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Galina B. Belyavskaya’s 70th birthday

On April 19, 2010 Galina Borisovna Belyavskaya turned 70. Presently
she is a leading researcher in the Institute of Mathematics and Computer
Science of the Academy of Sciences of the Republic of Moldova. She has
made a significant contribution to the development of binary and n-ary
quasigroup theory and published about 70 research works in mathematical
journals.

For more than 20 years Galina was the Scientific secretary of the Special-
ized Council for conferring scientific degree at the Institute of Mathematics
of the Academy of Sciences of Moldova.

G. Belyavskaya was born in Ust’-Kamenogorsk, the capital of the East-
Kazakhstan Region of former USSR (now Oskemen in Kazakhstan). Her
parents, born in Altai Region (Siberia) were engineers. Her father worked
as a trees rafter on Siberian rivers. Both were Russian. The father’s mother
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had re-married after her first husband died. G. Belyavskaya’s father took
polish sounding surname after her stepfather. Galina stayed with this sur-
name. In the middle fifties the family moved to Gomel (Belarus) and then
to Kishinev where her father became a teacher.

After her father she also inherited the love to play chess. In her youth
she played chess and became a junior chess champion of Moldova.

In 1957 she began study at the Faculty of Physics and Mathematics of
the Kishinev State University which she graduated with honors in 1962. In
the same year she joined the newly established Institute of Mathematics
of the Academy of Sciences of the Republic of Moldova, that was then a
branch of the Academy of Sciences of the USSR. She still works there today.

Initially she worked in the computer laboratory and develop new pro-
gramming languages, algorithms and software. Her paper [1] is from that
period. In this paper one simple criterium for classifications of partially
symmetric boolean functions is presented.

Since 1967, Belyavskaya begins cooperation with V. D. Belousov. Her
first papers devoted to quasigroups are connected with the problem of a
prolongation (extension) of quasigroups, i.e., a construction of a quasigroup
on (n+ 1)-th order from a quasigroup of n-th order, and with the problem
of a contraction (compression), i.e., a construction of a quasigroups of n-
th order from quasigroups of (n 4 1)-th order. Necessary and sufficient
conditions under which two contraction of a given quasigroup are isotopic
are found in [2| and [3]. A new method of a prolongation is presented in
[5]. Necessary and sufficient condition of isotopy of such two prolongations
of a given quasigroup are found too. The problem of construction and
decomposition of quasigroups was investigated in many of her papers (cf.
[12], [27] and [33]).

Next she studied the systems of binary operations containing two pro-
jections, all quasigroup operations defined on a fixed set ) and satisfying
the generalized Stein’s identity ([7], [8] and [13]). Properties of such systems
are described by means of balanced incomplete block design. A method for
constructing such systems is presented in [7]. Later she generalized those
results to the systems of n-ary quasigroup operations (see [49] and [61]).

Many papers of G. B. Belyavskaya are connected with the problem of
ortogonality of binary and m-ary quasigroups. She start with a characte-
rization of r-orthogonal quasigroups, i.e., quasigroups Q(-), @Q(o) for which
the set {(x-y,xoy) : x,y €Q} contains exactly r different ordered pairs. In
[16] it is proved that for any n > 4 there exist (n+k)-orthogonal quasigroups
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for any k with 2 < k < [n/2]. Necessary and sufficient conditions for a finite
quasigroup to have an r-orthogonal quasigroup are found in [17]. Abelian
groups of order n > 2, n # 4, have no (n? — 2)—, (n® — 3)— or (n? — 5)-
orthogonal quasigroups. Groups of prime order n have no (n+2)—, (n+3)—,
(n +4)— or (n + 5)-orthogonal quasigroups. A method of construction of
(n? — 2)-orthogonal quasigroups of even order n, where n # 1(mod3), by
means of extensions of abelian groups is given in [21]. The set of possible
values of r for which there exist pairs of r-orthogonal quasigroups of order
n is described in [23], [25] and [37]. The class of self-orthogonal n-ary
groupoids is characterized in |31]; pairwise orthogonality of n-ary operations
in [53].

A new and more general version of orthogonality for n-ary operations
is presented in [53] and [57]|. It is connected with hypercubes which are a
generalization of Latin squares to higher dimensions.

A series of her papers is devoted to admissible quasigroups Q(-), i.e.,
quasigroups with m elements containing a sequence of m elements from
different rows and columns of the multiplication table of @Q(-). If this se-
quence has exactly ¢ distinct elements, then we say that a quasigroup Q(-)
is t-admissible. The main results of Belyavskaya on such quasigroups are
contained in [15], [18] and [24]. For example, all numbers ¢t such that a
cyclic group G is t-admissible are determined in [15]. For an arbitrary finite
group similar result is obtained in [24]. Admissible n-ary quasigroups are
studied in [19], |20] and [22].

In the early seventies of last century Belyavskaya investigated semisym-
metric Stein quasigroups, for which she proved that a semisymmetric Stein
quasigroup is invariant under parastrophy [9]. In this paper she also shows
that a semisymmetric Stein quasigroup is isotopic to a group if and only if
it is distributive.

In the late eighties Belyavskaya’s scientific interest has been focused on
the study of algebraic problems of quasigroups. In that time she introduced
several new concepts and has received many important results. To the most
important concepts should be included the concept of chain isotopic quasi-
groups [4], the concept of the centre and the new concept of nuclei that have
led to many significant results (cf. [29], [30], [34], [36], [40], [41]). Commu-
tators and associators of quasigroups introduced and described by her (cf.
[44], [45], |46] and [47]) are useful during investigations of quasigroups.

A large cycle of her works is devoted to T-quasigroups and quasigroups
which are linear or alinear over groups (cf. [38], [39], [42] and [43]). The
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characterization of T-quasigroups, linear and alinear quasigroups with the
help of identities is one of the most important results in the theory of
quasigroups which are linear over groups.

The last papers of G. Belyavskaya are connected with universal-algebraic
problems of the theory of quasigroups and with application of binary and
n-ary quasigroups in coding theory. In [65] she suggest a general method of
the construction of secret-sharing schemes based on orthogonal systems of
partial (in particular, everywhere determined) k-ary operations which ge-
neralizes some known methods of the construction of such schemes by finite
fields and point out the orthogonal systems of k-ary operations respective
of these known schemes.

Galina Belyavskaya was a supervisor of five PhD thesis (S. Murathud-
jaev, A. Lumpov, P. Syrbu, L. Ursu, A. Tabarov). Many scientists from
Moldova and other countries were trained under her supervision. She was
the scientific adviser of graduate students from the Kishinev State Univer-
sity.

Since 1971 G. B. Belyavskaya was the assistant of V. D. Belousov in
the sector of the theory of quasigroups. After his death she has headed the
research team of the theory of quasigroups at the Institute of Mathematics
of the Academy of Sciences of Moldova.

She is an Advisory Editor of the international journal Quasigroups and
Related Systems, and also a member of the Editorial Board of the Bulletinul
Academiei de Stiinte a Republicii Moldova, Matematica.

G. B. Belyavskaya is kind, sympathetic, delicate, trustworthy, very disci-
plined, honest and modest woman. She is a good wife, mother, grandmother
and great grandmother. Recently she has became interested in esoteric and
she published two books on this topic.

Dear Galina Borisovna: The authors of this note heartily congratulate
you on your 70th birthday and wish you continuing success in your scientific
and pedagogical work, strong health, and many long years of life. Thank
you for all that you have done for us.

Wieslaw A. Dudek
Victor Shcherbacov
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Below we present the full list of publications of Galina B. Belyavskaya.
English translations of Russian titles as given in Mathematical Reviews and
Zentralblatt fiir Mathematik may be somewhat different from those used in
this list.

List of publications of Galina B. Belyavskaya

1.

10.

11.

12.

13.
14.

Accounting of partial symmetry of Boolean functions in the synthesis of logi-
cal shemes, (with Yu. N. Pecherskij), (Russian), Teor. Diskret. Avtomatov,
Akad. Nauk Latv. SSR (1967), 51 — 54.

Contraction of quasigroups, I, (Russian), Izv. Akad. Nauk Moldav. SRSR,
ser. Fiz.-Tehn. Mat. Nauk 1 (1970), 6 — 12.

Contraction of quasigroups, I, (Russian), Izv. Akad. Nauk Moldav. SRSR,
ser. Fiz.-Tehn. Mat. Nauk 3 (1970), 3 — 17.

Chain-isotopic quasigroups, (Russian), Mat. Issled. 5 (1970), 13 — 27.

. On generalized prolongation of quasigroups, (Russian), Mat. Issled. 5(1970),

28 — 48.

. Algorithms for the solution of certain problems in the theory of quasigroups,

(Russian), in "Voprosy teorii kvazigrupp i lup", Kishinev 1970, 20 — 30.

S-systems of an arbitrary index, I, (with A. M. Cheban), (Russian), Mat.
Tssled. 7 (1972), 27 — 43.

. S-systems of an arbitrary index, I1, (with A. M. Cheban), (Russian), Mat.

Issled. 7 (1972), no. 2, 3 — 13.

On semisymmetric Stein’s quasigroups, (with A. M. Cheban), (Russian),
Mat. Issled. 7 (1972), no. 3, 231 — 237.

Isotopy of A-quasigroups, (with M. D. Kitoroage), (Russian), Mat. Issled.
8 (1973), no. 1, 3 — 19.

On a representation of composition of n-ary operations by trees, (with A.
M. Cheban), (Russian), in "Issled. teorii kvazigrupp i lup", Kishynev 1973,
52 — 58.

Wreath product of quasigroups by means of pairwise balanced block designs,
(Russian), in "Kombinatornyi analiz", Moscov MGU, 1974, 49 — 53.

S-systems of quasigroups, (Russian), Mat. Issled. 9 (1974), no. 2, 10 — 18.

Interdependence of certain closure conditions in k-nets, (with V. D. Be-
lousov), (Russian), Izv. Akad Nauk Moldav. SRSR, ser. Fiz.-Tehn. Mat.
Nauk 2 (1974), 44 — 51.
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r-orthogonal quasigroups, I, (Russian), Mat. Issled. 39 (1976), 32 — 39.
r-orthogonal quasigroups, 11, (Russian), Mat. Issled. 43 (1977), 39 — 49.
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natorics", North-Holland 1978, 101 — 119.
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T-quasigroups and the center of a quasigroup, (Russian), Mat. Issled. 111
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Interval-valued (€, € Vg;)— fuzzy subquasigroups

Muhammad Akram and Wieslaw A. Dudek

Abstract. In this paper we introduce the notion of interval-valued (€, € Vqz)— fuzzy
subquasigroups and present some of their properties. We characterize interval-valued
(€, € Vgm)— fuzzy subquasigroups by their level subsets. The implication-based such
new fuzzy subquasigroups are also established.

1. Introduction

The notion of interval-valued fuzzy sets was first introduced by Zadeh [21]
as an extension of fuzzy sets in which the values of the membership degrees
are intervals of numbers instead of the numbers. Thus, interval-valued fuzzy
sets provide a more adequate description of uncertainty than the traditional
fuzzy sets. It is therefore important to use interval-valued fuzzy sets in ap-
plications, such as fuzzy control. One of the computationally most intensive
part of fuzzy control is defuzzification. Since interval-valued fuzzy sets are
widely studied and used, we describe briefly the work of Gorzalczany on
approximate reasoning [10, 11], Roy and Biswas on medical diagnosis [16]
and Turksen on multivalued logic [17].

Murali [12] proposed a definition of a fuzzy point belonging to a fuzzy
subset under a natural equivalence on a fuzzy set. The idea of quasi-
coincidence of a fuzzy point with a fuzzy set, which is mentioned in [13]
played a vital role to generate some different types of fuzzy subgroups. A
new type of fuzzy subgroups, (€, € Vq)-fuzzy subgroups, was introduced in
earlier paper Bhakat and Das [5] by using the combined notions of belongines
and quasi-coincidence of fuzzy point and fuzzy set. In fact, (€, € Vq)-fuzzy
subgroup is an important and useful generalization of Rosenfeld’s fuzzy
subgroup. On the other hand, Akram and Dudek applied this concept to
subquasigroup in |2]| and studied some of its properties. Further, it was
discussed by same authors in [3]. In this paper we introduce the notion of

2010 Mathematics Subject Classification: 20N15, 94D05
Keywords: Interval-valued (€, € Vg )— fuzzy subquasigroup, implication-based fuzzy
subquasigroup.
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interval-valued (€, € Vg,,)— fuzzy subquasigroups and present some of their
properties. We characterize interval-valued (€, € Vg,,)— fuzzy subquasi-
groups by their level subsets. The implication-based such fuzzy subquasi-
groups are also established. Some recent results obtained by Akram-Dudek
[3] are extended and strengthened.

2. Preliminaries

A groupoid (G,-) is called a quasigroup if for any a , b € G each of the
equations a-x = b, z-a = b has a unique solution in G. A quasigroup may
be also defined as an algebra (G, -, \, /) with three binary operations -, \, /
satisfying the following identities:

(z-y)/y=2z, z\(v-y) =y,

(z/y)-y=z, z-(z\y)=y.

Such defined quasigroup is called an equasigroup.

A nonempty subset S of a quasigroup G = (G,-,\,/) is called a sub-
quasigroup if it is closed with respect to these three operations.

In this paper G always denotes an equasigroup (G,-,\,/); G always
denotes a nonempty set.

Definition 2.1. An interval number D is an interval [a™,a™| with 0 <
a” < at < 1. Denote the set of all interval numbers by D[0,1]. Then the
interval [a,a] can be simply identified with the number a € [0,1]. For any
two given interval numbers Dy = [a7,b]] and Dy = [ay,b3] € D0, 1], we
define

rmin{ D1, D2} = rmin{lay, b}, [ay, b3 ]} = [min{ay , ay }, min{by, b3 }],
rmax{Dy, Dy} = rmax{lay, b{], [ay, b3 |} = [max{ay , a; }, max{b{, b }],
and take
e Di < Dy < aj <ay and b] < b3,
e D1 =Dy <= a] =a,y andbf:b;,
e Dy < Dy <= D; < Dg and Dy # D,

e kD = k[ay,b]] = [kay,kb]], where 0 < k < 1.



Interval-valued (€, € Vg, )— fuzzy subquasigroups 115

Then, (DJ[0,1],<,V,A) forms a complete lattice under set inclusion with
[0,0] acts as its least element and [1,1] acts as its greatest element. For
interval numbers Dy = [a],b]], D2 = [ay,by] € D0, 1] we define

e D+ Dy =[a] +a; —ajay, b +bF —bjb]].

Definition 2.2. Let G be a given set. Then, the interval-valued fuzzy set
(briefly, IF set ) A in G is defined by

A= {(,[uy(2), py (@) - @ € G}

where () and p}(z) are fuzzy sets of G such that p(z) < p(z) for all
z € G. Let fia(z) = [uy (), uf(z)]. Then

A= {(z,ia(x)) & € GY,
where 14 : G — D|0, 1].

Definition 2.3. An interval-valued fuzzy set 1 in a quasigroups G is called
an interval-valued fuzzy subquasigroup of G if the following condition is sa-
tisfied:

fi(z +y) = rmin{a(z), i(y)} Va, y €G.

Definition 2.4. An interval-valued fuzzy empty set 0 and interval-valued
fuzzy whole set 1 in a set G are defined by 0(z) = [0,0] and 1(x) = [1, 1],
for all z € G. We write t = [t1,t2] and § = [s1, s3] in the interval DJ[0,1].

Based on Bhakat and Das [4], we can extend the concept of quasi-
coincidence of fuzzy point within a fuzzy set to the concept of quasi-coinci-
dence of a fuzzy interval value with an interval valued fuzzy set as follows:

Definition 2.5. An interval valued fuzzy set i of a quasigroup G of the
form o
- te(0,1], ify==x
jity) = { L€ 1
0, ify#uw

is called fuzzy interval value with support x and interval value ¢ and is
denoted by x;. A fuzzy interval value z; is said to be belong to an interval
valued fuzzy set 1 written as xy € v if fu(z) > t. A fuzzy interval value Ty
is said to be quasi-coincident with an interval valued fuzzy set p written as

xyqp if p(x) + t>1.
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Let m be an element of [0,1) and let m be an element of D0, 1) unless
otherwise specified. By x;qs /1, we mean j(x) +t+m > 1, t € D(0, 1_Tm]
For brevity, we write the following notions:

® 1; € Ji or x3qm /0 will be denoted by z; €V .
e 17 € i and x3q5 1 will be denoted by “x; €Agmp."

e The symbol € Ag; means neither € nor ¢z hold.

3. Interval-valued (€, € V¢,,)—fuzzy subquasigroups

Definition 3.1. An interval-valued fuzzy set i in G is called an interval-
valued (€, € Vg, )-fuzzy subquasigroup of G, if

x;l,y;2 S ﬁ — (a; * y)rmin{fl,fz} c \/Qﬁlﬁ
for all z,y € G, t1,t2 € D(0,1] and * € {-,\,/}.

Note that an interval-valued (€, € Vgz,)-fuzzy subquasigroup with m = 0
is called an interval-valued (€, € Vq)-fuzzy subquasigroup.

Example 3.2. Let G = {0,a,b,c} be a quasigroup with the following
multiplication table:

~‘0abc
0|0 a b c
ala 0 ¢ b
blb ¢ 0 a
cle b a O

(7) Consider an interval-valued fuzzy set

[0.65,0.7), if & =0,
_ [0.75,0.8] if z =a,
p(z) = .

[0.35,0.4] if ==,

[0.35,0.4] if z=c.

If m = 0.15, then U(fi;t) = G for all £ € D(0,0.4]. Hence Ji is an interval-
valued (€, € Vq|o.15,0.15))-fuzzy subquasigroup of G.
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(7i) Now consider an interval-valued fuzzy set

[0.42,0.45] if z =0,
~ [0.40,0.41] if z =a,
() = .

[0.40,0.41] if z=c¢,

[0.47,0.49] if z = b.

In this case for m = 0.04 we have

G if ¢ D(0,0.4],
U(ii;t) = 4 {0,b} if t € D(0.4,0.45],
{b} if t e D(0.45,0.48).

Since {b} is not a subquasigroup of G, so U(f;t) is not a subquasigroup
for t € D(0.45,0.48]. Hence p is not an interval-valued (&, € Vq.04,0.04))-
fuzzy subquasigroup of a quasigroup G. O

We now formulate a technical characterization.
Theorem 3.3. An interval-valued fuzzy set @ in G is an interval-valued

(€, € V@i )-fuzzy subquasigroup of G if and only if

e ) > rmin (o), o), |5 A5 ) 1)

holds for all x, y € G.

Proof. Let 1 be an interval-valued (€, € Vgz)-fuzzy subquasigroup of G.
Assume that (1) is not valid. Then there exist 2/, ¥ € G such that

fila’ ) < rmin{ (@), (). [1‘2’” 1‘2’”} 3

If mmin(i(@’), i) < (552, 552), then fi(a’ * ¢f) < min(i(@’), i(y)).
Thus

iz’ o) <t <rmin{f(z'),f(y’)}  for some t € D(0,1].

It follows that x% € pand y% € 11, but (¢'+y");€Q, a contradiction. Moreover,
fi(z'xy )+t < 2t < [1—m,1—m)], and so (2" *y');Gm . Hence, consequently
(2" % y');€ Vgm i, a contradiction.
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On the other hand, if rmin{z(z"), m(y")} > [152, 352, then
1-m 1

a(a) = [52, 52, a(y') > 552, 552 and a(a’ ) < [152, 52
Thus @/y_,, 1, € and /1, 1_my € I, but (' *y)1om 1-m €. Also
(55,5 (=57 =57
1-m 1-m 1-m 1-m 1-m 1-m
s+ [ < [ S+ [ S e

e, (z/xy )[1 m 1 m]qm,u Hence (2'xy )[ —m 1-m)€ Vi, a contradiction.
2
So (1) is valid.

2
Conversely, assume that i satisfies (1). Let z, y € G and t, ty € D(0,1]
be such that x; p and y;, € p. Then

) > rmin (o), o), |15 5} 2 i[5,

2 2 2 2
Assurrie Ehat t < (152, 157 or ty < (152,15 Then pa(z * y) >
rmin{¢1,t2}, which implies that (z * y)rmm{ﬁ %} € B Now suppose that
t; > [—m 12m] and ty > [kTm,kTm] Then p(x *y) > [*Tm,le], and
thus

- ~ 1-m 1- 1—m 1-
u(m*y)+rmin{t1,t2}>[ 2m, Qm}—k[ 2m7 2m]:[1—m,1—m],

ie., (x *y)rmin{{hg}qmﬁ. Hence (z *y)rmin{fﬁg} € Vg1, and consequently,
& is an interval-valued (€, € Vg, )-fuzzy subquasigroup of G. O

The following Corollary follows when m = 0.

Corollary 3.4. An interval-valued fuzzy set i in G is an interval-valued
(€, € Vq)-fuzzy subquasigroup of G if and only if

fil +y) > rmin{i(x), i(y) }
holds for all z, y € G. d

Theorem 3.5. An interval-valued fuzzy set i of G is an interval-valued

(e, € \/qm) -fuzzy subquasigroup of G if and only if each nonempty level set
U(fi; 1), t € D(0, 15 5™, is a subquasigroup of G.
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Proof. Assume that /i is an interval-valued (€, € Vg, )-fuzzy subquasigroup
of G. Let t € D(0,25™] and z,y € U(f;¢). Then fi(x) >t and fi(y) > ¢. It
follows from Condition (1) that

o) > rmin (o), o), |15 5} v £, 5|} <

so that zxy € U(Ji;t). Hence U(Ji; 1) is an interval-valued (€, € Vs, )-fuzzy
subquasigroup of G.

Conversely, suppose that the nonempty set U (1; %V) is a subquasigroup of
G for all t € D(0, 352]. If the condition(1) is not true, then there exists a,
b € G such that u(a* b) < rmin{zi(a), fi(b), [152, 15™]}. Hence we can take
t € D(0,1] such that fi(a  b) < t; < rmin{fi(a), (b), [152, 352]}. Then
t € D(0,5™] and a,b € U(f;t). Since U(f;t) is a subquasigroup of G, it
follows that axb € U(Ji; 1), so fi(axb) > t. This is a contradiction. Therefore
the condition (1) is valid, and so f is an interval-valued (€, € Vg )-fuzzy
subquasigroup of G. O

We induce the following Corollary by putting m = 0.

Corollary 3.6. An interval-valued fuzzy set p of G is an interval-valued
(e, € \/q) -fuzzy subquasigroup of G if and only if each nonempty level set
U(fi;t), t € D(0,1), is a subquasigroup of G. O

Theorem 3.7. Let i be an interval-valued fuzzy set of a quasigroup G. Then
the nonempty level set U(ji;t) is a subquasigroup of G for all t € D(1 o]
if and only if

1-m 1—-m

{7 ), |25 25" } 2 mminie). )

forall z,y € G.

Proof. Suppose that U(fi;t) # 0 is a subquasigroup of G. Assume that
rmax{,u(x*y) [1 m _—m]} < rmin{fi(z), fi(y)} = t for some z, y € G, then
te D(ism S0, u(x*y) <t,zeU(:t)andy € U(i;t). Sincex, y € U(Ji; t),
U(ji; ) is a subquasigroup of G, so = * y € U(fI;t), a contradiction.

The proof of the second part of Theorem is straightforward. O

The following Corollary follows when m = 0.
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Corollary 3.8. Let i be an interval-valued fuzzy set of a quasigroup G.
Then for every t € D(0.5,1] each nonempty level set U(Ji;t) is a subquasi-
group of G if and only if

rmax{,u(x*y)} rmin{zi(z), a(y)}

or all x,y € G. O
f y

Theorem 3.9. For any finite strictly increasing chain of subquasigroups
of G there exists an interval-valued(€, € Vqg,)-fuzzy subquasigroup 1 of
G whose level subquasigroups are precisely the members of the chain with
ﬁ[l_m ) = =GpCGiC...Cc G, =0G.

Proof. Let {t; |t € D(O om) i = 1,...,n} be such that [152, 157 >
1y >ty >t3>. Cons1der the interval-valued fuzzy set p defined by
1-m 1— :
i) = =", 5" ?f z € Go,
te if e Gp\Gg_1,k=1,...,n

Let 2,y € G be such that x € G; \ G;—1 and y € G; \ Gj_1, where
1 < 4,5 < n. We consider the following cases:
Case |: when ¢ > j, then x € G;, y € Gy, so z xy € G;. Thus

o ) > & = mminge ) = rmin 7o), i), | 2515

Case Il: when i < j, then x € G, y € G, so x xy € G;. Thus

filx +y) > t; = rmin{ti, 5} = rmin{ji(2), 7i(y), [1_27” 1_27”} 3

Hence f1 is an interval-valued (€, € Vg )-fuzzy subquasigroup of G. O

The following Corollary follows when m = 0.

Corollary 3.10. For any finite strictly increasing chain of subquasigroups
of G there exists an interval-valued (€,€ Vq)-fuzzy subquasigroup p of G
whose level subquasigroups are precisely the members of the chain with
ﬁ[0.5’0.5} =GoCcGiC...Cc G, =G. O

Definition 3.11. For an interval-valued fuzzy set i in G and ¢ € D(0, 1],
we define four sets:
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a) Q(u;t) ={x € G|zqn},
Q™(1i;t) = {z € G| zygm i},

(il =A{z € G|y € Vau},

(a)
(b)
(c)
(d) [al" =A{z € G|y € Vag p}-

It is clear that [g]7" = U(j; 1) U Q™ (i3 1).

Example 3.12. Let G = {0,a,b,c} be a quasigroup which is given in
Example 3.2. Consider interval-valued fuzzy sets

0.65, 0.67] if 2 =0, [0.58, 0.60] if z =0,
_ 0.54, 0.56] if x=a, _ 0.03, 0.05] if 2 =a,
@) =9 (045, 047] if 2= b, () =9 1048 050] if x = b,
0.39, 0.41] if 2 =c, 0.04, 0.06] if 2 =c.

(1) When m = 0.6, then Uiﬁ;f) = G and Q(i;t) = G for all t € D(0,0.2].
Thus [g]y = G for all t € D(0,0.2]. Hence [u]; is an interval-valued
(€, € Vq(o.6,0.6))-fuzzy subquasigroup of G.

(2) When m = 0.8, then U(7;t) = G and Q(v;t) = {0,b} for all T €
D(0,0.1]. Thus [v]; = G for all t € D(0,0.1]. Hence [7]; is an interval-
valued (€, € Vg 3,0.5))-fuzzy subquasigroup of G. O

We formulate a nice characterization.

Theorem 3.13. An interval-valued fuzzy set @ of G is an interval-valued
(€, € Vam)-fuzzy subquasigrgup of G if and only if for every t € D(I_Tm, 1]
each nonempty level Q™ (p;t) is a subquasigroup of G.

Proof. Assume that i is an interval-valued (€, € Vgy;)-fuzzy subquasigroup
of G and let € D(35™, 1] be such that Q™ (fi;t) # 0. Let z, y € Q™ (1i; 1).
Then 27957 and y;qm 1, i.e., fi(z) + +m > 1 and fi(y) +t+m > 1. Using
Theorem 3.3, we have

fi(x * y) > rmin {u(a;), fi(y), [1_27”7 1—277%] }

e ) > mmin () )i i (i) ) > |25 5
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~ 1-m 1—m ) . - 1-m 1—m
plrxy) > |——,——| if )min{u(z),p1(y)} < |——, ——
2 2 2 2
that is, (x*y)7qm f. So xxy € Q™ (1; t). Hence Q™(Ji; 1) is a subquasigroup
of G.

The proof of the sufficiency part is straightforward and is hence omitted.
This completes the proof. O

Open problem. Prove or disprove that the following characterization is
true.

An interval-valued fuzzy set @ of G is an interval-valued (€, € Vqp,)-fuzzy

1-m

subquasigroup of G if and only if for every t € D( 5, 1] each nonempty

level [p]]" is an subquasigroup of G.

4. Implication-based new fuzzy subquasigroups

Fuzzy logic is an extension of set theoretic multivalued logic in which the
truth values are linguistic variables or terms of the linguistic variable truth.
Some operators, for example V; A; —; — in fuzzy logic are also defined by
using truth tables and the extension principle can be applied to derive defi-
nitions of the operators. In fuzzy logic, the truth value of fuzzy proposition
p is denoted by [p]. For a universe of discourse U, we display the fuzzy
logical and corresponding set-theoretical notations used in this paper.

L. [z € p] = p(2),

2. [p A g = min{[p], [¢]},

3. [p— ¢l = min{1,1 - [p] + [q]},

4. [Vzp(z)] = infrev{p(2)},

5. = p if and only if [p] = 1 for all valuations.

The truth valuation rules given in (4) are those in the Lukasiewicz system
of continuous-valued logic. Of course, various implication operators have
been defined. We show only a selection of them in the following:

A. Gaines-Rescher implication operator (Igg):

1 if z <y,
0 otherwise .

Igr(z,y) = {
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B. Gddel implication operator (I):

1 if <y,
y otherwise .

Ig(.’E,y) = {

C. The contraposition of Gadel implication operator (I¢):

To(r.y) = 1 if <y,
G\LY) = 1 —x otherwise .

Ying [19] introduced the concept of fuzzifying topology. We can extend
this concept to a quasigroup, and we define an interval-valued fuzzfying
subquasigroup as follows:

Definition 4.1. An interval-valued fuzzy set p in G is called an interval-
valued fuzzifying subquasigroup of G if

= min{lz € a], [y € 4]} — [z *y € 4
for any z, y € G.

Obviously, Definition 4.1 is equivalent to the Definition 2.3. Hence an
interval-valued fuzzifying subquasigroup is a fuzzy subquasigroup. Ying
[18] introduced the concept of t-topology, i.e., = p if and only if [p] > ¢ for
all valuations. We give the definition of ¢-implication-based subquasigroup.

Definition 4.2. Let /i be an interval-valued fuzzy set of G and ¢ € D(0, 1].
Then 1 is called a t-implication-based subquasigroup of G if for any z,y € G

= min[z € jil, [y € i} — [z +y € i
The following proposition is obvious.

Proposition 4.3. Let I be an implication operator. An interval-valued
fuzzy set @ of G is a t-implication based interval-valued fuzzy subquasigroup
of G if and only if I(rmin{p(z), n(y)}, i(x xy)) =2 t forallz, y € G. [

We now formulate characterizations of implication-based interval-valued
fuzzy subquasigroups.

Theorem 4.4. Let 11 be an interval-valued fuzzy set in G. If I = Ig, then
1is a [1_Tm, 1_Tm]—z'mplicatz'on— based interval-valued fuzzy subquasigroup of
G if and only if 11 is an interval-valued (€, € Vqg,)-fuzzy subquasigroup of

g.
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Proof. Suppose that j is a [1—va 1_Tm}—implication based subquasigroup of

G. Then

(i) Io(min{fi(z), fily)} itz + ) > [152,152] for all 2, y € G.
(7) implies that
1—

fi(wy) > rmin{ii(x), fi(y)} or rmindji(x), fi(y)} > filwsy) > [152, 152).
It follows that

it ) > min (o) 0, | 5™ 15
From Theorem 3.3, it follows that g is an interval-valued (€, € Vgz)-
fuzzy subquasigroup of G.
Conversely, suppose that jz is an interval-valued (€, € Vg )-fuzzy sub-
quasigroup of G. From Theorem 3.3, if rmin{z(z), fi(y), [152, 52]} =
rmin{7i(z), i(y) }, then

Io(min{fi(z), i(y), (s +9)} =1 > [1‘2’” 1‘2”‘} .

1-m 1-m

Otherwise, Ig(rmin{n(z), a(y), i(x * y)} > 5%, -5%]. Hence i is a

1-m 1-—-m

[*5, =5 |-implication based subquasigroup of G. O

Theorem 4.5. Let [i be an interval-valued fuzzy set in G. If I = I, then
1 is a [kTm, 17Tm]—im;tolication—based interval-valued fuzzy subquasigroup of
G if and only if i satisfies the following assertion for all x, y € G:

1-m 1-m

(if) rmax{fi(2), [152, 521} > rmin{@i(e), fi(y). I}.

Proof. Suppose that 1 is a [1_77”, 1_T”"”]fimplication based interval-valued

fuzzy subquasigroup of G. Then
(iii) To(min{ji(z * y).ji(2), fiy)}) > 152, 152] for all 2,y € G.

From (iii), it follows that Ig(rmin{(z * y), (), i(y)})
1—

Ao ) > min{f(e), iy} or T — rin{i(), By)} > (52, 5], ie.
rmin((e). () < (17, 157),
Thus

mma {7(e =), 5252 5 eminfto) 0. T

Hence 1 satisfies (i7).
The proof of converse part is obvious. O



Interval-valued (€, € Vg, )— fuzzy subquasigroups 125

Theorem 4.6. Let i be an interval-valued fuzzy set in G. If I = Igg, then
& is a [0.5,0.5]-implication- based interval-valued fuzzy subquasigroup of G
if and only if @i is an interval-valued fuzzy subquasigroup of G.

Proof. Obvious. O

Corollary 4.7. Let I = I. Then i is a [0.5,0.5]—implication-based interval-
valued fuzzy subquasigroup of a quasigroup G if and only if 11 is an interval-
valued (€, € Vg )- fuzzy subquasigroup of G. O

Corollary 4.8. Let I = I. Then [i is a [0.5,0.5]—implication-based interval-
valued fuzzy subquasigroup of a quasigroup G if and only if i satisfies the
following conditions:

rmax{fi(z * y), [0.5,0.5]} > rmin{fi(z), i(y),1}

or all x,y € G. O
J 'Y
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Once more about Brualdi’s conjecture

Ivan Deriyenko

Abstract. A new algorithm for finding quasi-complete or complete mappings for Latin
squares is presented. This algorithm is a modification of the previous algorithm by this
author from 1988.

1. Introduction

In 1988 the author published the paper [3], where he proved the Brualdi’s
conjecture. In 2005 P. J. Cameron and I. M. Wanless disproved in [1] the
author’s proof and gave a counter-example. The author agrees with them
that his proof presented in [3] is not complete. However, the author does
not agree with the counter-example given in [1]. Problems seem to have
appeared because the paper was written in Russian, the algorithm was
described by the author in a complicated form and it was translated to
English without the author’s consultancy and not quite correctly (as well
as the author’s surname which should be Deriyenko, not Derienko). In the
present paper the author again describes the algorithm in a simpler form,
reveals the groundlessness of the counter-example given in the paper [1].
The way the algorithm works is presented on a concrete example.

The author does not claim that this algorithm gives the final confir-
mation of the Brualdi’s conjecture, but believes that his algorithm gives
significant progress in solution to this problem.

2. Preliminaries

Q(-) always denotes a quasigroup, @ — a finite set {1,2,3,...,n}, ¢, —
permutations of @), S — the set of all permutations of ). The composi-

2010 Mathematics Subject Classification: 05B15, 20N05
Keywords: quasigroup, complete mapping, quasicomplete mapping, algorithm,
Brualdi’s conjecture.
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tion of permutations is defined as pi(z) = ¢(¢(z)). Permutations will be
written as a composition of cycles; cycles will be separated by dots, e.g.

1 2 3 45 6
(p:

5 195 4 6>:(132.45.6.)

Any permutation ¢ of @) defines on a quasigroup Q(-) a mapping

P(x) =z - p(x).

By the range rg(¢) of a permutation ¢ € Sx we mean the number of
elements of the set p(X) = {p(z):x € X C Q}.

If [§(X)| = |X|, then we say that ¢ is a complete mapping on the set
X. In this case @ is one-to-one. If |p(X)| < |X|, then we say that ¢ is
incomplete on the set X. In particular, when [(X)| = |X| — 1 we say that
@ is a quasicomplete mapping.
The Brualdi’s conjecture (see for example |2])
Every finite quasigroup has a complete or quasicomplete mapping.

In other words, for every finite quasigroup Q(-) there is a permutation
© such that

p(Q) > 1Q - 1.

Some results on the Brualdi’s conjecture are known. For example:

All groups of odd order have a complete mapping (see [2]).

All symmetric groups Sy, (n > 3) have a complete mapping (see [2]).

A finite group order n which has a cyclic Sylow 2-subgroup does not
possess a complete mapping (see [2]).

If a quasigroup of order 4k + 2 has a subquasigroup of order 2k + 1,
then its multiplication table is without complete mappings (see [5]).

Some known approximations of the range ¢t = rg(y) of a permutation ¢
of a quasigroup of order n.

a) t=[n—0(logyn)l, (Sade, 1963, [6])
b) t>[2H] forn>7, (Koksma, 1969, [4])
c) t=[n-—+nl, (Woolbrighte, 1978, [9])

) )

d) t=[n-5>5(nn)?. (Shor, 1982, [7]
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3. D-algorithm

In this section we describe the algorithm which gives the possibility to find
a quasicomplete or complete mapping for a given finite quasigroup. But
first we prove some auxiliary results.

Let Q(-) be a quasigroup, X C @, ¢ some fixed permutation of @). By
the block By = {X, ¢} of a quasigroup Q(-), where k = |X|, we mean the
subtable

Bp =X x p(X)

contained in the multiplication table of Q(-). The set X is called a basis of
the block Bjy. Note that the same block can be determined by two different
permutations ¢ and . This situation takes place when ¢(X) = ¥(X). The
block By = {X, ¢} is called complete if

[ X = [@(X)].

In this case, @ is one-to-one. If |3(X)| < |X|, then the block By, is called
incomplete. An incomplete block By, is called quasicomplete, if

[P(X)] = X[ -1,

and a lopped block, if
[P(X)] = [X]=2. (1)

In such block there exists at least one element z* € B(X), called a
star-element, such that
7 (=) > 1.

The following fact is obvious.
Lemma 3.1. A lopped block has one or two star-elements. O

Let Z* be the set of all star-elements of a lopped block B = {X, ¢} and
® ~Y(Z*) = S. If a lopped block B has one star-element z*, then, obviously

S =% '(2") = {51, 52, 83}.
If it has two star-elements 2] and z3, then we have
S =2 1) ={s1,52},  S" =0 '(z) = {s3,5},

SUS’ =S, SNnS"=0.
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So, |S| = r, where r € {3,4}.

A transposition o = (s;, sj) such that s;,s; € S'if |S| =3 and s; € 5,
s; € 8", if | S| = 4, is called a star-transposition. In the case |S| = 3 we have
three possibilities to build «, in the case |S| = 4 we have four possibilities.

Lemma 3.2. For a lopped block B = {X, ¢} the following inequality is true:

rg(pa) = rg(p)

Proof. Indeed, since pa(zr) = p(z) for x € X \ 5, we have pa(z) = @(x)
for all z € X \ S. Hence [pa(X \ S)| = [@(X \ S)|. For s;,s; € S elements
ai(s5) and gai(s;) may not be in H(X). So, [pa(X)| > [F(X)]. 0

Now, let us describe our D-algorithm which gives the possibility to find
a quasicomplete or complete mapping.

D-ALGORITHM

Let Q(+) be a fixed quasigroup of order n > 3, By, = {X, ¢} its arbitrary
lopped block, | X| = k.

STEP 1.
(a) Determine the set Sy according to 3.
Let So = {so1, S02, --, Sor }, where r € {3, 4}.
(b) Determine all star-transpositions ozgt) = (s0i,505), 1 <t <.

(c¢) Calculate all r permutations 4,0?) = gpoagt).

(d) If rg(cp@) > rg(po) for some gp@, 1 < g < r, then the goal has
been achieved. If not, i.e.,

rg(p1’) = r9(0) (2)

holds for all 1 < ¢ < 7, then we can take one of the star-transposi-
tions, say a; = ocgto), calculated in (b), put ¢1 = @paq and we state
in the same block By = {X, 1} (with the same set X and ¢1(X) =

©0(X)), which in view of (2), also will be a lopped block.

STEP j + 1.
First we start with j = 1.
(a) Determine the set S; according to p;, where ¢; was calculated in
the previous step.
(b) Determine all star-transpositions O‘ﬁr

®)

One of the transpositions iy will coincide with the transposition
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aéto) used in the previous step. Suppose that it is 0‘5’21- We exclude

it from further consideration because it returns us back to ¢;. So,
in the future we will consider only permutations of the form
® _ (t)
Pit1 = Pi%41s
where t =1,2,...,r—1, r=15;|.
(¢) If rg(gog-?_l) >rg(gpj) for some gpﬁl, then the goal has been achieved.

If not, i.e.,

rg(\))) = rg(p;) (3)

for all 1 <t < r—1, then we can take one of the star-transpositions,
say Qi1 = ag-tfr))l, calculated in (b), put ¢;j4+1 = @ a1 and we state
in the same block By = {X, ¢;+1} (with the same set X such that

©0j+1(X) = ¢;(X)), which in view of (3), also will be a lopped block.

Next we go back to the beginning of the STEP j+ 1 replacing j by j+1,
i.e., we go back to (a) taking ¢;41 instead of ¢; and so on, until we find a
permutation ¢, = poa1Qs2 ..., such that

rg(Pm) > 19(Pm—1)- (4)

Now, we can go to the block of higher order.
Inequality (4) admits of two possibilities:

r9(em) —rg(Pm-1) = 2,
r9(¢m) = r9(Pm-1) = 1.

In the first case we can add to the set X = {1, ..., zx} two new elements
Tp+1, Thr2 € Q@ \ X. In this way we obtain the set

X1 = X U{xpp1, Tq2}-

In the second case we add only one element.

This set together with ¢, gives a new lopped block B" = {X1, pm}.
We mark it as By = {X, ¢o} and repeat the above algorithm for this block
starting from the STEP 1.

After several repetitions, the algorithm stops. The goal will be achieved.
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4. Comments

This D-algorithm is not identical with our old algorithm described in [3].
These algorithms have common principles, but they are significantly differ-
ent. In our old algorithm, each step, starting from the second is uniquely
determined. Only in the first step, we have several possibilities to select the
initial transposition aj. In our D-algorithm on each step we have two or
three possibilities to select the star-transposition a;.

In [1] is given the counter-example to the work of our old algorithm.
This counter-example shows that our old algorithm can cause a return to the
beginning of the procedure. The author agrees with this counter-example,
but he do not think that it is a "fatal error" (see [8]) because in each return
to the beginning, we can choose a new value of a; and repeat the whole
procedure. Then we get different results. This algorithm can be repeated
in such a way six or eight times.

Our new D-algorithm gives even more possibilities. In this algorithm,
in every step the transposition a; can be chosen in two or three ways. This
algorithm can be returned to the start many times and after that we can
many times change the way of it works.

The author tested this algorithm on many examples and in each case he
received a positive solution. He received a positive solution also in the case
of quasigroups of large orders.

The author understands that it is not a complete proof of the Brualdi’s
conjecture, but if we can show that this D-algorithm gives the possibility to
"ook" (k—2)2+1 cells from among k? cells of a block By, then it will be the
proof of the Brualdi’s conjecture or at least proof that our this algorithm
always leads to the goal.

5. Counter-example

The counter-example to our old algorithm was given in [1|. This counter-
example is built on "the partial Latin square of order 15". We complete this
Latin square and present it below. Elements calculated in [1] are marked
here.
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1 3 9 6 7T 8§ 11 12 4 13
1 [15] 2 [14] 3 [12] 10 8 11 13 5
2 4 7 6 153 8 9 3
3 4 1 [13][14] [15] 9 12 7 10 11
4 6 1 8 5 9 2 14 3
5 3 [12][15] 4 [11] 2 14 10 8 7
6 5 4 7 9 3 1 13 14 12 15
. 3] (6] [7) 21 (5] [3] 9
7 9 8 5 1 4 14 15 13 11 6
9 10 15 11 2 1 12 [7][4] 6 14
11 14 6 12 5 2 9 [7] 13[4] 10 (3] 15 8
12 8 9 2 13 10 (7] [6][5] 15 1 4
13 7 10 3 8 9 11 1 (5] 2
4 2 5 8 11 13 3 [6] 1 [7] 10
5 12 7 6 10 5 13 4 9 2 [1]

Let us analyze the work of the algorithm using this counter-example.

STEP 1.
We start with the identity permutation ¢y = . In this case

_ (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Yo = 10 15 14 13 12 11 2* 1* 2 3 4 5 6 7 1* )’
Zp = {152}, 7,1 (1*) ={8,15} = Sh, B, (2*) ={7,9} = SJ. Thus
rg(po) = 13.

Since S = S’ U S” = {7,8,9,15}, we can choose ¢ in four ways. For

each selected xg we have two possibilities to build a star-transposition a.
Hence, we have eight ways to do the first step.

We we select zg = 8. This element will be fixed for this block in whole
our procedure. In the next block another element will be selected and fixed.
For zg = 8 we have two star-transpositions:

alV = (8,15) and ol? = (8,9).
Let us choose the second transposition ag = (8,9). Then

Y1 = poay = e = (8,9).
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STEP 2.
Now we have

_ (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P1=110 15 14 13 12 11 2 4* 3* 3* 4 5 6 7 1 )°

Zi =34}, 77'(3*)=1{9,10} =5, %;'(4") ={8,1} =S/ which
means that rg(¢1) = 13.

Since xg = 8 € S, the second element of a star-transposition ay should
be in S7. From the fact that ag # a1, we obtain

042:(8,1(]).
Hence ¢ = 105 = (8,9)(8,10) = (8 10 9.).
STEP 3.
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P27\ 10 15 14 13 12 11 2 6* 3 5 4 5 6 7 1 )°

Zy = {56}, %,'(5*) ={10,12} = S}, %,'(6*) = {8,13} = S4. Thus
rg(p2) = 13.

Then a3 = (8,12) and 3 = oz = (8 12 10 9.).
STEP 4.

_ (1 2 3 4 5 6 7 8 910 11 12 13 14 15
P37\ 10 15 14 13 12 11 2 28 3 5 4 7 6 7 1 )’

Zy ={25,7}, 25312 ={1,8} =S4, B3(7") ={12,14} = SY. Hence

rg(ps) = 13.
Then oy = (8,14) and ¢4 = @3aq = (8 14 12 10 9.) and so on.
Continuing this procedure we obtain @48 = g, which means that we
return to the start. After that we have seven possibilities to choose ;.
Now we again take a; = (8,9), but in this case we select 29 = 9 as a fixed
element.
NEW STEP 1.
1 = o1 = a1 = (8,9),

_ (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PI7N 10 15 14 13 12 11 2 4* 3* 3* 4 5 6 7 1 )°
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Zy =1{3*,4*}, 7,13 ={9,10} =5), B, (4*) ={8,11} = S. Thus

rg(e1) = 13.
Then ag = (9,11) and p2 = p1a2 = (8 9 11.).

NEW STEP 2.

_ (1 2 3 4 5 6 78 9 10 11 12 13 14 15
P27\ 10 15 14* 13 12 11 2 4 14* 3 9 5 6 7 1 )

rg(p2) = 14.

The goal has been achieved. P, is a quasicomplete mapping.

Remark 5.1. Note that in our old algorithm every step, beginning from
the second one, was uniquely determined. In our new algorithm at each
stage we have two or three possibilities to perform the next step. Number
of possibilities depends on the number of elements of the set S.
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Added after publication (February 24, 2011). The citation [6] on page
128 is incorrect. The approximation ¢ > [n — O(logy n)] was obtained by
P. Hatami and P. W. Shor in the article A lower bound for the length of a
partial transversal in Latin square, J. Comb. Theory, Ser. A, 115 (2008),
1103 — 1113.
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Intersection graphs of normal subgroups of groups

Sayyed Heidar Jafari and Nader Jafari Rad

Abstract. We give characterizations of groups whose intersection graphs of normal
subgroups are connected, complete, forests, or bipartite.

1. Introduction

Let F'={S; :i € I} be an arbitrary family of sets. The intersection graph
G(F) of F is the graph whose vertices are S, ¢ € I and in which the vertices
S; and S; (i,j € I) are adjacent if and only if S; # S; and S; N S; # 0. It
is known that every simple graph is an intersection graph, ([4]).

It is interesting to study the intersection graphs G(F') when the mem-
bers of F' have an algebraic structure. Bosak [1] in 1964 studied graphs
of semigroups. Then Csakany and Pollak [2] in 1969 studied the graphs
of subgroups of a finite group. Zelinka [6] in 1975 continued the work on
intersection graphs of nontrivial subgroups of finite abelian groups.

Recall that a subgroup H of a group G is normal if g-'Hg = H for
every g € G.

In this paper, we consider the intersection graph of normal subgroups
of a group. For a group G, the intersection graph of normal subgroups of
G, denoted by I'(G), is the graph whose vertices are in a one-to-one corre-
spondence with proper nontrivial normal subgroups of G and two distinct
vertices are adjacent if and only if the corresponding normal subgroups of
G have a nontrivial (nonzero) intersection. Clearly I'(G) does not exist if
and only if G is simple. Note that the intersection graph of a simple group
G is not defined, since a graph can not have an empty vertex set.

The graph theory and group theory notation terminology follow from
[5] and [3], respectively.

Throughout the paper, to simplify, for a normal subgroup N in a group
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G we use "the vertex N" instead of "the vertex in I'(G) corresponded to
N". Also we use 0 as the trivial subgroup.

2. Connected and complete graphs

In this section we characterize all groups whose intersection graphs are
connected or complete. We first some graph theory and group theory def-
initions. A graph G is complete if there is an edge between every pair of
the vertices. We denote the complete graph on n vertices by K,. A path

of length n in a graph G is an ordered list of distinct vertices vg, v1, ..., U,
such that v; is adjacent to v;y1 for ¢ = 1,2,...,n — 1. We denote by
vg — V1 — ... — Uy to such a path. A (u,v)-path is a path with endpoints u

and v. For vertices z and y of G, let d(x,y) be the length (the number of
edges) of a shortest path from z to y (d(x,z) = 0, and d(z,y) = oo if there
is no path between x and y). A graph G is connected if it has a (u, v)-path
for each pair u,v € V(G).

Recall that a chain 0 = Go C G; C ... C G, = G of subgroup of a group
G is a composition seriers if G; <G;41 and % is simple for ¢ = 0,1,...,n.
The length of the chain is n. If G has a confposition series, then any two
compositione series of G have the same length, denoted by lc¢(G).

Lemma 2.1. Let G = A1 X AQ. If Ni < Al fO’I”’i = 1, 2, then N1 X NQ < G.

The complement G of G is the graph with vertex set V(G) = V(G), and
E(G) = {uv : w ¢ E(G)}. The complement of a complete graph is the
null graph.

Lemma 2.2. Let G = Nj x Ny, where N1, Ny are simple. Then I'(G) is
null.

Proof. Since N1 and Ny are simple, then l¢(G) = 2. Then any normal non-
trivial proper subgroup of G is both maximal and minimal. This completes
the proof. O

Recall that a group G is a direct sum of two normal subgroups N7 and
Ny if N1 NNy =0 and N1No = G, where N1 Ny = {xy x € N1,y € NQ}.

Theorem 2.3. Let G be a group. Then I'(G) is disconnected if and only if
G = N1 & N3, where N1 and Ny are simple normal subgroups of G.
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Proof. Let I'(G) be disconnected. Then I'(G) has at least two components.
Let Ny and N3 be two normal subgroups of G and the corresponding vertices
included in two different components of I'(G). Thus, N; N Ny = 0. Since
Ny U Ny C N1Ny, we obtain N1 Ny = GG. We conclude that G = N1 @ Ns.
Now we show that N7 and Ny are simple. If Ny is not simple, then Ny has
a proper nontrivial subgroup N. Then by Lemma 2.1, N <G. Now NNy is
adjacent to both N and N, a contradiction. Thus N; is simple. Similarly,
Ny is simple.

The converse follows from Lemma 2.2. O

The center Z(G) of a group G is the set of all elements x which xy = yz
for every y € G. A chain Go =0C Gy C ... C Gy = G is a central series
of G if G?jl C Z(%) fori=1,2,...,t. A group G is nilpotent if G has
a central series.

Corollary 2.4. If G is nilpotent, then I'(GQ) is disconnected if and only if
G = Zp X Lq, where p,q are two non necessarily distinct primes.

Proof. Notice that any nilpotent simple group is in the form Z,, where p is
a prime. O

The next theorem provides a characterization for all groups whose in-
tersection graphs are complete.

Note that a group G satisfies the minimal condition on normal subgroups
if any non-empty subset of normal subgroups of G' contains a minimal ele-
ment.

Theorem 2.5. Let G be a non-simple group that satisfies the minimal con-
dition on normal subgroups. Then I'(G) is complete if and only if G has a
unique minimal normal subgroup.

Proof. Let G be a non-simple group and G satisfies the minimal condition
on normal subgroups. Let I'(G) be complete. Then G has at least one
minimal normal subgroup. Let N be a minimal normal subgroup of G. If
N7 is a minimal normal subgroup different from N, then N NNy = 0, since
0<NNM § N and NN N; <G. This implies N and N are not adjacent
in I'(G). This is a contradiction, since I'(G) is complete. We deduce that
N is the unique minimal normal subgroup of G.

Conversely, suppose that G has a unique minimal normal subgroup say
N. Let K and L be two nontrivial normal subgroups of G. Since G satis-
fies the minimal condition on normal subgroups, K and L each contain a
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minimal normal subgroup. By assumption N C K N L, and so K N L # 0.
Thus the vertices K and L are adjacent in I'(G). This means that I'(G) is
complete. O

Corollary 2.6. Forn > 1, I'(Zyn) is Kp—1. O

Example 2.7. The intersection graph of the generalized quaternion group
Qn, (of order 4n) is complete. Note that @, has a unique minimal normal
subgroup of order 2.

Example 2.8. For any prime p, the intersection graph of Zjec = {™* +Z:
m,n € Z,n = p' for some t € NU{0}} is an infinite complete graph. To see
this notice that all proper nontrivial normal subgroups of Z,~ are in the
form (I% +7Z), where i > 1. However, the only minimal normal subgroup of

Lpoe s (3 + 7).

Corollary 2.9. For a finite nilpotent group G, I'(G) is complete if and only
if G is a p-group and Z(G) is cyclic.

Proof. Note that any subgroup of Z(G) of prime order is a minimal normal
subgroup of G, and a prime p is a prime factor of |G| if and only if p is a
prime factor of Z(G). O

Example 2.10. If n is a power of 2, then the intersection graph of the
dihedral group D, is complete. Notice that D,, is a 2-group and the center
of this group is of order 2.

3. Forests and bipartite graphs

In this section we characterize all groups whose intersection graphs are
forests or bipartite. We recall that a graph G is called bipartite if its vertex
set can be partitioned into two independent subsets X and Y such that
every edge of GG has one endpoint in X and other endpoint in Y. We denote
by C,, the cycle with vertex set {vg,v1,...,v,} and edge set {v;vit1 11 =
1,2,...,n—1}U{viv,}.

Lemma 3.1. Let G = Ny X Na, where Ny, Ny are normal subgroups of G.
Then T'(G) has a cycle Cs5 if and only if N1 or Ny is not simple.
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Proof. (=) follows by Lemma 2.2.

(<=) Assume that Nj is not simple. Let N be a nontrivial proper normal
subgroup of Ni. Then N x No — N x0— N; x 0 — N x Ny is a cycle on
three vertices. O

Lemma 3.2. If G is an indecomposable group of length 2, then I'(G) is K.

Proof. Since lc(G) = 2, G has at least one proper nontrivial normal sub-
group. By assumption any proper nontrivial normal subgroup of G is both
minimal and maximal. We show that GG has exactly one proper nontriv-
ial normal subgroup. Suppose to the contrary that Nj, Ny are two dis-
tinct proper nontrivial normal subgroups of G. Then Ny N Ny = 0, and
G = N1 N,, a contradiction. O

A group G is indecomposable if it is not isomorphic to direct product
of two nontrivial groups.

Lemma 3.3. Let G be an indecomposable group with lc(G) = 3. If G has
a unique mazimal normal subgroup, then I'(G) is a forest.

Proof. By assumption any normal subgroup of G is either minimal or max-
imal. Let N be the unique maximal normal subgroup of G. If there are two
distinct normal subgroups K1, Ko of G different from NV, then K; and Ko
are minimal, and so K7 N Ky = 0. This completes the proof. O

We are now ready to characterize all groups whose intersection graphs
are forest.

Theorem 3.4. The intersection graph of a group G is a forest if and only
if one of the following holds:
(1) le(G) =2,
(17) le(G) =3, and G is an indecomposable group with a unique mazi-
mal normal subgroup,
(7it) G = My x My, where My, My are simple groups.

Proof. (<) follows from Lemmas 3.3, 3.2, and 3.1.

(=): Let I'(G) be a forest. We first show that G is a direct product of
at most two groups. Let G = My x My X ... X My, where M; is a group
fori=1,2,...,k. If K > 3, then H = My x M3 x ... X M} has at least
one normal proper nontrivial subgroup M x 0 X ... x 0, and by Lemma
3.1 I'(G) contains a cycle. This contradiction implies that k < 2. If k = 2,
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then Lemma 3.1 implies (4i7). Thus we may assume that £k = 1. So G is
indecomposable.

We show that lc¢(G) < 3. Suppose the contrary that lc(G) > 4. There
are three proper nontrivial normal subgroups N1, No, N3 such that N; C
Ny C N3. Then Ny, Ny and N3 form a cycle, a contradiction. So le¢(G) < 3.
If lce(G) = 2, then (7) holds. So we suppose that lc(G) = 3. We prove
that G has a unique normal maximal subgroup. Since l¢(G) < oo, G has a
maximal normal subgroup N. If N;j is another maximal normal subgroup
of G, then NN; = . Since G is indecomposable, N N N; # 0. Then
N — NN Ny — N; — N forms a cycle in I'(G). This contradiction implies
that IV is the unique maximal normal subgroup of G. O

Next we characterize all groups whose intersection graphs are bipartite.
In view of the proof of Theorem 3.4 any produced cycle has three vertices.
Also it is known that a graph G is bipartite if and only if any cycle of G
has even number of vertices. These lead to the following.

Corollary 3.5. The intersection graph I'(G) of a group G 1is bipartite if
and only if T'(G) is a forest.
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Decompositions of an Abel-Grassmann’s groupoid

Madad Khan

Abstract. In this paper we have decomposed AG-groupoids. We have proved that
if S is an AG*-groupoid, then S/p is isomorphic to S/o, for n,m > 2, where p and
o are congruence relations. Further it has shown that S/n is a separative semilattice
homomorphic image of an AG-groupoid S with left identity, where 7 is a congruence

relation.

1. Introduction

An Abel-Grassmann’s groupoid [5], abbreviated as an AG-groupoid, is a
groupoid S whose elements satisfy the invertive law:

(ab)c = (cb)a, for all a,b,c € S. (1)

It is also called a left almost semigroup |3, 4]. In [1], the same structure
is called a left invertive groupoid. 1t is a useful non-associative algebraic
structure, midway between a groupoid and a commutative semigroup, with
wide applications in the theory of flocks.

An AG-groupoid S is medial [3], that is,

(ab)(cd) = (ac)(bd), for all a,b,c,d, € S. (2)

If an AG-groupoid satisfies the following property, then it is called an
AG*-groupoid [5].

(ab)c = b(ca), for all a,b,c € S. (3)

Then also
(ab)e = b(ac), forall a,b,ce€ S. (4)

It is easy to see that the conditions (3) and (4) are equivalent. In an
AG*-groupoid S holds all permutation identities of a next type [6],

2010 Mathematics Subject Classification: 20M10, 20N99
Keywords: AG-groupoid, left invertive law, medial law, congruence.



144 M. Khan

(z122)(2374) = (Tr(1)Tr(2)) (Tr(3)Tr(a)) (5)

where {m(1),7(2),7(3),7(4)} means any permutation of the set {1,2,3,4}.
It means that if S = S?, then S becomes a commutative semigroup. Many
characteristics of a non-associative AG*-groupoid are similar to a commu-
tative semigroup.

As a consequence of (5), we would have (z17223)™ = (T(1)Tp2)Tpe3)™
where {p(1),p(2),p(3)} means any permutation of the set {1,2,3} and
m > 2. The result can be generalized for finite numbers of elements of S.

2. The smallest separative congruences

In an AG*-groupoid S, (ab)c = b(ac) holds for all a,b,c € S. This leads us
to (aa)a = a(aa) which implies that a?a = aa®. Hence it is easy to note
that a"*la = aa™*!, a™a™ = a™", (a™)" = a™", (ab)" = a™b", for all a,b
and positive integers m and n.

We define a relation p on an AG-groupoid S as follows: apb if and only
if there exists a positive integer n such that ab” = "+ and ba™ = a" 1.

We define a relation o on an AG-groupoid S as follows: acb if and only
if there exists a positive integer n such that a”b = a"*! and b%a = b1,

A relation p on an AG-groupoid S is called separative if abpa® and abpb?
imply that apb.

The following lemma has been proved in [6].

Lemma 1. Let 6 be a separative congruence on an AG*-groupoid S, then
for all a, b € S it follows that abdba.

In the following two lemmas we have proved that the relations p and o
are commutative without using separativity.

Lemma 2. If S is an AG*-groupoid, then abpba for all a,b in S.

Proof. By using (5) and (2), we have, (ab)(ba)™ = (ab)(b™a™) = (ab)(a™b"™)
= (aa™)(bb™) = (bb™)(aa™) = b a™ 1 = (ba)™*L. Similarly (ba)(ab)™ =
(ab)™*!. Hence abpba. O

Lemma 3. If S is an AG*-groupoid, then aboba for all a,b in S.

(b"a™)(ab) = (b"b)(a™a) =

Proof. By using (5), we have, (ba)"(ab) =
= (ab)"*!. Hence aboba. O

b tlgntl = (ba)"*L. Similarly (ab)™(ba)
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The proofs of the following theorems are available in 6] and [5].

Theorem 1. S/ p is a mazximal separative commutative image of an AG*-
groupoid S.

Theorem 2. S o is a mazimal separative commutative image of an AG*-
groupoid S.

Lemma 4. p is equivalent to o for m,n > 2, on an AG*-groupoid S.

Proof. Let apb, then there exists a positive integer n such that ab™ = b"+!
and ba" = a"*'. Now multiply b on both sides of ab” = b"*!, then using
(1), we get b"*t1b = (ab™)b = b"Ha.
Similarly ba™ = a™*! implies that a"*'b = a"*2. Hence aob.
Conversely, assume that aob, then there exists a positive integer m such
that b™a = b™*! and a™b = ™ *!. Assume that m > 2. Now multiply b
on both sides of b¥™a = b™*!, then, using (3) and (5), we get

b = b(b"a) = (ab)b™ = (ab)(b™ 1b) = (ba)(b™ 'b) = a(b™b) = ab™ .

Similarly @b = a™*! implies that ba™*! = a™+2. Hence apb. O

Theorem 3. If S is an AG*-groupoid, then S/p is isomorphic to S/o, for
m,n = 2.

Proof. 1t follows from Lemma 4. O
Remark 1. S/p is not isomorphic to S/o forn =m = 1.

If S is an AG-groupoid then (ab)c = a(bc), is not generally true for all
a,b,c € S, that is (Sz)S # S(zS), for some z in S.

The relations v and § be defined in S as follows:

ayb if and only if there exists a positive integer n such that b € S(aS)
and a” € S(bS) for all @ and bin §

adb if and only if there exists a positive integer m such that b € (Sa)S
and a™ € (Sb)S for all @ and bin S.

Lemma 5. ¢ is equivalent to v on an AG*-groupoid S.

Proof. Let a™ € S(bS), then using (3) and (1), we get
"2 € (S(bS))a* = ((b9)S)a® = (a((bS)S))a = (a(5?b))a

= ((S%a)b)a C (Sb)S.

a

N
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Similarly b € S(aS) implies that 6"*? € (Sa)S.
Conversely, assume that a™ € (Sb)S, using (1) and (5), we get,

a1 € ((8b)S)a = (aS)(Sb) = (aS)(bS) C S(bS).

Similarly " € (Sa)S implies that "t € S(aS). O

3. The semilattice decomposition
In an AG-groupoid S with left identity we have,
a(bc) = b(ac), for all a,b,c e S. (6)
The following law holds for an AG-groupoid with left identity,
(ab)(ed) = (de)(ba), for all a,b,c,d € S. (7)

Also it is easy to see that if an AG-groupoid S contains left identity e,
then SS = S and Se =5 =eS.

In [2] the power of elements in an AG-groupoid has been defined as
follows: a™ = (...(((aa)a)a)...)a, (m-times).

Here we begin with an example of an AG-groupoid.

Example 1. Let S = {1,2,3,4} and the binary operation “-” be defined
on S as follows:

1 2 3 4
113 4 1 2
212 3 4 1
311 2 3 4
414 1 2 3
Then clearly (S, -) is an AG-groupoid with left identity 3. O

From now, by S, we shall mean an AG-groupoid with left identity e.
The following Lemma 6 and Theorems 4 — 8 are available in [2].

Lemma 6. If a € S, then for every positive integer m,

Theorem 4. If a € S, then a™a®*"~! = a™+2"~1, for all positive integers
m and n.
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Theorem 5. If a € S, then a®"a™ = a®>*™™, for all positive integers m
and n.

Theorem 6. Ifa € S, then a®® = a*"e, for every positive integer n.
Theorem 7. Ifa € S, then (a™)"™ = a"™", for all positive integers m and n.
Theorem 8. If each a € S, then (ab)™ = a™b", for every positive integer n.

Define a relation n on S as follows: xny if and only if there exists n such
that (za)” € (ya)S and (ya)" € (za)S.

Lemma 7. Ifa,b € S, then a®b® = ba?.
Theorem 9. 7 is a semilattice congruence on S.

Proof. 1t is reflexive and symmetric. For transitivity let us suppose that zny
and ynz, then there exist positive integers m, n such that (za)™ € (ya)sS,
(ya)™ € (za)S and (ya)™ € (za)S, (za)™ € (ya)S. More specifically, there
exist t1, to € S, such that (za)” = (ya)t; and (za)™ = (ya)ta. Now using
Theorems 7, 8, (1) and (6), we have,

((za)")*™ = ((ya)t1)*™ = ((ya)™)*ti™ € ((2a)5)?S, but
((20)5)*S = ((20)5)(2a)9))S = (5((za)9))((2a)5)
= (za)(S((za)S))S) = (za)S.

( )an

Therefore (xa)*™" € (za)S. Similarly (za)?™ € (za)S. Hence 7 is transi-
tive.

To show compatibility, let zny then there exists a positive integer m
such that (za)™ € (ya)S and (ya)™ € (za)S. Hence there exists t3 and
t4 such that (ra)™ = (ya)ts and (ya)™ = (za)ty. Now using Theorem 8,
Lemma 7, (2), (7) and (6), we get

(z2)a)’™ = ((x2)%a®)" = ((x2)*(a®e))™ = ((za)*z*)" = ((wa)2)*)"
= ((za)2)™)? = ((wa)™=")* = (((ya)ts)=™)? = ((ya)?2*")3
= ((y2")?a®)t; = ((v* (:""7'2)) a®)t5 = (((y2"" ) (yz))a®)t3
= (32" Na)((yz) a))t3 = 5(((y=)a) ((yz*"")a))
= ((y2)a) (t5((y="""1)a)) € ((y2)a) S

Similarly we can show that ((yz)a)?™ € ((w2)a)S. Therefore (xz)n(yz).
Similarly we can show that 7 is left compatable. Hence 7 is a congruence
relation.
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Next we shall show that n is a band congruence, by using Theorem 8,
Lemma 7 and (1), we have (za)? = 22a2 = a%2? = (aa)2? = (z%a) a €
(2%a) S. Also using (6), (1), (2) and (7) we get (J:2a)2 = (z%a) (z%a) =
2%((z%a) a) = 2%(a®2?) = 2*((az)(az)) = 2?((za)(za)) = (za)(z*(za)) €
(za)S. Therefore xnz?, that is, :L% = x,. Hence S, is idempotent. Now
let xny which implies that znxz?nxy, therefore xnxy.

Let zny and using Lemma 7, we have

(z9) 0)* = () 0)* = () @) ((y) a) € () 0) S.

Similarly ((yz)a)? € ((xy)a)S. Therefore zynyz, that is, Tnly = Ynly-
Hence S is a commutative AG-groupoid and so is commutative semi-
group of idempotents. O

Theorem 10. 7 is separative on S.

Proof. Let 2’nxzy and xyny?. Then we have a?ny?, but, z2nz and yny.
So, znx?ny’ny. Therefore, xny. Hence 7 is separative. O

Theorem 11. S/n is a separative semilattice homomorphic image of S.

Proof. 1t follows from Theorems 9 and 10. O

Remark 2. If every congruence on S is left zero, i.e., axTa, then S/n is a
mazximal separative semilattice homomorphic image of S.
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Identity sieves for quasigroups

Smile Markovski, Vesna Dimitrova and Simona Samardjiska

Abstract. In this paper we consider the set Q, of all finite quasigroups of a given
order n, where n is a positive integer. Using left and right translations, as well as suitably
chosen quasigroup terms ¢, we define sets of identities that are satisfied in the class Q.
The set Q,, can be represented as a union of isomorphism classes C;, 9, = U?:l(Ci,
and we use sets of identities as sieves for classifying the isomorphism classes. In such a
way we make a presentation of the set of all isomorphism classes of Q,, in the form of
a disjoint union {Ci,...,Cp} = Uj_; 0@ where Q™ are unions of isomorphism classes.
We show that these classifications can be used for obtaining quasigroups with special
qualities, that can be applied for designing several kinds of cryptographic primitives
(PRNG, hash functions, stream and block ciphers,...), or for defining error detecting
and error correcting codes.

Also, by using suitably chosen identities, we show the fractal structure of some

quasigroups in Q.

1. Introduction

A groupoid (G,-) is a pair of a nonempty set G and a binary operation
-2 G? — G. Given a groupoid (G, -) and an element a € G, the translations
L, and R,, called left translation and right translation, are defined by
Ly(z) = ax and R,(z) = xa, for each x € G. A groupoid (G, -) is said to
be a quasigroup if and only if L, and R, are permutations on G for each
a€G.

Note that each set of translations

S=A{La,. - Lap,,Rpy,...,Rp,}, m=>0, k>0,

on a groupoid (G, -) generates a semigroup <.S>.
We have the following result.

Theorem 1.1. Let (G,-) be a finite quasigroup, and let S = {Lq,, ..., Lq,,
Rayy...y Ry, }, where G = {ay,...,an}. Then for each T €<S> there is a
smallest integer r = r(T) such that T" = 1.

2010 Mathematics Subject Classification: 20N05
Keywords: quasigroup, identity, isomorphism class, identity sieve, fractal quasigroup.
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Proof. Since L, and R, are permutations on G, < S > is a group of
permutations on G, so 7(T) is the order of the permutation 7. O

If T is a permutation of a set G = {ay,...,a,}, then for each element
b € G there is a number 7, < n such that 77 (b) = b. (Namely, the set
{b, T(b), T?(b), ...} is a subset of G.) Then, for the number
re = LOM (7a,,Tags - -sTa,) < LOM(1,2,...,n)
we have T"T (z) = x for each x € G. Hence, T"T = 1¢, and r(T) is a factor
of rr. So, we have the next theorem:

Theorem 1.2. The order r(T') of each T € <S>, where S is a set of left
and right translations of a finite quasigroup G, is a factor of the number

LCM(1,2,...,|G)).

We need as well to introduce the notion of a term.

A groupoid term, where f denotes a binary functional symbol and X
denotes a nonempty set of variables, is defined inductively as follows:

1) x is a term for each x € X

2) if t1,...,t, are terms, then the expression f(t1,...,t,) is a term.

Given a term t and different variables z1,...,zr € X, by t(x1,...,zk)
we denote that only the variables z1, ...,z may appear in the term ¢; hence,
some variable x; may not appear in ¢. In the sequel we consider special
types of terms t(x1,..., k), where a variable x; appears exactly once, and
we denote it by ¢(z;, z;), where Z; denotes a fixed tuple of all other variables
occurring in ¢t. For example, the term t(z,y, z,u,v,w) = (y(x((yz)u)))(zy)
can be denoted as t = t(Z,z) or t = t(u,u). There are several choices for =
(z = (y,2,u), or T = (u,z,y), or T= (y,u,2), ...) as well as for u, and for
our purposes it does not matter which one is chosen.

Let (G,-) be a given groupoid. Each term ¢t = t(xy,...,zx) defines
an s-ary function t© on the set G, where s is the number of all different
variables that occur in t. Denote by y1,...,ys € X all different variables in
t, in some ordering. (Depending on the ordering, different functions t“ can
be defined.) The definition of t& follows the inductive definition of a term.
For each variable z we have that =¥ is the identity mapping. If t = t1to,

where 71 contains the different variables y;,...,y;, and ¢ contains the
different variables y;, , ..., y;,, then for all a; € G we define t%ay,...,a5) =
tf(ail, N ,aip) . tg(ajl, N ,ajq).

Given a term t(y1, . .., ys), where y; are different variables that occur in ¢,
and given an I-tuple (a;,, ..., a;) € G, we can define an (s —[)-ary function
tG on G by tG (al,...,ail,l,aiﬁl,...,ail,l,aiﬁl,...,as) =

ail,...,ail ail,‘..,ail
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t%ay, ..., as). We say that tgp
the I-tuple (a;,...,a;) € G

By using the notation ¢(Z, z) of a term t with s different variables, where
x occurs exactly once in ¢, we denote by tg; the (s — 1)-th projection of ¢,
obtained by the (s —1)-tuple @ € G*~'. So, t& is the mapping on G defined
by t&(z) = t%a, z).

In the case of quasigroups, we have that t& € < S >, where G =
{ai,...,an} and S = {Lg4,,...,La,, Ray,-..,Ra,}. For example, when
t = (y(x((y2)u))(zy) = t(z,x), T = (u,y,2) and a = (b,¢,d), we have
o = RgcLeRcqyp- Therefore, Theorem 1.1 and Theorem 1.2 hold for these
mappings too.

Given two terms t1 and o, the expression t1 & to is called an identity. An
identity t1(x1,...,2) = ta(x1,...,x) is said to be satisfied in a groupoid
G if for every a; € G we have t$(a1,...,a1) = tS(a1,...,ax). An identity
is satisfied in a class of groupoids C if it is satisfied in every groupoid of
C. (Note that t{ and t§ are not considered as k-ary functions on G, since
some of the variables x1,...,z; may not appear neither in ¢; nor in ¢s.)

is the [-th projection of ¢ defined by

NS

Further on, if there is no confusion, instead of t© we will write simply t.

2. Sieve construction

In this Section we consider finite quasigroups only.

Lately, quasigroups have been intensively studied for use in cryptogra-
phy and coding theory. The notion of a shapeless quasigroup was defined
in [5] as a kind of quasigroup suitable for building cryptographic primitives.
According to this definition, a shapeless quasigroup @ should not satisfy any
identity of the form z(z(...(xy)...)) =y or (...((yz)z)...)xr =y, where
x occurs n < 2|@| times. In general, quasigroups may satisfy different types
of laws in the form of identities. Here, we make a wider characterization
regarding a special form of identities that refines the notion of a shapeless
quasigroup.

Let ¢ be a term of the form ¢ = (g, y) such that § = (x1,...,2x), k> 1
(and y # x; for each i = 1,...,k). A t-sieve is said to be the set Sieve(t)
of identities defined recursively as follows:

Sieve(t) = {tV = t(g,y), @) = t(g,tV), &) =1(g,t?),...}.

Note that t? = ¢(g,t(7,y)), ¥ = (7, t(7,t(7,))), .- ..
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Theorem 2.1. For each term t = t(y,y) and for each finite quasigroup Q,
there is a smallest number r(t, Q) such that trtQ) ~ y s an identity in Q.

Proof. Let t = t(7,y), ¥ = (z1,...,2) and @ = (a1,...,a) € QF. Then,
by Theorem 1.1, there is a smallest number r(¢z) such that t;(ta)(y) =y for
each y € Q. Note that tg(ta) = t((—lr(tf‘)), since tép) (y) =t(a,t(a,...,ta,y))) =
t2(y). Tt follows that for the number r(t,Q) = LCM{r(tz)| a € Q*} we
have t((—:(t’Q))(y) =y for every a € Q¥ and for each y € Q. This means that
trt@) ~ y is an identity in Q. O

The number r(¢, Q) is called a rang of ¢ in Q.
Let Q,, denote the set of all quasigroups of order n. We have the fol-
lowing.

Theorem 2.2. For each term t = t(y,y) there is a number r(t,n), such
that t(r(&1) ~ y 15 an identity in the set Q.

Proof. By Theorem 2.1 we have that for each ) € Q,, there is a num-
ber r(t,Q) such that t"@) ~ y is an identity in Q. Let r(t,n) =
LCM{r(t,Q)] Q@ € Q,}. Then t"®™) ~ y is an identity in @ for each
Q € Q,, i.e., it is an identity in Q,, as well. O

The number r(¢,n) is called a rang of t in Q,,. It follows, by the defini-
tion of r(t,n), that it is the smallest number such that t"&™) (7, y) ~ y
is an identity in Q,,. The upper bound of r(t,n) is LCM(2,3,...,n).
When considering Sieve(t) on Q,, in order to produce identities of the type
t(rtn) ~ Yy, it is enough to take its restriction, i.e., its finite subset

Sieve(t,n) = {t¥| i|LCM(2,3,...,n)}.

Using Sieve(t,n), where t = t(g,y), we sieve the quasigroups from Q,,
via the isomorphism classes of Q,,. The sieving algorithm SA(t,n) is the
following.

1. Input: the set Q,.

2. Represent the set Q,, as (disjoint) union of its isomorphism classes,
Q,=CiUCyU---UGCy,.

3. For j =1,2,...,h, take a representative quasigroup @; € C;.
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4. For each i|LCM(2,3,...,n) form families of isomorphism classes Q)
as follows. C; € Q(i) if ¢ is the smallest integer such that the identity
t) ~ y is satisfied in Qj.

5. Output: representation of the isomorphism classes of Q,, as a disjoint
union of families of isomorphism classes,

{Cy,...,CLy = U{QD| i|LCM(2,3,...,n)}.

The definition of Q® does not depend on Q;, since if an identity is
satisfied in Q;, then it is satisfied in each quasigroup @ € C; too.

Note that the families Q) = Q¥ (t) depend on the chosen term ¢. For
different terms ti, s, ts, ..., we can obtain different families Q) (tj),7 =
1,2,3,.... Then by using the intersection (\{QW(t;)| j =1,2,...}, we can
classify the isomorphism classes in several different ways. By this classifi-
cation we can separate isomorphism classes of quasigroups of given order n
suitable for different purposes. The Section 3 contains such classifications
for the set Q4 of quasigroups of order 4.

3. Classifications of quasigroups of order 4

In this section we consider the set Q4 of all binary quasigroups of order
4, consisting of 576 quasigroups. We order the set Q4 by lexicographic
ordering, using the presentation of the multiplicative table of a quasigroup
as a concatenation of the strings of its rows. The set Q4 can be represented
as a union of 35 isomorphism classes C;, and we take the quasigroups with
lexicographic numbers 1, 2, 3, 4, 6, 10, 14, 25, 26, 27, 28, 29, 30, 33, 34, 35,
37, 38, 39, 40, 73, 74, 77, 80, 83, 92, 149, 150, 155, 157, 158, 159, 160, 196,
213 as representatives for the classes C1,Co, ..., Css, respectively.

We have LOM (2,3,4) = 12, and there are 6 factors of 12: 1, 2, 3, 4, 6
and 12. Thus, Sieve(t,4) = {t)| i =1,2,3,4,6,12}. Using the algorithm
SA(t,4), for different choices of the terms ¢, we can obtain different classifi-
cations of the isomorphism classes. Table 1 and Table 2 present special type
of sieves constructed from all terms ¢ = ¢(g, y) such that § = (x), and with
m < 3 appearances of the variable z in t. So, for m = 1 we have two terms
zy, yzx, for m = 2 we have 6 terms z(xy), (yx)z, (zy)z, x(yx), (zx)y, y(zz),
and so on. Altogether, there are 24 terms of this type. Instead of C;, the
isomorphism classes in Table 1 (and in all other tables in this section) are
denoted simply by j.
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How can we read Tables 1 and 27 For m = 3, let us consider the term
t = z(xz(zy)) in Table 2. In column 1 we have 6 isomorphism classes:
Ca3,Coy, Cos, Cog,C34,Cs5. This means that the identity t) ~ Yy, l.e.,
z(z(zy)) ~ vy, is satisfied in all of these classes. We note that these classes
also satisfy the identities t®) & y for all other values of i, but i = 1 is the
smallest value of ¢ such that t® = y is an identity in these classes. Next,
the identity t? ~ y, i.e., z(z(z(z(z(xy))))) ~ y, is satisfied in the classes
C1,Cy4,Cr,Cq,Cq1,Cq6,Cq9, and ¢ = 2 is the smallest value of 7 such that
t0) ~ y is an identity in these classes. In all of the other classes the identity
t0) ~ y is satisfied for i = 4 (and also for i = 12), so they are given in
column 4. Note that the rang of the term t = x(z(zy)) in Q4 is r(t,4) = 4,
the same rang has the term ((yx)x)z, and the rang of the other terms in
Tables 1 and 2 is 12, except of the terms z(zy) and (yx)z, that have rang

lm [ eNa | v [ 2 | 38 [ 4 | 6 [ 12 |
1,4,7,8,(23,24,25,26,  2,3,5,6,9, 12,13,14,15,
Ty 11,16,29 34,35/ 10,17,20,30, 18,19,21,22,
33 27,28,31,32
6%1 1,3,9,11,] 7,20,25,26,| 2,4,8,10,12, 5,6,13,15,
yz 14,23,28 30,35/17,21,24,33, 16,18,19,22,
34 27,29,31,32
z(zy) 1,4,7,8,)  2,3,5,6,9,23,24,25,26, 12,13,14,15,
11,16,29(10,17,20,30, 34,35 18,19,21,22,
33 27,28,31,32
(zy)x 1,11,26|  2,3,4,8,9,] 7,17,23,25,[15,20,22,24,(13,14,16,19,]  5,6,12,18,
10,35 33 30,34| 27,2829  21,31,32
z(y) 1,11,26] 2,3,4,8,9,| 7,17,23,25,/15,20,22,24,13,14,16,19,| 5,6,12,18,
10,35 33 30,34|  27,28,29|  21,31,32
102 1,3,9,11,] 2,4,8,10,12,] 7,20,25,26, 5,6,13,15,
(yx)z 14,23,28|17,21,24,33, 30,35 16,18,19,22,
34 27,29,31,32
1,3 24,7,89,22,23 2425, 5,6,17,30,] 13,14,19,28]12,18,21,27,
(zz)y 10,11,15,16,|  26,34,35 33 31,32
20,29
1,8 2,3,4,9,10,] 7,15,20,25,[12,17,21,33,] 13,16,19,29| 5,6,18,27,
y(zz) 11,14,22,23,|  26,30,35 34 31,32
24,28

Table 1: Application of SA(t,4) on Q4 by using terms ¢ = ¢(y,y) with
g = (z), form=1and m = 2.

We analyze the obtained results in Tables 1 and 2. For that aim, we
look at the frequency of appearance of an isomorphism class in different
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[m | t\i | 1 2 3 4 6 12
23,24,25,26, 1,4,7,8, 2,3,5,6,9,10,
34,35 11,16,29 12,13,14,15,
z(z(zy)) 17,18,19,20,
21,22,27,28,
30,31,32,33
(z(zy))z 25 1,3,9,11,] 7,20,23,26,|  2,4,8,10,| 5,12,14,15,| 6,16,21,28,
17,24,34 30,35|  13,27,33| 18,19,22|  29,31,32
z((wy)z) 25 1,3,9,11,] 7,20,23,26,|  2,4,8,10,| 5,12,14,15,| 6,16,21,28,
17,24,34 30,35|  13,27,33| 18,19,22|  29,31,32
((zy)z)z 25 1,4,8,11,| 7,23,24.26,  2,3,9,10,| 5,12,15,16,| 6,14,21,28,
17,20,30 34,35  13,27,33| 18,19,22| 29,31,32
z(z(yz)) 25 1,3,9,11,| 7,20,23,26,|  2,4,8,10,| 5,12,14,15,| 6,16,21,28,
17,24,34 30,35|  13,27,33| 18,19,22|  29,31,32
(z(yz))z 25 1,4,8,11,] 7,23,24,26,|  2,3,9,10,| 5,12,15,16,| 6,14,21,28,
17,20,30 34,35|  13,27,33| 18,19,22|  29,31,32
z((yz)z) 25 1,4,8,11,| 7,23,2426,]  2,3,9,10,| 5,12,15,16,| 6,14,21,28,
17,20,30 34,35  13,27,33| 18,19,22| 29,31,32
7,20,25,26, 1,3,9,11, 2,4,5,6,8,10,
31*3 30,35 14,23,28 12,13,15,16,
((yz)z)x 17,18,19,21,
22,24,27,29,
31,32,33,34
17 1,4,7,9,10,]23,24,25,26,|  2,3,5,6,8,|12,13,19,31| 14,21,22,28
z((zx)y) 20,30,33 34,35|11,15,16,18,
27,29,32
((zz)y)z 26,35 1,3,8,10,| 7,17,23,25, 2,4,9,11,19,| 5,6,12,13,[16,21,22,28,
15,20,30 33| 24,27,31,34| 14,18,32 29
z(y(zz)) 26,35 1,3,8,10,| 7,17,23,25, 2,4,9,11,19,| 5,12,13,16,| 6,14,15,28,
22,24,34 33| 20,27,30,32|  18,21,31 29
17 1,4,9,10,| 7,20,25,26,| 2,3,8,11,12,| 5,13,19,32| 6,15,16,29
(y(zz))z 23,24,33,34 30,35( 14,18,21,22,
27,28,31
1,4,5,6,7,8,]23,24,25,26,| 2,3,9,10,18,[12,13,14,19,|  15,22,28
(z(zx))y 11,16,17,20, 34,35 31 21,27,32
29,30,33
23| 1,3,9,11,12,| 7,20,25,26,| 2,4,8,10,21,| 5,13,18,19,| 6,15,16,22,
y(z(zz)) 14,17,24,28,34 30,35 33 27,31 29,32
7 1,4,5,8,11,(23,24,25,26,| 2,3,6,9,10,[12,13,18,19,14,15,21,22,
((z2)z)y 16,17,20,29,30 34,35 33 27,32 28,31
1,3,9,11,12,| 7,20,25,26,|  2,4,8,10,| 5,6,13,16,] 15,22,29
y((zz)z) 14,17,21,23, 30,35 18,32| 19,27,31
24,28,33,34

Table 2: Application of SA(t,4) on Q4 by using terms ¢ = ¢(y,y) with
gy = (z), for m = 3.
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columns. For example, the class C; appears only in columns 1 and 2. It
means that the identity t® ~ y is satisfied for each term ¢ from Tables 1
and 2. Consequently, the quasigroups of the class C; should not be used
for cryptographic purposes, since they allow to be attacked by applying
very simple identities. Nevertheless, they are suitable for defining some
error detecting codes ([1]). On the other hand, the classes C3; and Cgso
appear 13 times in column 12, 6 times in column 6 and 5 times in column
4. We conclude that the quasigroups of the classes Cs; and Cse are suit-
able for cryptographic purposes. They have better cryptographic properties
regarding ¢, because it would be more unlikely and more difficult to reach
an expression that can be replaced by a simpler one. They belong also to
the class of shapeless quasigroups. Even more, for any term of the form
t = t(g,y) from Tables 1 and 2, they satisfy the identity ¢*) ~ y only when
mi > 12. One can find some identities of type ¢ = t(¢,y), where = appears
at least 5 times in ¢, such that the inequality m: > 12 is not satisfied. Nev-
ertheless, the inequality mi > 8 was satisfied in all terms t = ¢(y, y), where
y = (x), we have checked.

The discussion above can help improve the definition of a shapeless
quasigroup. Now, we define that a shapeless quasigroup should not satisfy
any identity of the form t() ~ y, for any term t = t(7,y), where § = (z),
for mi < 2n. By this new definition, we have that only the quasigroups of
the classes Ci3,C1g,C19,Co7,C3; and Csy can be considered as shapeless.

In Tables 1 and 2 we considered only special types of terms, in order to
get more complete picture of the distribution of the isomorphism classes in
the families Q). Still, sieves of general type Sieve(t), where t = (7, y) such
that ¥ = (x1,...,2s), s = 1, can be considered as well. For that aim we
investigate the left and the right translations, which define the quasigroups.
From the properties of these translations, we can derive general conclusions
about the structure of the quasigroups, and how they can be sieved. This
gives a different classification of the classes of isomorphism.

As we said earlier, in a quasigroup @, for an arbitrary term ¢ = (g, y),
and each @ € Q*~!, the mapping taQ €< S >, where Q = {aq,...,a,} and
S ={L4,---sLa,, Rays---,Ra,}. Even more, each translation (being a
permutation) can be represented as a composition of disjoint cycles. Hence,
the permutation tg can be given by cycles and the order of tc—LQ depends on
the lengths of these cycles. On the other hand, by Theorem 2.1, (¢, Q) =
LCM{r(tC—LQ)] a € Q* 1} sor(t,Q) depends on Lg,,...,La,, Ray,---,Ra,,
i.e., on the properties of their cycles.
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Example 3.1. Consider the quasigroup (@, -) that is a representative of
the isomorphism class Csq, given by its multiplicative table

=W N
W N |
W o = NN
N e W W
DO = W |~

Let t = (wy)z = t(y,y), where § = (x,2). Then, for a = (a,b) € Q?,
have t& = L,R,. Q is commutative with unit 1, so L1 = Ry = (1)(2)(3)(4),
L2 = R2 = (12)(34), L3 = R3 = (1324) and L4 = R4 = (1423)

1\IOW7 LlRl = (1)(2)(3)(4), L1R2 = L2R1 = (12)(34), L1R3 = L3R1 =
(1324), L1Ry = LyRy = (1423), LoR2 = (1)(2)(3)(4), LeR3 = L3Ry =
(1423), LoRy = LyRy = (1324), LyRy = L4Ry = (1324), L3Rs = (12)(34),
L3Ry = LyR3 = (1)(2)(3)(4), LaRy = (12)(34).

Since we have cycles of lengths 1, 2 and 4, r(¢,Q) = LCM(1,2,4) = 4.

This example shows how we can calculate r(t, Q) for given ¢ and ). But,
of course, there are an infinite number of terms, so such approach is not
always suitable. Especially, if we are considering the properties of quasi-
groups used in some kind of quasigroup transformations in a cryptographic
primitive. Still, the nature of the left and the right quasigroup translations
can show how the mapping taQ behaves for any ¢ or (). For cryptographic
purposes, a quasigroup ) needs bigger r(¢, Q) for any ¢.

Denote by rmae = maz{r(t,Q)| t is a term}, which in fact is the maxi-
mal i for any Sieve(t,4) that sieves the quasigroup (). Analyzing the cycles
of the translations L1, Ry, ..., L4, Ry from Example 3.1 we can conclude
that any composition of these translations, produces only permutations
with cycles of lengths 1, 2 and 4. Hence, we have that rp,, = 4 for all
quasigroups in the class Cs.

T'maz Isomorphism class
2 1
3 7,23,25,26,35
4 2,3,4,8,9,10,11,17,20,24,30,33,34
12 5,6,12,13,14,15,16,18,19,21,22,27,28,29,31,32

Table 3: Classification of Q4 by Sieve(t,4), for any term ¢.
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Table 3 gives the values 7,4, for all isomorphism classes in Q4. The
analysis that led to this classification is rather cumbersome and not espe-
cially neat. That is why, here we give only a few examples that prove the
correctness of Table 3.

Example 3.2. Consider the quasigroup with lexicographic order 1, that is a
representative of the isomorphism class C;, and is given by its multiplication
table

=W N
W N |
W o = NN
DN — s W W
=N W R

This quasigroup is commutative with unit 1, so L1 = Ry = (1)(2)(3)(4),
L2 = R2 = (12)(34), L3 = R3 = (13)(24) and L4 = R4 = (14)(23).

Let t be an arbitrary term. Then the mapping tg, a € Q! is some finite
composition of the translations Ly = Ry,...,Ls = R4. When composing
any two of these translations, we have only the following three possibilities:
(i) (kD) - (i) (kD) = (3)(G)(k)D), (i) (kL) - (iR)(jil) = (il)(kj) and (i) (k) -
() () (k) (1) = (i) (kD) (or (2)() (kY1) - (i) (k1) = (i) (k1)) .., again we get
permutations of the same type. Hence, an arbitrary composition produces
only permutations with cycles of lengths 1 and 2, which implies that 7,4, =
2 for all quasigroups in the class C;.

Example 3.3. Consider the quasigroups with lexicographic orders 92 and
213, that are representatives of the isomorphism classes Cog and Css respec-
tively. The quasigroups from these two different isomorphic classes have
identical properties regarding the translations that define them. Namely,
the left translations of the quasigroup 92 (given in Subsection 4.2) are
(1)(234), (2)(143),(3)(124), (4)(132), which on the other hand are the right
translations of the quasigroup 213. Again, the right translations of the
quasigroup 92, (1)(243),(2)(134),(3)(142), (4)(123), are the left transla-
tions of the quasigroup 213.

Similarly, as in the previous example, it is crucial to discover all of the
different cases of composing an arbitrary number of the translations that
define these quasigroups. We make several observations.

When composing any two left, or any two right translations, we have
these two possibilities: (7)(jkl) - (4)(jkl) = (3)(jlk) or (i)(jkl) - (§)(ilk) =
(I)(ijk), i.e., again we have permutations of the same type and of order 3.
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When composing a left and a right translation (in any order) we have
()GkD) - G)Glk) = (D)G)D) (k) or ()(Gk) - (7)(ikl) = (i0)(jk), i.e., we get
a new permutation of order at most 2. Now, this new type of permutation
can be composed with any of the quasigroup translations yielding (¢)(jkl) -
(i)(jk) = (ijl)(k), (i)(jlk) - (il)(jk) = (ikl)(j), and (il)(jk) - (1)(jkl) =
(ilk)(4), (il)(jk) - (i)(jlk) = (ilj)(k), or two such permutations can be
composed to give (il)(jk) - (il)(jk) = (i)(1)()(k) or (ij)(Ik) - (il)(jk) =
(ik)(15).

Hence, an arbitrary composition produces only permutations with cycles
of lengths 1 and 2, or only permutations with cycles of lengths 1 and 3. This
means that r,,,, = 3 for the quasigroups in the classes Cos and Css.

Example 3.4. The quasigroup with lexicographic order 158, that is a rep-
resentative of the isomorphism class Csq, has the following multiplication
table

B> =W N
N W N
o N W W
W DN = |

1
2
3
4

The left translations of this quasigroup are (12)(34),(1324), (1)(234),
(143)(2), while the right ones are (123)(4), (1)(3)(24), (134)(2), (1432). Since
these permutations have cycles of length 12, this immediately implies that

Tmaz = 12.

We combine Tables 1, 2 and 3 to obtain Table 4, where the values /...
come only from terms ¢ from Tables 1 and 2, i.e., v}, ... = mazx{r(t,Q)| t is a
term from Tables 1 and 2}. The families of isomorphism classes in Table 4
are separated by semi-columns. So, ‘1;” denotes the family {C;}, ‘7,23,35;
denotes the family {C7, Cas,Cs5}, and so on. The family ‘3,4,8,9,11;" ap-
pears in the columns ¢ = 1, ¢ = 2 and ¢ = 4. It means that for any term
t from Tables 1 and 2, only identities of the form t() ~ y are satisfied (for
the corresponding value of 7). Note that 7/, . = e = 4.

Tables 4 gives another information about the applications of quasi-
groups. Generally, the quasigroups from the classes in the row /.. = 12
and columns ¢ = 4, ¢ = 6 and ¢ = 12 should be used for building cryp-

tographic primitives, while those in the rows 7/ = 2,3 and columns

max
i = 1,2, 3 should be used for designing codes. As we have noted before, the
family ‘13,18,19,27,31,32;” contains the best quasigroups for cryptographic

purposes. Nevertheless, some other classes can be used quite as well. They
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are denoted by italic letters in the table (6, 21, 28 and 29). Namely, the
“italic” classes have the properties that in at least half of the terms ¢ from
Tables 1 and 2, the identity t() ~ y is satisfied only for i = 12.

[rmae\ e[ v T 2 [ 8 [ 4 [ 6 [ 1
2 1; 1;
3 7,23,35; 7,23,35; 7,23,35;
25,26; 25,26;
4 2,10; 2,10;
3,4,8,9,11; 3,4,8,9,11; 3,4,8,9,11;
33; 33; 33;
17,20,24,30,34;(17,20,24,30,34;(17,20,24,30,34;(17,20,24,30,34;
15,22; 15,22; 15,22; 15,22; 15,22;
12 14,16, 14,16, 14,16, 14,16, 14,16,
28,29, 28,29, 28,29, 28,29, 28,29,
5,12, 5,12, 5,12, 5,12,
6,21, 6,21; 6,21; 6,21;
13,18,19,27,|13,18,19,27,(13,18,19,27,
31,32; 31,32, 31,32;

/

Table 4: Classification of isomorphism classes by 77,

4. Proving the fractal structure
of quasigroup transformations

There are several papers [6, 7|, where quasigroup e- and d-transformations
are considered. In [4] a method for graphical presentation of sequences
obtained by quasigroup transformations is proposed. Using this method
(without mathematical proof) the quasigroups are classified in two disjoint
classes: the class of fractal quasigroups and the class of non-fractal quasi-
groups. Initiated by the identities sieves, here we give a proof that the
quasigroups of order 4 with lexicographic numbers 1 and 92 are fractal (see
Figure 1, where the patterns obtained from quasigroups with lexicographic
numbers 1, 92 and 191 are given; 1 and 92 are fractal, 191 is non-fractal).
In the same way it can be shown that all fractal quasigroups as classified
in [4] have really a fractal structure too. The proofs given here use suitably
chosen identities, satisfied in the quasigroup in question.

We consider here only e-transformations, defined on a quasigroup (Q, )
as follows. Let Q1 = {ajas...anla; € Q, n > 2} denote the set of all finite
sequences with elements of @ and let us take a fixed element [ € @, called
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a leader. The e-transformation e; : QT — Q7 is defined by:

by =lxay,

e(araz...an) = (bibs...bn) < {bz‘+1:bi*ai+1, 1<i<n—1

The method of producing images of quasigroup processed sequences is
defined as follows. Take a sequence aaa...a, a € ), and put one under the
other the sequences ¢;(aaa. ..a),e?(aaa...a),...,ef(aaa...a). For graphi-
cal presentation, like the one in Figure 1, we take different colors for different
elements of Q).

Figure 1: Images of e-transformations of the quasigroups 1, 92 and 191
4.1 The case of the quasigroup with lexicographic number 1

The quasigroup with lexicographic number 1 is given in Example 3.2. It
can be checked that the following identities are satisfied by this quasigroup:
Li: zy=~yz, (yo)r~y, ylyz) =z, (yo)’y =y, 222 ~ %

Let the starting sequence be zxxzzxzrzx ... and let the leader be | =y,
where x,y are variables. If we apply the e-transformation e, consecutively
on each produced sequence, then, using the identities I;, we obtain the
sequences shown on the table below,where the fractal structure appears
clearly.

] = | = | = | « | | 0« | = | = | |
y [wz] v yz y yw y yx y yz y
y |z | yz | wx)?| T yr | (o)’ | x yx
y || vz | o) | (w2)* | y yr | (y2)* | (y2)* | y yr_ | (yx)®
y ||z | = x yr | (yx)* | (yo)* | (y2)* |y x x
y |y | g yr | (yo)* | (yo)* | (yo)* | (yx)* | y yx y
y || =z | vz | ()’ | (yo)® | (yo)* | (yo)* | (yx)* | y x yx
y || yr [ (o)’ | (y2)® | (yo)” | (y=)® [ (yo)” | (yz)® | g yr_ | (yx)?
y T T T T T T T Yy (yz)2 (y:c)2
y |y | y yz y Yz y yr | (yo)* | (yz)? | (yx)®
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4.2 The case of the quasigroup with lexicographic number 92

The quasigroup with lexicographic number 92 is given by its multiplicative
table:

In this quasigroup the following identities are satisfied:

zx ~z, (yz)z)r =y, y(yz) = (yo)z, ((yz)z)y ~ yz,

oy = (yx)((yo)r) =y, y(y(yr)) ~ =, x((yx)z) = yz, (yo)y =z,
(yz)z = vy, ((yo)z)(yr) =z, 2(yz) = y.

We use the same starting sequence and leader as in the case of the

quasigroup 1, and the resulting e-transformations are presented in the table
below,where again a fractal structure appears.

y yr | (yr)z |y yr | (yo)z |y yr | (yr)z | y | y=
y || o)z | (yz)z | yz yx Yy Y (yz)z | (yx)z | yz | yz
Yy T yx Y YT r | (yx)zr | (yx)x | (yx)z | = |y
y yx y yz yr | (yr)z | (yx)z | (yz)z | (yz)z | y | ¥
y || yr)z | = y | o)z | (yx)z | (yo)z | (yo)z | (yo)z | yo | =
Yy x r | (yx)z | (yx)r | (yo)z | (yx)z | (yx)z | (yx)z | = | =
y yr | (yz)z | (yz)z | (y2)z | (yx)z | (yx)z | (y2)z | (yo)z | y | y=
y || o)z | (yx)z | (yo)z | (yo)z | (yo)o | (yx)o | (yo)z | (yo)z | yo | y=
Yy z Y Yy z YT Yy z yr | yr | yx

The proofs for other fractal quasigroups are similar, and they may be
quite complicated. But, if we try to write the sequences obtained by e-
transformation for non-fractal quasigroups, we get very complicated terms,
and it is almost impossible to obtain suitable identities.

Since if an identity is satisfied in a quasigroup @), it is satisfied in all
quasigroups isomorphic to @, we conclude that all of the quasigroups of the
isomorphism classes C; and Coq are fractal.
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Non-commutative finite groups

as primitive of public key cryptosystems

Dmitriy N. Moldovyan

Abstract. A new computationally difficult problem define over non-commutative
finite groups is proposed as cryptographic primitive. Finite non-commutative rings of the
four-dimension vectors over the ground field are defined with the vector multiplication
operations of different types. Non-commutative multiplicative groups of the rings are

applied to design public key cryptoschemes based on the proposed difficult problem.

1. Introduction

The most widely used in the public key cryptography difficult problems,
factorization and finding discrete logarithm, can be solved in polynomial
time on a quantum computer [5]. Quantum computing develops towards
practical implementations therefore cryptographers look for some new hard
problems that have exponential complexity while using both the ordinary
computers and the quantum ones [1, 2|. Such new difficult problems have
been defined over braid groups representing a particular type of infinite non-
commutative groups. Using the braid groups as cryptographic primitive a
number of new public key cryptosystems have been developed [3, 6].

Present paper introduces a new hard problem defined over finite non-
commutative groups and public key cryptoschemes constructed using the
proposed hard problem. It is also presented a theorem disclosing the local
structure of the non-commutative group, which is exploited in the proposed
hard problem. Then concrete type of the non-commutative finite groups is
constructed over finite four-dimension vector space.
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Keywords: difficult problem, automorphism, non-commutative group, finite group,
public key distribution, public encryption, commutative encryption.
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2. New problem and its cryptographic applications

Suppose for some given finite non-commutative group I' containing element
Q@ possessing high prime order g there exists a method for easy selection
of the elements from sufficiently large commutative subgroup I'comm € T'.
One can select as private key a random element W € I'¢omm such that
Wo@ # QoW and a random number x < ¢ and then compute the public
key Y = W o Q% o W~ (note that it is easy to show that for arbitrary
value z the inequality W o Q% # Q% o W holds). Finding pair (W, z), while
given I, T'comm, @, and Y, is a computationally difficult problem that is
suitable to design new public key cryptosystems. The problem suits also
for designing commutative encryption algorithms.

The public key agreement protocols can be constructed as follows. Sup-
pose two users have intension to generate a common secret key using a
public channel. The first user generates his private key (Wi,z1), com-
putes his public key Y7 = W; 0 Q% o Wl_l, and sends Y; to the second
user. The last generates his private key (Wa,z2), computes his public key
Yo =WhoQ*™ o W2_1, and sends Y5 to the first user. Then the first user
computes the value

Kia=Wio(Ya)" oWyt =Wio (WaoQ®2 oWy ) oW !
=WioWso0Q" o W2_1 o Wl_l.
The second user computes the value
Koy =Wao (Y1) oWyt =Wao (WioQ™ oW )™ oWy
:W10W10Qm1x20WfloW{1.

The elements W7 and W5 belong to the commutative subgroup I'comm,
therefore K91 = Kj2 = K, i.e. each of the users has generated the same
secret K that can be used, for example, to encrypt confidential messages
send through the public channel.

Suppose a public-key reference book is issued. Any person can send
to some user a confidential message M using user’s public key Y = W o
Q" o W1, where W and x are elements of user’s private key. For this
aim the following public key encryption scheme can be used, in which it is
supposed using some encryption algorithm F controlled with secret key K
representing an element of the group I'.

1. Sender generates a random element U € I'¢opy and a random number
u, then computes the elements R =UoQ%oU 'and K =UoY%oU ! =
Uo (WonCoW—l)"oU—l =UoWoQ™oWloU L
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2. Using the element K as encryption key and encryption algorithm Fx
sender encrypts the message M into the cryptogramm C = Fg(M). Then
he sends the cryptogram C and element R to the user.

3. Using the element R the user computes the encryption key K as
follows K = WoR* o W™l = Wo (UOQUOU_I)J: oWl =WoUo
Q" oU~' o W~L. Then the user decrypts the cryptogram C as follows
M=F [Ql(C), where F 1}1 is the decryption algorithm corresponding to the
encryption algorithm F.

The proposed hard problem represents some combining the exponentia-
tion procedure with the procedure defining group mapping that is an auto-
morphism. These two procedures are commutative therefore their combina-
tion can be used to define the following commutative-encryption algorithm.

1. Represent the message as element M of the group I'.

2. Encrypt the message with the first encryption key (W7,e1), where
Wi € Teomm, €1 is a number invertible modulo m, and m is the least
common multiple of all element orders in the group I', as follows C; =
Wio M oW 1

3. Encrypt the cryptogram C; with the second encryption key (Wa, e2),
where Wy € Tcomum, €2 is a number invertible modulo m, as follows

Cro=Wa0oCP oWyt =WaoWyo M2 oW, oW,

It is easy to show the encrypting the message M with the second key
(W3, e2) and then with the first key (W7, e1) produces the cryptogram Cy =
C1a, i.e. the last encryption procedure is commutative.

3. On choosing elements

In the cryptoschemes described in previous section the first element of the
private key should be selected from some commutative group. A suitable
way to define such selection is the following one. Generate an element G € I
having sufficiently large prime order g and define selection of the element
W as selection of the random number 1 < w < g and computing W = G .
Using this mechanism the private key is selected as two random numbers w
and z and the public key is the element Y = G* 0 Q" o G™™. One can easy
show that for arbitrary values w and x the inequality G¥ o Q% # Q% o WY
holds.

For security estimations it represents interest haw many different ele-
ments are generated from two given elements G and @ having prime orders



168 D. N. Moldovyan

g and g, respectively. The following theorem gives a positive answer to this
question.

Theorem 1. Suppose elements G and Q) of some non-commutative finite
group I' have the prime orders g and q, correspondingly, and satisfy the
following expressions G o Q # Qo G and K o Q # Qo K, where K =
GoQoG™1. Then all of elements K;j = GIoQ'cG ™, wherei =1,2,...,q—1
and 7 =1,2,..., g, are pairwise different.

Proof. 1t is evident that for some fixed value j the elements K;; = G’ o
Q' o G7J, where i = 1,2,...,q, compose a cyclic subgroup of the order
q. Condition K o Q) # @ o K means that element K is not included in
the subgroup I'g generated by different powers of ). Suppose that for
some values ¢, i’ # 4, j, and j' # j elements K;; and Ky are equal, i.e.
GloQioGd =G o0Q" c GV Multiplying the both parts of the last
equation at the right by element G’ and at the left by element G~/ one gets
Q' = G'"70Q" 0oG~U'=7). The subgroup ' has the prime order, therefore
its arbitrary element different from the unity element is generator of I'g,
i.e. for i/ < q—1 the element P = Q¥ generates subgroup I'g. Taking this
fact into account one can write

(@) = (Gj’—j 0 Q" o G—(j’—j))z 0@ oG )
=@ opProq U e Io.

The last formula shows that mapping ¢;—; (P*) = GV =ToP?oG~"—I)
maps each element of I'g on some element of I'g. The mapping ¢;.—; (I'g)
is bijection, since for z = 1,2, ..., ¢ the set of elements (QZ)Z composes the
subgroup I'g. Thus, the mapping ¢;—; (I'g) is a bijection of the subgroup
I'g onto itself.

Since order of the element G is prime, there exists some number u =

(' — 7)~' mod g for which the following expressions hold G = (Gj'_j)u
and

te; (FQ) = go(Gj/,j)u (FQ) = Pgi’'—i (SOGJ'/—J‘ ( PG’ —i (FQ) . ))7

u bijective mappings

where the mapping is represented as superposition of u mappings ¢ ,;.—; (I'g).
The superposition is also a bijection of the subgroup I'g onto itself, since
the mapping ¢;/—; (I'g) is the bijection I'g onto I'g. Therefore the follow-
ing expression holds K =Go QoG ' =¢g(Q)€Tlgand KoQ =QoK.
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The last formula conradicts to the condition K o @ # Qo K of the theorem.
This contradiction proves Theorem 1. O

According to Theorem 1 there exist (¢ —1)g different elements Z;; # E,
where E is unity element of I". Together with the unity element F they
compose g cyclic subgroups of the order ¢ and each of elements Z;; # E
belongs only to one of such subgroups.

4. Finite rings of four-dimension vectors

Different finite rings of m-dimension vectors over the ground field GF(p),
where p is a prime, can be defined using technique proposed in [4]. The non-
commutative rings of four-dimension vectors are defined as follows. Suppose
e, i, j, k be some formal basis vectors and a,b,c,d € GF(p), where p > 3,
are coordinates. The vectors are denoted as ae+bi+ci+dk or as (a, b, ¢, d).
The terms 7v, where 7 € GF(p?) and v € {e, i,j, k}, are called components
of the vector.

The addition of two vectors (a, b, ¢,d) and (z,y, z,v) is defined addition
of the coordinates corresponding to the same basis vector accordingly to
the following formula

(a,b,e,d) + (x,y,z,v) = (a+x,b+y,c+ z,d +v).

The multiplication of two vectors ae + bi + ¢j + zw and ze + yi + zj +
vk is defined as multiplication of each component of the first vector with
each component of the second vector in correspondence with the following
formula

(ae+bi+cj+zw)o(re+yi+ zj+vk) = areoce+brioe+cxrjoe+drkoe+
+azeoj+bzioj+czjoj+dzkoj+ aveok 4+ bviok + cvjok + dvk ok,

where o denotes the vector multiplication operation. In the final expres-
sion each product of two basis vectors is to be replaced by some basis vec-
tor or by a vector containing only one non-zero coordinate in accordance
with the basis-vector multiplication table (BVMT) defining associative and
non-commutative multiplication. There are possible different types of the
BVMTs, but in this paper there is used the BVMT of some particular
type shown in Table 1, where u # 0. For arbitrary combination of the
values u € GF(p) and 7 € GF(p) Table 1 defines formation of the non-
commutative finite ring of four-dimension vectors.
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Table 1: The basis-vector multiplication table
— — - -

o € P J k
— . :

e | pe i 14 pk
— . 1 .

1 pi —uTe k —Tj
- . -1 .

Jo|l -k —p e i

_)

k| uk Tj —i —ulre

In the defined ring the vector (1 ~1,0,0,0) plays the role of the unity ele-
ment. For implementing the cryptoschemes described in Section 2 it repre-
sents interest the multiplicative group I' of the constructed non-commutative
ring. To generate the elements ) and G of sufficiently large orders it is
required computing the group order {2 that is equal to the number of in-
vertible vectors. If some vector A = (a,b,c,d) is invertible, then there
exists its inverses A~ = (2,9, z,v) for which the following formula holds
AoA™' = E = (174,0,0,0). This vector equation defines the following
system of four linear equations with four unknowns z, y, 2, and v:

1 1

pax — pttby — p ez —pTlrdv = po
pwbxr + pay —dz+cv = 0
per + paz —thv+71dy = 0
pdr —cy + bz + pav = 0.

If this system of equations has solution, then the vector (a, b, ¢, d) is invert-
ible, otherwise it is not invertible. The main determinant of the system is
the following one

pa —pith —pTle —plrd
| pb wa —d c
A4) = e Td ua —7b
ud —c b wa

Computation of the determinant gives
A(A) = (pPa® + 7% + 2 + Td2)2 .

Counting the number of different solutions of the congruence A(A) = 0 mod
p one can define the number IV of non-invertible vectors and then define the
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group order = p* — N. The indicated congruence has the same solutions
as the congruence

p2a® 4 b + 2 + 7d? = 0 mod p. (1)

Statement 1. For prime p = 4k + 1, where k > 1, u # 0, and 7 # 0, the
order of the non-commutative group of the four-dimension vectors is equal

to Q= p(p— 1)(p* — 1).
Proof. For primes p = 4k + 1 the number —1 is a quadratic residue, since

(=1)P=1/2 = (=1)?* = 1 mod p. Therefore there exists number A such
that A> = —1 mod p and congruence (1) can be represented as follows

(na)* — (Ac)? = 7 ((Ab)? — d?) mod p,
(na — Ae)(pa + Ae) = 7 ((Ab)? — d?) mod p,
af =1 (()\b)2 - d2) mod p,

where o = pa — Ae¢ mod p and 8 = pa + Ac mod p. It is easy to see that for
each pair of numbers (o, ) satisfying the last congruence correspond unique
pair of numbers (a,c) satisfying congruence (1). Therefore the number of
solutions of congruence (1) can be computed as number of solutions of the
last equation. Two cases can be considered. The first case correspond
to condition (Ab)? — d?> #Z Omod p and there exist (p — 1)? of different
pairs (b,d) satisfying this condition. For each of such pairs (b,d) for all
(p — 1) values o # 0 mod p there exists exactly one value  such that the
last congruence holds. Thus, the first case gives Ny = (p — 1) different
solutions of congruence (1).

The second case correspond to condition (Ab)? — d? = 0 mod p which is
satisfied with 2p—1 different pairs (b, d). The left part of the last congruence
is equal to zero modulo p in the following subcases i) a Z 0 mod p and (§ =
0 mod p (p — 1 different variants), ii) « =0 mod p and f Z 0O mod p (p — 1
different variants), and iii) & = 0 mod p and f = 0 mod p (one variant).
Thus, the subcases gives 2p—1 different variants of the pairs (a, ¢), therefore
the second case gives Ny = (2p — 1)? different solutions of congruence (1).
In total we have N = Ny + Ny = (p—1)2+(2p—1)? = p3 +p? — p solutions.
The value N is equal to the number of non-invertible vectors and defines
the group order Q =p* — N =p* —p3 —p? +p=p(p— 1)(p* - 1). O

Statement 2. Suppose prime p = 4k + 3, where k > 1, un # 0, 7 # 0, and
the value T is a quadratic non-residue modulo p. Then the order of the non-
commutative group of four-dimension vectors is equal to 2 = p(p—l)(pZ—l).
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Proof. For primes p = 4k+3 the number —1 is a quadratic non-residue, since
(=1)P=1/2 = (=1)%*1 = —1 mod p. Since the value 7 is quadratic non-
residue the following formulas hold 7(~1/2 = —1 mod p and (—7)®~1/2 =
1 mod p. The last formula shows that there exists number A such that
A2 = —7 mod p and congruence (1) can be represented as follows

(5a)? — (\D)?
(a — Ab)(ua + Ab)
~d

(Ad)? — ¢? mod p,
(Ad)? — ¢® mod p,
(Ad)? — d? mod p,

where v = pa — Ab mod p and § = pa + Ab mod p. Then, counting different
solutions of the last equation is analogous to counting solutions in the proof
of Statement 1. This gives N = p3 4 p? — p different solutions of congruence
(1) and the group order Q = p(p — 1)(p? — 1). O

5. Computational experiments and illustrations

Numerous computational experiments have shown that in the case p =
4k + 3, where k > 1, up # 0, 7 # 0, when the value 7 is a quadratic residue
modulo p, the group order also equals to £ = p(p—1)(p? — 1). However the
formal proof of the last fact have not been found. The experiments have
also shown that for given modulus p the structure of the non-commutative
group of four-dimension vectors is the same for all non-zero values of the
structural coefficients u and 7. Here under structure of the group it is sup-
posed a table showing the number of different vectors having the same order
w for all possible values w. In the case of the commutative finite groups of
four-dimension vectors the group structure changes with changing values of
structural coefficients. The experiments have been performed using differ-
ent other variants (than Table 1) of the BVMTs defining non-commutative
groups of four-dimension vectors and in all cases the same structure and the
same group order have been get, for all non-zero values of the structural
coefficients.

Defining a group of four-dimension vectors with Table 1 and parameters
pw=17=1, and p = 234770281182692326489897 (it is a 82-bit number)
one can eagsily generate the vectors Q and G having the prime orders ¢ =
g = 117385140591346163244949 (it is a 81-bit number) and then generate
vector K =G o QoG

Q = (197721689364623475468796, 104620049500285101666611,

91340663452028702293061, 190338950319800446198610);



Public key cryptosystems 173

G = (44090605376274898528561, 33539251770968357905908,
62849418993954316199414,121931076128999477030014);
G~! = (44090605376274898528561,201231029411723968583989,
171920862188738010290483, 112839205053692849459883);
K = (197721689364623475468796, 127324294038715727080605,
205837389432865711027118, 169402831102520905889980).

The vectors satisfy the conditions Go@Q # Go@Q and Ko Q # Qo K
(see Theorem 1), therefore they can be used to implement the cryptoschemes
presented in Sections 2 and 3. It is easy to generate many other different
pairs of the vectors @ and G possessing 81-bit prime orders ¢ and g and
satisfying the condition of Theorem 1. The least common multiple of all
element orders in the constructed group is

m = 12939853526188313144336212835389396459316
920609647589590297471969647376.

The exponent e of the encryption key for commutative encryption algo-
rithm can be selected as e = 7364758519536461719117. Then the exponent
of the decryption key is computed using formula d = e~! mod p:

d = 8969427630416482351904498868955232431090386202
188967381064403670926661.

Accordingly to the algorithm for computing the private key from the
public one, which is described in the next section, the 80-bit security of
the proposed cryptoschemes is provided in the case of 80-bit primes ¢ and
g. In this case the difficulty of the computation of the public key from
the private one does not exceed 5800 multiplications modulo 80-bit prime.
In the corresponding cryptoschemes of the public encryption and of the
public key agreement, which are based on elliptic curves, the difficulty of
computing the public key from the private one is equal to about 2400 mul-
tiplications modulo 160 prime. Taking into account that difficulty of the
modulo multiplication is proportional to squared length of the modulus one
can estimate that the proposed cryptoschemes are about 1.6 times faster
than analogous schemes implemented using elliptic curves. Besides, perfor-
mance of the proposed cryptoschems can be significantly enhanced defining
computation of the secrete element W as a sum of small powers of G, for
example, W = Zgzl psG's, where ps € GF(p), ts <15, s =1,2,...,6.
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6. Algorithm for computing the private key

Using the known parameters () and G having the orders ¢ and g = ¢
the following algorithm finds the private key (w,x) from the public one
Y=GYoQ%oGTY.

1. For all values j = 1,2,...,q compute vectors T(j) = G? oY o G/
(difficulty of this step is 2¢ vector multiplications).

2. Order the table computed at the step 1 accordingly to the values T'(j)
(difficulty of this step is qlog, ¢ comparison operations).

3. Set counter ¢ = 1 and initial value of the vector V = (¢ 71,0,0,0).
4. Compute the vector V < V o Q.

5. Check if the value V is equal to some of the vectors T'(j) in the ordered
table. If there is some vector T'(j') = V, then deliver the private key
(w,z) = (j,7) and STOP. Otherwise go to step 6.

6. If ¢ # ¢, then increment counter ¢ « 7 + 1 and go to step 4. Oth-
erwise STOP and output the message INCORRECT CONDITION.
(Difficulty of steps 5 and 6 does not exceed ¢ vector multiplication
operations and ¢log, ¢ comparison operations.)

Overall the time complexity of this algorithm is about 3¢ vector mul-
tiplication operations and 2qlogy ¢ comparison operations, i.e. the time
complexity is O(q) operations, where O(-) is the order notation. The al-
gorithm requires storage for ¢ vectors and for the same number of |p|-bit
numbers, i.e. the space complexity is O(q).

This algorithm shows that the 80-bit security of the proposed cryptosys-
tems can be provided selecting 80-bit primes ¢ and g. Such prime orders of
the vectors () and G can be get using 81-bit primes p.

Is seems that element GG having composite order can be used in the
cryptoschemes described above and this will give higher security, while us-
ing the given fixed modulus p. However this item represents interest for
independent research.

7. Conclusions

Results of this paper shows that finite non-commutative groups represent
interest for designing fast public key agreement schemes, public encryption
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algorithms, and commutative encryption algorithms. Such cryptoschemes
are fast and the hard problem they are based on is expected to have ex-
ponential difficulty using both the ordinary computers and the quantum
ones.

Theorem 1 is useful for justification of the selection elements ) and
G while defining parameters of the cryptoschemes. The proposed non-
commutative finite group of the four-dimension vectors seems to be ap-
propriate for practical implementation of the proposed schemes. We have
proved the formulas for computing the order of such groups in majority
of cases. Unfortunately for a quarter of cases the formal proof have not
been found and this item remains open for future consideration. However
the proved cases covers the practical demands while implementing the pro-
posed cryptoscheme in the case of using the constructed non-commutative
groups of four-dimension vectors.

It is easy to show that there exists multiplicative homomorphism of the
proposed groups of four-dimension vectors into the finite field over which
the vector space is defined. Therefore in the case of using the constructed
finite non-commutative group in the proposed cryptoschemes one should
take into account the existing homomorphism. To prevent attacks using
this homomorphism the large prime orders g and ¢ of the elements G and
@ should satisfy conditions glp+ 1 and g|p+1 (i.e., g fp—1and ¢ Jp— 1,
since g > 2 and ¢ > 2).
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Cryptoschemes over hidden conjugacy
search problem and

attacks using homomorphisms

Dmitriy N. Moldovyan and Nikolay A. Moldovyan

Abstract. There are considered attacks on cryptoschemes based on the recently pro-
posed hard problem called hidden conjugacy search problem (HCSP), defined over finite
non-commutative groups. It is shown that using homomorphisms of the non-commutative
finite group into finite fields GF(p°®), s > 1, in some cases the HCSP can be reduced to
two independent problems: discrete logarithm and conjugacy search problem. Two meth-
ods for preventing such attacks are proposed. In the first method there are used elements
of the order p. The second method uses non-invertible elements and relates to defining

the HCSP over the finite non-commutative ring.

1. Introduction

Since the factorization and finding discrete logarithm problems (DLP) can
be solved in polynomial time on a quantum computer [6] new hard prob-
lems attracts attention of the researchers in the cryptology area. One of such
problems called conjugacy search problem (CSP) [1, 2] is defined over finite
non-commutative groups as follows. Suppose I is a finite non-commutative
group, G,Y € I', X € I'., where I'; is a commutative subgroup of I, and
Y = XGX 1. Given G and Y find X € I'.. Recently [4] a novel hard prob-
lem that can be called the hidden conjugacy search problem (HCSP) has
been applied to design the key agreement protocol, commutative encryption
algorithm, and public-key encryption algorithm. The HCSP is defined as
follows. Given G and Y recover integer x and element X € I'; such that
Y = XG*X~!. If the value z is known, the HCSP is reduced to CSP. If
the element X is known, the HCSP is reduced to DLP.

2010 AMS Subject Classification: 94A60, 16205, 14G50, 11T71, 16S50
Keywords: difficult problem, finite group, homomorphism, non-commutative group,
non-commutative ring, public-key cryptoscheme
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Present paper introduces two attacks on the HCSP-based cryptoschemes
that are implemented using finite non-commutative groups I' of the m-
dimensional vectors and matrices m x m defined over the finite ground field
GF(p). It is described a general homomorphism of the finite commutative
and non-commutative groups of vectors into GF(p). The first attack uses
the homomorphism of the I" into GF(p) to reduce the HCSP to two inde-
pendent problems, DLP and CSP. The second attack uses the hypothetic
homomorphisms () of the I into GF(p®), where s < m to reduce the
HCSP to two independent problems, DLP and CSP. Methods for prevent-
ing this attack are proposed. To prevent the both attacks there are two
approaches. The first approach uses the element G possessing the order
equal to p. The second approach uses the non-invertible element G of the
finite ring R containing the group I'. In the first case Vs € {1,...,m} the
homomorphism ¥ : I' — GF(p®) maps the element Y into the unity
element of GF(p®) for all s < m. In the second case Vs € {1,...,m}
the homomorphism ¢ : R — GF(p°) maps the element Y into zero of
GF(p®).

2. Homomorphisms of the finite groups and rings

Finite rings R of m-dimensional vectors are defined over the ground field
GF(p), where p is a prime. Suppose e, i, ..., w be some m basis vectors
and a,b,...,z € GF(p) are coordinates. Then the vectors are denoted as
ae+bi+---+zw or as (a,b,...,z). The terms like 7v, where 7 € GF(p)
and v € {e,i,...,w}, are called components of the vector. The addition of
two vectors is defined in the natural way, the multiplication by the formula

(ae+bi+---+zw)o(d'e+bi+---+2'w) = ad'ece+bd'ioe+- -+ za'woe+
+ab'eoi+bbioi+ -+ cbzoi+...

-t aeow+biow+ -+ 2zwow,

where in the last expression each product of two basis vectors should be
replaced by some basis vector v or by a vector 7v in accordance with some
given table called the basis-vector multiplication table (BVMT) such that
operation o is associative. There are possible different types of the BVMTs
defining commutative [3| and non-commutative rings R [4]. In general case
there exists the homomorphism R — GF(p®). Indeed, suppose the vector
A is invertible, then the vector equation

AoX =V (1)
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with unknown X has unique solution for arbitrary vector V: X = A=1o V.
Equation (1) can be rewritten as a system of m linear equations over GF(p)
with m unknowns that are coordinates of the vector X. Let A4 be the main
determinant of the system of equation relating to formula (1). The deter-
minant A4 is completely defined by coordinates of the vector A.

Theorem 1. The determinant A defines the multiplicative homomor-
phism (A) = A4 of the ring R into the field GF(p).

Proof. If A is not invertible, then A4 = 0, i.e., all non-invertible vectors are
mapped into zero of GF(p). Let us consider the vector equation (1) with
invertible vector A and arbitrary vector V. For all vectors V' € {V'}, where
{V'} denotes the considered vector space, equation (1) has unique solution,
therefore A4 # 0 and multiplication of the vector A by all vectors V of the
considered vector space {V'} defines a linear transformation 74 of {V'}. The
matrix M4 of coefficients of the system of linear equations corresponding
to the vector equation (1) can be put into correspondence to T4. Another
invertible vector B defines the transformation Ts corresponding to analo-
gous matrix Mp. The vector multiplication operation in R is associative,
therefore we have

(AoB)oV =Ao(BoV). (2)

The left part of (2) represents the linear transformation T4op corresponding
to the matrix M4op. The right part of (2) is the superposition T % T4 of
linear transformations Ts and T4, therefore we have

Taop=Tp*xTs = Mpyog = MsMp :>A(AOB) :AAAB.

The last expression means that the mapping 1 : A — A 4 is the multiplica-
tive homomorphism of the multiplicative group I' of the ring R into the field
GF(p). Since for arbitrary non-invertible vectors A and B we have Ay =0
and Ap = 0, the last fact means that ¢ : A — A4 is the multiplicative
homomorphism of R into GF(p). Theorem 1 is proved. O

In a particular case when the ring R is a vector finite field GF(p™) |5]
the homomorphism defined by Theorem 1 is the same mapping as norm
homomorphism defined for the extension finite fields. Below it is also used
the following well known fact. If R is a finite ring of matrices M defined over
GF(p), then mapping 1’ such that VM : /(M) — Ay, where Ay is the
determinant of the matrix M, represents the multiplicative homomorphism
' R — GF(p).
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3. The fist attack

Using the homomorphism % in the case of the group of vectors (or ¢’ in
the case of group of matrices) described in Section 2 the following attack on
cryptoschemes based on the HCSP [4] is possible. The homomorphism
maps the equation over the non-commutative group I' used for computing
the public key Y = XG*X !, where X and z are the secret key, into the
following equation over the field GF(p)

YY) = 9(X) (W(G)" (X)) = (¥(G))". (3)

There are possible the following three cases.

1. The order of the value ¥/(G) € GF(p) is equal to the order of the
element G € I'. In this case the secret value x can be found solving the
DLP in GF(p). Then the secret element X can be found solving the CSP.
Thus, in this case the HCSP is reduced to two independent well known hard
problems and the attack can be considered as successful one.

2. The order of the value (G) € GF(p) is less than the order of
the element G € I'. In this case the partial information about the secret
value x can be found solving the DLP in GF(p), i.e., solving the equation
»(Y) = (1(G))* one can found the value 2/ = 2 mod Wy(G), Where wyq)
is the order of the value ¢(G) € GF(p). The last means that the difficulty
of the HCSP is reduced.

3. The homomorphism 1 maps the element G to the unity element of
the field GF(p) and equation (3) degenerates into trivial equation 1 = 17,
from which no information about the secret value can be obtained. In this
case the considered attack is not efficient to reduce the HCSP.

Thus, in the design of the cryptoschemes based on the HCSP it should be
used the element G such that 1)(G) = 1 and the order wy,q) is a sufficiently
large prime [4]. Selection of such element G depends on the order of the
concrete group used for constructing a cryptoscheme based on the HCSP.
The following theorem is very useful to select the suitable element G.

Theorem 2. If the element G has the order wg such that ged(wg, p—1) = 1,
then ¢¥(G) = 1.

Proof. Suppose E is the unity element of the group I and ¢(G) # 1. Then
$(G¥e) = B(E) = 1 and § (G¥0) = ($(G))** imply (¥(G))*° = 1. Thus
ged(wg, p — 1) # 1, which contradicts to the assumption. O

We use Theorem 2 for a selection of the element GG in the finite non-
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commutative group I' of four-dimensional vectors with multiplication de-
fined by BVMT presented in Table 1.

o | ¥ K J %
€ | pe i 14§ pk
— . 1 .

1 pi —uTe k —Tj
- . -1 .

Jo| M -k —pe i

—

k| uk Tj —i —ulre

Table 1. The basis-vector multiplication table (m = 4) [4].

The order of this group is 2 = p(p—1)%(p+1) (cf. [4]). In this case it is
possible to generate a 90-bit prime p = 2¢ — 1 such that ¢ is a prime. Then
we can generate the vector G having sufficiently large prime order wg = ¢
satisfying the condition ged(wg,p —1) =1 (cf. [4]). In the case of groups
I' corresponding to matrices m x m and m-dimensional vectors the choice
of G satisfying Theorem 2 is relatively simple. Such choice prevents the
attacks using the considered homomorphism. However there are potentially
possible some other ways for reducing the HCSP to independent DLP and
CSP, which use multiplicative homomorphisms ¥(®) : T' — GF(p®), where
s<m.

4. The second attack

Taking into account possibility to define the HCSP over different variants
of the finite non-commutative groups it is reasonable to consider some at-
tack on the HCSP-based cryptoschemes, in which some other potentially
possible multiplicative homomorphisms can be exploited. Such attacks are
also oriented to reducing the HCSP to two independent hard problems each
of which is significantly less difficult than HCSP. In the second type of
attacks there is assumed existence of some hypothetic multiplicative homo-
morphisms () : T — GF(p®), where the cases s < m provide sufficient
generality for finite groups of vectors and matrices over the field GF(p).
Indeed, in the case of matrices the order group is described by the formula

m—1
Qxm = H pi (pm—z' - 1) : (4)
=0

Since order of the multiplicative group of GF(p®) is equal to p* — 1, the
values s = 1,2,...,m cover all cases that can be used in the second attack.
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Like in the case of the first attack described in Section 3 one can formu-
late the following statement.
Theorem 3. If the element G has the order wg such that ged(wg,r) =1,

wherer = [ (p™ — 1), then Vs < m the following formula holds ¢*(G) = 1.
i=1
Proof. The proof is analogous to the proof of Theorem 2. O

It is remarkable that order of the non-commutative group I in the case of
matrices and in many cases of vectors contains the divisor p. This fact pro-
vides the first method to provide security of the HCSR-based cryptoschemes
against attacks of the second type. The method consists in using element
G having the order wg = p. Then, accordingly to Theorem 3 for all s < m
the following mappings hold: )(G) = 1 and ¥®)(Y) = 1, therefore the
considered hypothetic homomorphisms become inefficient to reduce the dif-
ficulty of the HCSP.

The number of elements possessing the order equal to p is comparatively
small and some special properties of the groups I' are to be exploited to find
the elements of such order. In the case of finite non-commutative group
of four-dimensional vectors with the group operation defind with Table 1
different elements having order p can be computed (and applied as element
G) using the following statement.

Statement 1. Suppose I' is the finite group of four-dimensional vectors
over the field GF(p) and the group operation is defined with Table 1. Then
the vectors (u=1,b,c,d) have order equal to p, if the coordinates b,c, and d
satisfy condition

0% + 2 + 7d? = 0 mod p. (5)
Proof. Squaring the vector (1!, b, ¢, d) gives
(pte+bi+cj+dk)? = (pt — p=H(7b? + ¢ + 7d?)) e + 2bi + 2¢j + 2dk.

Taking into account condition (5) we get (u~1,b,¢,d)? = (u=1,2b,2c, 2d).
Suppose for integer k > 1 the following formular holds

(u=",b, e, d)* = (u™" kb, ke, kd). (6)

Then
(01 0,6,d)F T = (u™ b, e, d)F o (ut b, ¢, d)
= (u kb ke, kd) o (u™t,b,¢,d) = (p 1, (k+ 1)b, (k + 1)c, (k + 1)d).
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Therefore formula (6) holds for all k > 1. If k = p, then (u=',b,¢,d)P =
(=L, pb, pc, pd) = E, where E = (u~1,0,0,0) is the unity element of I'. If
k < p, then (u~',b,¢,d)¥ # E. Therefore the value p is the order of the
vector (u=1,b,c,d). Statement 1 is proved. O

Another method preventing attacks of the second type consists in us-
ing non-invertible elements N of the finite ring R containing the group
I', where as G is used some non-invertible element N such that the set
{N,N? ... Nt ...} contains sufficiently large number of different elements
N' € R. Actually it is considered the variant of the HCSP defined over the
finite non-commutative ring and it is supposed the HCSP-based cryptosys-
tems exploit the public key Y computed as Y = X N*X 1. Applying the
homomorphisms 1) to the last equation gives w(s)(Y) =0, since pV) = 0.
Thus, this method is also efficient to prevent attacks of the second type.

Existence of the elements N suitable for defining the HCSP over fi-
nite non-commutative rings and designing the public key cryptosystems is
demonstrated in the case of the 2 x 2 matrices by the following statement.

Statement 2. For the 2 x 2 matriz Naxo defined over the ground field
GF(p) for all positive integers i > 2 the following formula holds

. a b i Ai_la )\i—lb
NQ)(Q_( c )\_a> _( )\i—lc )\i—l()\_a) >7 (7)
where a = \/2 £+ 1/()\/2)2 — be.
2
. a b Aa Ab
Proof. Tt is easy to show that < c N—a ) = ( A A0 —a) > .

If (7) holds for some i > 2, then for i + 1 we have
a b o [ a b R b
c A—a e A—a c A—a
- Ni—lg A 1p a b - g b
U2 le AT —a) c A—a )\ e XA—a) )’
which completes the proof. ]

Suppose the order of A € GF(p) is wy. Then powers of the matrix Noyo
generate w) different non-invertible matrices. Selecting a prime p such that
p = 2q + 1, where ¢ is a prime, and A having the order w) = ¢ one can
define different variants of the matrix Noyo suitable for application in the
method for preventing attacks of the second type.
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Using the ring Raxe D I' of the 2 x 2 matrices and the matrix Noxo
defined over the ground field with characteristic p > 2% one can define
the key agreement scheme as follows. Some uses A and B computes their
public keys Y4 = XaN52,X ;! and Y = XpN52,X 5", where (X4,24) is
the private key of the user A and (Xp,zp) is the private key of the user
B. Then the first and second users compute the values Kap and Kpgg,
correspondingly, as follows

Kap=XAV5AX ' = Xa (XpNSBX ) " Xt = XaXpNSBIAX 1 X
Kpa=XpY{PX5' = Xp (XaN; 2 X )P X! = XpXaNg 252 X 1 X 51

In this scheme it is assumed that X4 and Xp are selected from some
specified commutative subgroup I'c C I' C Raxo, therefore Koy = K190 = K,
i.e., each of the users computes the same secret value K. Security of the
described cryptoscheme is defined by difficulty of the HCSP over Raxo,

which cannot be reduced with attacks of the second type (note that the
second type attacks cover the case of the fist attack described in Section 3).

5. Discussion and conclusion

Consideration of the multiplicative homomorphisms of the non-commutative
finite rings R D T" (or groups I') is an important item of the investigation
of the difficulty of the HCSP defined over R (or over I'), which relates to
security estimation of the HCSP-based cryptoschemes. Using the matrices
and vectors defined over the field GF(p) for implementing the HCSP-based
cryptoschemes is very attractive. In the case of matrices M the multiplica-
tive homomorphism ¢’ : M — Ay is well known. A general multiplicative
homomorphism 1 of the vector finite rings into GF'(p) have been described.
If the ring of m-dimensional vectors represents the field GF(p) [5] the ho-
momorphism ) coincide with the norm homomorphism, more detailed con-
sideration of this fact is out of the scope of this paper though. In Section 3
the mentioned homomorphisms have been used in the first attack proposed
against the HCSP-based cryptoschemes. To prevent this attack the condi-
tion for selecting parameters of the HCSP have been proposed.

The considered attacks of the second type relates to using hypothetic
homomorphisms (®) : R — GF(p®), where s < m. These attacks are more
powerful and cover the case of the first attack. While designing concrete
cryptoschemes their parameters are selected depending on the order €2 of the
multiplicative group I' of the ring R. In the case of matrices the formula
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describing the order €) is known. However using the m X m matrices is
limited by sufficiently small values m, since the size |Y| of the public key
Y increases approximately as m?|p|, where |p| denotes the size of p, and to
provide the security of the HCSP-based cryptoschemes the order €2 should
contain the prime divisor ¢ having the size |g| > 80 bits. The value of ¢ is
limited by p™ 1, therefore |g|(m — 1)|p| and |Y| ~ m?(m —1)"!|q| (the last
holds for prime m; for composite m the increase of |Y| is more significant).

In the case of the m-dimensional vectors the parameters of the ring R
can be selected so that the secure size of the public key is approximately
equal to 4|q| ~ 320 bits for small (m = 4) and large (m = 8,16, 32) values
of m. Table 2 presents the comparison of the size of public key in the case of
diferent dimensions of the matrices and vectors. Practical interest to use the
large values m is connected with the fact that in the case of vectors the com-
putational difficulty of the multiplication operation decreases significantly
with increasing value of m. However construction of the non-commutative
finite vector groups for large values of m relates to less investigated problem.
Table 3 presents an example of the BVMT for the case m = 8. If structural
coefficient 7 € GF(p) is such that equation #2 = 7 has no solution in GF(p),
then the order of the group I' of eight-dimensional vectors, which is defined
with this BVMT, contains divisor p? + 1. It is easy to generate values p
such that ¢ = (p2 + 1) /2 is prime (for example, for p = 307970789149 and
T = 2 we have ¢ = 47423003484528908072101). Investigation of different
variants of the vector groups I' for m = 6,8,12, 16, 20, 28, 32 relates to a
separate problem.

Elements of T dimension ‘ Ip|, bits ‘ |Y'|, bits ‘
matrices 2 %2 80 320
matrices 3x3 40 360
matrices 4 x4 40 640
matrices 55X 9D 20 500
matrices 6 x6 20 720
matrices Tx7 14 686
vectors 4 80 320
vectors 8 40 320
vectors 16 21 336
vectors 32 11 352

Table 2. A rough estimation of the public-key size of the HCSP-based
cryptoschemes possessing the 80-bit security.
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o e i j k u v w p'q
e e i j k u v w X
i i —e k —j v —u X -w
j j -k —e i w - X —u v
k k j —1i —e X w -V —u
u u v w X Te Ti Tj 7k
v v —u b'4 - W Ti —Te€ 7k —Tj
w | W —-X —u v Tj — 7k —Te Ti
X x w -V —u 7k Tj —7i —Te

Table 3. The basis-vector multiplication table for case m = 8.
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Para-associative groupoids

Dumitru |. Pushkashu

Abstract. We study properties of left (right) division (cancellative) groupoids with

associative-like identities: = -yz = zx -y and x - zy = zy - 2.

1. Introduction

A quasigroup can be defined as an algebra (@, -) with one binary operation
in which some equations are uniquely solvable or as an algebra (Q,-,\,/)
with three binary operations satisfying some identities. The first definition
is motivated by Latin squares, the second — by universal algebras. In the
case of quasigroups various connections between these three operations are
well described.

In this note we describe connections between these three operations
in para-associative division groupoids, i.e., left (right) division groupoids
satisfying some identities similar to the associativity.

By the proving of many results given in this paper we have used Prover9-
Mace4 prepared by W. McCune |[7].

2. Basic facts and definitions

By a binary groupoid (Q,-) we mean a non-empty set () together with a
binary operation denoted by juxtaposition. Dots will be only used to avoid
repetition of brackets. For example, the formula ((zy)(zy))(zz) = (z2)z
will be written in the abbreviated form as (zy - zy) - z = zz - z. In this
notion the associative law has the form

T-yz=u1xY- 2. (1)

2010 Mathematics Subject Classification: 20N02, 20N05
Keywords: groupoid, right division groupoid, left division groupoid, right cancellative
groupoid, left cancellative groupoid, quasigroup, abelian group.
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If we permute the arguments in each side of (1) we can obtain 16 new
equations. Hosszu observed (see |5]) that all these equations can be reduced
to one of the following four cases: (1),

Tyz =2y, (2)
T-yz=y-az, (3)
T-Yyz=2zx-Y. (4)

Unfortunately Hosszi gives only two examples of such reductions.

Example 2.1. The equation yz - x = yz - z is equivalent to x * (z * y) =
z* (x *y), where t x s = st. O

Example 2.2. If in the identity
Tozy=1xY- 2 (5)

(called by Hosszu — Tarki’s associative law) we put z = x and replace xy
by t, we obtain zt = tz. Hence, in groupoids (@, -) in which each element
t € @ can be written in the form zy, z,y € @, (5) implies each of the
equations (1) — (4). O

M. A. Kazim and M. Naseeruddin considered in [6] the following laws:
xY-z=2y-x (6)

xT-yz =z-yx. (7)

Groupoids satisfying (6) are called left almost semigroups (LA-semigroups),
groupoids satisfying (7) are called right almost semigroups (RA-semigroups).
All these identities are strongly connected with para-associative rings.
Namely, a non-associative ring R is para-associative of type (i, 7, k) (cf. [2]
or [4]) or an(i, j, k)-associative ring, if x1x2 - x3 = x; - ;2 is valid for all
x1,T2,x3 € R, where (i, j, k) is a fixed permutation of the set {1,2,3}.

As usual, the map L, : Q@ — @, Lox = ax for all x € Q, is a left
translation, the map R, : Q — Q, Ry,x = xa, is a right translation.

A groupoid (Q,-) is a left cancellation groupoid, if ax = ay implies x =y
for all a,z,y € @, i.e., if L, is an injective map for every a € (). Similarly,
(Q,-) is a right cancellation groupoid, if xa = ya implies x = y for all
a,xz,y € G, ie., if R, is an injective map for every a € Q. A cancellation
groupoid is a groupoid which is both a left and right cancellation groupoid.
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By a left division groupoid (shortly: ld-groupoid) we mean a groupoid
in which all left translations L, are surjective. A right division groupoid
(shortly: rd-groupoid) is a groupoid in which all right translations R, are
surjective. If all L, and all R, are surjective, then we say that such groupoid
is a division groupoid.

Example 2.3. Let (Z,+,-) be the ring of integers. Consider on Z two
operations: z oy = x + 3y and x *xy = [x/2] 4+ 3y. It is possible to check
that (Z,o) is a left cancellation groupoid, (Z,*) is a left cancellation right
division groupoid. O

Definition 2.4. A groupoid (Q, o) is called a right quasigroup (a left quasi-
group) if, for all a, b € @, there exists a unique solution x € @ of the equation
zoa = b (respectively: aox =b), i.e., if all right (left) translations of (@, o)
are bijective maps of ().

A groupoid which is a left and right quasigroup is called a quasigroup.
A quasigroup with the identity is called a loop.

T. Evans [3] proved that a quasigroup (Q,-) can be considered as an
equationally defined algebra. Namely, he proved

Theorem 2.5. A groupoid (Q,-) is a quasigroup if and only if (Q,-,\,/)
is an algebra with three binary operations -, \ and / satisfying the following
four identities:

z - (z\y) =y, (8)
(y/z) -z =y, (9)
z\(z - y) =y, (10)
(y-x)/z=y. (11)

Another characterization of quasigroups was given by G. Birkhoff in [1].

Theorem 2.6. A groupoid (Q,-) is a quasigroup if and only if (Q,-,\,/)
is an algebra with three binary operations -, \ and / satisfying the identities
(8) — (11) and

(z/y)\z =y, (12)

y/(z\y) = z. (13)

In the case of groupoids connections between these three operations are
described in [8] and [9]. Namely, the following theorem is true.
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Theorem 2.7. Let (Q,-) be an arbitrary groupoid. Then

1. (Q,-) is a left division groupoid if and only if there exists a left can-
cellation groupoid (Q,\) such that an algebra (Q,-,\) satisfies (8),

2. (Q,) is a right division groupoid if and only if there exists a right
cancellation groupoid (Q, /) such that an algebra (Q,-, /) satisfies (9),

3. (Q,-) is a left cancellation groupoid if and only if there exists a left
division groupoid (Q,\) such that an algebra (Q,-,\) satisfies (10),

4. (Q,-) is a right cancellation groupoid if and only if there exists a right
division groupoid (Q, /) such that an algebra (Q,-, /) satisfies (11).

3. Cyclic associative law

In this section we study various groupoids satisfying the cyclic associative
law (4).

Theorem 3.1. A right division groupoid (Q,-, /) satisfying (4) is an asso-
ciative and commutative division groupoid.

Proof. By Theorem 2.7 such groupoid satisfies (9). Hence

“ )
yz- (z/y) = z- (x/y)y = 2x.
Using just proved identity, we obtain

4 4 9
wy'z(z)y-zxzy-(yz-(w/y))(Z)(w/y)y-yz(z):v-yz,

which proves the associativity. Moreover, for all z,y € Q) we have

vy @ (y)2): @ er (y)) 2 aly/) D /)0 Dy

So, (@, -) is associative and commutative division groupoid. O

Corollary 3.2. A right cancellation rd-groupoid (Q,-, /) satisfying (4) is a
commutative group with respect to the operation - and satisfies the identities

(2) = (4).

Proof. By the previous theorem such groupoid is a commutative division
groupoid. Since it also is a cancellation groupoid, it is a commutative group.
Obviously it satisfies (2) — (4). O
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Theorem 3.3. A left cancellation rd-groupoid (Q,-,\,/) satisfying (4) is a
commutative group with respect to the operation - and satisfies the identities

(2) —(4).
Proof. By Theorem 2.7 such groupoid satisfies (9) and (10). Hence

vy L @/w)z -y Lo yla/).

from this we obtain z\(xy) = y(z/z), which, in view of (9), gives

y=y(z/x). (14)

So, for all z,y € Q, we have

y\y =z/z (15)
Thus ) )
v 2wy © @y D @/

This, together with (14), shows that e = x/x = z\z is the identity of (Q, ).
Since
_ @ _
Y=Yy €=y er =y

(Q,-) is a commutative loop. Hence zy -z = yx -z =z - zy = = - yz, which
means that it is a commutative group. Obviously it satisfies (2) — (4). O

Theorem 3.4. A left division groupoid (Q,-,\) satisfying (4) is a commu-
tative division groupoid.

Proof. By Theorem 2.7, such groupoid satisfies (8). Hence

®) “)
zx = y(y\z) -z = (y\z) - zy.
Using just proved identity, we obtain

4 4) 8
x-yz(z)zx‘yz((y\Z)‘xy)-y(zxy-y(y\Z)(Z)wy-z,

which proves the associativity. Moreover, for all z,y € Q we have

xy ® z(z\x) -y @ (2\z) - yz W (z\x)y - 2 @ y-z(2\x) ® y.

=

So, (@, -) is associative and commutative division groupoid. O
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Corollary 3.5. A left cancellation ld-groupoid (Q,-,\) satisfying (4) is a
commutative group with respect to the operation - and satisfies the identities

(2) = (4).

Proof. By the previous theorem such groupoid is a commutative division
groupoid. Since it also is a cancellation groupoid, it is a commutative group.
Obviously it satisfies the identities (2) — (4). O

Theorem 3.6. A right cancellation ld-groupoid (Q,-,\, /) satisfying (4) is a
commutative group with respect to the operation - and satisfies the identities

(2) = (4).

Proof. The proof is very similar to the proof of Theorem 3.3. O

4. Groupods in which xzy = xy-z

Lemma 4.1. A left division groupoid (Q,-,\) satisfying (5) is commutative
and associative.

Proof. By Theorem 2.7 such groupoid satisfies (8). Hence

(8) (5) (8
vy = yy\z) -y = y-yly\z) = yz

for all x,y € Q. The associativity is obvious. O

Theorem 4.2. A left cancellation ld-groupoid (Q,-,\) satisfying (5) is a
commutative group with the identity e = x\x and satisfies (2) — (4).

Proof. Indeed, zy & z(z\z)-y ® . y(x\x), which implies y = y(z\z). O

Corollary 4.3. In a right cancellation ld-groupoid (Q,-,\, /) satisfying (5)
we have x\y = y/x for all z,y € Q.

Proof. By Lemma 4.1 such groupoid is commutative. Hence y = xz = zx
implies x\y = y/x. O

Theorem 4.4. A right cancellation ld-groupoid (Q, -, \, /) satisfying (5) is a
commutative group with respect to the operation - and satisfies the identities

(2) — (4).

Proof. By Lemma 4.1 such groupoid is associative and commutative. Hence
it also is left cancellative. Theorem 4.2 completes the proof. ]
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Lemma 4.5. A left cancellation groupoid (Q,-,\) satisfying (5) is associa-
tive and commutative.

Proof. In fact, using (5), we obtain
u(zy - 2z) =uz- -2y = (uz-y)xr = (u-yz)r = u(x - yz).
This, by the left cancellativity, implies the associativity. Therefore,

(5)

Tyz=2ayY- -z = -2y,
which shows that (@, -) is also commutative. O

Theorem 4.6. A left cancellation rd-groupoid (Q,-,\) satisfying (5) is a
commutative group with respect to the operation - and satisfies the identities

(2) — (4).

Proof. By Lemma 4.5 such groupoid is commutative. Hence it is a left
division groupoid, too. Theorem 4.2 completes the proof. O

Theorem 4.7. A right division groupoid (Q,-, /) satisfying (5) is associa-
tive and satisfies the identity x(y/y) = x.

Proof. By Theorem 2.7 it satisfies (9). Hence
9) 9) (5) 9)
y = (@/y)y = (x/y) - (w/y)y = (@/y)y - (y/y) = z(y/y).
Let e = y/y. Then xe = x for every x € @ and

xy'z:(a;y'z)e@xy'ez@x(ez-y) @x(e'yz) = (z-yz)e=2x-yz,

—
Nus?

which completes the proof. O

Note that a right cancellation rd-groupoid satisfying (5) may not be
a group. A non-empty set ) with the multiplication defined by xy = x
is a simple example of a non-commutative right cancellation rd-groupoid
without two-sided identity.

Acknowledgment: The author thanks to V. A. Shcherbacov for their use-
ful comments and suggestions.
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Hemirings characterized by the properties
of their fuzzy ideals with thresholds

Muhammad Shabir and Tahir Mahmood

Abstract. We define fuzzy h-subhemiring, fuzzy h-ideals and fuzzy generalized h-bi-
ideals with thresholds, and characterize h-hemiregular and h-intra-hemiregular hemirings
by the properties of their fuzzy h-ideals, fuzzy h-bi-ideals and fuzzy h-quasi-ideals with
thresholds.

1. Introduction

Semirings are algebraic structures with two binary operations, introduced
by Vandiver [23]|. In more recent times semirings have been deeply studied,
especially in relation with applications [10]. Semirings have also been used
for studying optimization, graph theory, theory of discrete event, dynami-
cal systems, matrices, determinants, generalized fuzzy computation, theory
of automata, formal language theory, coding theory, analysis of computer
programmes [9, 24]. Hemirings, which are semirings with commutative ad-
dition and zero element, appears in a natural manner, in some applications
to the theory of automata, the theory of formal languages and in computer
sciences [10, 19]

Ideals of hemirings and semirings play a central role in the structure
theory and are useful for many purposes. However, in general, they do not
coincide with the usual ring ideals. Many results in rings apparantly have no
analogues in hemirings using only ideals. In [11] Henriksen defined a more
restricted class of ideals in semirings, called k-ideals, with the property that
if the semiring R is the ring, then a complex in R is a k-ideal if and only
if it is a ring ideal. Another more restricted, but very important, class of
ideals in hemirings, called now h-ideals, has been given and investigated by

2010 Mathematics Subject Classification: 16Y99, 16D25, 08A T2
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Izuka [12] and La Torre [16].

The theory of fuzzy sets was first developed by Zadeh [26] in 1965, and
has been applied to many branches in Mathematics. The fuzzification of
algebraic structures was initiated by Rosenfeld [22| and he introduced the
notion of fuzzy subgroups. In [3] J. Ahsan initiated the study of fuzzy
semirings(See also [2]), fuzzy k-ideals in semirings are studied in [8], and
fuzzy h-ideals are studied in [13, 17, 27]. The fuzzy algebraic structures
play an important role in mathematics with wide applications in many other
branches such as theoretical physics, computer sciences, control engineering,
information sciences, coding theory and topological spaces [1, 10, 24].

The notions of "belongingness" and "quasicoincidence" of fuzzy points
and fuzzy sets proposed and discussed in |20, 21|. Many authors used these
concepts to generalize some concepts of algebra, for example [4, 5, 6, 14].
In |7, 18] («, B)-fuzzy ideals of hemirings are defined.

In this paper we define fuzzy h-subhemiring, fuzzy h-ideal and fuzzy
generalized h-bi-ideals with thresholds, and characterize h-hemiregular and
h-intra-hemiregular hemiring by the properties of their fuzzy h-ideals, fuzzy
h-bi-ideals, fuzzy generalized h-bi-ideals, fuzzy h-quasi-ideals with thresh-
olds.

2. Preliminaries

A semiring is a set R # () together with two binary operations addition and
multiplication such that (R, +) and (R, -) are semigroups and both algebraic
structures are connected by the distributive laws:

alb+c)=ab+ac and (a+b)c=ac+bc

for all a,b,c € R.

An element 0 € R is called a zero of the semiring (R, +,-) if 0z =20 =0
and 0 +z =z 40 =z for all z € R. An additively commutative semiring
with zero is called a hemiring. An element 1 of a hemiring R is called the
identity of R if lx = 21 = z for all x € R. A hemiring with commutative
multiplication is called a commutative hemiring. A non-empty subset A of
a hemiring R is called a subhemiring of R if it contains zero and is closed
with respect to the addition and multiplication of R. A non-empty subset
of a hemiring R is called a left (right) ideal of R if I is closed under addition
and RI C I (IR C1I). A non-empty subset I of a hemiring R is called an
ideal of R if it is both a left ideal and a right ideal of R. A non-empty subset
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Q@ of a hemiring R is called a quasi-ideal of R if () is closed under addition
and RQNQR C Q. A subhemiring B of a hemiring R is called a bi-ideal of
R if BSB C B. Every one sided ideal of a hemiring R is a quasi-ideal and
every quasi-ideal is a bi-ideal but the converse is not true.

A left (right) ideal I of a hemiring R is called a left (right) h-ideal if for
all x,z € R and for any a,b € [ from z+a+2=b+ z it follows x € . A
bi-ideal B of a hemiring R is called an h-bi-ideal of R if for all z,z € R and
a,b € B from z +a+ z=b+ z it follows € B [25].

The h-closure A of a non-empty subset A of a hemiring R is defined as

A={reR|z+a+z2=0b+zfor some a,b € A,z € R}.
A quasi-ideal Q of a hemiring R is called an h-quasi-ideal of R if RQ N

QRCQandz+a+2z=>b+zimpliesxz € Q, for all z,2 € R and a,b € Q
[25]. Every left (right) h-ideal of a hemiring R is an h-quasi-ideal of R and
every h-quasi-ideal is an h-bi-ideal of R. However, the converse is not true
in general.

A fuzzy subset f of a universe X is a function from X into the unit
closed interval [0, 1], that is f : X — [0,1]. A fuzzy subset f in a universe

X of the form 0.1 i
t € (0, it y==z

is said to be a fuzzy point with support x and value t and is denoted by
xy. For a fuzzy point z; and a fuzzy set f in a set X, Pu and Liu [21] gave
meaning to the symbol z;a f, where a € {€, ¢, € Vg, € Aq}. A fuzzy point x;
is said to belong to (resp. quasi-coincident with) a fuzzy set f written z; € f
(resp. xyqf) if f(x) >t (vresp. f(x)+t > 1), and in this case, xy € Vqf
( resp. x¢+ € Aqf) means that xy € f or xqf (resp. x; € f and x4qf). To
say that x;af means that z;af does not hold. Let f be a fuzzy subset of
R and t € (0, 1] then the set U(f;t) = {x € R: f(x) >t} is called the level
subset of R. For any two fuzzy subsets f and g of X, f < g means that,
for all z € X, f(z) < g(x). The symbols f A g, and fV g will mean the
following fuzzy subsets of X

(f Ag)(x) = min{f(z), g(z)}, (fVg)(x)=max{f(z),g(z)}

for all z € X. More generally, if {f; : i € A} is a family of fuzzy subsets of
X, then Ajep fi and Vien fi are defined by

(N fi)(x) = min{f;(x)}, (\ fi) () = max{ fi(2)}

1EA iEA
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and are called the intersection and the union of the family {f; : i € A} of
fuzzy subsets of X, respectively.

Definition 2.1. Let f and g be two fuzzy subsets in a hemiring R. The
h-intrinsic product of f and g is defined by

(f ©g) () =sup { A\ (Fla) ng(b)) A A\ (F()) A g(®)) }

i=1 j=1
if r € R can be expressed as z+X[" a;bj+2z = X7_,a’b}+2, and 0 otherwise.

Proposition 2.2. [25] Let R be a hemiring and f,g,h,k be any fuzzy
subsets of R. If f < g and h <k, then fOh < gOk. O

Lemma 2.3. [25] Let R be a hemiring and A, B C R. Then we have
(i) ACB < xa<Xxs,
(12) XA AXB = XanB,
(ii1) X4 ©XB = Xa5- O

Definition 2.4. A fuzzy subset f in a hemiring R is called a fuzzy h-sub-
hemiring of R if for all z,y, z,a,b € R we have

(1) f(z+y)>min{f(x),fH)}
(i) f(zy) = min{f (x),f ()},
(t5i) x+a+z=b+z= f(z) >min{f(a),f (D)}

Definition 2.5. A fuzzy subset f in a hemiring R is called a fuzzy left
(right) h-ideal of R if for all z,y, z,a,b € R we have

(i) f(z+y)>min{f(z),[ ()}
(i) fley)=fQy)  (f(ey) = f(2)),
(iii) x4+a+z=b+z= f(z)>min{f(a), f(b)}.

A fuzzy subset f of R is called a fuzzy h-ideal of R if it is both a fuzzy
left and a fuzzy right h-ideal of R.

Definition 2.6. [25] A fuzzy subset f in a hemiring R is called a fuzzy
h-bi-ideal of R if for all z,y,z,a,b € R we have

(i) f(z+y)>min{f(z), [y}
(i) f(xy) = min{f (z), f (y)},
(2”) f(xyz) = min{f (z), f ()},

>

iw) r+a+z=b+z= f(z)>min{f(a), f(b)}.
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Definition 2.7. [25] A fuzzy subset f in a hemiring R is called a fuzzy
h-quasi-ideal of R if for all z,y, z,a,b € R we have
(i) f(z+y)>min{f(z),f(y)}
(it) (fOR)AN(ROS) LS,
(iit) c+a+z=b+z2= f(x) Zmin{f (a), f (D)},
where R is the fuzzy subset of R mapping every element of R on 1.

Note that if f is a fuzzy left h-ideal (right h-ideal, h-bi-ideal, h-quasi-
ideal), then f (0) > f (z) for all z € R.

Definition 2.8. [25] A hemiring R is said to be h-hemiregular if for each
x € R, there exist a,b, z € R such that x + xax + z = zbx + z.

Lemma 2.9. [25] A hemiring R is h-hemiregular if and only if for any
right h-ideal I and any left h-ideal L of R we have IL = I N L. a

Definition 2.10. [25] A hemiring R is said to be h-intra-hemiregular if for
each x € R, there exist a;, a}, b;, b}, z € R such that » + 31", a;x’al + 2 =
Z?:i bjIZb;- + z.

Lemma 2.11. [25] A hemiring R is h-intra-hemiregular if and only if for
any right h-ideal I and any left h-ideal L of R we have INL C LI. O

Lemma 2.12. [25] The following conditions are equivalent.
(1) R is both h-hemiregular and h-intra-hemiregular hemiring,
(1) B = B2 for every h-bi-ideal B of R,
(iii) Q = Q2 for every h-quasi-ideal Q of R. O

3. Fuzzy ideals with thresholds (a, ()

In this section we will discuss fuzzy h-subhemiring, fuzzy h-ideals, fuzzy h-
bi-ideals, fuzzy generalized h-bi-ideals and fuzzy h-quasi-ideals with thresh-
olds («, 3) of a hemiring R.

Definition 3.1. Let o, € (0,1] and « < . Then a fuzzy subset f of a
hemiring R is called a fuzzy h-subhemiring with thresholds (o, 3) of R if it
satisfies

(1) max{f(z +y),a} > min{f(z), f(y), 8},

(2) max{f(zy),a}t > min{f(z), f(y), 5},

(3) z+a+z=b+z=max{f(z),a} > min{f(a), f(b), 5}
for all x,y,z,a,b € R.
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Definition 3.2. Let o, € (0,1] and o < . Then a fuzzy subset f of a
hemiring R is called a fuzzy left (vesp. right) h-ideal with thresholds (v, f3)
of R if it satisfies (1), (3) and

(4) max{f(zy),a} > min{f(y), 5}

(resp. max{f(zy),a} > min{f(z),s})
for all x,y € R.

A fuzzy subset f of a hemiring R is called a fuzzy h-ideal with thresholds
(o, B) of R if it is both fuzzy left and fuzzy right h-ideal with thresholds
(o, B) of R.

Definition 3.3. [18] Let «,3 € (0,1] and o < . Then a fuzzy subset f
of a hemiring R is called a fuzzy h-bi-ideal with thresholds («, 3) of R if it
satisfies (1), (2), (3) and

(5) max{f(zzy),a} > min{f(z), f(y), B}
for all z,y, 2z, € R.

Definition 3.4. Let o, € (0,1] and a < (. Then a fuzzy subset f of a
hemiring R is called a fuzzy generalized h-bi-ideal with thresholds («, 3) of
R if it satisfies (3) and (5).

Definition 3.5. [18] Let «, 8 € (0,1] and v < . Then a fuzzy subset f of
a hemiring R is called fuzzy h-quasi-ideal with thresholds («, 3) of R if it
satisfies (1), (3) and

(6) max{f (z),a}>min{(f©R)(z), (RO [) (), }
for all x € R, where R is the fuzzy subset of R mapping every element of
R into 1.

As a simple consequence of the Transfer Principle for fuzzy sets proved
in [15] we obtain

Theorem 3.6. A fuzzy subset f of a hemiring R is a fuzzy h-subhemiring
with thresholds (o, 8) of R if and only if U(f;t) # 0 is h-subhemiring of R
for all t € (a, B). O

Theorem 3.7. A fuzzy subset f of a hemiring R is a fuzzy left h-ideal
(right h-ideal, h-ideal, generalized h-bi-ideal, h-bi-ideal, h-quasi-ideal) with
thresholds (o, 8) of R if and only if U(f;t) # 0 is a left h-ideal (right h-
ideal, h-ideal, generalized h-bi-ideal, h-bi-ideal, h-quasi-ideal) of R for all
t e (o, ). ]
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Theorem 3.8. A non-empty subset A of a hemiring R is h-ideal (h-bi-ideal,
generalized h-bi-ideal, h-quasi-ideal) of R if and only if the characteristic
function x4 is fuzzy h-ideal (h-bi-ideal, generalized h-bi-ideal, h-quasi-ideal)
of R with thresholds («, 3) of R for all a, 8 € (0,1] and a < 3. O

Theorem 3.9. Let f be a fuzzy h-bi-ideal with thresholds (c, 3) of R , then
f A B is fuzzy h-bi-ideal with thresholds (o, 3) of R.

Proof. Let a,b,xz,y,z € R. Then (f A B) (x) = f(x) A for all z € R and
max{(f A B) (z +y), o} = max{f(z +y) A B,a}
= min{max{f(z +y),a}, 5} > min{f(z), f(y), 3}
= min{(f A B8)(x), (f A B)(y), B}
Similarly we can show that
max{(f A B) (zy), a} = min{(f A B) (z), (f A B) (y), 8} and
max{(f A ) (zzy), o} 2 min{(f A B) (z), (f A B) (y), 8}
Now let z +a+ z = b+ z, then
max{(f A ) (), a} = max{f(z) A B, a} = min{max(f(z), ), 5}
= min{f(a), f(b), B} = min{(fAB)(a), (fAB)(b), 5}
This shows that f A 3 is a fuzzy h-bi-ideal with thresholds (a, 3) of R. O

Similarly we can show:

Theorem 3.10. Let f be a fuzzy h-bi-ideal (h-subhemiring, generalized h-
bi-ideal, h-ideal, h-quasi-ideal) with thresholds («, 3) of R, then f A [ is a
fuzzy h-bi-ideal (h-subhemiring, generalized h-bi-ideal, h-ideal, h-quasi-ideal)
with thresholds (a, 3) of R. O

Definition 3.11. Let f, g be fuzzy subsets of a hemiring R. Then for all
€ R we define

(f Ao g)(@) = {(f Ag)(@) A B}V a,
(fVa g)(@) = {(fVg)(x) AB}Va,
(f @2 g)(@) = {(f O g)(x) AB}V a,
(f +2 9)(x) = (sup {f(a1) A flaz) A g(b1) A g(ba)} A B) V e

for all possible expressions of z in the form x + (a1 +b1) 4+ 2z = (az +b2) + 2.

Lemma 3.12. Let A, B be subsets of R, then

(xa 45 xB)(x) = (xaz5(x) AB) V .
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Proof. Let A, B be subsets of a hemiring R and x € R. If x € A+ B then
there exist a1, ay € A and by, by € B such that x4 (a;+b1)+2 = (ag+b2)+2
for some z € R. Thus
(xa +2 x5)() = (sup {xa(a) A xa(ah) A x(B)) A x5} AB)V a
—(1AB)Va = (@) A B) Ve
If © ¢ A+ B then there do not exist aj,as € A and by, by € B such that
z+ (a1 4 by) + 2 = (ag + by) + 2z for some z € R. Thus (x4 +5 x5)(@) =

(OAB)Va= (xz75(r)AB)Va. Hence (xa+2xB)(x) = (Xazp(@)AB)Va. O

Lemma 3.13. A fuzzy subset f of a hemiring R satisfies (1) and (3) if and
only if it satisfies
(1) f+af<(fAB)Va.

Proof. Let f satisfies (1), (3) and = + (a1 +b1) + z = (a2 + ba) + 2 for some
al,ag,bl,bQ,z € R. Then

( +2 1)) = (sup {F(ar) A Flaa) A F(Br) A F(B2)} A B) V
(sup {(f(a1) A f(b1) A B) A (f(a2) A f(b2) AB)YAB)V e
(sup {(f(a1 +b1) Vo) A(flaz+b2) Va)} AB)V
(sup {{f(a1 +b1) A flaz +b2)} Va} AB) V a
(sup{f(a1 +b1) A flag +b2) AN}V a)Va
(
(
=(f

sup {f(a1 +b1) A f(az + b2) A S} A ﬂ) Vo
(f(@)Va)AB)Va
() AB)V a.
Thus f+4 f < (fAB) V.
Conversely, assume that (f +5 z) < (f AB)(x) Va. Then for each
x,z € Rwehave 0+ +2+4+ 2 =2+ + 2. Hence
FO)Va=(fAB)0)Vaz(f+af)0)
— (sup {f(a1) A f(as) A F(br) A f(B2)} A D)V
> sup {f(a1) A flaz) A f(b1) A f(b2)} A B = f(x) AB.

This means that for all z € R we have

AN I | | /AN |

fO)Vaz f(z)Ap. (%)

Let z,y € R. Then for all aj, as,b1,b2,2z € R such that (x +y) + (a1 +
b1) + z = (a2 + b2) + z, we have
max{f(z +y),a} > max{(f A B)(x +y),a} > (f +a f)(z + )
= (sup {f(a1) A f(az) A f(b1) A f(b2)} AB) V a
> ({F(0) A £(2) A FO) A ()} AB) V a
because (z +y) +(0+0)+ 0= (z +y) +0.
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From the above using(x) we get max{f(x+vy),a} > min{f(z), f(y), 8},
which proves (1).

Now let a, b, z, 2 € R be such that x+a+2 = b+ 2. Then for all possible
ay,ag,bi, by, z € R satisfying the identity x + (a1 + b1) + 2 = (a2 + b2) + 2
we have

max{f(z),a} > max{(f A B)(x),a} > (f +4 [)(x)
= (sup {f(a1) A f(az) A f(b1) A f(b2)} AB) V a
> fla)Nf(b)AS because v +a+z=b+z

min { f(a), f(b), B}-
Thus f satisfies (3). O

Theorem 3.14. A fuzzy subset f of a hemiring R is a fuzzy left (resp.
right) h-ideal with thresholds («, 3) of R if and only if it satisfies (7) and
(8) ROaf<(FABVa (resp. fOaR<(FAB) V).

Proof. Suppose f is a fuzzy left h-ideal with thresholds («, ) of a hemiring
R, then by Lemma 3.13, f satisfies (7). Now we show that f satisfies (8).
Let z € R. If (ROY f) (z) = 0, then RGOS f < (fAB)Va. Otherwise, there
exist elements a;, b;, ¢j, dj, z € R such that z+> " | a;bj+z = Z;‘L:1 cjdj+z.
Thus

B _ ™ ) ) " / /
RN = (swp{ A (R@)AS B ) A (RIG)ASE)) }15) va
m b, n "
FB) A A SO} A ) Va

A £ A ) (A @ r8)}rs)va
m . n b/
A ( f(aibi ) /:\1(fa )}/\ﬁ)va
i ')
Flasbi /\B) ]/:\1fa Aﬂ)}/\ﬂ)Va
sup{(f(zl 1 aibi) Vv )/\ oo . 1ajb;) )}/\ﬁ)\/a
< (f(@)AB)Va

This implies that R ©5 f < (f A B) V .

Conversely, assume that f satisfies (7) and (8). Then, by Lemma 3.13,
it satisfies (1) and (3). To show that f satisfies (4) let z,y € R and
ai,bi, cj,dj, 2 € R be such that xy + > 71", a;b; +2 = Y7, ¢;d;j + z. Then

we have

flay)Va = (fzy) AB)Va > (Roa f)(ay)

<.
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_ (Sup{ 7\ (R(ai) A f(bi)> /\j\1 (R(cj) A f(dj)>} A ﬁ) Vo

i=1
— (sup{Z\lf(bz')/\j;f(dJ)} Aﬁ) Ve

=z (fWAB)Vazfly)np
because zy + Oy + z = zy + z.
This shows that f satisfies (4). So f is a fuzzy left h-ideal with thresholds
(a, B) of R.
For fuzzy right h-ideals the proof is similar. O

Theorem 3.15. A fuzzy subset f of a hemiring R is a fuzzy h-quasi-ideal
with thresholds (o, 3) of R if and only if f satisfies (6) and (7).

Proof. Proof is straightforward because by Lemma 3.13, (1) and (3) are
equivalent to (7). O

Theorem 3.16. Every fuzzy left h-ideal with thresholds (o, 3) of a hemiring
R is a fuzzy h-quasi-ideal with thresholds («, 3) of R.

Proof. Proof is straightforward because (8) implies (6). O

Theorem 3.17. Every fuzzy h-quasi-ideal with thresholds (o, 3) of R is a
fuzzy h-bi-ideal with thresholds (o, 3) of R. O

Lemma 3.18. If f and g are fuzzy right and left h-ideals with thresholds
(a, B) of R respectively, then f o g< f A2 g.

Proof. Let x € R. If (f@ﬁg) (x) = «, then f@ﬁg < f/\gg. Otherwise, there
exist elements a;, b;, ¢j, dj, z € R such that z+> " | a;bj+z = Z?Zl cidj+z.
Then for all such expressions we have

(7029 () = (s { A (7@ ng0) 0 A (56 A 90))} 1 8) va

)

Il
—

(A {(F@)nB) A (ab)ns)ha
= [supq AB|Va
A (r@)r8) n (905 25)}
7\1 {(f (aib;) Voz) A (g (aibi) Vo) pA ,
< | su " A Va
| A va) n oy v



Hemirings characterized by fuzzy ideals 205

5{@‘ 78) A (g(ab) AB) 1
7\{(fab’ /\ﬂ) ( aib) /\ﬁ)}

J=1

<ub J max f2 i= 1“1 i) (Zz‘fl aibi), o
\< p{ { f j= la]b; (Zylajb;) }}/\ﬁ>\/

< (f A g)(@),
because min{ f(z), f(y), 8} < {f(z +y.a)}. O

—_

]

AB | Va

4. h-hemiregular hemirings

In this section we characterize h-hemiregular hemirings by the properties of
their h-ideals, h-quasi-ideals and h-bi-ideals with thresholds («, 3).

Theorem 4.1. For a hemiring R the following conditions are equivalent:
(1) R is h-hemiregular,
(i) f /\ag = f@g g for every fuzzy right and left h-ideals f and g with
thresholds (o, B) of R, respectively.

Proof. (i) = (ii) Let # € R, then there exists a,a’,z € R such that

z + zar + z = za'xr + z. Now for all x,a;,b;,¢j,dj,z € R such that = +

doivyaibi+ 2z =377 cjdj + 2, we have

(foe9) () = (s { A (£(@)ng @) n A (F(a) Ag))) }A5) Ve
= j=

> (f(za) A f(wa') Ag(x) AB)Va > (f) Agl) AB)Va=(fAg)(z)
because x + rax + z = zd'z + =.

Thus (f @5 g) (z) = (f A2 g)(z). But by Lemma 3.18, (f 03 g) (z) <
(f Na g)(x), hence f AL g = f O g.

(7i) = (i) Let A and B be right and left h-ideals of R,respectively. Then
by Theorem 3.8, x 4 is fuzzy right and x p is fuzzy left h-ideal with thresholds
(cr, B) of R. By hypothesis x4 @2 x5 = xa A2 x5 implies (XagNB)Va=
(xanB A B) V a. Hence AN B = AB. So, R is h-hemiregular. O

Lemma 4.2. |25| Let R be a hemiring. Then the following conditions are
equivalent:
(1) R is h-hemiregular,
(i1) B = BRB for every h-bi-ideal B of R,
(i) Q = QRQ for every h-quasi-ideal Q of R. O
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Theorem 4.3. For a hemiring R, the following conditions are equivalent:
(1) R is h-hemiregular,
(i) (FABVa<(fOLIROLF) for every fuzzy h-bi-ideal f with
thresholds (o, 3) of R,
(tit) (fFAB)Va<(f 2R f) for every fuzzy h-quasi-ideal f with
thresholds (o, 3) of R.

Proof. (i) = (i) Let x € R, then there exists a,a’,z € R such that
x + zax + z = za'z + z. Now for all z,a;,b;,¢j,d;,z € R such that x +
doimyaibi + 2z =377 cjdj + 2z, we have
(fOaROa f) () =
AA{(FOIR) (@) A f () | A
= 5 AB|Va
A {7 @l R)(@) A )}
j=1
> ({(7 @2 R)@a) A (f & R)@a) A f(@)} A B) Va

m

A <<Sup{i7\1f(ai) A]\lf(a;) Aﬁ) Va)A

A ((sue{ A 7@ A 5@} ) va) n s

j=1

{(min {(z0z), f(za'z)} A B) V a} A
({ oo Sy g } 78V (@IAB) Ve
since za + raxra + za = xa'ra + za and xd' + raxad + zd = va'zad + zd'.

(74) = (i7d) This is straightforward.

(t3i) = (i) Let @ be any h-quasi ideal of R, then by Theorem 3.8, x¢
is h-quasi-ideal with thresholds (¢, ) o R.

Now by the given condition (xg AB) V a < (xg @2 R @8 XQ) = Xorg
implies Q C QRQ. Also QRQ C RQNQR = Q. ThusQ = QRQ. Therefore,
by Lemma 4.2, R is h-hemiregular. O

= | sup

NG | Va

WV

Theorem 4.4. For a hemiring R, the following conditions are equivalent:
(i) R is h-hemiregular,
(i) f/\gg < f@gg(Dgf for every fuzzy h-bi-ideal f and fuzzy h-ideal
g with thresholds (o, 3) of R,
(ii7) f A2 g f o g o [ for every fuzzy h-quasi-ideal f and fuzzy
h-ideal g with thresholds (o, 3) of R.

Proof. (i) = (i) Let f be any fuzzy h-bi-ideal and ¢ any fuzzy h-ideal
with thresholds (a, 3) of R. Since R is h-hemiregular, so for any a € R
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there exist x1, 9,2z € R such that a + az1a + z = axzsa + z. Now for all
a,a;,bi,cj,dj,z € R such that a4+ > a;b; + 2z =Y ¢jdj + z, we have

j=1
A ((F 0l g) (@) AFB)) A
(ﬂﬁgGQﬂODZ sup{ T 5 AB|Va
A (G oda@) n )
> ({(f @2 9) (az1) A f (@) A (f ©4 g){az2)} A B) Va

because a + aria+ z = axsa + z

A (e A gd))n

sup { 5! ANBl VaypAf(a)
A (£ ng(d))

= L =1 AB|Va

A () A gla))n

sup{ Rt NG| Va
A (F@) 7 gla))

L \ L J= _

for all possible expressions azy + X7 cidj + 2 =¥ cjd; + 2
and axz + X pg; + 2 = X7 piq; + 2
> {f(a) A\ g(z1ax1) A g(z1022) A g(T2021) A g(T2022) A B}V @
> {f(a) Agla) AB}V a = (f Nag)(a)
because axi + axiaxy + zx1 = arsaxi + zx1 and axs + ariars + zro =
aroary + 2x2.
(79) = (i19) is straightforward.
(7i1) = (i) Let f be fuzzy h-quasi-ideal and R be fuzzy h-ideal with
thresholds (a, 3) of R. Then by hypothesis, f AR < fOER®E f implies
(fAB)Va< f 2R L f. Then, by Theorem 4.3, R is h-hemiregular. [

Theorem 4.5. For a hemiring R, the following conditions are equivalent:
(i) R is h-hemiregular,
(i3) f NS g < F@B g for every fuzzy h-bi-ideal f and fuzzy left h-ideal
g with thresholds (o, 3) of R,
(4i7) f/\gg < f@gg for every fuzzy h-quasi-ideal f and fuzzy left h-ideal
g with thresholds («, 3) of R,
(iv) f/\gg < f@gg for every fuzzy right h-ideal f and fuzzy h-bi-ideal
g with thresholds («, 3) of R,
(v) f /\g g f @g g for every fuzzy right h-ideal f and fuzzy h-quasi-
ideal g with thresholds (o, 3) of R,
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(vi) f /\g Ak < f o g @2 h for every fuzzy right h-ideal f, fuzzy h-
bi-ideal g and fuzzy left h-ideal h with thresholds («, 3) of R,

(vit) f /\g AR < f o g o) for every fuzzy right h-ideal f, fuzzy
h-quasi-ideal g and fuzzy left h-ideal h with thresholds (o, 3) of R.

Proof. (i) = (ii) Let f be any fuzzy h-bi-ideal and g any fuzzy left h-ideal
with thresholds (o, 3) of R. Since R is h-hemiregular, so for any a € R
there exist x1,x9,2z € R such that a + az1a + z = axsa + z. Now for all
a,a;,b;,¢;,d;,z € Rsuch that a + 3 ;" a;b; + 2z =", ¢;jd; + z, we have

(folga) = "~
= (s { A (7@ ng0) 0 A (76 7 90))} 18) v
> ({f(a) Ng(z1a) A g (z2a)} /\ ﬂ)\/a because a+tazxiat+z = arsa+tz

> ({f(a) Ag(a)} AB)V a=(fAdg)a).
&»fQZg>fA§g

(74) = (i1d) is straightforward.

(7i1) = (1) Let f be any fuzzy right h-ideal and g be any fuzzy left
h-ideal with thresholds (a, 3) of R. Since every fuzzy right h-ideal with
thresholds («, 3) is fuzzy h-quasi-ideal with thresholds («, ), so by (iii)
we have fol g > fA2 g Butby Lemma 3.18, f ®2 g < f A2 g. Hence
f oA g=1f NS g for every fuzzy right h-ideal f with thresholds («, ) of
R, and for every fuzzy left h-ideal g with thresholds («, 3) of R. Thus by
Theorem 4.1, R is h-hemiregular.

Similarly we can show that (i) < (iv) < (v).

(i) = (vi) Let f be a fuzzy right h-ideal, g be a fuzzy h-bi-ideal and h
be a fuzzy left h-ideal with thresholds («, 3) of R. Since R is h-hemiregular,
so for any a € R there exist x1, x2,2 € R such that a+ax1a+ 2z = axsa+ 2.
Now for all a, a;, b;, ¢j, dj, z € R such that a+>_"; a;bj+2z = 22:1 cjdj+z,
we have

(f ©a g ©a h)(a) =
(sup{zzl(fGag o) AA()) 1 A((F SR g)al) A h(E)) | A5) Ve

aa:l) A flaza) A gla ) /\ h(xla) A h(xga) AB)V

Agla) Nh(a) AB)V a = (f AG g AGh)(a )-
(vi) = (viz) is straightforward.
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(vii) = (i) Let f be a fuzzy right h-ideal, and h be a fuzzy left h-ideal
with thresholds (a, 3) of R. Then

FASR=FfANPRAPRS FOPROPR < FOP .

But f @fl h<f /\’g h always. Hence f ®§ h=Ff /\g h for every fuzzy
right h-ideal f and for every fuzzy left h-ideal h with thresholds («, ) of
R. Thus by Theorem 4.1, R is h-hemiregular. O

5. h-intra-hemiregular hemirings

In this section we characterize h-intra-hemiregular hemirings and hemirings
which are both h-hemiregular and h-intra-hemiregular in terms of their
fuzzy ideals with thresholds (a, 3).

Theorem 5.1. A hemiring R is h-intra-hemiregular if and only iff/\gg <
f o8 g for every fuzzy left h-ideal f and for every fuzzy right h-ideal g with
thresholds (o, ) of R.

Proof. Let R be an h-intra-hemiregular and f be a fuzzy left h-ideal and g a
fuzzy right h-ideal with thresholds (a, 3) of R. As R is h-intra-hemiregular
so for every = € R, there exist a;, aj, bj, b, 2 € Rsuch that z+3 1", a;x’al+
2= ijL'Qb;- + z. Then

m m n n

(f 02 g)(@) = (sup {,/\lﬂai) A Aabi) A AF(at) A -/\19“’”} AB)Va
i= i= Jj= Jj=
> (i) A F(b;2) A glwal) Aglat)) AB) Ve,

because x + 37" (a;x)(za;) + 2 = 77 (bjz) (b)) + 2.

Conversely assume that A and B are left and right h-ideals of R, respecti-
vely. Then, by Theorem 3.8, the characteristic functions y 4and xp are re-
spectively fuzzy left h-ideal and fuzzy right h-ideal with thresholds (a, 3).
Then by hypothesis x4 NS XB < X4 o8 xp implies (xanB A ) V a <
(xa5 N\ B) V a. Hence AN B C AB. Thus, by Lemma 2.11, R is h-intra-
hemiregular. O

Theorem 5.2. The following conditions are equivalent for a hemiring R:
(1) R is both h-hemiregular and h-intra-hemiregular,
(ii) (fFAB)Va=f o f for every fuzzy h-bi-ideal f with thresholds
(a, B) of R,
(ii7) (fAB)Va= f@ﬁ f for every fuzzy h-quasi-ideal f with thresholds
(a,8) of R.
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Proof. (i) = (ii) Let f be a fuzzy h-bi-ideal with thresholds (a,3) of R
and x € R. Since R is both h-hemiregular and h-intra-hemiregular, there
exist elements a1, a2, p;, p}, 4, ¢}, # € R such that
z+3 5 (zaggz) (rjare)+3 5 (vargir) (xqjaow) + 350, (varpix) (zpjar )
+2im 1 (wagpiw) (wpiasx) +2 =) L, (wazpix) (wpjarx) 7%, (xarpix) (xpjas)
+> 00 (rarga) (vqjarx) + D70 (vasg;x)(wqjasw) + 2
(cf. Lemma 5.6 in [25]).
fol f(x)= (sup fla;)) N f(b)) A fla) N f(b, ANB)Va
(@)= (sup{ A\ (£(@) n£®) 1 A (£(a) 0 18))} 15)
‘/\1<f(a:agqja;) A f(xqiarx) A f(waigiz) A f(xq}cua:))/\
>\ - Va
/\(f(acalpia:) A f(zpiarx) A f(zagpiz) A f(acp;aga:)) AB
i=1

>{(f@)AB)VatAB)Va=(flx)AB)Va
This implies that f @2 f > (fAB)V«
On the other hand, if x + X%, a;b; + 2 = X}_, b} + z, we have
(f(x)Aﬁ)Va—(( (#) AB)V a) Vo = ((f(@) V&) A B) V a
> (f(5Lyaibi) A f (B a505) AB)V @ by (3)

> (At AAf(a;b;>Aﬂ)va
<?\1(f ai) A f(br)) /\]n\l(f(ai) AFB)) AB) Va

Thus
(f o8 ) = (s p{7\(f (@) A TB9) A A ()1 50))} 1.8) v
)7 B

< (f(z)AB)V

Consequently f @@ f=0Un ﬂ)

(#4) = (i73) Obvious.

(79i) = (i) Let @ be an h-quasi-ideal of R. Then x( is a fuzzy h-quasi-
ideal with thresholds (a, ) of R. Thus by hypothesis

[XQ ABIVa=xqGaxq=[Xe®xqABlVa= [xgz A BV a.

Then it follows Q = Q2. Hence by Lemma 2.12, R is both h-hemiregular
and h-intra-hemiregular. O

Theorem 5.3. The following conditions are equivalent for a hemiring R:
(1) R is both h-hemiregular and h-intra-hemiregular,
(i3) f A2 g < @ g for all fuzzy h-bi-ideals f and g with thresholds
(a, ) of R,
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(ii7) f /\g g< f @g g for every fuzzy h-bi-ideal f and every fuzzy h-
quasi-ideals f with thresholds («, 3) of R,
(iv) f A2 g< f ot g for every fuzzy h-quasi-ideal f and every fuzzy
h-bi-ideals f with thresholds (c, 3) of R,
(v) f NS g < FOL g for all fuzzy h-quasi-ideals f and g with thresholds
(v, B) of R.

Proof. (i) = (i) Analogously as in previous proof.

(#4) = (i%9) = (v) and (i7) = (iv) = (v) are straightforward.

(v) = (i) Let f be a fuzzy left h-ideal and g be a fuzzy right h-ideal with
thresholds (a, 3) of R. Then f and g are fuzzy h-bi-ideals with thresholds
(a, B) of R. So by hypothesis fASg< Folgbut FASg > f@F g by Lemma
3.18. Thus ngg = f@ﬁg. Hence by Theorem 4.1, R is h-hemiregular. On
the other hand by hypothesis we also have f NS g<g o f- By Theorem
5.1, R is h-intra-hemiregular. O
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ARO—quasigroups
Vladimir Volenec, Zdenka Kolar-Begovi¢ and Ruzica Kolar-Super

Abstract. In this paper the concept of ARO—quasigroup is introduced and some identi-
ties which are valid in a general ARO—quasigroup are proved. The "geometric" concepts
of the midpoint, parallelogram and affine regular octagon are introduced in a general
ARO—-quasigroup. The geometric interpretation of some proved identities and introduced

concepts is given in the quasigroup C (1 + @)

1. Definition and examples

A quasigroup (Q, -) will be called A RO—quasigroup if it satisfies the following
identities of idempotency and mediality

aa = a, (1)
ab-cd = ac-bd (2)

and besides that the identity
ab-b=ba-a. (3)

Example 1. Let (G, +) be a commutative group in which there exists the
automorphism ¢ which satisfies the identity

(pop)(a) + (pop)(a) —pla) — pla) — p(a) — p(a) +a=0,

which can be written in a simpler form
2(pop)(a) —4p(a) +a=0. (4)
If the multiplication - on the set G is defined by the formula

ab=a+ ¢(b—a) (5)

2010 Mathematics Subject Classification: 20N05
Key words and phrases: ARO—quasigroup, affine regular octagon, parallelogram.




214 V. Volenec, Z. Kolar-Begovi¢ and R. Kolar-Super

we shall prove that (G,-) is ARO—quasigroup. For each a,b € G the equa-
tions ax = b and ya = b, owing to (5), are equivalent to the equations

at+or—a)=>b,  y+p(a)—ey) =0 (6)

The first equation has the unique solution z = a + ¢~ '(b — a), and out of
the second equation it follows

2(p o) (y) — 2¢(y) = 2(p o p)(a) — 2¢(b),
2y — 2¢(y) = 2b — 2¢p(a).

The addition of two last equations gives

2(p 0 9)(y) — 4p(y) + 2y = 2(p 0 p)(a) = 2p(a) — 2p(b) + 20,
i.e., owing to (4) the solution must have the form
y = 2p(a) —a — 2p(b) + 2b. (7)
Really, it is a solution of (6) because from (7), according to (4), we get
y —¢(y) =2¢(a) —a = 2p(b) + 2b — ¢(2¢(a) — a = 2¢(b) + 2b)
=2(p o) (b) — 4p(b) +2b — (2(p 0 p)(a) — 3p(a) + a)=b—p(a).

We have proved that (G,-) is a quasigroup. Its idempotency is obvious by
(5). According to (5) we also get

ab-cd =ab+ p(cd—ab) =a+ p(b—a)+p(c+ p(d—c)—a—pb—a))
=a—2¢p(a)+ (pop)(a)+p(b) — (pop)(b)+¢(c) — (pop)(c) + (pop)(d).

The symmetry of the obtained expression by b and ¢ proves the mediality
(2). By (5) it follows

ab-b=ab+ p(b—ab) =a+ p(b—a)+¢b—a—pb-a))
= (pop)(a) = 2¢(a) + a+2p(b) — (pop)(b),

and analogously
ba - a = 2p(a) — (pop)(a) + (¢ o p)(b) — 2¢(b) + b,

whence owing to (4)

ab-b—ba-a=2(pop)(a)—4p(a)+a— (2(po)(b) —4p(b) +b) =0,
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i.e., the identity (3) is valid. O
Example 2. Let (F,+,-) be a field. If the equation

2¢° —4q+1=0 (8)
has the solution ¢ in F' and if the operation * on F'is defined by the formula
axb=(1—-q)a+ gb. 9)

then ¢(a) = ga obviously defines an automorphism of a commutative group
(F,+). As the equality (8) is valid it implies that the equality (4) holds for
all a € F. However, (9) can be also written in the form

axb=a+ p(b—a)

and by Example 1, (F,*) is ARO—quasigroup. O

Example 3. Let (C,+,-) be a field of complex numbers and * binary
operation on C defined by (9), where ¢ is the solution of the equation (8),
ie,qg=1+ @ orqg=1- @ According to Example 2 (C,x*) is ARO-
quasigroup. For example, let ¢ = 1—1—@. The obtained quasigroup has a nice
geometric interpretation, which justifies the studying ARO—quasigroups and
defining the geometric concepts in them. Let us consider the set C as the
set of the points in the Euclidean plane. For the different points a and b
the equality (9) can be written as

axb—a

b—a — 1

which means that the points a, b, a * b determine the quotient ratio g. The
operation * is presented in the Figurel where, instead of a * b, we shall
shortly write ab, and in the sequel we will use this notation in all figures.

a b ab

Figure 1.

The identity (3) is illustrated in the Figure 2.
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ba-a
ba a ab-b b ab

Figure 2.

2. The basic properties

The immediate consequences of the identities (1) and (2) are the identities
of elasticity, left and right distributivity

ab-a=a-ba, (10)
a-bc=ab-ac, (11)
ab-c=ac-bc (12)

Let us prove the following theorem.

Theorem 1. In the ARO-quasigroup (Q,-) the following identities

(ab-b)a = (a - ab)b, (13)
(ab - c)ec = (c- ba)a, (14)
(ab-b)b = (b ba)a, (15)
(ab - ba)c = (ac ca)b, (16)
(ab - ba)a = (17)
(ab-ba)c-c=cb-a, (18)
(ab-ba)b-b = ba, (19)
(ab - ba)b = ba - ab, (20)
(ab-ba) - ca=ac-b (21)

are valid.
Proof. Firstly we get

(ab-b)a 3 (ab-a)-ba 19 (a-ba)-ba © 4. (ba-a) ® ab. (ab-b) =) (a-ab)b,

(ab'c)c@(c-ab)-ab@ - (ab - b)(—)ca (ba - a) 12 (c-ba)a,



ARO-quasigroups 217

(ab-¢)(ba-c) = (ab-c)(ba) - (ab-c)c @ (ab-b)(ca) - (ab-c)c

(ab-b)(ab-c) - (ca-c) = (ab - bc)(ca - c) ® (ab - ca)(be - c)

(ab - ca)(ch - b) @ (ab - cb)(ca - b) 3 (ac-b)(ca-b) 2 (ac - ca)b,

1

—~
N
~

(ab - ba)c

—
N
~

—~
w
=

so the identities (13), (14) and (16) hold. From (14) using ¢ = b the identity
(15) follows, and using ¢ = a from (16) owing to (1) the identity (17) follows.
Further we get

,\
IS
N

ab-c)c-(ba - c)c@ (c-ab)(ab)-(ba - c)c@ (ca)(ab-b)-(ba - c)c

2)

(ab-ba)c-¢'2)(
(ca)(ba - a)-(ba - )2 (¢ - ba)a-(ba - &) 2 (¢ - ba)(ba - ¢) - ac
(
(

—
w
=

A
IS
2

c-ac)(ac-c)-ba ©) (c-ac)(ca-a)-ba - (ca-c)(ca-a)-ba

@ca-ba(g)cb-a,

—~
—_
—

~

ca - ca) - ba

i.e., the equality (18) is valid, wherefrom with ¢ = b because of (1) it follows
(19). Finally, we obtain

(12) (11)

(ab-ba)b 2 (ab-b)(ba-b) 2 (ba - a)(ba - b) 2 ba - ab,

@) 3) (11) (12)

(ab-ba)-ca = (ab-c)(ba-a) = (ab-c)(ab-b) =" ab-cb ac-b.

3. Midpoints and parallelograms

Let (Q,-) be ARO—quasigroup. The elements of the set @ will be called
points. The geometric presentation in the Figure 2 leads to the following
definition. For any two points a and b the point ¢, given by the equalities

c:a*b:ab-b@ba-a, (22)
will be called the midpoint of the points a and b.

Theorem 2. If the operation x on the set Q is defined by the formula (22),
then (Q, ) is idempotent medial commutative quasigroup.
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Proof. The equations a * x = b and y * a = b, which according to (22) can
be written as za - a = b and ya - a = b, are uniquely solvable for z and y
for each a,b € Q. Commutativity and idempotency of the operation * are
obvious, and mediality follows by means of (2) like this:

(axb)*(cxd) = (ab-b)(cd-d)-(cd-d) = (ab-cd)(bd) - (cd - d)
= (ac-bd)(cd) - (bd - d) = (ac-c)(bd - d) - (bd - d)
= (axc)*(bxd). O

We shall say that the points a, b, ¢, d are the vertices of a parallelogram
and we shall write Par(a,b,c,d) if axc =bxd. Iff axc=0bxd = o,
we shall say that the point o is the center of that parallelogram and write
Par,(a,b,c, d).

Theorem 3. (Q, Par) is a parallelogram space, i.e., the following properties
are valid:

(P1) For any points a,b, c there is the unique point d such that Par(a,b, c,d).

(P2) For any cyclic permutation (e, f,g,h) of (a,b,c,d) or of (d,c,b,a)
from Par(a,b,c,d) follows Par(e, f,g,h).

(P3) From Par(a,b,c,d) and Par(c,d,e, f) follows Par(a,b, f,e).

Proof. The statement Par(a,b,c,d) is according to (22) equivalent to the
equality ac-c = db - b, which is unique solvable by d, so the property (P1)
is valid. The property (P2) is the consequence of the commutativity of the
operation *. It remains to prove the property (P3). From Par(a,b,c,d)
and Par(c,d,e, f) it follows a*c = bxd and cxe = d* f. By means of the
mediality and commutativity of the operation * we get

(ax f)x(cxf)=(axc)x(fxf)=(bxd)«(f[f)=(bxf)=(d=[)
=(bxf)x(cxe)=(bxf)x(exc)=(bxe)*(f*c)
— (bre)x (e f),

wherefrom we get a *x f =bxe, i.e., Par(a,b, f,e). O
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4. Affine-regular octagon

Now we are going to introduce the concept of the affine regular octagon in
a general ARO—quasigroup. Firstly, we will prove the theorem which will
lead to the definition of the mentioned concept.

Theorem 4. In a cyclical sequence from eight equalities a;a;+1 = ;13012
(i = 1,2,3,4, 5,6,7,8), where indexes are taken modulo 8 from the set
{1,2,3,4, 5, 6,7,8}, each five adjacent equalities imply the remaining three
equalities.

Proof. 1t is sufficient to prove that the equalities

aias = asas, (23)

azaz = asay, (24)

azas = agas, (25)

asas = arag, (26)

asag = agar, (27)
imply the equality

agay = ajas. (28)
Firstly, let us prove that from the equality (23)-(25) the equality

aiaz = agay, (29)

follows, and in the same manner (by the substitution i — i + 2) from
equalities (25) — (27) the equality

azas = agag (30)

follows. Really, we get successively

||w

(12)

(a1a3 - as)ay aias - azas)as = (ajay - asaq)(asaq - asay)

e
=

2
aiagq - agag)(a3a4 . a5a4) (:) (alag . a4a3)(a3a4 . a5a4)

%
<

)
agas - agaz)(asay - asay) = agas - (agay - asay)

—
DO
—

1=

©)

asaz - az)(as - asaq (a3a4 -aq)(as - asay)

—~
s

)
asay - aq)(agas - aq) (a3a4 - a4a5)a4

IS
)

'
(
(
(a4 - agaq)(as - azaq) (0 (aqas3 - aq)(as - asaq)
)
(
(

s
&

(12)
aas - asas)as = (agaq - as)aq,
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wherefrom the equality (29) follows. Now, we can also prove the equality
(28), which follows from
(12) (30) 2 (29)
ajag - ag = a10Ge - Aagle = G106 * A305 = Q143 * AgA5 = AgA4 * A6A5

(11) (26) (10)
=" ag - a4as5 = Gg-a7ag = aga7 - ag. Il

We shall say that a1, ao, as, a4, as, ag, a7, ag are the wvertices of an
affine—regular octagon and we shall write ARO(aq, a2, as, a4, as, ag, a7, ag) if
any five adjacent, and then all eight, equalities from eight equalities a;a;+1 =
ai+3ai4+2 (1 =1,2,3,4,5,6,7,8) are valid (Figure 3).

Figure 3.

Corollary 1. If (iy,i9,13,14,15,16,17,18) 1S any cyclic permutation of
(1,2,3,4,5,6,7,8) orof (8,7,6,5,4,3,2,1), then
ARO(@1, az, a3, a4, as, ag, az, ag) implies ARO@;, , Qiy, Qig, Qiy, Gigy iy Qiry Qig)-

Corollary 2. If the statement ARO(a1, a2, a3, as, as, ag, a7, ag) holds, then
for each i € {1,2,3,4, 5,6,7,8} the statement a;a;+2 = a;+5a,+3 also holds.



ARO-quasigroups 221

Corollary 3. Affine—reqular octagon is uniquely determined by any three
adjacent vertices. O

Theorem 5. If the statement ARO(aq1, az, a3, a4, as, ag, az, ag) is valid, then
for each i € {1,2,3,4,5,6,7,8} we have

ip 10542 * Qip20it] = QipaQi, Q3042 * Gi420i+3 = Qiliqd, (31)
Ai4405 * Aj41 = Aj41Q542 = Qj44Qi43, QiQi44 * Gj43 = Aj43A;42 = A;Q54-1-
(32)

Proof. The proof of the second equality (31) follows from the proof of the
first one (31) by the substitution of indexes i < i+ 4, i + 1 < i+ 3.
Because of Corollary 1 it is sufficient to prove, for example, the equality
asas - azay = asa;. We get successively

17 1) (24)
(azas : a3a2)a2 = Qa2a3 = a2a3 - a2a3 = G504 - a20a3
(2 (23) (12)
= a50G2 - a4a3 = G502 - a1G2 = 501 - a2,
S0 asag - agas = asap follows. The first equalities in (32) are obtained

by multiplication the equalities (31) with a;41 respectively a;;3 because of
the identity (17), and other equalities are taken from the definition of the
relation ARO. O

Theorem 6. Let the statement ARO(aq,a9,as,aq,as,ag, a7, as) be valid.
There is the point o such that for each i € {1,2,3,4,5,6,7,8} the equalities

(@iy10i - @jai11) Gig2 = 0,  (@i41Gi42 - Qi42Gi41) G; = O (33)
are valid, where indexes are taken modulo 8.

Proof. By (16) the mutual equivalence of the equalities (33) hold.
If o = (agas - agaz)ay, then o = (agaq - ajag)ag. By Corollary 1 it is
sufficient to prove the equality o = (agay4 - agas)as. We get

12)

(
(a3a4 : (Z4CL3)CL2 azaq - a1a2)a2 = (a3a4 : a2)(a1a2 : a2)

2
aszay4 - ag)(agal . al) (:) (a3a4 . a2a1) s asan
2
azaq - a3a4) ca3aq = (a2a1 . a3)(a3a4 . a4)
2)
azay - ag)(asas - az) 2 (aga1 - asaz)as

aay - ajaz)ag = o. O
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The point o from Theorem 6 will be called the center of the affine—
regular octagon (ai,asg,as,aq,as,as,ar,as) and it will be written in the
form AROo(ala a2, as, a4, as, ag, ay, CLS).

Theorem 7. With hypotheses of Theorem 6 for eachi € {1,2,3,4,5,6,7,8}
the equalities

0= Qa; * Ai+4 = QjQi44 * Aj44, (34)
Ai41Qi42 * A = 0 Qj410i,  Qi410; * Qj42 = 0 Qj410i42, (35)
00; = QA2 " Qiyl, O0Gj+2 = Ui420; * Gjt] (36)
are valid.
Proof. We get
(22) (31) (33)
@i * Q4 = Qi14Qi- @ = (Gi410i42 © Ai120i11)0; = O,
17)
Ai+1Qi42 - Q5 = (ai+1ai+2 ) ai+2az’+1)ai+1 1 G
(12) (33)
= (ai+1ai+2 : ai+2ai+1)ai * Q410 = 0- Q4104
(33) (18) 0
0a; = (Qi41Qi42 - Qi120;41)0; - A = Q042 - Qg1

In the previous proof the equivalence of the equations (33) and (34)
is proved, therefore the center of an affine-regular octagon can be also
characterized by (34).

5. The determination of the affine-regular octagon

The statements of the unique determination of the affine regular octagon
will be proved in this chapter.

Theorem 8. Affine—reqular octagon is uniquely determined by any three of
1ts vertices.

Proof. By Corollary 1 and 3 it is sufficient to prove only the following state-
ments

(i) The vertices a1, ag, a4 uniquely determine the vertex as. This state-
ment is obvious from the equalities (23).

(ii) The vertices aj, ag, as or aj, a3, as uniquely determine the vertex
as, respectively as. Indeed, let o is the point such that o = asa; - a1, and
then ag respectively as the point such that oa; = aia3-as, and a4 the point
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such that ajas = aqas. It should be proved the equality asas = asaq. It is
the consequence of the following consideration:

ey ©
(agas - agas)(agas) - agas = (agas - agas) - agas = (agas - agas) - aza3

2 3
@ (aqas - a2)(aza3 - as) ® (agas - az)(azag - az)

(12) (12)

=" (aqas - azaz)az = (ajag - azaz)as =’ (ajas - az)as
= oaj - az = (asa; - aj)ay - as

(12)

= (a5a2 . alag)(alag) . (a1a2)

= (asag - asasz)(aqas) - (asa3)

—
-

= (asa4 - aza3)(asa3) - (asa3).

(iii) The vertices ai, as, ag uniquely determine the vertex ag. Really,
let as be a point such that ajas = agaq, then ao be a point such that
aras = a4as, and as the point such that asas = asay. It should be proved
the equality asaq = agas, which follows from this:

=
kS
&
—~
s
e

(agaq - agas)aq (agaq - aq)(asas - aq) (agaq - asg)(as - asaq)

—
=
—~
N

= (aqas - a3)(aq - asaq) = (agas - aq)(as - asay)

—
—
=]

=

—~

~

= (CL4 . a3a4)(a3 . a5a4) = aqas - (a3a4 : a5a4)

12 1
D) 405 - (asas - a1) 2 (asas - asas)(azas - as)
2
= (a1a2 - asas)(azas - as) @ (a1a4 - azas)(asas - as)
12
= (a1a4 - asaq)(azas - aq) = (aras - aq)(azas - aq)
(12) (12)
=" (aas - azas)as = (ara3 - as)as
(12)
= (agaq - as)ag = (agas - agas)ay.

O

If the statement ARO(a1, as, as, a4, as, ag, a7, ag) hold, then two vertices
of the form a; and a;14 are said to be opposite vertices of the considered
affine-regular octagon.

Theorem 9. Affine—reqular octagon is uniquely determined by its center
and by any two of its vertices which are not opposite.
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Proof. (i) The center o and vertices aj, as respectively the vertices ai, as
uniquely determine the remaining vertices. Let as respectively as be a point
such that oa; = aqas3 - as, then a4 be a point such that ajas = a4as, and as
be a point such that o = asa; - a;. It should be proved asas = asaq, and
the proof is the same as the proof of the part (ii) of the proof Theorem 8.
(ii) The center o and the vertices ag, as uniquely determine the remain-
ing vertices. Let a; be a point such that o = ajas - a5, and a3 point such
that oaq1 = ajag - ag, and a4 point such that aiae = agag. Further the proof
is the same as in a previous case. U

5. Some new associated affine-regular octagons

In this chapter we are going to consider some new octagons whose vertices
can be obtained by means of the vertices of the initial octagon.

Equal products from the definition of the affine-regular octagon will be
labelled like this

a;i1 = bit1,i42 = ai430;42, (37)

where the indexes will be always taken mod 8 from the set {1,2,3,4,5,6,7,8}.
On the base of the proof of Theorem 4 according to Corollary 1 it follows
that there exists the point ¢;12 ;43 such that

;012 = Ci12,i43 = Qi450i43- (38)

Besides that, let
di = Aj+4G;. (39)

With these labels the equalities (31) and (32) can be written in the form
bivo,it3biit1 = di;  biir1bigoiys = dig3, (40)

diait1 = biy243, diyzair2 = by, (41)

where the indexes in the second equalities in (40) and (41) are reduced for
1. The equalities (31) can also be written in the form

di = Qiy1 Q12 Qiy20i11, dig2 = Q1105 Q; g1, (42)
and the equalities (33) can be written in this shortened form:

di a; = 0. (43)
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The equalities (35) and (36) can also be written as the equalities
bit2i+3a; =0bi—14, bi—1;a;42 = 0bj1243, (44)
0G; = Ciy2,i+3 Git1, OQi12 = Ci—1,; Qif1. (45)
Let us prove some more similar equalities. We get for example:
dyas = (aza3 - azaz)as 2 asap - a2a3 = dy,
and generally the equalities
diaiyo = diy3, dijai_2=d;_3 (46)
are valid. Due to the example
diaz =l (azas - azaz)az = azas i b4,
the general equalities
diaiy1 =bit2iy3, diai—1 =0bj_3; 2 (47)
hold. Let us prove for example
c12€23 iy asas - a5a3 @ asas - a203 0 asas - as5a4 = ds
and generally,
Ciyit1 Citl,it2 = dit2,  Ciyli+2 Ciit1 = di- (48)

On the base of the equalities (37) and (48) we get for example

bigbys o @ D bsd
12023 = as3a2 - a4a3 = Q304 - a2a3 = 045034,

(48)
c12¢23 = d3 = C45C34,

i.e., generally we have bi,i+1bi+1,i+2 = bi+3,i+4bi+2,i+3 and Cii+1Ci+1,i4+2 =

Ci+3,i+4Ci+2,i+3, Which proves the statements
ARO(b12, ba3, b3a, bas, bse, ber, brs, bs1),

ARO(c12, c23, €34, C45, C56, C67, CT8, C81) -

(49)

(50)
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The proof of the statement
ARO(dlad27d37d47d5)d67d77d8) (51)

is more complicated. We get for example

46 2 37 2 47
dyds L das - dsag @ dyds - asas S dads - asay ® dyas - dsay @ be7ba3

(47) dyag - dgay @ dydg - agay 37 dqdg - azas @ diag - dgaz = dads.

All three affine-regular octagons (52)-(54) have the center o because we
get for example

37 2
bi2 * bsg = bi2bse - bsg 0 (asas - arap) - arap @ (asar - agag) - arag
(2 _ 34 (1)
= (agay - a7)(aga6 - ag) = (ag * a7)(az x ag) = 0o = o,
_ (38) 2)
Cl2 * C56 = C12C56 - C56 = (@402 - Agag) - agas = (a4ag - a2a6) - Agag
2 34
@ (agas - ag)(azae - ag) = (aq * ag)(ag * ag) 3 00 ) 0,

2
d1 * d5 = d1d5 . d5 (:) (a2a3 . agag)(a6a7 . a7a6) . (a6a7 . a7a6)

A
IS

(az2a3 - agar)(agas - aras) - (agar - aras)
agag - agar)(agay - azag) - (agar - azag)
asag - azar)(asay) - (agar - azag)(arae)

agag - ag)(agar - a7) - (asar - a7)(agag - ag)

= (ag x ag)(as x ay) - (a3 x a7)(az * ag) 0000 0.

A numerous parallelograms are related to the affine-regular octagon.
So, for example we get the equalities
(21) (37)
ap * ag =agay - a1 = (agay - araz) - ajas =’ (agaq - agas) - asas

2 3 12

(z)(azcu - aq)(aqas - az) ©) (a2aq - aq)(azay - ay) = (a2a1 - agaq)ay
2) (37) (12) (39)

= (aga3 - ajaq)as = (asaq - ajaq)as = (asaq - as)as = diag - ag

:a4*d1,
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(37) 2
aj *bzg = aibgs - b3s = (a1 - agas) - agasz = ajag - (azaz - as)

(3) (37) ©)
= ajay - (agag - ag) =" aqas - (azag - az) = (a4 - azaz) - agag

37
0 asb12 - b2 = b2 * aa,

39 10 12
aq * d1 = a1d1 . d1 (:) (a1 . a5a1) s asal (:) (a1a5 . al) - a5a (:) (a1a5 . CL5)(L1

(34) (45) (38) (12)
(a1 xas)a; =" oay; = czqay =" aias-as = aijaz - azaz

2

39
(a6a4 . agag) - aqag :) (a6a2 : a4a8) - aqas (:) deg : dg = dg * dg,

)
)

@
Ik

2
(aras - aq)(azar - ag) ajas - asar) - a4ag @ (ara3 - asar) - asag
(

w0
18

(37),(39)

—

2)

big x d3 =biads - ds = (asasz - ayas) - arag = (asay - agas) - aras
2 (azar - ar)(azas - a3) "L o(asaz - az) T (azas - ag)(asaz - az)
2 (azag - azaz)-apaz 2 (azas3 - agaz)-apaz (374439 baada-dz = dg * bsa,
0% C34 = 0C34 - C34 (33139 ((agay - araz)as - araz)- ajas

(12) (19) (37
="((az2a1 - araz)ay - ar)az =" araz -az =" aqaz - az = az * as,
and we get the statements Par(ai, a4, ag, d1), Par(ai, bia, b3a, a4),
Par(ay, da, di, dg), Par(bia,da, ds, bsa), Par(o, as, ¢34, a4) or more gen-
eral statements

Par(a;, ajys, aiy1, d;), Par(ai, aj—3, ai—1, d;), (52)
Par(a;, b1, bivoiv3, aits), (53)

Par(a;, diy1, di, di—1), (54)

Par(biit1, dit1, dit2, bit2,i+3), (55)

Par(o, ai, ¢iit1, Qit1)- (56)

We have proved:

Theorem 10. Let the statement ARO,(ay,as2,as,aq,as,ag, ay,ag) holds.
Then there are the points b; i1, ¢iiv1, d; such that the statements (37)—(48)
and (52) — (56) hold, where the indezes are taken modulo 8 from the set
{1, 2, 3, 4, 5, 6, 7, 8}, and the statements AROO(blg, b23, bg47 b45, b56, b67, b78, bgl),
ARO,(c12, 23, €34, €45, C56, C67, C78, €81) and ARO(dy, da, d3, dy, ds, ds, d7, dg)

are also valid. O
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All results from the Theorems 5, 6, 7 and 10 can be illustrated in the
Figure 3.
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Parallelograms in quadratical quasigroups

Vladimir Volenec and Ruzica Kolar-Super

Abstract. The “geometric” concept of parallelogram is introduced and investigated in

a general quadratical quasigroup and geometrical interpretation in the quadratical quasi-

group C(£) is given. Some statements about relationships between the parallelograms

and some other “geometric” structures in a general quadratical quasigroup will be also

considered.

A grupoid (Q, ) is said to be quadratical if the identity
ab-a = ca-bc (1)

holds and the equation ax = b has a unique solution z € @) for all a,b € Q
ie, (Q,-) is a right quasigroup. In [16] it is proved that (Q,-) is then a
quasigroup. (Q,-) is satisfying the following identitites

aa = a, 2

ab - cd = ac - bd, 3
4
5
6

7

ab-a=a-ba,
ab-a="ba-b,

a-bc=ab-ac,

(2)
(3)
(4)
(5)
(6)
(7)

ab-c=ac-bc

and the equivalencies

ab = cd < be = da, (8)
ar=b< x=(b-ba)-(b-ba)(ba-a), 9)
za=b< x=(a-ab)(ab-b)- (ab-Db). (10)

2010 Mathematics Subject Classification: 20N05
Keywords: Quadratical quasigroup, parallelogram, square
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Let (C,+,-) be the field of complex numbers and * the operation on C
defined by
axb=(1—q)a+qgb (11)

where ¢ = % It can be proved that (C,*) is a quadratical quasigroup.
This quasigroup has a nice geometric interpretation which motivates the
study of quadratical quasigroup. Let us regard the complex numbers as
points of the Euclidean plane. For any point a we obviously have a xa = a,
and for two different points a, b the equality (11) can be written in the form

axb—a q—0

b—a  1-0
which means that the points a, b, a x b are the vertices of a triangle directly
similar to the triangle with the vertices 0, 1, ¢ (Figure1). We can say that
a * b is the centre of a square with two adjacent vertices a and b, which

justifies the name “quadratical quasigroup”. We shall denote this quasigroup
by C(1£) because we have a x b= 4 if a = 0 and b = 1.

A
b
a*bf<
/a/aq\
0 1

Figure 1.
The figures in the quasigroup C(1f) can be used as the illustrations of
“geometric” relations in any quadratical quasigroup (Q, ). For example, the
left side of the identity (1) is obviously the midpoint of the points a and b
and this identity is illustrated in Figure 2 (here and in all other figures in
the article we shall use the sign - instead of the sign ).

In the sequel let (@, -) be any quadratical quasigroup. The elements of
Q are said to be points.

If e is an operation in the set ) defined by

aeb=a-ba=ab-a=ca-bc, (12)
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ca

bc

b ca-bc a
Figure 2.

then (cf. [16]) (@, ) is an idempotent medial commutative quasigroup, i.e.,
the identities

aea=a, (13)
(aeb)e(ced)=(aec)e(bed), (14)
aeb=>beq (15)

hold. The point a e b is said to be a midpoint of the pair {a, b} of points.

In [15] the notion of a parallelogram is defined in any medial quasigroup
and because of mediality (3) we can apply this definition in our quadratical
quasigroup (@, -). According to |15, Cor.1| the points a, b, ¢, d are said to
be the vertices of a parallelogram and we write Par(a,b,c,d) if there are
two points p and ¢ such that ap = bq, dp = c¢q. In [15] it is proved that
(Q, Par) is a parallelogram space, i.e., we have the properties:

(P1) For any a,b,c € @ there is an unique point d such that Par(a,b,c,d)
holds.

(P2) If (e, f,g,h) is any cyclical permutation of (a,b,c,d) or of (d,c,b,a),
then Par(a, b, c,d) implies Par(e, f,g,h).

(P3) Par(a,b,c,d), Par(c,d,e, f) = Par(a,b, f,e).

But, the parallelogram can be defined directly, using the midpoints, as
we have:

Theorem 1. Par(a,b,c,d) < aec=>bed.
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Proof. Let ap = bg. We must prove the equivalence of the equalities dp = cq
and a e c = b e d. We obtain successively

3 3
(a0 c)pg-p) = (ac-a)(pg-p) 2 (ac- pg)-ap 2 (ap - cq)-ap = (bq - cg)-by,
5 3 3
(be d)(pg-p) = (v 5)(pa - p) L (bd-0)-(ap - 0) 2 (v 4p)bg 2 (bq - dp) by,
wherefrom it follows the mentioned equivalence. O

Corollary 1. Par(a,c,b,c) < aeb=c.

If we use the equivalence Par(a,b,c,d) < aec=>bed as the definition
for parallelograms, then the properties (P1)-(P3) can be proved simply by
the properties of the quasigroup (Q,e). The properties (P1) and (P2) are
obvious. For the proof of (P3) we must prove that aec = bed and cee = de f
imply a e f = bee. We obtain

(aof)e(cod) 'Y (aec)e(fod)E (aec)e(def)=(bed)e(cec)

( )(bod)o(eoc)(M (15)

Il &

Yivec)e(dec) 2 (hee)e(cod)

and therefore a e f =bee.

Theorem 1 enables us to define the centre of a parallelogram. We say
that (a, b, ¢, d) is a parallelogram with a centre o and we write Par,(a, b, ¢, d)
ifaec=bed=o.

The parallelogram can be defined explicitly in the quasigroup (@, -) (Fi-
gure 3), without the auxiliary points, because of the following theorem.

Theorem 2. The statement Par(a,b,c,d) is equivalent with the equality

d = [b(bc-c) - (bc-c)c]la(a - ab) - (a - ab)b] (16)

Proof. According to (P1) it is sufficient only to prove that (16) implies
Par(a,b,c,d). Let
p=0b(bc-c)- (bc-c)e, (17)

qg=a(a-ab)-(a-ab)b. (18)

By (16) we have d = pq. According to (6) and (3) the equality (17) can be
written in the form

p=(b-bc)(be) - (be-c)e=(b-be)(be-c) - (be-c)
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b(bc-c)(bc-c)c

Figure 3.

equivalent with pb = ¢ because of (10). Owing to (7) and (3) the equality
(18) can be written in the form

qg=a(a-ab)- (ab)(ab-b) = (a-ab)- (a-ab)(ab-b)

equivalent with bg = a because of (9). This equality can be written as
aa = bg by (2). On the other hand we obtain

(7
da:pq-bq:)pb-qch-

The equalities aa = bg and da = ¢q prove the statement Par(a,b,c,d). O

Corollary 2. Par(a,b,c,d) holds if and only if there are two points p and
q such that pb=c, bq = a, pq = d.
Figure 4 shows how the equalities pb = ¢, bg = a, pqg = d imply Par(a,b, c,d)
in the quasigroup C(1f%).

Using Theorem 1 let us prove some new properties of the relation Par
in any idempotent medial commutative quasigroup (Q,e).
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Figure 4.

Theorem 3. Let Par,/(a’,b’,¢’,d’). The statements Par,(a,b,c,d) and
Parye,/(aea’ beb’ cec’ ded’) are equivalent.

Proof. 1t is sufficient to prove the equivalence of the equalities a e c = 0 and
(aea’)e(cec’) =o0e0’if we have the equality a’ e ¢/ = o’. But, this is
obvious because of

!/

(aec)eo’ =(aec)e(a’ec’) 1 (aea’)e(cec’). O

For any p € Q we have Pary(p,p,p,p) because of (13). Therefore, we
obtain:

Corollary 3. Pary(a,b,c,d) = Parpes(pea,peb,pec,ped).
Par,(a,b,c,d) implies Par,(b,c,d,a) and we obtain:

Corollary 4. Par,(a,b,c,d) = Par,(aebbec,ced,dea).
But, we have more generally:

Theorem 4. For any points a,b, ¢, d the statement Par(aeb,bec,ced, dea)
holds.

Proof. We obtain
(aeb)e(ced) (1 (aeb)e(dec) 1 (aed)e(bec) (1 (bec)e(dea). [

Corollary 5. It holds Par(a eb,bec,cea,a) for any points a,b, c.

A concept of a square is defined in [17]. We say that (a,b,c,d) is a
square with the centre o and we write S,(a, b, ¢, d) or simply S(a,b,c,d) if
ab = bc = cd = da = 0. Then we have the equalities ac = d, bd = a, ca = b,
db = ¢ too. Any two of these four equalities imply S(a, b, c,d). In [17, Th.
2| it is proved that S,(a, b, ¢, d) implies o = a e c = b e d, i.e., we have:
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Theorem 5. S,(a,b, c,d) = Par,(a,b,c,d), i.e., every square is a parallel-
ogram with the same centre.

The following theorem generalizes Theorem 5 in [17].
Theorem 6. Par,(a,b,c,d) < S,(ba,cb,dc,ad).

Proof. We obtain
12

aec (12 ba - cb
and the equalities a @ ¢ = 0 and ba - ¢cb = o are equivalent. Analogously, we
have
bed=o0<cb-dc=o,

cea=o0<dc-ad=o,

deb=0< ad-ba =o. 0

In the quasigroup C( Theorem 6 proves a well-known statement (cf.
(131, [21, [3], [9], [7]. [10], [2], [11]):

If we construct positively oriented squares on the sides of a given oriented
quadrangle, then the centers of these squares form a negatively oriented
square if and only if the given quadrangle is a parallelogram.

In [5] and [1, p. 241] a statement is proved, which is illustrated in Figure

5 in the quasigroup C(1f*) and can be formulated as the following theorem.

4

Theorem 7. If
Sa’(b7 c,ay, 0/2)7 Sb/(C, a, b17 62)7 SC’(a'a b7 C1, 02) (19)
and if @, 6, ¢ are points such that

Par(by,a,cq,a), Par(cy1,b,a2,b), Par(ai,c,bs,?) (20)

then we have the equalities

¢b = a, ac=b, ba=c, (21)
bet=a'| Cea=0b/, deb=c, (22)
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Proof. Let @, b, ¢ be points such that dc = ¢/, ba =a’, ¢b =b’. According
to (19) we have the equalities bjc = a, ca = V', be = d/, coa = ¢ (among
others). The equalities bjc = a = aa and ac = ¢’ = cya prove the first
statement (20) and analogously the other two statements (20) can be proved.
According to (8) from ca = b’ = ¢b it follows ac = be, ie., ac = a’.
Therefore we have ac = ba and by (8) it follows ¢b = aa, i.e., the first

equality (21). Finally, we obtain the first equality (22): bel ) ze5

Ceb =
~ 2
ac-ba=a'a’ = a’. O

A point o is said to be the center of the square on the segment (a,b) if
So(a,b,c,d) holds for some points ¢ and d, i.e., if ab = 0. A rotation for a
(positively oriented) right angle about a point o is the mapping a — b such
that ab = o.

Theorem 8. If a1, az, a3, as are any points and b;; is the center of the
square on the segment (a;,a;) for any i,j € {1,2,3,4} (i # j), then we
have the statements Par(bia,bs2, bsa,b14) and Par(bay,bes, bas,bs1). The
rotation for a right angle about the point a; ® as maps Par(bas, ba1, ba1, bas)
onto Par(bya,bs, bss, b14) and the rotation for a right angle about the point
as ® ag maps Par(b12, b32, b34, 514) onto Par(b41, b43, b23, le) (Figure 6).
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Figure 6.

Proof. According to [15, Th. 28] we have the statement Par(ajasz, azas,
asaq,araq) and Par(agay, asas,asas,asar) and for any 4,5 € {1,2,3,4}
(i # j) we have the equality a;a; = b;; . The rotation for a right angle
about the point a; e ag maps the points ba3, ba1, bsa1, bgg onto the points byo,
b32, bs4, b14 because of the equalities

(12) (15)
basbia = azaz - ajaz = azea; = aj ®az = aza - azaz = ba1b3a,

(12) (15)
bs1b3s = asar - azas =" aj®az = aszea; = asas - ajas = by3biy. 0

In the case of the quasigroup (C(%) Theorem 8 proves some statements
from [14] and [8].

Theorem 9. If
So(p7a’7u7 b)? Sol(p7a’/7u/’b/)7 (23)

Par(a’,p,b,c), Par(a,p,V,c) (24)

holds, then the rotation for a right angle about the point o maps Par(p,b,c,a’)
onto Par(a,p,b’,c’") and the rotation for a right angle about the point o’
maps Par(a,p,b’ ¢’ onto Par(c,a’,p,b) (Figure7).
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Figure 7.

Proof. Let the statements (23) hold and let ¢, ¢ be the points such that
cb’ =0, ¢'b = 0'. The equalities

pa=o0=cb’, pa'=0'=c'b
imply by (8) the equalities
ac=b'p=o0', a'c'=bp=o.
Now, the equalities
a'd) =p=pp,cb' =0="0bp resp. ab=p=pp,c’b=0"=bp

prove the statements (24). The last two statements of theorem are the
consequences of the equalities

pa=o0, bp=o, cb’=o0, a'c’=o0 resp. ac=0, pa’=0’, b'p=0’, c’'b=0'. O
In the case of the quasigroup C(%) Theorem 9 proves some statements
from [4]. The fact that the rotation for a right angle about the points o
maps the segment (b,a’) onto the segment (p,c’) proves that the median
from the vertex p of the triangle (p,b’, a) is orthogonal to the side (b,a’)
of the triangle (p,b,a’) and equal to the half of this side and a similar fact
holds for the median from the vertex p of the triangle (p, b, a’) and the
segment (b’,a) (cf. [18]).

Theorem 10. With the hypotheses of Theorem 9 it holds S(u,c,u’;c’)
(Figure 7).
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Proof. According to Corollary 2 we observe the implications

PCLT‘(b7p,(L/,C), U,p = a’lv pu = b = ’LL,U = C,
PCLT(b/,p,a7c/), up = a, pU/ =b' = w'=c’,

and the equalities u'u = ¢, uu’ = ¢"imply S(u,c,u’,c’). O

Theorem 11. The statements S(b,c,a1,az2), S(c,a,b1,b2), S(a,b,c1,c2)
and the equalities a, = c1ba, by = a1ca, ¢, = brag imply

Par(c,a,b,a,), Par(a,b,c,b,), Par(b,c,a,c,) (25)

b,ec,=a, c,ea,=0>b, a,eb, =c, (Figure 8).

Co
!’ Y C1
bo .%
N A
2
) \ b
dO
Cl1 a2

Figure 8.

Proof. We have the equalities cia = b, aby = ¢, ¢1bs = a, and according
to Corollary 2 it follows Par(c,a,b,a,). Analogously we can prove other
statements (25). From Par(b,,a,b, c) and Par(b,c,a,c,) by (P3) we obtain
Par(by,a,co,a), i.e., b, ® c, = a. O
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