ (M) satisfies the axioms for

the closed sets of a unique topology τ g
∗ on Specg(M). Then the topology τ g

∗ (M) on
Specg(M) is called the quasi-Zariski topology. Note that we are not excluding the
trivial case where Specg(M) is empty; i.e. g-primeless graded R-modules are g−Top
modules. Also any graded prime ideal of the graded ring R is an extraordinary
graded prime submodule of the graded R-module R.

Theorem 1. Let M be a graded R-module. Then, the following statements are
equivalent:

(i) M is a g − Top module.
(ii) Every graded prime submodule of M is g-extraordinary.
(iii) V g

∗ (N) ∪ V g
∗ (L) = V g

∗ (N ∩ L) for any graded semiprime submodules N and
L of M .

Proof. The result is clear when Specg(M) = ∅. So assume that Specg(M) 6= ∅.
(i) ⇒ (ii) Let M be a g − Top module. Assume that P is a graded prime

submodule of M and that N,L are graded semiprime submodules of M with N∩L ⊆
P . By assumption, there exists a graded submodule K of M with V g

∗ (N)∪V g
∗ (L) =

V g
∗ (K). Since N is a graded semiprime submodule, N =

⋂
i∈I Pi in which {Pi}i∈I

is a collection of graded prime submodules of M . For every i ∈ I, we have

Pi ∈ V g
∗ (N) ⊆ V g

∗ (K) ⇒ K ⊆ Pi ⇒ K ⊆ ⋂
i∈I Pi = N.

Similarly, K ⊆ L. So K ⊆ N ∩ L. Now we have

V g
∗ (N) ∪ V g

∗ (L) ⊆ V g
∗ (N ∩ L) ⊆ V g

∗ (K) = V g
∗ (N) ∪ V g

∗ (L).

Consequently, V g
∗ (N) ∪ V g

∗ (L) = V g
∗ (N ∩ L). Now from N ∩ L ⊆ P we have

P ∈ V g
∗ (N ∩ L) = V g

∗ (N) ∪ V g
∗ (L). Hence either P ∈ V g

∗ (N) or P ∈ V g
∗ (L),

that is either N ⊆ P or L ⊆ P . So P is g-extraordinary.
(ii) ⇒ (iii) Suppose that every graded prime submodule of M is g-extraordinary.

Assume that N and L are two graded semiprime submodules of M . Clearly V g
∗ (N)∪

V g
∗ (L) ⊆ V g

∗ (N ∩ L). For the other containment, choose P ∈ V g
∗ (N ∩ L). Then

N ∩ L ⊆ P . By assumption, P is g-extraordinary. So N ⊆ P or L ⊆ P , that is
either P ∈ V g

∗ (N) or P ∈ V g
∗ (L). Therefore V g

∗ (N ∩ L) ⊆ V g
∗ (N) ∪ V g

∗ (L), and so
V g
∗ (N) ∪ V g

∗ (L) = V g
∗ (N ∩ L).

(iii) ⇒ (i) Let N,L be two graded submodules of M . We can assume that
V g
∗ (N) and V g

∗ (L) are both nonempty, for otherwise V g
∗ (N) ∪ V g

∗ (L) = V g
∗ (N) or

V g
∗ (N) ∪ V g

∗ (L) = V g
∗ (L). We know that GrM (N) and GrM (L) are both graded

semiprime submodules of M . Setting K = GrM (N) ∩GrM (L) we have:
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V g
∗ (N)∪V g

∗ (L) = V g
∗ (GrM (N))∪V g

∗ (GrM (L)) = V g
∗ (GrM (N)∩GrM (L)) = V g

∗ (K)

by (iii). Hence M is a g − Top module.

Proposition 2. Let M be a graded R-module with the property that for every graded
prime submodule N of M , (K :R M) ⊆ (N :R M) implies that K ⊆ N for each
graded semiprime submodule K of M . Then M is a g − Top module.

Proof. Let N be a graded prime submodule of M and assume that S1 ∩ S2 ⊆ N ,
where S1, S2 are graded semiprime submodules of M . It follows from (S1 :R M) ∩
(S2 :R M) = (S1 ∩ S2 :R M) ⊆ (N :R M) that either (S1 :R M) ⊆ (N :R M) or
(S2 :R M) ⊆ (N :R M) since (N :R M) is a graded prime ideal of R. Now by
assumption we have S1 ⊆ N or S2 ⊆ N , that is N is g-extraordinary. Hence M is a
g − Top module by Theorem 1.

Theorem 2. Let M be a g − Top R-module.
(1) If K is a graded submodule of M , then M/K is a g − Top R-module.
(2) The graded RP -module MP is a g−Top module for every graded prime ideal

P of R.
(3) If GrM (N) = N for every graded submodule N of M , then M is a graded

distributive module.

Proof. There will be nothing to prove if M has no graded prime submodules. So
assume that Specg(M) 6= ∅.

(1) By [3, Lemma 2.8], the graded prime submodules of M/K are just the
submodules N/K where N is a graded prime submodule of M with K ⊆ N .
Consequently, any graded semiprime submodule of M/K is of the form S/K in
which S is a graded semiprime submodule of M with K ⊆ S. Assume that
S1/K and S2/K are two graded semiprime submodules of M/K. Then, by The-
orem 1, V g

∗ (S1) ∪ V g
∗ (S2) = V g

∗ (S1 ∩ S2) since M is a g − Top module. Thus
V g
∗ (S1/K)∪ V g

∗ (S2/K) = V g
∗ (S1/K ∩ S2/K). It follows from Theorem 1 that M/K

is a g − Top module.
(2) By Theorem 1, it is enough to show that every graded prime submodule

of MP is g-extraordinary. Let N be a graded prime submodule of MP , and let
S1 ∩ S2 ⊆ N for some graded semiprime submodules S1, S2 of MP . Clearly, N ∩M
is a proper graded submodule of M . Assume that r ∈ h(R) and m ∈ h(M)
are such that rm ∈ N ∩ M . Then, r/1 ∈ h(RP ) and m/1 ∈ h(MP ) with
(r/1)(m/1) = (rm)/1 ∈ N . It follows that either (r/1)MP ⊆ N or m/1 ∈ N since N
is graded prime. Therefore, either r ∈ (N ∩M :R M) or m ∈ N ∩M . This implies
that N ∩ M is a graded prime submodule of M . Hence N is g-extraordinary by
Theorem 1. As another consequence, S1 ∩ M and S2 ∩ M are graded semiprime
submodules of M with (S1 ∩M)∩ (S2 ∩M) ⊆ N ∩M . Therefore, S1 ∩M ⊆ N ∩M
or S2 ∩ M ⊆ N ∩ M . It follows that either S1 = (S1 ∩ M)RP ⊆ (N ∩ M)RP or
S2 = (S2 ∩M)RP ⊆ (N ∩M)RP . Hence N is a g-extraordinary submodule of MP .

(3) For every graded submodules N, K and L of M we have:
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(K + L) ∩N = GrM ((K + L) ∩N)

=
⋂
{P |P ∈ V g

∗ ((K + L) ∩N)}

=
⋂
{P |P ∈ V g

∗ (K + L) ∪ V g
∗ (N)}

=
⋂
{P |P ∈ (V g

∗ (K) ∩ V g
∗ (L)) ∪ V g

∗ (N)}

=
⋂
{P |P ∈ (V g

∗ (K) ∪ V g
∗ (N)) ∩ (V g

∗ (L) ∪ V g
∗ (N))}

=
⋂
{P |P ∈ (V g

∗ (K ∩N)) ∩ (V g
∗ (L ∩N))}

=
⋂
{P |P ∈ V g

∗ ((K ∩N) + (L ∩N))}

= GrM ((K ∩N) + (L ∩N)) = (K ∩N) + (L ∩N).

Thus M is graded distributive.

Let M be a g − Top module and let X = Specg(M). We know that any closed
subset of X is of the form V g

∗ (N) for some graded prime submodule N of M . But
now the question arises as to what open subsets of X look like. To say that any
open subset of X is of the form X − V g

∗ (N) for some graded prime submodule N of
M , though true, is not very helpful. For every subset S of h(M), define

XS = X − V g
∗ (S)

In particular, if S = {f}, we denote XS be Xf .

Proposition 3. The set {Xf |f ∈ h(M)} is a basis for the quasi-Zariski topology
on X.

Proof. Let U be a non-void open subset in X. Then U = X − V g
∗ (N) for some

graded submodule N of M . Assume that N is generated by some subset E ⊆ h(M).
Then we have

U = X − V g
∗ (N) = X − V g

∗ (E) = X − V g
∗ (

⋃
f∈E{f}) = X −⋂

f∈E V g
∗ (f) =⋃

f∈E(X − V g
∗ (f)) =

⋃
f∈E Xf

Therefore the set {Xf |f ∈ h(M)} is a basis for X.

Let R be a G-graded ring. A graded R-module M is said to be a graded multi-
plication module if for each graded submodule N of M , N = IM for some graded
ideal I of R [4]. One can easily show that if N is a graded submodule of a graded
multiplication module M , then N = (N :R M)M . A graded multiplication module
need not be multiplication. We first recall some results concerning graded prime
submodules and graded multiplication modules.
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Theorem 3 (see [8]). Let M be a graded multiplication R-module, and N a proper
graded submodule of M . Then, the following statements are equivalent:

(1) N is a graded prime submodule;
(2) (N :R M) is a graded prime ideal of R;
(3) N = PM for some graded prime ideal P of R with Ann(M) ⊆ P .

Suppose that M is a graded multiplication R-module, N = IM and K = JM
are graded submodules of M , where I and J are graded ideals of R. The product
of N and K, denoted by NK, is defined by NK = (IJ)M . It is proved in [8, Theorem
4] that this product is independent of the choice of I and J . For each pair m,m′ of
elements of h(M), we define mm′ = (IJ)M , where Rm = IM and Rm′ = JM .

Theorem 4. Let N be a proper graded submodule of the graded multiplication
R-module M . Then, the following statements are equivalent.

(1) N is a graded prime submodule;
(2) AB ⊆ N implies that A ⊆ N or B ⊆ N for each graded submodules A and

B of M ;
(3) m.m′ ⊆ N implies that m ∈ N or m′ ∈ N for every m,m′ ∈ h(M).

Proof. It is a direct consequence of [8, Theorem 4 and Corollary 2].

Theorem 5. Every graded multiplication module is a g − Top module.

Proof. Let M be a graded multiplication R-module. Assume that N and L are
two graded semiprime submodules of M . Clearly V g

∗ (N) ∪ V g
∗ (L) ⊆ V g

∗ (NL). For
the converse containment, pick P ∈ V g

∗ (NL). Then from NL ⊆ P we get either
N ⊆ P or L ⊆ P by Theorem 4. Therefore P ∈ V g

∗ (N) ∪ V g
∗ (L), that is V g

∗ (NL) ⊆
V g
∗ (N) ∪ V g

∗ (L). Consequently V g
∗ (N) ∪ V g

∗ (L) = V g
∗ (NL). It follows from

Theorem 1 that M is a g − Top module.

Corollary 1. Let M be a graded multiplication R-module. Then V g
∗ (N)∪ V g

∗ (L) =
V g
∗ (NL) = V g

∗ (N ∩ L) for each pair N and L of graded submodules of M .

We end this paper by endowing Specg(M) by another topology, called the Zariski
topology on M . Let M be a graded module over the G-graded ring R. For every
graded submodule N of M , set

V g(N) = {P ∈ Specg(M)|(P :R M) ⊇ (N :R M)}
and

ζg(M) = {V g(N)|N is a graded submodule of M}.
Then

Proposition 4. (1) V g(0) = Specg(M), and V g(M) = ∅.
(2) If {Nλ}λ∈Λ is a family of graded submodules of M , then

⋂
λ∈Λ V g(Nλ) =

V g(
∑

λ∈Λ Nλ).
(3) For each pair N and K of graded submodules of M , we have V g(N)∪V g(K) =

V g(N ∩K).
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Therefore for any graded R-module M there always exists a topology τ g on
Specg(M) in which ζg(M) is the family of all closed sets. τ g is called the Zariski
topology on Specg(M). Now consider the set

ζg
∗∗(M) = {V g

∗ (IM)|I is a graded ideal of R}.
In contrast with ζ‘g∗(M), ζg

∗∗(M) is always closed under finite unions, and so it always
induces a topology τ g

∗∗ on Specg(M). It is easy to verify that, for every g − Top
module, the topology τ g

∗∗ is coarser than the topology τ g
∗ .

Lemma 1. Let R be a G-graded ring and let M be a graded R-module. For every
graded prime ideal p of R, denote by Specp

g(M), the set {P ∈ Specg(M)|(P :R M) =
p}. Then, for every graded submodules N and L of M , the following statements are
satisfied.

(1) If (N :R M) = (L :R M), then V g(N) = V g(L).

(2) Let both N and L be graded prime. Then (N :R M) = (L :R M) if and only
if V g(N) = V g(L).

(3) V g(N) =
⋃

p∈V g
R(N :RM) Specp

g(M).

Theorem 6. Let R be a G-graded ring and let M be a graded R-module.

(1) The Zariski topology τ g on Specg(M) and the topology τ g
∗∗ are identical.

(2) If M is g − Top module, then the quasi-Zariski topology τ g
∗ on Specg(M) is

finer than the Zariski topology τ g.

Proof. It is easy to show that V g(N) = V g((N :R M)M) = V g
∗ ((N :R M)M) and

V g(IM) = V g
∗ (IM) for every graded submodule N of M and every graded ideal I

of R. Therefore ζg(M) = ζg
∗∗(M) ⊆ ζg

∗ (M). So the result follows.
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Vague Lie Ideals of Lie Algebras
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Abstract. In this paper, we have introduced the notion of vague Lie ideal and
have studied their related properties. The cartesian products of vague Lie ideals are
discussed. In particular, the Lie homomorphisms between the vague Lie ideals of a Lie
algebra and the relationship between the domains and the co-domains of the vague
Lie ideals under these Lie homomorphisms are investigated.
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1 Introduction

Lie algebras were first discovered by Sophus Lie (1842–1899) when he attempted
to classify certain smooth subgroups of general linear groups. The groups he consid-
ered are now called Lie groups. By taking the tangent space at the identity element
of such a group, he obtained the Lie algebra and hence the problems on groups can
be reduced to problems on Lie algebras so that it becomes more tractable. To study
more about Lie algebras see [12]. There are many applications of Lie algebras in
many branches of mathematics and physics [9].

The notion of fuzzy sets was first introduced by Zadeh [18]. Fuzzy set theory has
been developed in many directions by many scholars and has evoked great interest
among mathematicians working in different fields of mathematics [15, 16]. Later
many authors applied fuzzy set theory in Lie algebras [2–6, 10, 13, 14, 17].

The notion of vague theory was first introduced by Gau and Buechrer [11] in
1993. Later vague theory of the “group” concept into “vague group” was made by
Biswas [7]. This work was the first vagueness of any algebraic structure and thus
opened a new direction, new exploration, new path of thinking to mathematicians,
engineers, computer scientists and many others in various tests. Further, in [1]
Akram and Shum have studied vague Lie subalgebras over a vague field. Recently,
Borumand Saeid applied vague set theory in BCI/BCK−algebras in [8]. The theory
of vague sets started with the aim of interpreting the real life problems in a better
way than the fuzzy sets do.

In this paper, we have introduced the notion of vague Lie ideals of Lie algebras
and have studied their related properties. Characterization of vague Lie ideals on
Lie homomorphisms is also presented.

c© D.R.Prince Williams, Arsham Borumand Saeid, 2011
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2 Preliminaries

In this section, we first review some elementary aspects that are necessary for
this paper.

Definition 2.1. A Lie algebra is a vector space L over a field F (equal to R or C)
on which L×L −→ L denoted by (x, y) −→ [x, y] is defined satisfying the following
axioms:

(L1) [x, y] is bilinear,
(L2) [x, x] = 0 for all x ∈ L ,
(L3) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ L (Jacobi identity).

In what follows, we denote L for Lie algebra, unless otherwise specified.
We note that the multiplication in a Lie algebra is not associative, i.e., it is not

true in general that [[x, y], z] = [x, [y, z]]. But it is anticommutative, i.e., [x, y] =
−[y, x]. We call a subspace H of L closed under [·, ·] a Lie subalgebra. A subspace
I of L with the property [I, L] ⊆ I is called a Lie ideal of L. Obviously, any Lie
ideal is a subalgebra.

Definition 2.1 [13]. A fuzzy set µ : L → [0, 1] is said to be a fuzzy Lie ideal of L
if the following conditions are satisfied:

(F1) ((∀x, y ∈ L), µ(x + y) ≥ min{µ(x), µ(y)}),
(F2) ((∀x, y ∈ L and α ∈ F ), µ(αx) ≥ µ(x)),
(F3) ((∀x, y ∈ L), µ([x, y]) ≥ max{µ(x), µ(y)}).

Definition 2.2 [3]. Let µ be a fuzzy set on L, i.e., a map µ : L → [0, 1]. Then, µ
is said to be an anti fuzzy Lie ideal of L if the following conditions are satisfied:

(AF1) ((∀x, y ∈ L), µ(x + y) ≤ max{µ(x), µ(y)}),
(AF2) ((∀x, y ∈ L and α ∈ F ), µ(αx) ≤ µ(x)),
(AF3) ((∀x, y ∈ L), µ([x, y]) ≤ µ(x)).

Definition 2.3 [11]. A vague set A in the universe of discourse U is characterized
by two membership functions given by:

(V1) A true membership function tA : U → [0, 1], and
(V2) A false membership function fA : U → [0, 1],

where tA(u) is a lower bound on the grade of membership of u derived from the
“evidence for u”, fA(u) is a lower bound on the negation of u derived from the
“evidence against u”, and tA(u) + fA(u) ≤ 1.

Thus the grade of membership of u in the vague set A is bounded by a subinterval
[tA(u), 1 − fA(u)] of [0, 1]. This indicates that if the actual grade of membership u
is µ(u), then

tA(u) ≤ µ(u) ≤ 1− fA(u).

The vague set A is written as

A = {〈u, [tA(u), fA(u)]〉|u ∈ U},
where the interval [tA(u), 1− fA(u)] is called the vague value of u in A, denoted by
VA(u).



56 D.R. PRINCE WILLIAMS, ARSHAM BORUMAND SAEID

3 Vague Lie Ideals

In this section, we define the notion of vague Lie ideals.
For our discussion, we shall use the following notations on interval arithmetic:
Let I[0, 1] denote the family of all closed subintervals of [0, 1]. We define the

term “imax” to mean the maximum of two intervals as:

imax(I1, I2) ' [max(a1, a2),max(b1, b2)],

where I1 = [a1, b1], I2 = [a2, b2]. Similarly, we define “imin”. The concept of
“imax” and “imin” could be extended to define “isup” and “iinf” of infinite number
of elements of [0, 1].

It is obvious that L = {I[0, 1], isup, iinf,º} is a lattice with universal bounds
[0, 0] and [1, 1].

Also, if I1 = [a1, b1] and I2 = [a2, b2] are two subintervals of [0, 1], we can define
a relation between I1 and I2 by I1 º I2 if and only if a1 ≥ a2 and b1 ≥ b2.

Definition 3.1. LetL be a Lie algebra. A vague set A of L is called a vague Lie
subalgebra of L if the following axioms hold:

(VLI1) (∀x, y ∈ L), (V (x + y) º imin{V (x), V (y)}),
(VLI2) (∀x ∈ L, a ∈ F ), (V (ax)) º V (x)).
(VLI3) (∀x, y ∈ L), (V ([x, y]) º imin{V (x), V (y)}).
That is,

tA(x + y) ≥ min{tA(x), tA(y)})
1− fA(x + y) ≥ min{1− fA(x), 1− fA(y)}

tA(ax) ≥ tA(x)
1− fA(ax) ≥ 1− fA(x))

tA([x, y]) ≥ min{tA(x), tA(y)})
1− fA([x, y]) ≥ min{1− fA(x), 1− fA(y)}.

Definition 3.2. Let L be a Lie algebra. A vague set A of L is called a vague Lie
ideal of L if the following axioms hold:

It satisfies (VLI1), (VLI2) and (VLI4)(∀x, y ∈ L), (V ([x, y]) º imax{V (x), V (y)}).
That is,

tA([x, y]) ≥ max{tA(x), tA(y)})
1− fA([x, y]) ≥ max{1− fA(x), 1− fA(y)}.

Example 3.3. Let R3 = {(x, y, z) : x, y, z ∈ R} be the set of all 3-dimensional real
vectors. Then R3 with the bracket [·, ·] defined as the usual cross product, i.e.,

[x, y] = x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1),

forms a real Lie algebra over the field R.
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(1) Let A be the vague set in R3 defined as follows:

A =





[0.8, 0.1] if x = y = z = 0,

[0.7, 0.2] if x 6= 0, y = z = 0,

[0.5, 0.3] otherwise.

By routine calculations, it is clear that A is a vague Lie subalgebra of R3, but not
a vague ideal of R3, since

tA([(1, 0, 0), (1, 1, 1)]) = tA(0,−1, 1) = 0.5

and
max{tA(1, 0, 0), tA(1, 1, 1)} = max{0.7, 0.5} = 0.7.

Also,

1− fA([(1, 0, 0), (1, 1, 1)]) = 1− fA(0,−1, 1) = 0.7

and
max{1− fA(1, 0, 0), 1− fA(1, 1, 1)} = max{0.8, 0.7} = 0.8.

(2) Let A be the vague set in R3 defined as follows:

A =





[0.8, 0.1] if (x, y, z) = (0, 0, 0),

[0.6, 0.2] otherwise.

By routine calculations, it is clear that A is a vague Lie ideal of R3.

Proposition 3.4. Let A be a vague set of L. Then A is a vague ideal of L if and
only if tA is a fuzzy ideal of L and fA is an anti fuzzy ideal of L.

Proof. The proof is obvious. 2

For α, β ∈ [0, 1], now we define (α, β)− cut and α− cut of a vague set.

Definition 3.5. Let A be a vague set in L with true membership function tA and
the false membership function fA. The (α, β) − cut of the vague set A is a crisp
subset A(α,β) of the set L given by

A(α,β) = {x ∈ L |VA(x) º [α, β]}.

Clearly, A(0,0) = L. The (α, β)−cuts of the vague set A are also called vague sets
of A.

Definition 3.6. The α − cut of the vague set A is a crisp subset Aα of the set L
given by Aα = A(α,α).
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Note that A0 = L, and if α ≥ β then Aα ⊆ Aβ and A(α,β) = Aα. Equivalently,
we can define the α−cut as

A(α) = {x ∈ L |tA(x) ≥ α}.

Theorem 3.7. Let A be a vague set of L. Then A is a vague Lie ideal of L if and
only if A(α,β) is a Lie ideal of L for every α, β ∈ (0, 1].

Proof. Let A be a vague set of L. Suppose A is a vague Lie ideal of L .

For all x, y ∈ A(α,β) and α, β ∈ (0, 1], then

tA(x), tA(y) ≥ α and 1− fA(x), 1− fA(y) ≥ β.

Then we have
(i)

tA(x + y) ≥ tA(x) ≥ min{tA(x), tA(y)} ≥ α

and
1− fA(x + y) ≥ 1− fA(x) ≥ min{1− fA(x), 1− fA(y)} ≥ β.

Thus x + y ∈ A(α,β).
(ii)

tA(ax) ≥ tA(x) ≥ α and 1− fA(ax) ≥ 1− fA(x) ≥ β.

Thus ax ∈ A(α,β).
(iii)

tA([x, y]) ≥ max{tA(x), tA(y)} ≥ α,

and
1− fA([x, y]) ≥ max{1− fA(x), 1− fA(y)} ≥ β,

which implies [x, y] ∈ A(α,β). Thus A(α,β) is a Lie ideal ofL .

Conversely, assume that A(α,β) 6= ∅ is a Lie ideal of L for every α, β ∈ (0, 1].
Assume that

V (x + y) ≺ imin{V (x), V (y)}
for some x, y ∈ L. Taking

α1 =
1
2
{tA(x + y) + min{tA(x), tA(y)}}

and
β2 =

1
2
{1− fA(x + y) + min{1− fA(x), 1− fA(y)}}

for some x, y ∈ L, we have

tA(x + y) < α1 < min{tA(x), tA(y)}
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and
1− fA(x + y) < β2 < min{1− fA(x), 1− fA(y)}.

So, we have x+ y /∈ A(α1,β2), for all x, y ∈ A(α1,β2). This is a contradiction. Thus

V (x + y) º imin{V (x), V (y)}.

Similarly, we can prove (VLI2), (VLI3) and (VLI4). Hence A is a vague ideal of L.
This completes the proof. 2

Theorem 3.8.If {Ai|i ∈ I} is an arbitrary family of vague Lie ideals of L then⋂
Ai is a vague Lie ideals of L, where

⋂
Ai(x) = inf{Ai(x)|i ∈ I)}, for all x ∈ L.

Proof. The proof is trivial. 2

However, the union of two vague Lie ideals cannot be a vague ideal. Let A and
B be two vague Lie ideals of L. Define

(A ∪B)(x) = max{A(x), B(x)}, for all x ∈ L.

The following example shows that A ∪B, cannot be a vague Lie ideal of L.
Example 3.9. Let {e1, e2, ..., e8} be a basis of a vector space V over a field F . Then,
it is not difficult to see that, by putting: [e1, e2] = e5, [e1, e3] = e6, [e1, e4] = e7,
[e1; e5] = −e8, [e2, e3] = e8, [e2; e4] = e6, [e2, e6] = −e7, [e3, e4] = −e5, [e3, e5] = −e7,
[e4; e6] = −e8, [ei; ej ] = −[ej , ei] and [ei, ej ] = 0 for all i ≤ j, we can obtain a Lie
algebra over the field F . Define the vague sets A and B for all x ∈ V as follows:

A =





[0.8, 0.1] if x = 0, e8,
[0.6, 0.2] if x = e7,
[0.2, 0.6] otherwise.

and

B =





[0.8, 0.1] if x = 0, e7,
[0.5, 0.3] if x = e8,
[0.2, 0.6] otherwise.

Then A and B are vague Lie ideal of V , since by Theorem 3.7, the vague-cut sets,
A(0.8,0.1) = 〈e8〉, B(0.8,0.1) = 〈e7〉 and A(0.6,0.2) = B(0.5,0.3) = 〈e7, e8〉 are vague Lie
ideals of V , but

(tA ∪ tB) (e7 + e8) = max{tA(e7 + e8), tB(e7 + e8)} ≥

≥ max{min{tA(e7), tA(e8)}, min{tB(e7), tB(e8)}} = max{0.6, 0.5} = 0.6.

and
(1− fA ∪ fB) (e7 + e8) = max{1− fA(e7 + e8), 1− fB(e7 + e8)} ≥
≥ max{min{1− fA(e7), 1− fA(e8)}, min{1− fB(e7), 1− fB(e8)}} =

= max{0.8, 0.7} = 0.8.
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On the other hand
min{(tA ∪ tB)(e7), (tA ∪ tB)(e8)} =

= min{max{tA(e7), tB(e7)}, max{tA(e8), tB(e8)}} =

= min{0.8, 0.8} = 0.8.

and
min{1− (fA ∪ fB)(e7), 1− (fA ∪ fB)(e8)} =

= min{max{1− fA(e7), 1− fB(e7)}, max{1− fA(e8), 1− fB(e8)}} =

= min{0.9, 0.9} = 0.9.

Thus we have

(tA ∪ tB) (e7 + e8) = 0.6 � 0.8 = min{(tA ∪ tB)(e7), (tA ∪ tB)(e8)}

and

1− (fA ∪ fB) (e7 + e8) = 0.8 � 0.9 = min{1− (fA ∪ fB)(e7), 1− (fA ∪ fB)(e8)}.

Therefore, (A
⋃

B) is not a vague Lie ideal.

Definition 3.10. Let A and B be two vague Lie ideals of L. We define the
sup−minproduct [AB] of A and B by

[tAtB](x) =





sup
x=[yz]

min{tA(y), tB(z)},

0, x 6= yz

and

[1− fAfB](x) =





sup
x=[yz]

min{1− fA(y), 1− fB(z)},

0, x 6= yz.

Let A and B be vague Lie ideals of the Lie algebra L. Then [AB] may not be a
vague Lie ideal of L as this can be seen in the following counter-example:

Example 3.11. Let {e1, e2, ..., e8} be a basis of a vector space over a field F . Then,
it is not difficult to see that, by putting: [e1, e2] = e5, [e1, e3] = e6, [e1, e4] = e7,
[e1; e5] = −e8, [e2, e3] = e8, [e2; e4] = e6, [e2, e6] = −e7, [e3, e4] = −e5, [e3, e5] = −e7,
[e4; e6] = −e8, [ei; ej ] = −[ej , ei] and [ei, ej ] = 0 for all i ≤ j, we can obtain a Lie
algebra over the field F . The following vague sets

A =





[0.7, 0.1] if x = 0, e1, e5, e6, e7, e8,

[0.2, 0.6] otherwise.
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and

B =





[0.7, 0.1] if x = 0,

[0.5, 0.2] if x = e2, e5, e6, e7, e8,

[0.2, 0.6] otherwise.

Thus A and B are vague Lie ideals of L because the cut Lie ideals of L
A(0.7,0.1) =< e1, e5, e6, e7, e8 > and B(0.5,0.2) =< e2, e5, e6, e7, e8 > are vague-cut
Lie ideals of L. But [AB] is not a vague Lie ideal because the following condition
does not hold:

[VAVB](e7 + e8) º imin{[VAB](e7), [VAB](e8)},

tAtB(e7) = sup





min{tA(e1), tB(e4)} = min{0.7, 0.2} = 0.2, e7 = [e1, e4],
min{tA(e2), tB(e6)} = min{0.2, 0.5} = 0.2, e7 = −[e2, e6],
min{tA(e3), tB(e5)} = min{0.2, 0.5} = 0.2, e7 = −[e3, e5],
min{tA(e4), tB(e1)} = min{0.2, 0.2} = 0.2, e7 = −[e4, e1],
min{tA(e6), tB(e2)} = min{0.7, 0.5} = 0.5, e7 = [e6, e2],
min{tA(e5), tB(e3)} = min{0.7, 0.2} = 0.2, e7 = [e5, e3]

and
1− fAfB(e7) =

= sup





min{1− fA(e1), 1− fB(e4)} = min{0.9, 0.4} = 0.4, e7 = [e1, e4],
min{1− fA(e2), 1− fB(e6)} = min{0.4, 0.8} = 0.4, e7 = −[e2, e6],
min{1− fA(e3), 1− fB(e5)} = min{0.4, 0.8} = 0.4, e7 = −[e3, e5],
min{1− fA(e4), 1− fB(e1)} = min{0.9, 0.4} = 0.4, e7 = −[e4, e1],
min{1− fA(e6), 1− fB(e2)} = min{0.9, 0.8} = 0.8, e7 = [e6, e2],
min{1− fA(e5), 1− fB(e3)} = min{0.9, 0.4} = 0.4, e7 = [e5, e3].

Thus tAtB(e7) = 0.5 and 1− fAfB(e7) = 0.8.
Similarly, we can get tAtB(e8) = 0.5 and 1− fAfB(e8) = 0.8.
On the other hand, we have

tAtB(e7 + e8) = sup{i− vi}

and
1− fAfB(e7 + e8) = sup{i− vi}

(i) if e7 + e8 = [e1(e4 − e5)], then

min{tA(e1), tB(e4 − e5)} = min{tA(e1), tB(e4), tB(e5)} = 0.2,

since tB(e4) = 0.2, and if e7 + e8 = [(e5 − e4)e1], then

min{tA(e5 − e4), tB(e1)} = min{tA(e5), tA(e4), tB(e1)} = 0.2,

since tA(e4) = 0.2.
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Similarly,
(ii) the cases e7 + e8 = [e2(e3 − e6)]; then the value is 0.2,
(iii) the cases e7 + e8 = [e3(−e2 − e5)]; then the value is 0.2,
(iv) the cases e7 + e8 = [e4(−e1 − e6)]; then the value is 0.2,
(v) the cases e7 + e8 = [e5(−e3 − e1)]; then the value is 0.2,
(vi) the cases e7 + e8 = [e6(−e2 − e4)]; then the value is 0.2.
Thus,

tAtB(e7 + e8) = min{0.2, 0.2, 0.2, 0.2, 0.2, 0.2} = 0.2.

Hence, we have proved that

tAtB(e7 + e8) = 0.2 � 0.5 = min{tAtB(e7), tAtB(e8)}.

On the other hand, we can prove
1− fAfB(e7 + e8) = 0.4 � 0.8 = min{1− fAfB(e7), 1− fAfB(e8)}.
Now we redefine the product of two vague Lie ideals A and B of L to an extended

form.

Definition 3.12. Let A and B be two vague sets of L. Then, we define the
sup−min product [[AB]] of A and B, as follows, for all x, y, z ∈ L:

[[tAtB]] (x) =





sup
x=

n∑
i=1

[xiyi]

{
min
i∈N

{min (tA (xi) , tB (yi))}
}

,

0, x 6=
n∑

i=1
[xiyi]

and

[[1− fAfB]] (x) =





sup
x=

n∑
i=1

[xiyi]

{
min
i∈N

{min (1− fA (xi) , 1− fB (yi))}
}

,

0, x 6=
n∑

i=1
[xiyi] .

From the definitions of [AB] and [[AB]], we can easily see that [AB] ⊆ [[AB]] and
[AB] 6= [[AB]].

The following theorem proves [[AB]] is a vague Lie ideal of L if A and B are
vague Lie ideals of L.

Theorem 3.13. Let A and B be any two vague Lie ideals of L. Then [[AB]] is also
a vague Lie ideal of L.

Proof. It is easy to prove [[AB]] is a vague Lie subalgebra of L.
(iv) Suppose x, y ∈ L. Let if possible,

[[VAVB]] ([x, y]) ≺ imax{[[VAVB]] (x), [[VAVB]] (y)}.
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Then we have

[[VAVB]] ([x, y]) ≺ [[VAVB]] (x) or [[VAVB]] ([x, y]) ≺ [[VAVB]] (y).

Choose a number t < s ∈ [0, 1] such that

[[tAtB]] ([x, y]) < t < [[tAtB]] (x), [[tAtB]] ([x, y]) < t < [[tAtB]] (y).

and
[[1− fAfB]] ([x, y]) < s < [[1− fAfB]] (x),

[[1− fAfB]] ([x, y]) < s < [[1− fAfB]] (y).

There exist xi, yi ∈ L such that x =
n∑

i=1
[xiyi].

For all i, j we have,
tA(xi) > t, tB(yi) > t

and
1− fA(xi) > s, 1− fB(yi) > s.

Since [x, y] =
[

n∑
i=1

[xi, yi] , y
]
, we have

[[tAtB]] ([x, y]) = [[tAtB]]

([
n∑

i=1

[xi, yi] , y

])

= [[tAtB]]

(
n∑

i=1

[[xi, yi], y]

)

≥ [[tAtB]] ([[xi, yi] , y]) , for all i

= [[tAtB]] ([[xi, y] , yi]− [[yi, y] , xi])
≥ [[tAtB]] ([[xi, y] , yi])
≥ max {tA [xi, y] , tB(yi)}
≥ max {max{tA(xi), tA(y)}, tB(yi)}
> t.

and

[[1− fAfB]] ([x, y]) = [[1− fAfB]]

([
n∑

i=1

[xi, yi] , y

])

= [[1− fAfB]]

(
n∑

i=1

[[xi, yi], y]

)

≥ [[1− fAfB]] ([[xi, yi] , y]) , for all i

= [[1− fAfB]] ([[xi, y] , yi]− [[yi, y] , xi])
≥ [[1− fAfB]] ([[xi, y] , yi])
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≥ max {1− fA [xi, y] , 1− fB(yi)}
≥ max {max{1− fA(xi), 1− fA(y)}, 1− fB(yi)}
> s.

Thus, we have

[[1− fAfB]] ([x, y]) > t and [[1− fAfB]] ([x, y]) > s,

which is a contradiction. Thus [[AB]] satisfies (VLI4). Hence [[AB]] is a vague Lie
ideal of L. 2

The following theorem characterized congruence relation on L.

Theorem 3.14. Let A be a vague Lie ideal of L. Define a binary relation ∼ on L
by x ∼ y if and only if tA(x− y) = tA(0), 1− fA(x− y) = 1− fA(0) for all x, y ∈ L.
Then ∼ is a congruence relation on L.

Proof. To prove ∼ is an equivalent relation, it is enough to show the transitivity of ∼
because the reflectivity and symmetricity of∼ hold trivially. Let x, y, z ∈ L. If x ∼ y
and y ∼ z, then tA(x− y) = tA(0), tA(y− z) = tA(0) and 1− fA(x− y) = 1− fA(0),
1− fA(y − z) = 1− fA(0). Hence it follows that

tA(x− z) = tA(x− y + y − z) ≥ min{tA(x− y), tA(y − z)} = tA(0)

and

1−fA(x−z) = 1−fA(x−y+y−z) ≥ min{1−fA(x−y), 1−fA(y−z)} = 1−fA(0).

Consequently x ∼ z. We now verify that “ ∼ ” is a congruence relation on L.
For this purpose, we let x ∼ y and y ∼ z. Then

tA(x− y) = tA(0), tA(y − z) = tA(0)

and
1− fA(x− y) = 1− fA(0), 1− fA(y − z) = 1− fA(0).

Now, for x1, x2, y1, y2 ∈ L, we have
(i)

tA((x1 + x2)− (y1 + y2)) = tA((x1 − y1) + (x2 − y2))
≥ min{tA(x1 − y1), tA(x2 − y2) = tA(0)

and

1− fA((x1 + x2)− (y1 + y2)) = 1− fA((x1 − y1) + (x2 − y2))
≥ min{1− fA(x1 − y1), 1− fA(x2 − y2)}
= 1− fA(0),

(ii)
tA((ax1 − ay1)) = tA(a(x1 − y1)) ≥ tA(x1, y1) = tA(0)
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and

1− fA((ax1 − ay1)) = 1− fA(a(x1 − y1)) ≥ 1− fA(x1, y1) = 1− fA(0),

(iii)

tA([x1, x2]− [y1, y2]) = tA([(x1 − y1), (x2 − y2)])
≥ max{tA(x1 − y1), tA(x2 − y2)} = tA(0)

and

1− fA([x1, x2]− [y1, y2]) = 1− fA([(x1 − y1), (x2 − y2)])
≥ max{1− fA(x1 − y1), 1− fA(x2 − y2)}
= 1− fA(0).

That is, x1 + x2 ∼ y1 + y2, ax1 ∼ ay1 and [x1, x2] ∼ [y1, y2]. Thus, “ ∼ ” is
indeed a congruence relation on L. 2

4 Characterization of vague Lie ideals on Lie Homomorphisms

Definition 4.1. Let L and L′ be two Lie algebras over a field F . Then a linear
transformation f : A → B is called a Lie homomorphism if g[x, y] = [g(x), g(y)]
holds, for all x, y ∈ L.

Let g : L −→ L′ be a Lie homomorphism. For any vague set A in L′, we define
the preimage of A under g, denoted by g−1(A), is a vague set in L defined by

g−1(tA) = tAg−1 (x) = tA(g(x))

and
1− g−1(fA) = 1− fAg−1 (x) = 1− fA(g(x)), ∀x ∈ L.

For any vague set A in G, we define the image of A under a linear transformation
g, denoted by g(A), is a vague set in G′ defined by

g (tA) (y) =

{
sup

x∈g−1(y)

tA(x) if g−1(y) 6= φ,

0 otherwise.

and

g (fA) (y) =

{
inf

x∈g−1(y)
fA(x) if g−1(y) 6= φ,

0 otherwise.

for all x ∈ L and y ∈ L′.

Theorem 4.2. Let g be a surjective Lie homomorphism from L into L′.
(i) If A and B are two vague Lie ideals of L, then

g(A + B) = g(A) + g(B).
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(ii) If {Ai|i ∈ I} is a set of g−invariant vague Lie ideal of L, then

g

(⋂

i∈I

Ai

)
=

⋂

i∈I

g (Ai) .

(iii) If A and B are two vague Lie ideals of L, then

g([[VAVB]]) ' [[g(VA)g(VB)]] .

Proof. The proofs of (i) and (ii) are trivial. To prove (iii), let x ∈ L. Suppose
g([[VAVB]])(x) ≺ [[g(VA)g(VB)]] (x). Now, we can choose a number t < s ∈ [0, 1] such
that

g([[tAtB]])(x) < t < [[g(tA)g(tB)]] (x)

and
g([[1− fAfB]])(x) < s < [[g(1− fA)g(1− fB)]] (x).

Then, there exist yi, zi ∈ L′ such that x =
n∑

i=1
[yi, zi] with g(tA) > t, g(tB) > t and

g(1 − fA) > s, g(1 − fB) > s. Since g is surjective, there exists a y ∈ L such that

g(y) = x and y =
n∑

i=1
[ai, bi], for some ai ∈ g−1(yi) and bi ∈ g−1(zi) with g(ai) = yi

and g(ai) = yi, tA(ai) > t, tB(bi) > t and 1− fA(ai) > s, 1− fB(bi) > s. Since

g

(
n∑

i=1

[ai, bi]

)
=

n∑

i=1

g ([ai, bi]) =
n∑

i=1

[g(ai), g(bi)]

=
n∑

i=1

[yi, zi] = x,

we have g([[tAtB]])(x) > t and g([[1− fAfB]])(x) > s. This is a contradiction.
Similarly, for the case g([[VAVB]])(x) Â [[g(VA)g(VB)]] (x) we get the contradiction.

Hence, g([[VAVB]])(x) ' [[g(VA)g(VB)]] (x). 2

Definition 4.3. Let A and B be two vague Lie ideals of L. Then A is said to
be of the same type as B if there exists g ∈ Aut(L) such that A = B ◦ g, i.e.,
VA(x) ' VB(g(x)), for all x ∈ L.

Theorem 4.4. Let A and B be two vague Lie ideals of L. Then A is a vague Lie
ideal having the same type as B if and only if A is isomorphic to B.

Proof. We only need to prove the necessity because the sufficiency part is trivial.
Let A be a vague Lie ideal having the same type as B. Then there exists g ∈ Aut(L)
such that VA(x) ' VB(g(x)), for all x ∈ L. Let φ : A(L) −→ B(L) be a mapping
defined by φ(A(x)) = B(g(x)), for all x ∈ L, that is φ(VA(x)) ' VB(g(x)), for
all x ∈ L. Then it is clear that f is surjective. For all x, y ∈ L, if φ(tA(x)) =
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φ(tA(y)), then tB(g(x)) = tB(g(y)) and hence tA(x) = tA(y). Similarly, we can
prove φ(1−fA(x)) = φ(1−fA(y)), for all x ∈ L implies 1−fB(g(x)) = 1−fB(g(y)).
Thus φ is one-to-one. Now we need to prove φ is a homomorphism. Let all x, y ∈ L,
we have

φ(tA(x + y)) = tB(g(x + y)) = tB(g(x) + g(y)) = tB(g(x)) + tB(g(y))
= φ(tA(x)) + φ(tA(y))

and

φ(1− fA(x + y)) = 1− fB(g(x + y)) = 1− fB(g(x) + g(y))
= 1− fB(g(x)) + 1− fB(g(y))
= φ(1− fA(x)) + φ(1− fA(y)).

Let all x ∈ L and a ∈ F , we have

φ(tA(ax)) = tB(g(ax)) = tB(ag(x)) = atB(g(x)) = aφ(tA(x)).

and

φ(1− fA(ax)) = 1− fB(g(ax)) = 1− fB(ag(x)) = a(1− fB(g(x)))
= aφ(1− fA(x)).

Let all x, y ∈ L, we have

φ(tA([x, y])) = tB(g([x, y])) = tB([g(x), g(y)]) = [tB(g(x)), tB(g(y))]
= [φ(tA(x)), φ(tA(y)]

and

φ(1− fA([x, y])) = 1− fB(g([x, y])) = 1− fB([g(x), g(y)])
= [1− fB(g(x)), 1− fB(g(y))]
= [φ(1− fA(x)), φ(1− fA(y))].

This completes the proof. 2
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On conjugate sets of quasigroups

Tatiana Popovich

Abstract. It is known that the set of conjugates (the conjugate set) of a binary
quasigroup can contain 1, 2, 3 or 6 elements. We establish a connection between
different pairs of conjugates and describe all six possible conjugate sets, with regard
to the equality (”assembling”) of conjugates. Four identities which correspond to the
equality of a quasigroup to its conjugates are pointed out. Every conjugate set is
characterized with the help of these identities. The conditions of the equality of a
T -quasigroup to conjugates are established and some examples of T -quasigroups with
distinct conjugate sets are given.
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identity.

1 Introduction

A quasigroup is an ordered pair (Q,A) where Q is a set and A is a binary ope-
ration defined on Q such that each of the equations A(a, y) = b and A(x, a) = b is
uniquely solvable for any pair of elements a, b in Q. It is known that the multipli-
cation table of a finite quasigroup defines a Latin square and six (not necessarily
distinct) conjugates (or parastrophes) are associated with each quasigroup (Latin
square) [1, 3].

In [5] a connection between five identities of two variables and the equality of a
quasigroup to some of the rest five its conjugates was established. It was also proved
that the number of distinct conjugates in a finite quasigroup can be 1, 2, 3 or 6 and
for any m = 1, 2, 3, 6 and any n ≥ 4 there exists a quasigroup of order n with m
distinct conjugates (see Theorem 6 of [5]).

We divide all pairs of conjugates of a quasigroup into four classes and consider
six possible conjugate sets, with regard to the equality (”assembling”) of conjugates.
Four identities which correspond to these four classes (or to the equality of a quasi-
group to its conjugates) are pointed out. It is proved that each of six conjugate
sets can be described with the help of these identities and any two of these identi-
ties imply the rest two identities. The conditions of the equality of a T -quasigroup
to its conjugates are established and some examples of T -quasigroups with distinct
conjugate sets are given.

c© Tatiana Popovich, 2011
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2 Preliminaries

Remind some necessary notions and results.
With any quasigroup (Q, A) the system Σ(A) of six (not necessarily distinct)

conjugates (parastrophes) is connected:

Σ(A) = (A,A−1,−1A,−1
(
A−1

)
, (−1A)−1, A∗),

where A(x, y) = z ⇔ A−1(x, z) = y ⇔−1A(z, y) = x ⇔ A∗(y, x) = z.
Using the suitable Belousov’s designation of conjugates of a quasigroup (Q,A)

of [2] we have the following conjugate system Σ(A):

Σ(A) = (A, rA, lA, lrA, rlA, sA),

where rA = A−1, lA =−1A, lrA =−1(A−1), rlA = (−1A)−1, sA = A∗.
Note that (−1(A−1)

)−1 = rlrA =−1
(
(−1A)−1

)
= lrlA = sA

and rrA = llA = A, στA = σ(τA).
Let Σ(A) be the set of conjugates (the conjugate set) of a quasigroup (Q,A).
It is known from [5] that | Σ(A) |= 1,2,3 or 6.

A quasigroup is a totally-symmetric quasigroup (a TS-quasigroup) if | Σ(A) |= 1.

3 Conjugates of quasigroups

We start with the following useful result concerning the (unordered) pairs of
conjugates of a quasigroup.

Proposition 1. All pairs of conjugates of the conjugate system Σ(A) of a quasigroup
(Q,A) can be divided into four disjoint classes:

I. (A,rA), (lA,lrA), (rlA,sA);
II. (A,lA), (rA,rlA), (sA,lrA);
III. (A,sA), (rA,lrA), (lA,rlA);
IV. (lA,rA), (A,lrA), (rA,sA), (lrA,rlA), (A,rlA), (lA,sA)

such that the equality (inequality) of components of one pair in a class implies the
equality (inequality) of components of any pair in this class.

Proof. There are 15 unordered pairs of conjugates of a quasigroup. It is easy to
check that if we take any conjugate of the operations in a pair of any class of I, II,
III or IV , then we obtain some pair from the same class. For example, if we apply
the conjugations r, l, rl, lr and s to the operations of the pair (lA,lrA) of class I, we
obtain, respectively, the pairs of conjugates (rlA,sA), (A,rA), (rA,A), (sA,rlA), (lrA,lA)
of class I. Here we take into account that rllrA = A, lrlA = sA, lrlrA = rlrrA = rlA and
slrA = lrllrA = lA. Analogously, the conjugations can be applied to the rest two pairs
of class I and to the every pair of other classes.

Thus, any class pointed out in the proposition is closed with respect to taking
the same conjugate of both operations in a pair from this class. ¤
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Proposition 2. If the components of pairs from any two classes of I, II, III, IV
coincide for a quasigroup (Q,A), then the components of every pair of all classes
coincide and (Q,A) is a TS-quasigroup.

Proof. According to Proposition 1 for the proof we can take any pair of a class.
I, II: Let A = rA and A = lA, then lA = rA (it gives a pair of IV) and

sA =rlrA = rA = A where (A,sA) is a pair of III.
I, III: If A = rA and A = sA, then rA = sA (it corresponds to a pair of IV); the

last and the second equalities imply A = lrA = sA (we obtain a pair (sA,lrA) of II).
I, IV: Let A = rA and lA = rA, then A = lA and we have a pair of II, so rA = rlA,

and lA = rlA (a pair of III).
III, IV: If A = sA and lA = sA, then A = lA (a pair of II). Let A = sA and

rA = sA, then A = rA (a pair of I).
Analogously the rest cases can be considered. In every case all conjugates coin-

cide, so (Q, A) is a TS-quasigroup. ¤
The following theorem describes all possible conjugate sets for quasigroups and

points out the only possible variants of the equality (”assembling”) of conjugates in
every case.

Theorem 1. The following conjugate sets of a quasigroup (Q,A) are only possible:
Σ1(A) = {A};
Σ2(A) = {A,sA} = {A = lrA = rlA, lA = rA =sA};
Σ6(A) = {A, rA, lA, lrA, rlA, sA};
Σ3(A) = {A,lrA,rlA} and three cases are possible:
Σ1

3(A) = {A = rA, lA = lrA, rlA = sA};
Σ2

3(A) = {A = lA, rA = rlA, lrA = sA};
Σ3

3(A) = {A = sA, rA = lrA, lA = rlA}.
Proof. It follows from Proposition 1 that if the components of pairs of all classes I, II,
III, IV (or by Proposition 2 at least any of two classes) coincide then all conjugates
coincide and (Q,A) is a TS-quasigroup.

If the components of pairs from all classes do not coincide, then all conjugates of
(Q,A) are different and Σ(A) = Σ6(A). In the rest cases by Proposition 2 we have
exactly one of the groups of conjugate equalities:

I ′. A = rA, lA = lrA, rlA = sA;
II ′. A = lA, rA = rlA, lrA = sA;
III ′. A = sA, rA = lrA, lA = rlA;
IV ′. A = lrA = rlA, lA =rA = sA.

Moreover, different equalities in a group do not ”assemble”: if some conjugate
of one equality from a group coincides with a conjugate from another equality of
this group, then new equalities arise from the group of equalities corresponding to
another class of pairs. So by Proposition 2 all six conjugates of the quasigroup
coincide. Thus, in each of these cases there are exactly two (see equality group IV ′)
or three (every of equality groups I ′, II ′ and III ′) distinct conjugates. Note that
every equality group of I ′, II ′, III ′ contains conjugates A, lrA and rlA, but there
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are distinct variants of their ”assembling” with the rest conjugates which give the
conjugate sets Σ1

3(A), Σ2
3(A) and Σ3

3(A) respectively. ¤
From Proposition 1 and Theorem 1 follows immediately

Corollary 1. Let Σ(A) be the conjugate set of a quasigroup (Q,A), then | Σ(A) |= 1
or 3 in the case of the coincidence of the components of a pair in any of classes I,
II, III and | Σ(A) |= 1 or 2 by coincidence of the components of a pair in class IV.
For a commutative quasigroup | Σ(A) |= 1 or 3.

Corollary 2. If (Q,A) is a commutative quasigroup, then Σ(A) = Σ1(A) or Σ3
3(A).

For a noncommutative quasigroup Σ(A) = Σ2(A), Σ6(A),Σ1
3(A) or Σ2

3(A).

Proof. Indeed, for a commutative quasigroup we have A =s A, it corresponds to
the equality group III ′. If it corresponds only to the equality group III ′, then
Σ(A) = Σ3

3(A). If there are equalities of another group, then by Proposition 2
Σ(A) = Σ1(A). The rest conjugate sets are possible only for a noncommutative
quasigroup. ¤

Let Σ(A) = {A1, A2, ..., Ai}, i = 1, 2, 3 or 6, be the conjugate set of a quasigroup
(Q,A) and σΣ(A) = {σA1,

σA2, ...,
σAi} where σ is some conjugation of a quasigroup

(Q,A).

Proposition 3. Let σ be any conjugation of (Q,A). Then σΣ(A) = Σ(A). If
Σ(A) = Σ1, Σ2(A) or Σ6(A), then Σ(A) = Σ(σA). If Σ(A) = Σ3(A), then | Σ(A) |=
| Σ(σA) |.
Proof. The equality σΣ(A) = Σ(A) follows from Proposition 1 as any class pointed
out in this proposition is closed with respect to taking the same conjugate of both
operations in a pair from this class.

If Σ(A) = Σ1(A) = {A}, then Σ(σA) = Σ(A) since σA = A for any σ. Let
Σ(A) = Σ2(A) = {A = lrA = rlA, lA = rA = sA} = {A,sA}, then these equalities
can be written via the operation rA in the following way: Σ(A) = {r(rA) = l(rA) =
s(rA), lr(rA) = rA = rl(rA)} = Σ2(rA). Analogously each of the rest conjugates can be
used.

It is evident that if Σ(A) = Σ6(A), then analogous passage from A to σA gives
all six distinct conjugates.

In the case Σ(A) = Σ3(A) = Σi
3(A) for some i = 1, 2, 3 writing corresponding

equalities via σA we obtain also three pairs of equal conjugates. But these pairs can
correspond to Σj

3(
σA) where i 6= j. For example, let Σ(A) = Σ2

3(A) = {A = lA, rA =
rlA, lrA = sA} or using the conjugate rA we obtain Σ(A) = {r(rA) = lr(rA), rA =
s(rA), l(rA) = rl(rA)} = Σ(rA) = {rB = lrB, B = sB, lB = rlB} where rA = B. Thus,
Σ(A) = Σ2

3(A) = Σ3
3(

rA). ¤
Using Proposition 1 we obtain (see also Theorem 4 of [5]) the following

Proposition 4. The components of any pair of a class of Proposition 1 coincide if
and only if a quasigroup (Q, A) satisfies the identity

A(x,A(x, y)) = y for class I;
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A(A(y, x), x) = y for class II;
A(x, y) = A(y, x) for class III;
A(A(x, y), x) = y for class IV.

Proof. It is known that the identities A(x,A(y, x)) = y and A(A(x, y), x) = y are
equivalent (see, for example, [3], p. 61). This fact follows also from Proposition 1
since the components of the pairs (rA,sA) and (lA,sA), giving equivalence of these
identities, coincide simultaneously (see class IV).

I. By the definition of the conjugate rA(x, y) we have that A(x, y) = rA(x, y) if
and only if A(x,A(x, y)) = y.

II. Analogously, A(x, y) = lA(x, y) if and only if A(A(x, y), y) = x or
A(A(y, x), x) = y.

III. A = sA means that A(x, y) = A(y, x).
IV. rA = sA (taking into account Proposition 1 we can take the last pair of class

IV) if and only if A(x,A(y, x)) = y. But this identity is equivalent to the identity
A(A(x, y), x) = y, as it was noted above. ¤

From Propositions 2 and 4 it follows immediately

Corollary 3. Any two identities of four identities of Proposition 4 imply the rest
two identities.

In Theorem 4 of [5] it was shown that | Σ(A) |= 1 if and only if in a quasi-
group (Q,A) all five identities of the set T = {A(x,A(x, y)) = y, A(A(y, x), x) =
y, A(x, y) = A(y, x), A(x,A(y, x)) = y,A(A(x, y), x) = y} (corresponding to the
equality of a quasigroup to one of its conjugates) are fulfilled,

it is 2 if and only if (Q,A) satisfies exactly 2 of the identities,
it is 3 if and only if (Q,A) satisfies exactly one of the identities,
it is 6 if and only if (Q,A) satisfies none of the identities.
In this case (and below) we assume that a quasigroup satisfies exactly k iden-

tities of a set of identities if it satisfies k identities and does not satisfy the rest
identities of this set. Let T = {A(x,A(x, y)) = y, A(A(y, x), x) = y, A(x, y) =
A(y, x), A(A(x, y), x) = y} be the set of identities of Proposition 4.

Taking into account the previous results we obtain the following result making
more precise Theorem 4 of [5]:

Corollary 4. Let (Q,A) be a quasigroup, then
Σ(A) = Σ1(A) if and only if any two identities of T are fulfilled;
Σ(A) = Σ2(A) if and only if exactly the identity A(A(x, y), x) = y of T is fulfilled;
Σ(A) = Σ1

3(A) if and only if exactly the identity A(x,A(x, y)) = y of T is fulfilled;
Σ(A) = Σ2

3(A) if and only if exactly the identity A(A(y, x), x) = y of T is fulfilled;
Σ(A) = Σ3

3(A) if and only if exactly the identity A(x, y) = A(y, x) of T is fulfilled;
Σ(A) = Σ6(A) if and only if (Q,A) satisfies none of four identities of T .

Proof. Let | Σ(A) |= m. By Corollary 3 any two identities of T imply the rest
ones, so by Proposition 2 the components of any pair of each class of Proposition 1
coincide. In this case all conjugates coincide, thus, m = 1.
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Conversely, in a TS-quasigroup all conjugates coincide, so by Proposition 4 this
quasigroup satisfies all identities of T .

By Theorem 1 m = 2 can be only for class IV of pairs. The identity
A(A(x, y), x) = y corresponds to this class by Proposition 4.

The case m = 3 by Theorem 1 can be for the every of classes I,II and III. The
identities A(x,A(x, y)) = y, A(A(y, x), x) = y, A(x, y) = A(y, x) correspond to these
classes, respectively, according to Proposition 4.

At last, m = 6 if components of any pair of all pairs in Proposition 1 do not
coincide. That means that the quasigroup satisfies none of the four identities of
Proposition 4. ¤

4 Conjugates of T -quasigroups

A quasigroup (Q, A) is a T -quasigroup if there exist an abelian group (Q,+), its
automorphisms ϕ, ψ and an element c ∈ Q such that A(x, y) = ϕx + ψy + c for any
x, y ∈ Q [4].

The conjugates of a T -quasigroup A(x, y) = ϕx + ψy + c (which are also
T -quasigroups) have the following form: sA(x, y) = ψx + ϕy + c, rA(x, y) =
ψ−1(y − ϕx − c), lA(x, y) = ϕ−1(x − ψy − c), rlA(x, y) = ψ−1(x − ϕy − c),
lrA(x, y) = ϕ−1(y − ψx − c) where Ix = −x (see, for example, [6]). Note that
Iϕ = ϕI for any automorphism ϕ of a group.

An operation A of the form A(x, y) = ax+by (mod n), n ≥ 2, is a T -quasigroup
if and only if the numbers a, b modulo n are relatively prime to n. In this case
ϕ = La, ψ = Lb, where Lax = ax (mod n), x ∈ Q = {0, 1, 2, . . . , n − 1}, are per-
mutations (automorphisms of the additive group modulo n). For these quasigroups
the conjugates have the following form:

sA(x, y) = Lbx + Lay (mod n), rA(x, y) = L−1
b (y − Lax) (mod n),

lA(x, y) = L−1
a (x− Lby) (mod n), rlA(x, y) = L−1

b (x− Lay) (mod n),
lrA(x, y) = L−1

a (y − Lbx) (mod n).

Theorem 2. The components of any pair of a class I, II, III or IV for a
T -quasigroup (Q,A): A(x, y) = ϕx + ψy coincide if and only if

ψ = I for class I;

ϕ = I for class II;

ϕ = ψ for class III;

ϕ2 = Iψ and ψ2 = Iϕ (or ϕ = ψ−1 and ϕ3 = I) for class IV.

Proof. I. Let A = rA, then

ϕx + ψy = Iψ−1ϕx + ψ−1y = ψ−1(y − ϕx). (1)

For y = 0 (0 is the identity element of the group (Q,+)) we have ϕx = Iψ−1ϕx
and ψ = I.
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II. Let A = lA, then
ϕx + ψy = ϕ−1(x− ψy), (2)

whence for x = 0 it follows ϕ = I.
III. If A = sA, then ψx + ϕy = ϕx + φy, whence ϕ = ψ for x = 0.
IV. Let lA = rA, then

ψ−1(y − ϕx) = ϕ−1(x− ψy). (3)

Taking x = 0 we have ψ−1y = Iϕ−1ψy, ψ2 = Iϕ. If y = 0, then ϕ−1x = Iψ−1ϕx
and so ϕ2 = Iψ.

Note that the second pair of equalities in the theorem for the pairs of IV is
equivalent to the first one: from ϕ2 = Iψ and ψ2 = Iϕ it follows that ϕ4 = ψ2 = Iϕ,
whence ϕ3 = I and so ψ−1 = Iϕ−2 = ϕ. Conversely, if ϕ = ψ−1 and ϕ3 = I, then
ϕ2 = Iϕ−1 = Iψ and ψ2 = ϕ4 = Iϕ.

Now check sufficiency of the conditions. Let ψ = I, then ϕx + Iy = Iy + ϕx,
that is we obtain (1) and A = rA.

If ϕ = I, then Ix + ψy = I(x − ψy). It is (2), so A = lA. It is evident that if
ϕ = ψ, then A = sA.

At last, let ϕ2 = Iψ and ψ2 = Iϕ. Show that lA = rA, that is (3) holds. Indeed,
ψ−1(y − ϕx) = Iϕ−2(y − ϕx) = Iϕ−2y + ϕ−1x. But ϕ−1(x − ψy) = ϕ−1x + ϕy =
ϕ−1x + Iϕ−2y as ϕ3 = I (it was shown above) and (3) is true. ¤

From Proposition 2 and Theorem 2 it follows
Corollary 5. The conditions of Theorem 2 for any two classes of I, II, III, IV
define a TS-T -quasigroup.

Corollary 6. If in Theorem 2 A(x, y) = ax + by (mod n), then the conjugates of
the T -quasigroup in a class of I, II, III or IV have the form:

I. A(x, y) = rA(x, y) = ax + (n − 1)y (mod n), lA(x, y) = lrA(x, y) = a−1x +
a−1y (mod n) and rlA(x, y) = sA(x, y) = (n− 1)x + ay (mod n);

II. A(x, y) = lA(x, y) = (n − 1)x + by (mod n), rA(x, y) = rlA(x, y) = b−1x +
b−1y (mod n) and lrA(x, y) = sA(x, y) = bx + (n− 1)y (mod n);

III. A(x, y) = sA(x, y) = ax + ay (mod n), rA(x, y) = lrA(x, y) = (n − 1)x +
a−1y (mod n) and lA(x, y) = rlA(x, y) = a−1x + (n− 1)y (mod n);

IV. A(x, y) = lrA(x, y) = rlA(x, y) = ax + a−1y (mod n) and sA(x, y) =
lA(x, y) =rA(x, y) = a−1x + ay (mod n).

Proof. Follows from Proposition 1 and Theorem 2 if to take into account the form
of a T -quasigroup, of its conjugates and that in this case I = Ln−1. For example, in
class I: A(x, y) = rA(x, y) = ax + Iy = ax + (n− 1)y (mod n), lA(x, y) = lrA(x, y) =
L−1

a (y − Ix) = a−1x + a−1y (mod n). The rest cases are checked analogously. Note
that in this case a, b modulo n are relatively prime to n, so they are invertible
and belong to the multiplicative group of the residue-class ring (mod n). This
multiplicative group consists of all numbers from 1 to n − 1 relatively prime to n.
In this case L−1

a x = La−1x (mod n). ¤
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Examples. Using Corollary 6 we obtain that the operations A1(x, y) = 2x+4y (mod
5), A2(x, y) = 6x + 4y (mod 7), A3(x, y) = 4x + 4y (mod 9) define quasigroups with
three different conjugates: Σ(A1) = Σ1

3(A1), Σ(A2) = Σ2
3(A2), Σ(A3) = Σ3

3(A3).
The operation A4(x, y) = 2x + 5y (mod 9) defines a quasigroup with two different
conjugates: Σ(A4) = Σ2(A4).

For the operation A1 these conjugates have the following form:
A1(x, y) = rA1(x, y) = 2x + 4y (mod 5), lA1(x, y) = lrA1(x, y) =

3x + 3y (mod 5), rlA1(x, y) = sA1(x, y) = 4x + 2y (mod 5) and are given by the
following Cayley Tables:

A1 0 1 2 3 4
0 0 4 3 2 1
1 2 1 0 4 3
2 4 3 2 1 0
3 1 0 4 3 2
4 3 2 1 0 4

lA1 0 1 2 3 4
0 0 2 4 1 3
1 4 1 3 0 2
2 3 0 2 4 1
3 2 4 1 3 0
4 1 3 0 2 4

sA1 0 1 2 3 4
0 0 3 1 4 2
1 3 1 4 2 0
2 1 4 2 0 3
3 4 2 0 3 1
4 2 0 3 1 4

Tab. 1 Tab. 2 Tab. 3
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Categorial aspects of the semireflexivity

Dumitru Botnaru, Olga Cerbu

Abstract. We examine the properties of semireflexive product, the relations between
semireflexive subcategories, the right product of two subcategories and the factori-
zation structures. We construct examples of semireflexive subcategories, also some
problems are formulated.

Mathematics subject classification: 18A40, 46A03.
Keywords and phrases: Locally convex spaces, semireflexive spaces, the facto-
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1 Introduction

For the theory of locally convex spaces we refer the reader to the monograph
of Schaeffer (see [6]). Semireflexive and reflexive spaces are defined using the dual
space. Many scientists have studied different classes of semireflexive spaces (see [1,
2, 5, 6]) by modifying this definition.

Definition 1 (see [6, Section IV 5.4]). A locally convex space E is called semire-
flexive if the canonic inclusion E −→ (E′

β)′ is a surjective mapping: E = (E′
β)′.

Definition 2 (see [6, Section IV 5.5]). A locally convex space E is called reflexive if
the canonic inclusion E −→ (E′

β)′β is a topological isomorphism of the space E on
the second dual space with strong topology: E = (E′

β)′β.

Proposition 1 (see [6, Section IV 5.5]). For a locally convex space E the following
statements are equivalent:

(a) the space E is semireflexive;
(b) every functional β(E′, E)-continuous on E′ is also continuous in the weak

topology σ(E′, E);
(c) the space E′

τ (the space E′ endowed with Mackey topology τ) is tunneled;
(d) every bounded set in E is compact in the weak topology σ(E,E′);
(e) the space E is quasicomplete in the weak topology σ(E, E′).

The criterium (e) permits a categorial formulation. It is used in the definition of
the semireflexive product and of the semireflexive subcategories (see Definition 7).

We study the properties of semireflexive subcategories, the relations of the
semireflexive product with the right product and we construct some examples.

Concerning the factorization structures (bicategory structures) see [4].

c© Dumitru Botnaru, Olga Cerbu, 2011
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In Section 2 we examine the problem of factorization of one reflector functor
within the factorization structures. In Section 3 we introduce the notion of κ-
functor (Definition 5), and Theorem 5 allows to construct examples of such functors.
The property (SRt) generalizes the property (SR) which often takes place in locally
convex spaces. These conditions permit us to characterize and to construct examples
of semireflexive subcategories in category C2V of locally convex topological Hausdorff
vector spaces.

Definition 3. Let A and B be two classes of morphisms of the category C. The
class A is B-hereditary if f · g ∈ A and f ∈ B imply that g ∈ A.

Dual notion: the class is B-cohereditary.

Definition 4. The class A of morphisms of the category C is called right stable if
from the fact that u′ · v = v′ · u is pullback and u ∈ A it follows that u′ ∈ A.

Dual notion: the class of morphisms is left stable.
We denote by Mu the class of right stable monomorphisms.
In the category C2V the monomorphism m : X −→ Y belongs to the class Mu

iff any functional defined on X is expanded through m (see [4]).

2 The factorization of the reflector functor

Any factorization structure (P, I) of the category C2V divides the class R of the
non-zero reflective subcategories into three classes:

a) The class R(P) of the P-reflective subcategories.
b) The class R(I) of the I-reflective subcategories.
c) The class R(P, I) = (R\(R(P) ∪ R(I))) ∪ {C2V} consisting of the

subcategories which are neither P-reflective nor I-reflective (with the exception of
the element C2V). All these classes have the last element C2V.

Theorem 1. 1 (see [7, Theorem 1.3]). The class R(P) possesses the first ele-
ment S.

2 (see [7, Theorem 2.2]). Let (I ∩Epi, (I ∩Epi)⊥) be a right factorization struc-
ture. Then R(I) possesses the first element A and

R(I) = {R ∈ R | A ⊂ R}.

We mention that in the category C2V a proper class of the factorization structures
has been constructed which possesses the property indicated in the previous theorem.

In the case of the factorization structures (Eu,Mp) = (the class of universal epi-
morphisms, the class of exact monomorphisms) = (the class of surgective mappings,
the class of topological embeddings) we have the following division of the lattice R
in three complete sublattices:
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a) The sublattice R(Eu) of the Eu-reflective subcategories. A Eu-reflective
subcategory R is characterized by the fact that the R-replica of every object of the
category C2V is a bijection. Another characteristic is:

R(Eu) = {R ∈ R | R ⊃ S},
where S is the subcategory of spaces with the weak topology.

b) The sublattice R(Mp) of the Mp-reflective subcategories, that means the
class of those reflective subcategories R for which the R-replica for any object of
the category C2V is a topological embedding:

R(Mp) = {R ∈ R | R ⊃ Γ0},
where Γ0 is the subcategory of complete spaces.

c) R(Eu,Mp) = (R\(R(Eu) ∪ R(Mp))) ∪ {C2V}.
R(Eu,Mp) is also a complete sublattice with the first element Π and the last element
C2V.

Let (P, I) be a factorization structure in the category C2V, and L a non-zero
reflective subcategory. For any object X of the category C2V let lX : X → lX be the
L-replica, and

lX = iX · pX , (1)

the (P, I)-factorization of respective morphism. We denote by B = B(L) the full
subcategory of the category C2V formed from all objects isomorphic with the objects
bX when X ∈| C2V |. The subcategory B is P-reflective, and bX : X → bX is the
B-replica of object X.

Let A′′ = A′′(L) be the full subcategory of all objects A with the property:
For any object X of the category C2V, every morphism f : bX → A is extended

via the morphism iX : f = g · iX for some morphism g.
The subcategory A′′ is closed under products and Mf -subobjects. So it is re-

flective, and iX : bX −→ lX is the A′′-replica of the object bX.
Let l : C2V → L, b : C2V → B and a′′ : C2V → A′′ be the respective reflector

functors. Then
l = a′′ · b. (2)

Starting from this remarks we will denote:
by G(L) the class of all I-reflective subcategories A of the category C2V for which

the reflector functor a : C2V → A verifies the relation l = a · b;
by G(L) the class of all reflective subcategories A for which l = a · b.
It is possible that G(L) be the empty class. Also we mention that G(L) =

G(L) ∩ R(I).

Theorem 2 (see [7, Theorem 3.2]). Let (P, I) be a factorization structure in the
category C2V so that (I ∩ Epi, (I ∩ Epi)⊥) is a right factorization structure. Then
for every element L ∈ R we have:

1. A′′(L) ∈ G(L).
2. The subcategory A′ = A′(L) = ∩{R | R ∈ G(L)} belongs to class R(I).
3. G(L) = {R ∈ R | A′ ⊂ R ⊂ A′′}.
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For the class G(L) things are easier.

Theorem 3 (see [5, Theorem 2.7]). For any factorization structure (P, I) we have:

G(L) = {R ∈ R | L ⊂ R ⊂ A′′}.

3 κ-Functors

Definition 5. A functor t : C2V → C2V is called a κ-functor if

t(E, u) = (E, t(u)), u ≤ t(u)

for every object (E, u).

Any non-zero coreflector functor t : C2V −→ K in composition with the embed-
ding functor i : K −→ C2V is a κ-functor.

Let R and K be two non-zero subcategories of the category C2V, where the R
is reflective and the K is coreflective. For every object X of the category C2V let
rX : X −→ rX and krX : krX −→ rX be the R-replica and the K-coreplica of the
respective objects. On these two morphisms we construct a pullback:

rX · tX = krX · uX . (1)

Theorem 4 (see [5, Theorem 3.4]). The correspondence X −→ tX defines a
κ-functor in the category C2V.

Definition 6. The functor t defined in the previous section is called the κ-functor
generated by the reflective subcategory R and the coreflective one K.

Remark 1. We mention that a κ-functor is not always a coreflector functor, since a
κ-functor is not necessarily idempotent.

Let t : C2V → C2V be a κ-functor. For subcategory R we define the following
condition:

(SRt) Let (E, u) ∈| R |. Then, for every locally convex topology v on the vector
space E

u ≤ v ≤ t(u),

the space (E, v) belongs to subcategory R.

Remark 2. 1. Let M be the coreflective subcategory of the spaces with Mackey
topology, m : C2V →M be the coreflector functor. We denote the (SRm) condition
simply by (SR).

2. Categorically, the condition (SRt) can be formulated as follows:
(SRt) If X ∈| R | and f : Y → X is a monomorphism such that tX = f · g for

some morphism g, then Y ∈ |R|.
Since tX is a bijective mapping, we deduce that so is f . In the given equality f

and tX are bijective mappings, so it follows that g is also a bijective mapping.
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We will examine the property (SR) for any elements of the classes R(Eu),R(Mp)
and R(Eu,Mp).

Theorem 5 (see [5, Theorem 3.8]). 1. Every element of the class R(Mp) possesses
the property (SR).

2. Let an element L of the class R(Eu) possess the property (SR). Then
L = C2V.

4 Semireflexive product of two subcategories

Definition 7. 1. Let R be a reflective subcategory, and A be a subcategory of
the category C. The object X of the category C is called (R,A)-semireflexive if its
R-replica belongs to the subcategory A.

2. The full subcategory of all (R,A)-semireflexive objects is called the semire-
flexive product of the subcategories R and A, and is denoted by L = R×sr A.

3. The subcategory L ∈ R(Eu,Mp),L 6= C2V of the category C2V is called semire-
flexive if these exists a reflective subcategory R ∈ R(Eu) and a reflective subcategory
Γ ∈ R(Mp) of the category C2V so that L = R×sr Γ.

Remark 3. The respective condition from the definition of the semireflexive subcat-
egories has been imposed to exclude the trivial cases. So every subcategory L of the
category C can be presented as L = C ×sr L.

Let (P, I) be a factorization structure in the category C2V, and L be a non-zero
reflective subcategory. The (P, I)-factorization of the reflector functor l : C2V → L
generates the P-reflective subcategory B = B(L) and the lattice G(L). Let Γ ∈ G(L).
We examine the following conditions:

A. L = B ×sr Γ, where B = B(L) and Γ ∈ G(L).
B. There exists a pair of reflective subcategories R ∈ R(P) and Γ ∈ R(I) of the

category C2V so that L = R×sr Γ.
C. The subcategory L is closed under (P ∩Mu)-subobjects.
D. The subcategory L verifies the condition (SR) that means the subcategory L

is closed under (Eu ∩Mu)-subobjects.
E. The subcategory B = B(L) verifies the condition (SRt) for κ-functor

t : C2V → C2V generated by the reflective subcategory Γ ∈ G(L) and the coreflec-
tive subcategory M of the spaces with Mackey topology.

Lemma 1. 1. In the previous conditions we have L ⊂ B ×sr Γ, where B = B(L)
and Γ ∈ G(L).

2. For the objects of the subcategories L(L ⊂ B(L)) the condition (SRt) coincides
with the condition (SR).

Theorem 6 (see [5, Theorem 4.5]). The following implications are true:
1. C =⇒ A =⇒ B.
2. Let P be an Mu-hereditary class. Then B =⇒ C.
3. Let P ⊂ Eu. Then E =⇒ D =⇒ C.
4. Let I be a right stable class. Then D =⇒ E.
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A B

CD

E

The class is

right stable

I P Ì E u

P Ì E u

P ÌEu

The class P
M

u
-hereditary

is

Theorem 7 (see [5, Theorem 4.6]). In the case when (P, I) = (Eu,Mp) the condi-
tions A− E are equivalent.

5 Examples, conclusions, problems

Let qΓ0 be a subcategory of the quasicomplete spaces, sR be a subcategory of
semireflexive spaces [6],S be a subcategory of the spaces with weak topology, N be
a subcategory of nuclear spaces. Then

R×sr (qΓ0) = sR,

for any reflective subcategory R with the property S ⊂ R ⊂ N .

For the subcategory Sc of the Schwartz spaces and the subcategory Γ0 of the
complete spaces we have

Sc×sr Γ0 = K ×d (Sc ∩ Γ0) = iR,

where iR is the subcategory of semireflexive inductive spaces (see [1, Theorem 1.5]),
and K is the coreflective subcategory of the category C2V which forms with the
subcategory Sc a pair of conjugate subcategories [4].

The subcategory Π of complete spaces with weak topology is semireflexive. For
the case (P, I) = (Eu,Mp) we have B(Π) = S, the subcategory of spaces with weak
topology, A′(Π) = Γ0, and A′′(Π) contains all normed spaces. From this, it follows
that G(Π) is a proper class.

The condition D from Theorem 6 indicates the fact that the property of any sub-
category to be semireflexive does not depend on the factorization structure (P, I).

Definition 8. The subcategory A of the category C2V is called closed under exten-
sions if f : A → B ∈ Epi ∩Mp and A ∈| A | implies also that B ∈| A |.

Problem 1. Let R be a reflective subcategory closed under extensions, and K be a
coreflective subcategory of the category C2V. When the right product K×dR of the
subcategories K and R is closed under extensions?
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Let B = K×d R and assume that B is a reflective subcategory (see [3, Theorem
2.5] and [2, Theorem 5.3]), and moreover B is closed under extensions. In this case
for every Γ ∈ R(Mp) we have

B ∩ Γ = B ×sr Γ1, Γ1 ∈ G̃(B ∩ Γ).

Based on Theorem 2.12 [5] the subcategory B verifies the condition (SRt), where
t : C2V → K is the coreflector functor.
Problem 2. Is it true that B ∩ Γ is a semireflexive subcategory?

Often, semireflexive subcategories can be presented as the right product of some
subcategories [2, Theorem 5.4].
Problem 3. Is it true that every semireflexive subcategory is the right product of
two subcategories?
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Inclusion Radii for the Zeros of Special Polynomials
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Abstract. To locate the zeros of complex-valued polynomials is a classical problem in
algebra and function theory. For this, numerous inclusion radii have been established
to estimate the moduli of the zeros of an underlying polynomial. In this note, we
particularly state bounds for polynomials whose coefficients satisfy special conditions.
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1 Introduction

The analytic theory of polynomials [5] investigates properties of polynomials
representing analytic functions. In particular the location of zeros of complex and
real-valued polynomials has been extensively investigated [1–5]. To tackle this prob-
lem, we determine disks in the complex plane

K(z0, r) := {z ∈ C | |z − z0| ≤ r}, z0 ∈ C, r ∈ R+,

containing all zeros of a complex valued polynomial

f(z) =
n∑

i=0

aiz
i, ai ∈ C, an 6= 0.

r is called inclusion radius. Clearly, r = r(a0, a1, . . . , an).

In this paper, we examine the location of zeros of special complex-valued poly-
nomials of the form

f(z) := fn1(z)gn2(z) = (bn1z
n1 + fn1−1(z))(cn2z

n2 + gn2−1(z)). (1)

That means, we infer bounds for the moduli of their zeros given by an inclusion
radius. It turns out that these bounds are more practicable for this class of polyno-
mials rather than applying existing zero bounds for general polynomials, see [1–5].
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84



INCLUSION RADII FOR THE ZEROS OF SPECIAL POLYNOMIALS 85

2 Results

In [1], Dehmer proved the following theorem.

Theorem 2.1. Let f(z) be a complex polynomial, such that f(z) is reducible in
C[z], namely

f(z) := fn1(z)gn2(z) = (bn1z
n1 + fn1−1(z))(cn2z

n2 + gn2−1(z))

where
|bn1 | > |bi|, 0 ≤ i ≤ n1 − 1, |cn2 | > |ci|, 0 ≤ i ≤ n2 − 1. (2)

If n1 + n2 > 1, then all zeros of the polynomial f(z) lie in the closed disk K(0, δ),
where δ > 1 is the positive root of the equation

zn1+n2+2 − 4zn1+n2+1 + 2zn1+n2 + zn2+1 + zn1+1 − 1 = 0. (3)

It holds 1 < δ < 2 +
√

2.

In the following, we prove some related theorems for this class of polynomials
(see Equation (1)). An improvement of Theorem 2.1 is

Theorem 2.2. Let

f(z) := fn1(z)gn2(z) = (bn1z
n1 + fn1−1(z))(cn2z

n2 + gn2−1(z)),

where

φ1 :=
|bn1−1|
|bn1 |

and φ2 :=
|cn2−1|
|cn2 |

, (4)

and

|bn1 | > |bi|, 0 ≤ i ≤ n1 − 1, |cn2 | > |ci|, 0 ≤ i ≤ n2 − 1. (5)

All zeros of the polynomial f(z) lie in the closed disk

K

(
0,max

[
1 + φ1

2
+

√
(φ1 − 1)2 + 4

2
,
1 + φ2

2
+

√
(φ2 − 1)2 + 4

2

])
.

Proof. We start the proof by obtaining the estimation

|fn1(z)| = |bn1z
n1 + fn1−1(z)| =

= |bn1z
n1 + bn1−1z

n1−1 + · · ·+ b1z + b0| ≥
≥ |bn1 ||z|n1 − [|bn1−1||z|n1−1 + · · ·+ |b1||z|+ |b0|

]
.

Using the relations |bn1 | > |bi|, 0 ≤ i ≤ n1 − 1 (see Inequalities (5)), Equation (4)
and |z| > 1, we further obtain
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|fn1(z)| ≥ |bn1 |
[
|z|n1 − φ1|z|n1−1 − [|z|n1−2 + · · ·+ |z|+ 1

]
]

(6)

= |bn1 |
[
|z|n1 − φ1|z|n1−1 − |z|n1−1 − 1

|z| − 1

]

> |bn1 |
[
|z|n1 − φ1|z|n1−1 − |z|n1−1

|z| − 1

]

=
|bn1 ||z|n1−1

|z| − 1

[
|z|2 − |z|(1 + φ1) + (φ1 − 1)

]
.

Clearly, applying this procedure to fn2(z) also yields

|fn2(z)| > |cn2 ||z|n2−1

|z| − 1

[
|z|2 − |z|(1 + φ2) + (φ2 − 1)

]
.

By defining
H1,2(z) := z2 − z(1 + φ1,2) + (φ1,2 − 1),

we get

|fn1(z) · fn2(z)| > |bn1 ||z|n1−1

|z| − 1
· |cn2 ||z|n2−1

|z| − 1
H1(|z|) ·H2(|z|),

and
|fn1(z) · fn2(z)| > 0 if H1(|z|) ·H2(|z|) > 0.

Solving the last inequality requires to determine the zeros of H1,2(z). The zeros of
H1(z) and H2(z) are

1 + φ1

2
±

√
(φ1 − 1)2 + 4

2
,

and
1 + φ2

2
±

√
(φ2 − 1)2 + 4

2
,

respectively. We easily see that

α1 :=
1 + φ1

2
+

√
(φ1 − 1)2 + 4

2
> 1,

and

α2 :=
1 + φ2

2
+

√
(φ2 − 1)2 + 4

2
> 1.

This finally implies
|fn1(z) · fn2(z)| > 0,
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if

|z| > max

(
1 + φ1

2
+

√
(φ1 − 1)2 + 4

2
,

1 + φ2

2
+

√
(φ2 − 1)2 + 4

2

)
,

and all zeros of f(z) lie in |z| ≤ max(α1, α2). 2

Remark 1. The bound given by Theorem 2.2 is an improvement of the upper bound
of Equation (3) given in Theorem 2.1 since

1 + φ1,2

2
+

√
(φ1,2 − 1)2 + 4

2
< 2 +

√
2

if φ1,2 < 3. But this is fulfilled by assumption, see Inequalities (5).

Assuming the special conditions for the polynomial’s coefficients also leads to a
bound whose value does not depend on any coefficients.

Theorem 2.3. Let

f(z) := fn1(z)gn2(z) = (bn1z
n1 + fn1−1(z))(cn2z

n2 + gn2−1(z)),

where

φ1 :=
|bn1−1|
|bn1 |

and φ2 :=
|cn2−1|
|cn2 |

,

and
|bn1 | > |bi|, 0 ≤ i ≤ n1 − 1, |cn2 | > |ci|, 0 ≤ i ≤ n2 − 1. (7)

All zeros of the polynomial f(z) lie in the closed disk K (0, 2) .

Proof. Using the Inequalities (7) and |z| > 1, we obtain

|fn1(z)| ≥ |bn1 |
[
|z|n1 −

[
|bn1−1|
|bn1 |

|z|n1−1 + · · ·+ |b1|
|bn1 |

|z|+ |b0|
|bn1 |

]]

= |bn1 |
[
|z|n1 − |z|n1 − 1

|z| − 1

]
> |bn1 |

[
|z|n1 − |z|n1

|z| − 1

]

=
|bn1 ||z|n1

|z| − 1

[
|z| − 2

]
.

Analogously, we also conclude (|z| > 1)

|fn2(z)| > |cn2 ||z|n1

|z| − 1

[
|z| − 2

]
.
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Finally,
|fn1(z) · fn2(z)| > 0 if |z| > 2,

and, hence, all zeros of f(z) lie in |z| ≤ 2. 2

A more general statement is

Theorem 2.4. Let

f(z) := fn1(z)gn2(z) = (bn1z
n1 + fn1−1(z))(cn2z

n2 + gn2−1(z)).

Define

φ1 :=
|bn1−1|
|bn1 |

and φ2 :=
|cn2−1|
|cn2 |

,

M1 := max
0≤i≤n1−2

∣∣∣∣
bi

bn1

∣∣∣∣ and M2 := max
0≤i≤n2−2

∣∣∣∣
ci

cn2

∣∣∣∣ .

All zeros of the polynomial f(z) lie in the closed disk

K

(
0, max

[
1 + φ1

2
+

√
(φ1 − 1)2 + 4M1

2
,
1 + φ2

2
+

√
(φ2 − 1)2 + 4M2

2

])
.

Proof. Similar to Inequality (6) and by assuming |z| > 1, we infer

|fn1(z)| ≥ |bn1 |
[
|z|n1 − |bn1−1|

|bn1 |
|z|n1−1 −M1

[|z|n1−2 + · · ·+ |z|+ 1
]
]

= |bn1 |
[
|z|n1 − |bn1−1|

|bn1 |
|z|n1−1 −M1

|z|n1−1 − 1
|z| − 1

]

> |bn1 |
[
|z|n1 − |bn1−1|

|bn1 |
|z|n1−1 −M1

|z|n1−1

|z| − 1

]

=
|bn1 |
|z| − 1

[
|z|n1+1 − |z|n1

(
1 +

|bn1−1|
|bn1 |

)
+ |z|n1−1

( |bn1−1|
|bn1 |

−M1

) ]

=
|bn1 ||z|n1−1

|z| − 1

[
|z|2 − |z| (1 + φ1) + (φ1 −M1)

]
,

and

|fn1(z)| ≥ |cn2 ||z|n1−1

|z| − 1

[
|z|2 − |z| (1 + φ2) + (φ2 −M2)

]
.

The rest of the proof is analogous to the proof steps of Theorem (2.2). 2
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3 Numerical Results

In this section, we evaluate the obtained bounds by using the following polyno-
mials:

f1(z) := (100z3 − z2 + iz + 50) · (4z4 + z3 + 3z − 1),

f2(z) :=
(

2z3 − z2 +
z

2
+

1
10

)
·
(

z3

2
+

z2

3
− z

5
+

1
3

)
.

We start by evaluating the statements for f1(z) and first determine its zeros:

z1
.= −1.3039,

z2
.= −0.7903 + 0.0041i,

z3
.= 0.1285− 0.7933i,

z4
.= 0.1285 + 0.7933i,

z5
.= 0.2968,

z6
.= 0.3965 + 0.6852i,

z7
.= 0.4038− 0.6894i.

max(|z1|, |z2|, . . . , |z7|) = 1.3039. Then, we yield K(0, 3.3734) (Theorem 2.1),
K(0, 1.8827) (Theorem 2.2), K(0, 2) (Theorem 2.3) and K(0, 1.75) (Theorem 2.4).
We see that Theorem 2.2 – Theorem 2.4 clearly outperform Theorem 2.1. For
polynomials for which the conditions of the Equations (2) are satisfied, the bound
given by Theorem 2.4 is always an improvement of Theorem 2.2 as M1,M2 < 1.

For f2(z), we get
z1

.= −1.3380,

z2
.= −0.1454,

z3
.= 0.3227− 0.4896i,

z4
.= 0.3227 + 0.4896i,

z5
.= 0.3356− 0.6209i,

z6
.= 0.3356 + 0.6209i.

max(|z1|, |z2|, . . . , |z6|) = 1.3380. This leads to the disks K(0, 3.3499) (Theo-
rem 2.1), K(0, 1.847127) (Theorem 2.2), K(0, 2) (Theorem 2.3) and K(0, 1.6666)
(Theorem 2.4). By inspecting the bound values for this polynomial, we see that we
get the same situation as in the case of f1(z).
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On LCA groups whose rings of continuous
endomorphisms have at most two

non-trivial closed ideals. I

Valeriu Popa

Abstract. We describe the torsion, locally compact abelian (LCA) groups X for
which the ring E(X) of continuous endomorphisms of X, endowed with the compact-
open topology, has no more than two non-trivial closed ideals.
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1 Introduction

Motivated by the work of F. Perticani [6], the author discussed in [10] general
topological rings with identity having at most two non-trivial closed ideals. The
main results of [10] characterize the mentioned rings in terms of ideal extensions of
topological rings. In the present paper, we are interested in a more concrete class
of topological rings of the mentioned type, namely, those which occur as rings of
continuous endomorphisms of LCA groups. Precisely speaking, we are dealing with
the problem of determining the LCA groups X with the property that the ring E(X)
of all continuous endomorphisms of X, taken with the compact-open topology, has
no more than two non-trivial closed ideals.

In the following, we establish some bounds for the class of groups in question
and solve completely the considered problem in the case of torsion LCA groups.

2 Notation

We use without explanations some terminology and notations introduced in [10].
In addition, we denote by P the set of primes and by L the class of LCA groups. For
p ∈ P, we denote by Z(p∞) the quasi-cyclic group corresponding to p and by Z(pn),
where n is a positive integer, the cyclic group of order pn (both with the discrete
topology). For X ∈ L, we let 1X , t(X), X∗, and E(X), denote, respectively, the
identity map on X, the torsion subgroup of X, the character group of X, and the
ring of continuous endomorphisms of X, endowed with the compact-open topology.
Recall that the compact-open topology on E(X) is generated by the sets

Ω(K, U) = {u ∈ E(X) | u(K) ⊂ U},
c© Valeriu Popa, 2011
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where K, U ⊂ X, K is compact and U is open. For a positive integer n, we let
X[n] = {x ∈ X | nx = 0} and nX = {nx | x ∈ X}. Also, o(a) denotes the order of a
in X, 〈S〉 the subgroup of X generated by S, and (M) the ideal of E(X) generated
by M. Further, given a family (Xi)i∈I of groups in L, we write

∏
i∈I Xi for its

topological direct product. In case each Xi coincides with a fixed X ∈ L, we use
XI for

∏
i∈I Xi. For a discrete X ∈ L, we let X(I) denote the discrete direct sum

of I copies of X. Finally, ⊕ stands for topological direct sum and ∼= for topological
isomorphism.

3 Some necessary conditions

In this section we shall reduce the study of groups X ∈ L with the property that
the ring E(X) has no more than two non-trivial closed ideals to the case of some
more special groups.

We begin with the following preparatory lemma.

Lemma 1. Let X be a group in L such that mnE(X) = nE(X) for some positive
integers m and n. Then nX = mnX and X[mn] = X[n].

Proof. In view of our hypothesis, n1X ∈ mnE(X), and hence there exists a net
(uλ)λ∈L of elements of E(X) such that n1X = limλ∈L mnuλ [4, Proposition 1.6.3].
Pick any x ∈ X, and define δx : E(X) → X by setting δx(u) = u(x) for all u ∈ E(X).
Then δx is a continuous group homomorphism, so

nx = δx(n1X) = δx(lim
λ∈L

mnuλ)

= lim
λ∈L

δx(mnuλ) = lim
λ∈L

(
(mnuλ)(x)

) ∈ mnX.

Since x ∈ X was arbitrary, it follows that nX ⊂ mnX, which gives nX = mnX.
Further, since E(X) and E(X∗) are topologically anti-isomorphic [8, (1.1)], we also
have mnE(X∗) = nE(X∗), so as above nX∗ = mnX∗, and hence X[n] = X[mn]
by [5, (24.22)].

Next we recall two definitions.

Definition 1. Let n be a positive integer. A group X ∈ L is said to be of finite
exponent n if n is the least positive integer satisfying nX = {0}.
Definition 2. A subgroup F of a group X ∈ L is said to be topologically fully
invariant in X if u(F ) ⊂ F for all u ∈ E(X).

Let X ∈ L. Then X can be viewed as a left topological module over E(X). It
is clear that the topologically fully invariant subgroups of X are just the E(X)-
submodules of X. Now, if F is a topologically fully invariant subgroup of X, then
annE(X)(F ), the annihilator of F in E(X), is a closed ideal of E(X) because X
is Hausdorff. Further, if F is in addition closed in X, then X/F is a Hausdorff
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topological E(X)-module, so that annE(X)(X/F ) is a closed ideal of E(X) as well.
In fact

annE(X)(X/F ) = {u ∈ E(X) | im(u) ⊂ F}.
We now state the main result of this section.

Theorem 1. Let X be a non-zero group in L such that E(X) has no more than two
non-trivial closed ideals. Then exactly one of the following conditions holds:

(i) X ∼= Z(p)(α)×Z(p)β for some p ∈ P and some cardinal numbers α, β satisfying
α + β ≥ 1.

(ii) X ∼= Z(p)(αp)×Z(p)βp ×Z(q)(αq)×Z(q)βq for some distinct p, q ∈ P and some
cardinal numbers αp, βp, αq, βq satisfying αp + βp ≥ 1 and αq + βq ≥ 1.

(iii) X is a group of finite exponent p2 for some p ∈ P.

(iv) X is a group of finite exponent p3 for some p ∈ P.

(v) X is densely divisible and torsion-free.

(vi) There exists p ∈ P such that t(X) = X[p], pX is non-zero and densely divisible,
and pE(X) ( E(X).

(vii) There exist p, q ∈ P such that t(X) = X[pq], pqX is non-zero and densely
divisible, and pqE(X) ( pE(X) ( E(X).

Proof. If there exists p ∈ P such that pE(X) = {0}, then pX = (p1X)(X) = 0, and
so, by [2, Ch. 2, §4, Theorem 2], X ∼= Z(p)(α) × Z(p)β for some cardinal numbers α
and β satisfying α + β ≥ 1. Consequently, in this case we are led to (i).

Suppose mE(X) 6= {0} for all m ∈ P. If there exist p, q ∈ P such that pqE(X) =
{0}, then pqX = (pq1X)(X) = {0}, and hence X = X[pq]. Now, if q 6= p, we conclude
from [1, Theorem 3.13] that X = X[p] ⊕ X[q], where the primary components
X[p] and X[q] are non-zero. Thus, again appealing to [2, Ch. 2, §4, Theorem
2], in this case we get (ii). Further, in the remaining case when q = p, we have
X = X[p2] 6= X[p], which gives us (iii).

Next suppose lmE(X) 6= {0} for all l, m ∈ P. If there exist p, q, r ∈ P such
that pqrE(X) = {0}, then pqrX = (pqr1X)(X) = {0}, and hence X = X[pqr]. We
claim that p = q = r. Indeed, if the numbers p, q, and r were distinct, we could
write X = X[p] ⊕X[q] ⊕X[r]. Since, in view of our assumption, the topologically
fully invariant subgroups X[p], X[q], and X[r] of X are non-zero, it would follow,
as can be seen by considering the endomorphisms p1X , q1X , r1X , and 1X , that the
annihilators annE(X)(X[p]), annE(X)(X[q]), and annE(X)(X[r]) are distinct, non-
trivial, closed ideals of E(X). This contradicts the hypothesis. Similarly, if only two
of the numbers p, q, and r coincided, say p 6= q = r, we would have X = X[p2]⊕X[q],
where X[p2] 6= X[p] and X[q] 6= {0}. By invoking the endomorphisms p21X , p1X ,
q1X , and 1X , we would then conclude that annE(X)(X[p2]), annE(X)(X[p]), and
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annE(X)(X[q]) are distinct, non-trivial, closed ideals of E(X), again in contradiction
with the hypothesis. Thus we must have p = q = r, so X = X[p3], getting (iv).

Further suppose klmE(X) 6= {0} for all k, l, m ∈ P. If pE(X) = E(X) for all
p ∈ P, it follows from Lemma 1 that pX = 1X = X and X[p] = X[1] = {0} for all
p ∈ P, so X is densely divisible and torsion-free, and in this case we are led to (v).

Next assume there exists p ∈ P such that pE(X) 6= E(X). There are two
possibilities: either (1) qpE(X) = pE(X) for all q ∈ P, or (2) there is q ∈ P
such that qpE(X) 6= pE(X). In the former case, it follows from Lemma 1 that
qpX = qpX = pX and X[pq] = X[p] for all q ∈ P, so that pX is non-zero, densely
divisible and t(X) = X[p], which gives us (vi). In the second case, qpE(X) and
pE(X) are distinct non-trivial closed ideals of E(X). Since, by our assumption,
pqrE(X) 6= {0} for all p, q, r ∈ P, it follows that pqrE(X) = pqE(X) for all r ∈ P,

so rpqX = pqrX = pqX and X[pqr] = X[pq] for all r ∈ P, and hence pqX is
non-zero, densely divisible and t(X) = X[pq], whence (vii).

Remark 1. We know from [8, (2.3)] that any group X appearing in item (i) of the
preceding theorem has a topologically simple ring E(X). It is also clear from [9,
(2.2)] and [8, (2.3)] that for any group X appearing in item (ii), the ring E(X) is
a topological direct product of two topologically simple rings, and so it has exactly
two non-trivial closed ideals. In particular, we see from [10, Theorem 3] that in this
case every non-trivial closed ideal of E(X) is strongly topologically maximal.

In the remaining part of this paper we handle the problem stated in Introduction
for groups appearing in items (iii) and (iv). Since the groups appearing in items
(v), (vi), and (vii) contain non-torsion elements, this furnishes a solution to the
considered problem in the case of torsion LCA groups.

4 Groups of finite exponent p2

Our aim in this section is to describe the groups X ∈ L of finite exponent p2,
where p ∈ P, such that the ring E(X) has no more than two non-trivial closed ideals.
First, we note a lemma from [7, (3.8)], which will be frequently used in the sequel.

Lemma 2. Let X ∈ L be a group of finite exponent pn, where p is a prime and n is a
positive integer. If a ∈ X is an element of order pn, then 〈a〉 splits topologically from
X. Moreover, the complement of 〈a〉 can be chosen so as to contain a preassigned
open subgroup V of X satisfying 〈a〉 ∩ V = {0}.

We continue with five lemmas, that are needed for establishing the desired de-
scription.

Lemma 3. Let p ∈ P, and let X ∈ L be a group of finite exponent p2. If pX 6= X[p],
then E(X) has more than two non-trivial closed ideals, which are comparable with
respect to set-theoretic inclusion.
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Proof. Assume that pX 6= X[p]. Clearly, p1X 6= 0 and p1X ∈ annE(X)

(
X[p]

)
. It is

also clear that im(p1X) ⊂ pX, so p1X ∈ annE(X)

(
X/pX

)
, and thus

annE(X)

(
X[p]

) ∩ annE(X)

(
X/pX

) 6= {0}.

Further, since pX ⊂ X[p], we have annE(X)

(
X[p]

) ⊂ annE(X)

(
pX

)
. Finally, since

pX 6= {0}, it follows that pX 6⊂ ker(1X), so 1X /∈ annE(X)

(
pX

)
, and hence

annE(X)

(
pX

) 6= E(X). We shall show that the inclusions

annE(X)

(
X[p]

) ∩ annE(X)

(
X/pX

) ⊂ annE(X)

(
X[p]

) ⊂ annE(X)

(
pX

)

are strict. Let ξ : X → X/X[p] and η : X → X/pX denote the canonical projections,
and fix any a ∈ X\X[p] and b ∈ X[p]\pX. Then o(a) = p2 and o(ξ(a)) = p = o(η(b)).
By Lemma 2, we can write

X/X[p] = 〈ξ(a)〉 ⊕A and X/pX = 〈η(b)〉 ⊕B,

where A and B are closed subgroups in X/X[p] and X/pX, respectively. Let
λ : 〈ξ(a)〉 → X and µ : 〈η(b)〉 → X be the group homomorphisms given by
λ(ξ(a)) = µ(η(b)) = b. Denoting by ϕ the canonical projection of X/X[p] onto
〈ξ(a)〉 with kernel A, we see that λ ◦ ϕ ◦ ξ ∈ annE(X)

(
X[p]

)
, and λ ◦ ϕ ◦ ξ 6∈

annE(X)

(
X/pX

)
(because (λ ◦ ϕ ◦ ξ)(a) = b /∈ pX), so annE(X)

(
X[p]

)
properly

contains annE(X)

(
X[p]

) ∩ annE(X)

(
X/pX

)
. Similarly, denoting by ψ the canonical

projection of X/pX onto 〈η(b)〉 with kernel B, we see that µ ◦ψ ◦ η ∈ annE(X)

(
pX

)
and µ ◦ ψ ◦ η 6∈ annE(X)

(
X[p]

)
(because b ∈ X[p] and (µ ◦ ψ ◦ η)(b) = b), so

annE(X)

(
pX

)
properly contains annE(X)

(
X[p]

)
. Consequently, the inclusions

annE(X)

(
X[p]

) ∩ annE(X)

(
X/pX

) ⊂ annE(X)

(
X[p]

) ⊂ annE(X)

(
pX

)

are strict.

Lemma 4. Let p ∈ P, let X ∈ L be a group of finite exponent p2 such that pX =
X[p], and let C be a non-zero closed ideal of E(X). Further, let P be the set of
all ordered pairs (a, G), where a is an element of order p2 of X and G is a closed
subgroup of X satisfying X = 〈a〉 ⊕ G, and for each (a,G) ∈ P let εa,G ∈ E(X)
denote the canonical projection of X onto 〈a〉 with kernel G. Then:

(i) If C contains elements of order p2, then C ⊃ (εa,G | (a,G) ∈ P).

(ii) If pC = {0}, then C ⊃ (pεa,G | (a,G) ∈ P).

Proof. For (a,G) ∈ P and b ∈ X, we define fa,G,b ∈ E(X) by the rule

fa,G,b(t) =

{
b, if t = a;
0, if t ∈ G.
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(i) Pick any u ∈ C with o(u) = p2. Since pu 6= 0, there exists x ∈ X such that
(pu)(x) 6= 0, and so o(u(x)) = p2. It then follows from Lemma 2 that there exists a
closed subgroup Y of X such that X = 〈u(x)〉 ⊕ Y. Now, given any (a,G) ∈ P, it is
straightforward to check that εa,G = fu(x),Y,a ◦ u ◦ fa,G,x, so εa,G ∈ C.

(ii) Pick any non-zero u ∈ C and any x ∈ X such that u(x) 6= 0. Since pu = 0,
we have pX ⊂ ker(u), so X[p] ⊂ ker(u), and therefore o(x) = p2. In particular,
by Lemma 2 we may write X = 〈x〉 ⊕ Y for some closed subgroup Y of X. Now,
fix an arbitrary open subgroup U of X such that u(x) /∈ U. Since X[p] = pX,
there exists z ∈ X satisfying pz − u(x) ∈ U. As u(x) /∈ U, we cannot have pz = 0,
and so o(z) = p2. Let π denote the canonical projection of X onto the quotient
group X/U. Clearly, π(u(x)) 6= 0 and π(u(x)) = π(pz) = pπ(z), so o(π(z)) = p2.
Hence we can write X/U = 〈π(z)〉 ⊕ Γ for some subgroup Γ of X/U [3, Lemma
15.1]. Denoting by ϕ the canonical projection of X/U onto 〈π(z)〉 with kernel Γ and
letting h : 〈π(z)〉 → X be the group homomorphism defined by h(π(z)) = x, it is
clear that h ◦ ϕ ◦ π ∈ E(X) and (h ◦ ϕ ◦ π) ◦ u ◦ εx,Y = pεx,Y , so pεx,Y ∈ C. Finally,
given any (a, G) ∈ P, we have pεa,G = fx,Y,a ◦ (pεx,Y ) ◦ fa,G,x ∈ C.

Lemma 5. Let X ∈ L be a group of finite exponent pn, where p is a prime and n is a
positive integer. If the subgroup A of X is a finite direct sum of cyclic groups of order
pn, then A splits topologically from X. Moreover, the complement of A can be chosen
so as to contain a preassigned open subgroup V of X with property A ∩ V = {0}.

Proof. We induct on the number of summands, k, in the decomposition of A as a
direct sum A = A1 ⊕ . . . ⊕ Ak of cyclic groups of order pn. If k = 1, the assertion
holds trivially since this is just Lemma 2. Assume k ≥ 2, and assume the result
is true for any group of finite exponent pn in L and any its subgroup written as a
direct sum of k − 1 cyclic subgroups of order pn. Given an arbitrary open subgroup
V of X satisfying A ∩ V = {0}, it is clear that V1 = A2 ⊕ . . . ⊕ Ak ⊕ V is an open
subgroup of X and A1 ∩ V1 = {0}. By Lemma 2, we can write X = A1 ⊕ X1 for
some subgroup X1 of X containing V1. Now, applying the inductive hypothesis to
X1, A2 ⊕ . . .⊕Ak, and V, we can find a subgroup Xk of X such that Xk ∩ V = {0}
and X1 = A2 ⊕ . . .⊕Ak ⊕Xk. Then X = A1 ⊕A2 ⊕ . . .⊕Ak ⊕Xk.

Lemma 6. Let p ∈ P, and let X ∈ L be a group of finite exponent p2 satisfying
pX = X[p]. For any compact subset K of X and any neighbourhood U of zero in X,
there exist two compact open subgroups K ′, U ′ of X such that K ∪U ′ ⊂ K ′, U ′ ⊂ U,
and K ′ =

⊕
i∈I〈ai〉⊕U ′ for some finite family (ai)i∈I of elements of order p2 of K ′.

Proof. Pick an arbitrary compact subset K of X and an arbitrary neighbourhood
U of zero in X. Since X is totally disconnected, we can find a compact open sub-
group U0 of X such that U0 ⊂ U [5, (7.7)]. Let K0 = 〈K ∪ U0〉. Then K0 is
compact [5, (9.8)], and U0 ⊂ K0. In particular, K0 is topologically isomorphic to a
topological direct product of cyclic p-groups of order at most p2 [5, (25.9)], and so
there exist two disjoint sets I1 and I2 such that K0

∼= ∏
i∈I1∪I2

Ci, where Ci = Z(p)
for i ∈ I1 and Ci = Z(p2) for i ∈ I2. Fix a topological isomorphism f from K0 onto
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∏
i∈I1∪I2

Ci. Given an arbitrary subset J of I1 ∪ I2, we denote by C ′
J the subgroup

of all (ci)i∈I1∪I2 ∈
∏

i∈I1∪I2
Ci satisfying ci = 0 for all i /∈ J. Since U0 is open in K0,

there exist finite subsets J1 ⊂ I1 and J2 ⊂ I2 such that f(U0) ⊃ C ′
(I1\J1)∪(I2\J2). We

then have
∏

i∈I1∪I2

Ci =
( ⊕

i∈J1∪J2

C ′
i

)
⊕ C ′

(I1\J1)∪(I2\J2),

so

K0 =
( ⊕

i∈J1∪J2

f−1(C ′
i)

)
⊕ f−1(C ′

(I1\J1)∪(I2\J2)),

where C ′
i stands for C ′

{i}. Set U ′ = f−1(C(I1\J1)∪(I2\J2)) and, for i ∈ J1 ∪ J2, let ai

be a generator of f−1(C ′
i). Then U ′ is an open subgroup of X contained in U0 and

K0 =
( ⊕

i∈J1∪J2

〈ai〉
)
⊕ U ′.

We also have o(ai) = p if i ∈ J1, and o(ai) = p2 if i ∈ J2. In the following, we
shall construct a compact subgroup K ′ ⊃ K0 which admits a decomposition similar
to that of K0, by replacing the elements ai with i ∈ J1 by elements of order p2.
If J1 = ∅, we set K ′ = K0. Suppose J1 6= ∅, and pick an arbitrary j ∈ J1. Since
X[p] = pX, there exists bj ∈ X such that aj − pbj ∈ U ′. As aj /∈ U ′, we cannot have
pbj = 0, so o(bj) = p2. We claim that

〈pbj〉 ∩
(( ⊕

i∈(J1\{j})∪J2

〈ai〉
)
⊕ U ′

)
= {0}.

Indeed, given any x ∈ 〈pbj〉 ∩
((⊕

i∈(J1\{j})∪J2
〈ai〉

)
⊕ U ′

)
, we can write

x = lpbj =
( ∑

i∈(J1\{j})∪J2

liai

)
+ y′

for some non-negative integers l, li and some y′ ∈ U ′. Since y′ + l(aj − pbj) ∈ U ′, it
follows that

laj =
( ∑

i∈(J1\{j})∪J2

liai

)
+ y′ + l(aj − pbj)

∈ 〈aj〉 ∩
(( ⊕

i∈(J1\{j})∪J2

〈ai〉
)
⊕ U ′

)
= {0},

so p divides l, and hence x = 0. This proves our claim that

〈pbj〉 ∩
(( ⊕

i∈(J1\{j})∪J2

〈ai〉
)
⊕ U ′

)
= {0}.
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Clearly, we then also have

〈bj〉 ∩
(( ⊕

i∈(J1\{j})∪J2

〈ai〉
)
⊕ U ′

)
= {0}.

We replace K0 by

K1 = 〈bj〉 ⊕
( ⊕

i∈(J1\{j})∪J2

〈ai〉
)
⊕ U ′.

Now, if J1 \ {j} 6= ∅, we can apply the preceding procedure to K1, and so, after a
finite number of steps, we shall arrive at a compact subgroup K ′ of X having the
following form:

K ′ =
(⊕

i∈J1

〈bi〉
)
⊕

(⊕

i∈J2

〈ai〉
)
⊕ U ′,

where o(bi) = p2 for all i ∈ J1. Since ai ∈ K ′ for all i ∈ J1, we also have K ∪ U ′ ⊂
K0 ⊂ K ′, so K ′ and U ′ are those required.

Lemma 7. Let p ∈ P, let X ∈ L be a group of finite exponent p2 satisfying pX =
X[p], and let P be the set of all ordered pairs (a, G), where a is an element of order
p2 of X and G is a closed subgroup of X satisfying X = 〈a〉 ⊕ G. Then the ideal
(εa,G | (a, G) ∈ P) , where εa,G ∈ E(X) denotes the canonical projection of X onto
〈a〉 with kernel G, is dense in E(X).

Proof. Pick an arbitrary compact subset K of X and an arbitrary open neighbour-
hood U of zero in X. It suffices to show that

(εa,G | (a,G) ∈ P) ∩ [1X + Ω(K, U)] 6= ∅.

By Lemma 6, we can find two compact open subgroups K ′, U ′ of X such that
K ∪ U ′ ⊂ K ′, U ′ ⊂ U, and K ′ =

⊕
i∈I〈ai〉 ⊕ U ′ for some finite family (ai)i∈I of

elements of order p2 of K ′. Further, by Lemma 5 there is a subgroup G of X such
that U ′ ⊂ G and X =

⊕
i∈I〈ai〉 ⊕G. Then (aj ,

⊕
i∈I\{j}〈ai〉 ⊕G) ∈ P for all j ∈ I,

and
∑

j∈I

ε(aj ,
⊕

i∈I\{j}〈ai〉⊕G) − 1X ∈ Ω(K ′, U ′) ⊂ Ω(K,U).

We now combine the preceding lemmas to obtain the main result of this section.

Theorem 2. Let p ∈ P, and let X ∈ L be a group of finite exponent p2. The following
statements are equivalent:

(i) E(X) has only one non-trivial closed ideal.
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(ii) Every non-trivial closed ideal of E(X) is strongly topologically maximal.

(iii) Every non-trivial closed ideal of E(X) is topologically maximal.

(iv) X[p] = pX.

Proof. Obviously, (i) implies (ii), and (ii) implies (iii). The fact that (iii) implies
(iv) follows from Lemma 3.

Assume (iv), and let P be the set of all ordered pairs (a,G), where a is an element
of order p2 of X and G is a closed subgroup of X satisfying X = 〈a〉 ⊕G. Further,
for (a,G) ∈ P, let εa,G ∈ E(X) denote the canonical projection of X onto 〈a〉 with
kernel G. Now, pick an arbitrary non-zero closed ideal C of E(X). We distinguish
cases when C contains elements of order p2 and when pC = {0}.

First, suppose C contains elements of order p2. Then (εa,G | (a,G) ∈ P) ⊂ C by
Lemma 4, and hence C = E(X) by Lemma 7.

Next suppose that pC = {0}. Then (pεa,G | (a, G) ∈ P) ⊂ C by Lemma 4. In
order to establish the reverse inclusion, pick any u ∈ C, and let K be a compact
subset of X and U an open neighbourhood of zero in X. By Lemma 6, we can find
two compact open subgroups K ′, U ′ of X such that K ∪U ′ ⊂ K ′, U ′ ⊂ u−1(U), and
K ′ =

⊕
i∈I〈ai〉 ⊕ U ′ for some finite family (ai)i∈I of elements of order p2 of K ′. It

then follows from Lemma 5 that X =
⊕

i∈I〈ai〉 ⊕ Y for some closed subgroup Y of
X containing U ′. Since im(u) ⊂ X[p] and X[p] = pX, for every i ∈ I there exists
bi ∈ X such that pbi−u(ai) ∈ U ′. Define v ∈ E(X) by setting v(ai) = bi for all i ∈ I
and v(y) = 0 for all y ∈ Y. Then clearly pv − u ∈ Ω(K ′, U ′). Finally, by Lemma
7, there exists w ∈ (εa,G | (a,G) ∈ P) such that w − v ∈ Ω(K ′, U ′). Since U ′ is a
subgroup in X, we have p(w − v) ∈ Ω(K ′, U ′), and hence

pw − u = p(w − v) + (pv − u) ∈ Ω(K ′, U ′) ⊂ Ω(K, U).

As pw ∈ (pεa,G | (a,G) ∈ P), we conclude that u ∈ (pεa,G | (a, G) ∈ P).

Remark 2. Lemma 3 and Theorem 2 give an answer to the considered question in
the case of LCA groups of finite exponent p2, where p ∈ P.

5 Groups of finite exponent p3

In this section, we determine the groups X ∈ L of finite exponent p3, where p ∈ P,
such that the ring E(X) has at most two non-trivial closed ideals. In preparation
to this we establish four lemmas, which are similar to Lemmas 3, 4, 6, and 7 of the
preceding section.

Lemma 8. Let p ∈ P, and let X ∈ L be a group of finite exponent p3. If E(X) has
no more than two non-trivial closed ideals, then pX = X[p2] and p2X = X[p].

Proof. Suppose first that pX 6= X[p2]. To get a contradiction, it is enough to
indicate three distinct, non-trivial, closed ideals of E(X). Clearly, p21X 6= 0
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and p21X ∈ annE(X)

(
X[p2]

)
. It is also clear that im(p21X) = p2X ⊂ pX, so

p21X ∈ annE(X)

(
X/pX

)
, and thus

annE(X)

(
X[p2]

) ∩ annE(X)

(
X/pX

) 6= {0}.

Further, since pX ⊂ X[p2], we have annE(X)

(
X[p2]

) ⊂ annE(X)

(
pX

)
. Now, given

any u ∈ annE(X)

(
pX

)
, we have pu(X) = u(pX) = {0}, so im(u) ⊂ X[p] ⊂ X[p2],

and hence u ∈ annE(X)

(
X/X[p2]

)
. As u ∈ annE(X)

(
pX

)
was arbitrary, it follows

that annE(X)

(
pX

) ⊂ annE(X)

(
X/X[p2]

)
. Finally, since p2X 6= {0}, it follows that

im(1X) 6⊂ X[p2], so 1X /∈ annE(X)

(
X/X[p2]

)
, and hence annE(X)

(
X/X[p2]

) 6=
E(X). We shall show that at least two of the inclusions

annE(X)

(
X[p2]

) ∩ annE(X)

(
X/pX

) ⊂ annE(X)

(
X[p2]

)

⊂ annE(X)

(
pX

) ⊂ annE(X)

(
X/X[p2]

)

are strict. Let ξ : X → X/X[p2] and η : X → X/pX be the canonical projections,
and fix any a ∈ X \X[p2] and b ∈ X[p2] \ pX. Then o(a) = p3 and o(ξ(a)) = p =
o(η(b)). By Lemma 2, we can write

X/X[p2] = 〈ξ(a)〉 ⊕A, X/pX = 〈η(b)〉 ⊕B, and X = 〈a〉 ⊕ Y,

where A, B, and Y are closed subgroups in X/X[p2], X/pX, and X, respectively.
In the following, we distinguish the cases when o(b) = p and when o(b) = p2.

First assume that o(b) = p. Let λ : 〈ξ(a)〉 → X and µ : 〈η(b)〉 → X be the
group homomorphisms given by the rule λ(ξ(a)) = µ(η(b)) = b. Denoting by ϕ the
canonical projection of X/X[p2] onto 〈ξ(a)〉 with kernel A, we see that λ ◦ ϕ ◦ ξ ∈
annE(X)

(
X[p2]

)
, and λ ◦ϕ ◦ ξ /∈ annE(X)

(
X/pX

)
(because (λ ◦ϕ ◦ ξ)(a) = b /∈ pX),

so annE(X)

(
X[p2]

)
properly contains annE(X)

(
X[p2]

)∩ annE(X)

(
X/pX

)
. Similarly,

denoting by ψ the canonical projection of X/pX onto 〈η(b)〉 with kernel B, we see
that µ ◦ ψ ◦ η ∈ annE(X)

(
pX

)
, and µ ◦ ψ ◦ η /∈ annE(X)

(
X[p2]

)
(because b ∈ X[p2]

and (µ ◦ ψ ◦ η)(b) = b), so annE(X)

(
pX

)
properly contains annE(X)

(
X[p2]

)
as well.

Next we consider the case when o(b) = p2. Let µ′ : 〈η(b)〉 → X denote the group
homomorphism given by the rule µ′(η(b)) = pb. Then µ′ ◦ψ ◦ η ∈ annE(X)

(
pX

)
and

µ′ ◦ ψ ◦ η /∈ annE(X)

(
X[p2]

)
, so annE(X)

(
pX

)
properly contains annE(X)

(
X[p2]

)
.

Further, let v ∈ E(X) be defined by v(a) = b and v(y) = 0 for all y ∈ Y. Since
v(pa) = pb 6= 0, we conclude that v /∈ annE(X)

(
pX

)
. On the other hand, since

p2v(a) = p2b = 0, it is clear that im(v) ⊂ X[p2], so v ∈ annE(X)

(
X/X[p2]

)
, and

hence annE(X)

(
X/X[p2]

)
properly contains annE(X)

(
pX

)
.

We have shown that at least two of the inclusions

annE(X)

(
X[p2]

) ∩ annE(X)

(
X/pX

) ⊂ annE(X)

(
X[p2]

)

⊂ annE(X)

(
pX

) ⊂ annE(X)

(
X/X[p2]

)

are strict, a contradiction. Consequently, we must have pX = X[p2].
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Now suppose that p2X 6= X[p]. As we already mentioned, p21X 6= 0 and p21X ∈
annE(X)

(
X[p2]

)
. Since im(p21X) ⊂ p2X, we also have p21X ∈ annE(X)

(
X/p2X

)
, so

annE(X)

(
X[p2]

) ∩ annE(X)

(
X/p2X

) 6= {0}.

Further, since X[p] ⊂ X[p2], we have annE(X)

(
X[p2]

) ⊂ annE(X)

(
X[p]

)
. Finally,

since X[p] 6= {0}, it follows that X[p] 6⊂ ker(1X), so 1X /∈ annE(X)

(
X[p]

)
, and hence

annE(X)

(
X[p]

) 6= E(X). We shall show that the inclusions

annE(X)

(
X[p2]

) ∩ annE(X)

(
X/p2X

) ⊂ annE(X)

(
X[p2]

) ⊂ annE(X)

(
X[p]

)

are strict. Let ξ : X → X/X[p2] denote the canonical projection, and fix any
a ∈ X \X[p2] and b ∈ X[p]\p2X. Then o(a) = p3, so o(ξ(a)) = p = o(b). By Lemma
2, we can write

X/X[p2] = 〈ξ(a)〉 ⊕A,

where A is a closed subgroup of X/X[p2]. Let λ : 〈ξ(a)〉 → X be the group homo-
morphism given by λ(ξ(a)) = b. Denoting by ϕ the canonical projection of X/X[p2]
onto 〈ξ(a)〉 with kernel A, we see that λ ◦ ϕ ◦ ξ ∈ annE(X)

(
X[p2]

)
, and λ ◦ ϕ ◦ ξ /∈

annE(X)

(
X/p2X

)
(because (λ ◦ ϕ ◦ ξ)(a) = b /∈ p2X), so annE(X)

(
X[p2]

)
properly

contains annE(X)

(
X[p2]

) ∩ annE(X)

(
X/p2X

)
. Finally, since p1X /∈ annE(X)

(
X[p2]

)
and p1X ∈ annE(X)

(
X[p]

)
, annE(X)

(
X[p]

)
properly contains annE(X)

(
X[p2]

)
. Con-

sequently, the inclusions

annE(X)

(
X[p]

) ∩ annE(X)

(
X/p2X

) ⊂ annE(X)

(
X[p2]

) ⊂ annE(X)

(
X[p]

)

are strict. As this contradicts our hypothesis, we must have p2X = X[p].

Lemma 9. Let p ∈ P, let X ∈ L be a group of finite exponent p3 such that pX =
X[p2] and p2X = X[p], and let C be a non-zero closed ideal of E(X). Further, let
P be the set of all ordered pairs (a,G), where a is an element of order p3 of X and
G is a closed subgroup of X satisfying X = 〈a〉 ⊕ G, and for each (a, G) ∈ P let
εa,G ∈ E(X) denote the canonical projection of X onto 〈a〉 with kernel G. Then:

(i) If C contains elements of order p3, then C ⊃ (εa,G | (a,G) ∈ P).

(ii) If p2C = {0} and pC 6= {0}, then C ⊃ (pεa,G | (a,G) ∈ P).

(iii) If pC = {0}, then C ⊃ (p2εa,G | (a,G) ∈ P).

Proof. As in the proof of Lemma 4, for any (a,G) ∈ P and b ∈ X, we let fa,G,b ∈
E(X) be defined by the rule

fa,G,b(t) =

{
b, if t = a;
0, if t ∈ G.
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(i) Pick any u ∈ C with o(u) = p3. Since p2u 6= 0, there exists x ∈ X such that
(p2u)(x) 6= 0, and so o(u(x)) = p3. By Lemma 2, there exists a closed subgroup
Y of X such that X = 〈u(x)〉 ⊕ Y. Given any (a,G) ∈ P, we then have εa,G =
fu(x),Y,a ◦ u ◦ fa,G,x, so εa,G ∈ C.

(ii) Pick any u ∈ C with o(u) = p2. Since pu 6= 0, there exists x ∈ X such that
(pu)(x) 6= 0, so px /∈ ker(u) and o(u(x)) = p2. On the other hand, since p2u = 0,
we have p2X ⊂ ker(u), so X[p] ⊂ ker(u). It follows that px /∈ X[p], so p2x 6= 0, and
hence o(x) = p3. In particular, we can write X = 〈x〉 ⊕ Y for some closed subgroup
Y of X. Now, fix an arbitrary open subgroup U of X such that pu(x) /∈ U. Since
u(x) ∈ X[p2] = pX, there exists z ∈ X such that pz−u(x) ∈ U. As p(pz−u(x)) ∈ U
and pu(x) /∈ U, we cannot have p2z = 0, so o(z) = p3. Let π denote the canonical
projection of X onto X/U. Clearly, π(pu(x)) 6= 0 and π(pu(x)) = π(p2z) = p2π(z),
so o(π(z)) = p3. Hence we can write X/U = 〈π(z)〉 ⊕ Γ for some subgroup Γ of
X/U [3, Lemma 15.1]. Denoting by ϕ the canonical projection of X/U onto 〈π(z)〉
with kernel Γ and letting h : 〈π(z)〉 → X be the group homomorphism defined by
h(π(z)) = x, it is clear that h ◦ ϕ ◦ π ∈ E(X) and (h ◦ ϕ ◦ π) ◦ u ◦ εx,Y = pεx,Y , so
pεx,Y ∈ C. Now, given any (a, G) ∈ P, we have pεa,G = fx,Y,a ◦ (pεx,Y ) ◦ fa,G,x ∈ C.

(iii) Pick any non-zero u ∈ C and any x ∈ X such that u(x) 6= 0. Since pu = 0,
we have pX ⊂ ker(u), so X[p2] ⊂ ker(u), and therefore o(x) = p3. In particular,
X = 〈x〉⊕Y for some closed subgroup Y of X. Now, fix an arbitrary open subgroup
U of X such that u(x) /∈ U. Since u(x) ∈ X[p] = p2X, there exists z ∈ X such that
p2z−u(x) ∈ U. As u(x) /∈ U, we cannot have p2z = 0, so o(z) = p3. Let π : X → X/U
be the canonical projection. Clearly, π(u(x)) 6= 0 and π(u(x)) = π(p2z) = p2π(z), so
o(π(z)) = p3. Hence we can write X/U = 〈π(z)〉⊕Γ for some subgroup Γ of X/U [3,
Lemma 15.1]. Denoting by ϕ the canonical projection of X/U onto 〈π(z)〉 with kernel
Γ and letting h : 〈π(z)〉 → X be the group homomorphism defined by h(π(z)) = x,
it is clear that h ◦ ϕ ◦ π ∈ E(X) and (h ◦ ϕ ◦ π) ◦ u ◦ εx,Y = p2εx,Y , so p2εx,Y ∈ C.
Consequently, for any (a,G) ∈ P, we have p2εa,G = fx,Y,a ◦ (p2εx,Y )◦ fa,G,x ∈ C.

Lemma 10. Let p ∈ P, and let X ∈ L be a group of finite exponent p3 satisfying
pX = X[p2] and p2X = X[p]. For any compact subset K of X and any neighbourhood
U of zero in X, there exist two compact open subgroups K ′, U ′ of X such that
K ∪ U ′ ⊂ K ′, U ′ ⊂ U, and K ′ =

⊕
i∈I〈ai〉 ⊕ U ′ for some finite family (ai)i∈I of

elements of order p3 of K ′.

Proof. Pick an arbitrary compact subset K of X and an arbitrary neighbourhood U
of zero in X. Since X is totally disconnected, we can find a compact open subgroup U0

of X such that U0 ⊂ U [5, (7.7)]. Let K0 = 〈K ∪U0〉. Then K0 is compact [5, (9.8)],
and U0 ⊂ K0. In particular, K0 is topologically isomorphic to a topological direct
product of cyclic p-groups of order at most p3 [5, (25.9)], and so there exist three
disjoint sets I1, I2, and I3 such that K0

∼= ∏
i∈I1∪I2∪I3

Ci, where Ci = Z(p) for i ∈ I1,
Ci = Z(p2) for i ∈ I2, and Ci = Z(p3) for i ∈ I3. Fix a topological isomorphism f
from K0 onto

∏
i∈I1∪I2∪I3

Ci. Given an arbitrary subset J of I1 ∪ I2 ∪ I3, we denote
by C ′

J the subgroup of all (ci)i∈I1∪I2∪I3 ∈
∏

i∈I1∪I2∪I3
Ci satisfying ci = 0 for all

i /∈ J. Since U0 is open in K0, there exist finite subsets J1 ⊂ I1, J2 ⊂ I2, and J3 ⊂ I3
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such that f(U0) ⊃ C ′
(I1\J1)∪(I2\J2)∪(I3\J3). We then have

∏

i∈I1∪I2∪I3

Ci =
( ⊕

i∈J1∪J2∪J3

C ′
i

)
⊕ C ′

(I1\J1)∪(I2\J2)∪(I3\J3),

so

K0 =
( ⊕

i∈J1∪J2∪J3

f−1(C ′
i)

)
⊕ f−1(C ′

(I1\J1)∪(I2\J2)∪(I3\J3)),

where C ′
i stands for C ′

{i}. Set U ′ = f−1(C ′
(I1\J1)∪(I2\J2)∪(I3\J3)) and, for i ∈ J1 ∪J2 ∪

J3, let ai be a generator of f−1(C ′
i). Then U ′ is an open subgroup of X contained

in U0 and
K0 =

( ⊕

i∈J1∪J2∪J3

〈ai〉
)
⊕ U ′.

We also have o(ai) = p if i ∈ J1, o(ai) = p2 if i ∈ J2, and o(ai) = p3 if i ∈ J3.
In the following, we shall construct a compact subgroup K ′ ⊃ K0 which admits a
decomposition similar to that of K0, by replacing the elements ai with i ∈ J1 ∪ J2

by elements of order p3. If J1 ∪ J2 = ∅, we set K ′ = K0. Suppose J1 ∪ J2 6= ∅, and
fix an arbitrary j ∈ J1 ∪ J2. We distinguish the cases when j ∈ J1 and when j ∈ J2.
In the former case we use the equality X[p] = p2X to find an element bj ∈ X such
that aj − p2bj ∈ U ′. As aj /∈ U ′, we cannot have p2bj = 0, so o(bj) = p3. We claim
that

〈p2bj〉 ∩
(( ⊕

i∈(J1\{j})∪J2∪J3

〈ai〉
)
⊕ U ′

)
= {0}.

Indeed, given any x ∈ 〈p2bj〉 ∩
((⊕

i∈(J1\{j})∪J2∪J3
〈ai〉

)
⊕ U ′

)
, we can write

x = lp2bj =
( ∑

i∈(J1\{j})∪J2∪J3

liai

)
+ y′

for some non-negative integers l, li and some y′ ∈ U ′. Since y′ + l(aj − p2bj) ∈ U ′, it
follows that

laj =
( ∑

i∈(J1\{j})∪J2∪J3

liai

)
+ y′ + l(aj − p2bj)

∈ 〈aj〉 ∩
(( ⊕

i∈(J1\{j})∪J2∪J3

〈ai〉
)
⊕ U ′

)
= {0},

so p divides l, and hence x = 0. This proves our claim that

〈p2bj〉 ∩
(( ⊕

i∈(J1\{j})∪J2∪J3

〈ai〉
)
⊕ U ′

)
= {0}.
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Clearly, we then also have

〈bj〉 ∩
(( ⊕

i∈(J1\{j})∪J2∪J3

〈ai〉
)
⊕ U ′

)
= {0}.

In this case, we replace K0 by

K1 = 〈bj〉 ⊕
( ⊕

i∈(J1\{j})∪J2∪J3

〈ai〉
)
⊕ U ′.

Next we consider the second case when j ∈ J2. We use the equality X[p2] = pX to
find an element bj ∈ X such that aj − pbj ∈ U ′. Since then paj − p2bj ∈ U ′ and
paj /∈ U ′, we cannot have p2bj = 0, so o(bj) = p3. We claim that

〈pbj〉 ∩
(( ⊕

i∈J1∪(J2\{j})∪J3

〈ai〉
)
⊕ U ′

)
= {0}.

Indeed, given any x ∈ 〈pbj〉 ∩
((⊕

i∈J1∪(J2\{j})∪J3
〈ai〉

)
⊕ U ′

)
, we can write

x = lpbj =
( ∑

i∈J1∪(J2\{j})∪J3

liai

)
+ y′

for some non-negative integers l, li and y′ ∈ U ′. Since y′+ l(aj − pbj) ∈ U ′, it follows
that

laj =
∑

i∈J1∪(J2\{j})∪J3

liai + y′ + l(aj − pbj)

∈ 〈aj〉 ∩
(( ⊕

i∈J1∪(J2\{j})∪J3

〈ai〉
)
⊕ U ′

)
= {0},

so p2 divides l, and hence x = 0. This proves our claim that

〈pbj〉 ∩
(( ⊕

i∈J1∪(J2\{j})∪J3

〈ai〉
)
⊕ U ′

)
= {0}.

Clearly, we then also have

〈bj〉 ∩
(( ⊕

i∈J1∪(J2\{j})∪J3

〈ai〉
)
⊕ U ′

)
= {0}.

Consequently, in this case we can enlarge K0 by considering

K1 = 〈bj〉 ⊕
( ⊕

i∈J1∪(J2\{j})∪J3

〈ai〉
)
⊕ U ′.
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Now, if (J1 ∪ J2) \ {j} 6= ∅, we can apply the preceding procedure to K1, and so,
after a finite number of steps, we shall arrive at a compact subgroup K ′ of X having
the following form:

K ′ =
( ⊕

i∈J1∪J2

〈bi〉
)
⊕

(⊕

i∈J3

〈ai〉
)
⊕ U ′,

where o(bi) = p3 for all i ∈ J1 ∪ J2. Since ai ∈ K ′ for all i ∈ J1 ∪ J2, we also have
K ∪ U ′ ⊂ K0 ⊂ K ′, so K ′ and U ′ are those required.

Lemma 11. Let p ∈ P, let X ∈ L be a group of finite exponent p3 satisfying
pX = X[p2] and p2X = X[p], and let P be the set of all ordered pairs (a,G),
where a is an element of order p3 of X and G is a closed subgroup of X satisfying
X = 〈a〉 ⊕ G. Then the ideal (εa,G | (a,G) ∈ P) , where εa,G ∈ E(X) denotes the
canonical projection of X onto 〈a〉 with kernel G, is dense in E(X).

Proof. Pick an arbitrary compact subset K of X and an arbitrary open neighbour-
hood U of zero in X. It suffices to show that

(εa,G | (a,G) ∈ P) ∩ [1X + Ω(K, U)] 6= ∅.

By Lemma 10, we can find two compact open subgroups K ′, U ′ of X such that
K ∪ U ′ ⊂ K ′, U ′ ⊂ U, and K ′ =

⊕
i∈I〈ai〉 ⊕ U ′ for some finite family (ai)i∈I of

elements of order p3 of K ′. Further, by Lemma 5 there is a subgroup G of X such
that U ′ ⊂ G and X =

⊕
i∈I〈ai〉 ⊕G. Then (aj ,

⊕
i∈I\{j}〈ai〉 ⊕G) ∈ P for all j ∈ I,

and
∑

j∈I

ε(aj ,
⊕

i∈I\{j}〈ai〉⊕G) − 1X ∈ Ω(K ′, U ′) ⊂ Ω(K,U).

With this preparation, we can now state the main result of this section.

Theorem 3. Let p ∈ P, and let X ∈ L be a group of finite exponent p3. The following
statements are equivalent:

(i) E(X) has exactly two non-trivial closed ideals.

(ii) pX = X[p2] and p2X = X[p].

Moreover, in case these conditions hold, the corresponding ideals are comparable
with respect to set-theoretic inclusion.

Proof. The fact that (i) implies (ii) follows from Lemma 8. Assume (ii), and let P
denote the set of all ordered pairs (a,G), where a is an element of order p3 of X
and G is a closed subgroup of X satisfying X = 〈a〉⊕G. Further, for (a,G) ∈ P, let
εa,G ∈ E(X) denote the canonical projection of X onto 〈a〉 with kernel G. Now, fix
a non-zero closed ideal C of E(X). We can have three possibilities for C.
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First, suppose C contains elements of order p3. Then (εa,G | (a,G) ∈ P) ⊂ C by
Lemma 9, and hence C = E(X) by Lemma 11.

Next suppose p2C = {0} and pC 6= {0}. Then (pεa,G | (a,G) ∈ P) ⊂ C by
Lemma 9. To show the opposite inclusion, we pick any u ∈ C, and let K be a
compact subset of X and U an open neighbourhood of zero in X. By Lemma 10, we
can find two compact open subgroups K ′, U ′ of X such that K ∪ U ′ ⊂ K ′, U ′ ⊂ U,
and K ′ =

⊕
i∈I〈ai〉 ⊕U ′ for some finite family (ai)i∈I of elements of order p3 of K ′.

It then follows from Lemma 5 that X =
⊕

i∈I〈ai〉 ⊕ Y for some closed subgroup
Y of X containing U ′. Since im(u) ⊂ X[p2] and X[p2] = pX, for every i ∈ I there
exists bi ∈ X such that pbi − u(ai) ∈ U ′. Define v ∈ E(X) by setting v(ai) = bi for
all i ∈ I and v(y) = 0 for all y ∈ Y. Then clearly pv − u ∈ Ω(K ′, U ′). Finally, by
Lemma 11, there exists w ∈ (εa,G | (a,G) ∈ P) such that w − v ∈ Ω(K ′, U ′). Since
U ′ is a subgroup in X, we have p(w − v) ∈ Ω(K ′, U ′), and hence

pw − u = p(w − v) + (pv − u) ∈ Ω(K ′, U ′) ⊂ Ω(K, U).

As pw ∈ (pεa,G | (a,G) ∈ P), it follows that u ∈ (pεa,G | (a,G) ∈ P).
Lastly, suppose pC = {0}. Then (p2εa,G | (a,G) ∈ P) ⊂ C by Lemma 9. In

order to establish the reverse inclusion, fix any u ∈ C, and let K be a compact
subset of X and U an open neighbourhood of zero in X. By Lemma 10, there exist
two compact open subgroups K ′, U ′ of X such that K ∪ U ′ ⊂ K ′, U ′ ⊂ U, and
K ′ =

⊕
i∈I〈ai〉 ⊕ U ′ for some finite family (ai)i∈I of elements of order p3 of K ′.

Consequently, X =
⊕

i∈I〈ai〉 ⊕ Y for some closed subgroup Y of X containing U ′.
Since im(u) ⊂ X[p] and X[p] = p2X, for every i ∈ I there exists bi ∈ X such that
p2bi − u(ai) ∈ U ′. Define v ∈ E(X) by setting v(ai) = bi for all i ∈ I and v(y) = 0
for all y ∈ Y. It is then clear that p2v − u ∈ Ω(K ′, U ′). By Lemma 11, there exists
w ∈ (εa,G | (a,G) ∈ P) such that w − v ∈ Ω(K ′, U ′). As U ′ is a subgroup in X, we
have p2(w − v) ∈ Ω(K ′, U ′), and hence

p2w − u = p2(w − v) + (p2v − u) ∈ Ω(K ′, U ′) ⊂ Ω(K,U).

Since p2w ∈ (p2εa,G | (a,G) ∈ P), it follows that u ∈ (p2εa,G | (a,G) ∈ P).

Remark 3. Lemma 8 and Theorem 3 give an answer to our question in the case of
LCA groups of finite exponent p3, where p ∈ P.
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Şt. Rep. Moldova, Matematica, 1998, No. 2(27), 39–49.

[9] Popa V. On LCA groups with compact rings of continuous endomorphisms, Bul. Acad. Şt.
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Moldova, Matematica, 2010, No. 3(64), 77–93.

Valeriu Popa
Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei str. 5, MD-2028 Chişinău
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Abstract. We characterize dimonoids which are semilattices of r-archimedean
(`-archimedean, (t; r)-archimedean) subdimonoids.

Mathematics subject classification: 08B20, 20M10, 20M50, 17A30, 17A32.
Keywords and phrases: Dimonoid, semilattice of subdimonoids, semigroup.

1 Introduction

Dimonoids were introduced by J.-L. Loday [1] for the study of properties of Leib-
niz algebras. Dialgebras, which are based on the notion of a dimonoid, have been
studied by many mathematicians (see, for example, [1-4]). It is well-known that
the notion of a dimonoid generalizes the notion of a digroup [5]. Digroups play a
prominent role in an important open problem from the theory of Leibniz algebras.
Dimonoids were studied in the papers of the author (see, for example, [6–11]). More-
over, note that algebras with two associative operations (so-called bisemigroups)
were considered earlier in some other aspects in the paper of B. M. Schein [12]. The
study of connections between dimonoids and bisemigroups was started in [11].

In this work we characterize dimonoids which are bands of subdimonoids. In
Section 2 we give necessary definitions, auxiliary results (Lemma 1 and Theorem 3)
and some properties of dimonoids (Lemma 2, Theorem 4 and Corollary 1). Putcha
[13] gave necessary and sufficient conditions under which an arbitrary semigroup
is a semilattice of r-archimedean (`-archimedean, t-archimedean) semigroups. In
Section 3 we extend Putcha’s results to the case of dimonoids (Theorem 5).

2 Preliminaries

A nonempty set D equipped with two binary associative operations ≺ and Â
satisfying the following axioms:

(x ≺ y) ≺ z = x ≺ (y Â z),

(x Â y) ≺ z = x Â (y ≺ z),

(x ≺ y) Â z = x Â (y Â z)

for all x, y, z ∈ D, is called a dimonoid. If the operations of a dimonoid coincide,
then the dimonoid becomes a semigroup.

c© Anatolii V. Zhuchok, 2011
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Different examples of dimonoids can be found in [1, 6–11].
The notion of a diband of subdimonoids was introduced in [6] and investigated

in [7]. Recall this definition.
A dimonoid (D,≺,Â) is called an idempotent dimonoid or a diband if x ≺ x =

x = x Â x for all x ∈ D. If ϕ : S → T is a homomorphism of dimonoids, then the
corresponding congruence on S will be denoted by ∆ϕ.

Let S be an arbitrary dimonoid, J be some idempotent dimonoid. Let

α : S → J : x 7→ xα

be a homomorphism. Then every class of the congruence ∆α is a subdimonoid of
the dimonoid S, and the dimonoid S itself is a union of such dimonoids Sξ, ξ ∈ J ,
that

xα = ξ ⇔ x ∈ Sξ = ∆x
α = {t ∈ S |(x; t) ∈ ∆α},

Sξ ≺ Sε ⊆ Sξ≺ ε, Sξ Â Sε ⊆ SξÂε,

ξ 6= ε ⇒ Sξ

⋂
Sε = ∅.

In this case we say that S is decomposable into a diband of subdimonoids (or S is
a diband J of subdimonoids Sξ, ξ ∈ J). If J is a band (=idempotent semigroup),
then we say that S is a band J of subdimonoids Sξ, ξ ∈ J . If J is a commutative
band, then we say that S is a semilattice J of subdimonoids Sξ, ξ ∈ J .

We denote the set of positive integers by N . Let (D,≺,Â) be a dimonoid and
a ∈ D, n ∈ N . Denote the power n of an element a with respect to the operation ≺
(respectively, Â) by an (respectively, by n a).

Lemma 1 (see [8], Lemma 2.4). Let (D,≺,Â) be an arbitrary dimonoid. For all
x ∈ D, n ∈ N

(i) xn Â x = (n + 1)x;
(ii) x ≺ nx = xn+1.

A semigroup S is called r-archimedean (respectively, `-archimedean) if for all
a, b ∈ S there exist x ∈ S1, n ∈ N such that bn = ax (respectively, bn = xa). A
semigroup S is called t-archimedean if for all a, b ∈ S there exist x, y ∈ S1, n ∈ N
such that bn = ax = ya.

Let (D,≺,Â) be a dimonoid. We denote the semigroup (D,≺) (respectively,
(D,Â)) with an identity by D1≺ (respectively, by D1Â).

Lemma 2. Let (D,≺,Â) be an arbitrary dimonoid.
(i) If (D,≺) is an r-archimedean semigroup, then (D,Â) is an r-archimedean

semigroup.
(ii) If (D,Â) is an `-archimedean semigroup, then (D,≺) is an `-archimedean

semigroup.
(iii) If (D,≺) is a t-archimedean semigroup, then (D,Â) is an r-archimedean

semigroup.
(iv) If (D,Â) is a t-archimedean semigroup, then (D,≺) is an `-archimedean

semigroup.
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Proof. (i) Let (D,≺) be an r-archimedean semigroup. Then for all a, b ∈ D there
exist x ∈ D1≺, n ∈ N such that a ≺ x = bn. Multiply both parts of the last equality
by b with respect to the operation Â:

(a ≺ x) Â b = a Â (x Â b) = bn Â b = (n + 1)b

according to the axiom of a dimonoid and Lemma 1 (i). So, (D,Â) is an
r-archimedean semigroup.

(ii) Let (D,Â) be an `-archimedean semigroup. Then for all a, b ∈ D there exist
x ∈ D1Â, n ∈ N such that x Â a = nb. Multiply both parts of the last equality by b
with respect to the operation ≺:

b ≺ (x Â a) = (b ≺ x) ≺ a = b ≺ nb = bn+1

according to the axiom of a dimonoid and Lemma 1 (ii). So, (D,≺) is an
`-archimedean semigroup.

The proofs of (iii) and (iv) are similar.

A semigroup S is called archimedean if for all a, b ∈ S there exist x, y ∈ S1,
n ∈ N such that bn = xay. A dimonoid is called archimedean if its both semigroups
are archimedean.

Let (D,≺,Â) be a dimonoid, a, b ∈ D. Introduce the following notations: a≺|b
if b ∈ D1≺ ≺ a ≺ D1≺ and aÂ|b if b ∈ D1Â Â a Â D1Â.

Theorem 3 (see [8], Theorem 4.1). A dimonoid (D,≺,Â) is a semilattice of
archimedean subdimonoids if and only if for all a, b ∈ D,

a≺|b ⇒ a2
≺|bn for some n ∈ N. (1)

Dually, the following theorem can be proved.

Theorem 4. A dimonoid (D,≺,Â) is a semilattice of archimedean subdimonoids
if and only if for all a, b ∈ D,

aÂ|b ⇒ 2aÂ|nb for some n ∈ N. (2)

From Theorem 4 we obtain

Corollary 1. Let (D,≺,Â) be a dimonoid. Then
(i) (D,≺,Â) with a medial semigroup (D,Â) is a semilattice of archimedean

subdimonoids;
(ii) (D,≺,Â) with a commutative operation Â is a semilattice of archimedean

subdimonoids;
(iii) (D,≺,Â) with an exponential semigroup (D,Â) is a semilattice of archimedean

subdimonoids;
(iv) (D,≺,Â) with a weakly exponential semigroup (D,Â) is a semilattice of

archimedean subdimonoids.

Dually to Corollary 4.1 from [8], this corollary can be proved.
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3 The main result

Observe that a commutative dimonoid was decomposed into a semilattice of
archimedean subdimonoids in [6]. In [9] a free commutative dimonoid was con-
structed and this dimonoid was decomposed into a semilattice of archimedean sub-
dimonoids. In [8] we gave necessary and sufficient conditions under which an arbi-
trary dimonoid is a semilattice of archimedean subdimonoids (see also Theorems 3
and 4).

In this section we give necessary and sufficient conditions under which an arbi-
trary dimonoid is a semilattice of r-archimedean (`-archimedean, (t; r)-archimedean)
subdimonoids.

Let (D,≺,Â) be a dimonoid and a, b ∈ D. Introduce the following notations:
a≺|rb if a ≺ x = b for some x ∈ D1≺; a≺|`b if x ≺ a = b for some x ∈ D1≺; aÂ|`b if
x Â a = b for some x ∈ D1Â; a≺|tb if a≺|rb and a≺|`b.

A dimonoid will be called r-archimedean (respectively, `-archimedean) if both its
semigroups are r-archimedean (respectively, `-archimedean). A dimonoid (D,≺,Â)
will be called (t; r)-archimedean if (D,≺) is a t-archimedean semigroup and (D,Â)
is an r-archimedean semigroup.

Theorem 5. Let (D,≺,Â) be an arbitrary dimonoid. Then
(i) (D,≺,Â) is a semilattice of r-archimedean subdimonoids if and only if for

all a, b ∈ D,

a≺|b ⇒ a≺|rbn for some n ∈ N. (3)

(ii) (D,≺,Â) is a semilattice of `-archimedean subdimonoids if and only if for
all a, b ∈ D,

aÂ|b ⇒ aÂ|`nb for some n ∈ N. (4)

(iii) (D,≺,Â) is a semilattice of (t; r)-archimedean subdimonoids if and only if
for all a, b ∈ D,

a≺|b ⇒ a≺|tbn for some n ∈ N. (5)

Proof. (i) Let the condition (3) hold. By Theorem 3 (1) from [13] the condition
(1) follows from (3). Hence according to Theorem 3 (D,≺,Â) is a semilattice Y
of archimedean subdimonoids (Di,≺,Â), i ∈ Y . From Theorem 3 (1) [13] it fol-
lows that (Di,≺), i ∈ Y, is an r-archimedean semigroup. Then by Lemma 2 (i)
(Di,Â), i ∈ Y , is an r-archimedean semigroup. Thus, (Di,≺,Â), i ∈ Y , is an
r-archimedean subdimonoid of (D,≺,Â).

The necessity follows from Theorem 3 (1) [13].
(ii) Let the condition (4) hold. By Theorem 3 (2) from [13] the condition (2)

follows from (4). Hence according to Theorem 4 (D,≺,Â) is a semilattice Y of
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archimedean subdimonoids (Di,≺,Â), i ∈ Y . From Theorem 3 (2) [13] it fol-
lows that (Di,Â), i ∈ Y, is an `-archimedean semigroup. Then by Lemma 2 (ii)
(Di,≺), i ∈ Y, is an `-archimedean semigroup. Thus, (Di,≺,Â), i ∈ Y, is an
`-archimedean subdimonoid of (D,≺,Â).

The necessity follows from Theorem 3 (2) [13].
(iii) Let the condition (5) hold. By Theorem 3 (3) from [13] the condition (1)

follows from (5). Hence according to Theorem 3 (D,≺,Â) is a semilattice Y of
archimedean subdimonoids (Di,≺,Â), i ∈ Y . From Theorem 3 (3) [13] it fol-
lows that (Di,≺), i ∈ Y , is a t-archimedean semigroup. Then by Lemma 2 (iii)
(Di,Â), i ∈ Y , is an r-archimedean semigroup. Thus, (Di,≺,Â), i ∈ Y, is a
(t; r)-archimedean subdimonoid of (D,≺,Â).

The necessity follows from Theorem 3 (3) [13].

Theorem 5 extends Theorem 3 from [13] about necessary and sufficient con-
ditions under which an arbitrary semigroup is a semilattice of r-archimedean
(`-archimedean, t-archimedean) semigroups.

References

[1] Loday J.-L. Dialgebras. Dialgebras and related operads, Lect. Notes Math., Springer-Verlag,
Berlin, 2001, 1763, 7–66.
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