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New fuzzy subquasigroups

Muhammad Akram and Wieslaw A. Dudek

Abstract. In this paper we introduce new generalized fuzzy subquasigroups and study
some of their important properties. We characterize these generalized subquasigroups by
their level subsets. Some characterization of the generalized fuzzy subquasigroups are

also established.

1. Introduction

During the last decade, there have been many applications of quasigroups
in different areas, such as cryptography, modern physics 9], coding theory,
cryptology and geometry. In 1965, Zadeh [13] introduced the notion of a
fuzzy subset of a set as a method for representing uncertainty. Since then it
has become a vigorous area of research in different mathematical domains.
Rosenfeld inspired the fuzzification of algebraic structures and introduced
the notion of fuzzy subgroups. Das [4] characterized fuzzy subgroups by
their level subgroups. Murali [8] proposed a definition of a fuzzy point be-
longing to a fuzzy subset under a natural equivalence on a fuzzy set. The
idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is men-
tioned in [10] played a vital role to generate some different types of fuzzy
subgroups. A new type of fuzzy subgroups, (€, € Vq)-fuzzy subgroups, was
introduced in earlier paper Bhakat and Das [3] by using the combined no-
tions of belongines and quasi-coincidence of fuzzy point and fuzzy set. In
fact, (€, € Vq)-fuzzy subgroup is an important and useful generalization of
Rosenfeld’s fuzzy subgroup. On the other hand, Akram and Dudek applied
this concept to subquasigroup in [2] and studied some of its properties. In
this paper using general form of the concept of quasi-coincidence of a fuzzy
point with a fuzzy subset, the notion of an (€,€ V ¢,)— fuzzy subquasi-
group is introduced and some of its important properties are investigated.
We characterize these generalized subquasigroups by their level subsets.
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Some characterization of the generalized fuzzy subquasigroups are estab-
lished. Some recent results obtained by Akram-Dudek [2] are extended and
strengthened.

2. Preliminaries

A groupoid (G,-) is called a gquasigroup if for any a , b € G each of the
equations ¢ -z = b, x - a = b has a unique solution in G. A quasigroup may
be also defined as an algebra (G, -, \, /) with three binary operations -, \, /
satisfying the following identities:

(z-y)/y=z, z\(v-y) =y,

(x/y) - y==z, z (x\y) =y

Such defined quasigroup is called an equasigroup.

A nonempty subset S of a quasigroup G = (G,-,\,/) is called a sub-
quasigroup if it is closed with respect to these three operations.

In this paper G always denotes an equasigroup (G,-,\,/); G always
denotes a nonempty set.

A mapping p: G — [0, 1] is called a fuzzy set in G. For any fuzzy set p
in G and any t € [0, 1], we define the set

Upst) ={z € G | p(x) > t},
which is called the upper t-level of p.

Definition 2.1. A fuzzy set p in a set G of the form

te (0,1 fory=u=,
uly) =
0 for y # x,

is said to be a fuzzy point with support x and value ¢ and is denoted by x.

We say that a fuzzy point x; belong to a fuzzy set p and write x; € u,
if u(x) > t. A fuzzy point z; is quasicoincident with a fuzzy set p, if
p(x) +t > 1. In this case we write x;qu.

e x; € Vqu means that x; € p or xqu,

e x; € Aqu means that z; € u and xyqu.
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Definition 2.2. A fuzzy set p in G is called an (€, € Vq)-fuzzy subquasigroup
of G, if it satisfies the following condition:

Tty Yty € B = (l’ * y)min{tl,t2} € Vau
for all z,y € G, t1,t2 € (0,1] and * € {-,\,/}.

3. New fuzzy subquasigroups

Let m be an element of [0, 1) unless otherwise specified. By xigmu, we
mean p(z) +t+m > 1, t € (0,152]. The notation z; € Vg,,u means that
Tt € [ OF TtGmfh-

Definition 3.1. A fuzzy set pu in G is called an (€, € Vgy,)-fuzzy subquasi-
group of G, if
Ttys Yto € 1= (T % Y)minft, 1o} € Vamlt
for all x,y € G, t1,ty € (0,1] and * € {-,\,/}.
We note that different types of fuzzy subquasigroups can be constructed

for different values of m € [0,1). Hence an (€, € Vg, )-fuzzy subquasigroup
with m = 0 is called an (€, € Vq)-fuzzy subquasigroup.

Example 3.2. Let G = {0,a,b,c} be a quasigroup with the following
multiplication table:

~‘Oabc
0/0 a b ¢
ala 0 ¢ b
blb ¢ 0 a
cle b a 0

(i) Consider a fuzzy set p defined by

0.7 if z=0,

)08 if z=a,
MO =Y 04 it oo,
0.4 if z=c.

If m = 0.2, then U(p;t) = G for all t € (0,0.4]. Hence p is an (€, € Vqo.2)—-
fuzzy subquasigroup of G.
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(ii) Now consider a fuzzy set

0.45 if = =0,

~ 041 if z=aq,
ple) = 041 if z=c,
0.49 if x=0.

In this case for m = 0.04 we have

G if ¢e(0,0.4],
Uu;t) = {0,b} if ¢ € (0.4,0.45],
(b} if t € (0.45,0.48].

Since {b} is not a subquasigroup of G, so U(y;t) is not a subquasigroup
for t € (0.45,0.48]. Hence p is not an (€, € Vqo.04)-fuzzy subquasigroup of
a quasigroup G. O

Proposition 3.3. Every (€, €)-fuzzy subquasigroup is an (€, € Vg, )-fuzzy
subquasigroup.

Proof. Straightforward. O

The converse statement may not be true.

Example 3.4. Consider the (€, € Vqp.2)-fuzzy subquasigroup of G defined
in Example 3.2. Then p is not an (€, €)-fuzzy subquasigroup of G since
ap.71 € p and ag.75 € p, but (a* a)minfo.71,0.75) = 0o.71 €4 O

Theorem 3.5. A fuzzy set p in G is an (€, € Vam)-fuzzy subquasigroup of
G if and only if

1-m

play) > min {p(a). pu(y), —5 | 1)

holds for all z, y € G.

Proof. Let u be an (€, € Vg, )-fuzzy subquasigroup of G. Assume that (1)
is not valid. Then there exist 2/, 3y’ € G such that

p(x +y') < min {M(ZE’), n(y'), 1_Tm}
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If min(p(2'), p(y')) < 152, then p(2’ +y') < min(u(z’), p(y/)). Thus
(' xy') <t <min{p(a"), u(y’)}  for some t € (0,1].

It follows that =} € pand y, € p, but (2'*y’):Eu, a contradiction. Moreover,
pla' «y')+t < 2t < 1—m, and so (2’ * y')¢Gnu. Hence, consequently
(' * y')t€ Vgmp, a contradiction.
On the other hand, if min{u(2’), u(y')} > 352, then p(a’) > 52,
py') > 52 and p(a’ «y') < 52, Thus 2, _,, € pand ¥\ . € p, but
2

2

(' *y')1-m Ep. Also
2

1— 1— 1-—
M(x,*y/)-i- 2m< 2m+ 2m:1_m’

ie., (2 x y’)l_quTnu. Hence (2 * y’)1_2m6 V@mit, a contradiction. So (1) is
valid.

Conversely, assume that u satisfies (1). Let x, y € G and t;, t2 € (0,1]
be such that x¢, ¢ and yg, € . Then

1-m

11—
p(x *y) > min {,u(x),u(y), T} > min {tl,tg, Qm}'

Assume that t; < kTm or to < PTm Then p(z % y) > min{ti, t2}, which
implies that (2*Y)min{, 1,3 € #- Now suppose that ¢, > I_Tm and to > I_Tm
Then p(z xy) > 152, and thus

1—m —
p(x *y) + min{ty, ta} > 5 T3 =1-m,

e, (T * Y)minft, to}Imi- Hence (T * Y)minge, 1,3 € V@mpt, and consequently,
p is an (€, € Vg, )-fuzzy subquasigroup of G. O

Theorem 3.6. A fuzzy set p of G is an (€, € Vqy,)-fuzzy subquasigroup of
G if and only if each nonempty level set U(u;t), t € (0, I_Tm], is a subquasi-
group of G.

Proof. Assume that a fuzzy set p is an (€, € Vq)-fuzzy subquasigroup of G.
Let t € (0,152] and z,y € U(p;t). Then p(z) >t and p(y) > t. It follows
from (1) that

play) > min { (o), u(y), 5} = min {1, 2 <,
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so that zxy € U(p;t). Hence U(u;t) is an (€, € Vg, )-fuzzy subquasigroup
of G.

Conversely, suppose that the nonempty set U(u;t) is a subquasigroup
of G for all t € (0,15™]. If the condition (1) is not true, then there exists
a, b € G such that p(a *b) < min{u(a), u(b),152}. Hence we can take
t € (0,1] such that p(a*b) < t; < min{u(a), u(b), 52} Then t € (0, 52
and a,b € U(p;t). Since U(p;t) is a subquasigroup of G, it follows that
axb e U(p;t), so p(a*xb) > t. This is a contradiction. Therefore the
condition (1) is valid, and so p is an (€, € Vg,,)-fuzzy subquasigroup of

g. O

Theorem 3.7. Let u be a fuzzy set of a quasigroup G. Then the nonempty
level set U(p;t) is a subquasigroup of G for all t € (kTm, 1] if and only if

max {,u(x * ), Tm} > min{pu(z), u(y)}

forall x,y € G.

Proof. Suppose that U(u;t) # 0 is a subquasigroup of G. Assume that
max{u(z * y), 552} < min{u(z), u(y)} = ¢ for some z, y € G, then t €
(52,1, p(zxy) <t, z € U(t) and y € U(p;t). Since z, y € U(p; ),
U(p;t) is a subquasigroup of G, so z xy € U(u;t), a contradiction.

The proof of the second part of Theorem is straightforward. O

Theorem 3.8. Let pu be an (€,€ Vqn)-fuzzy subquasigroup of G. If it
satisfies p(x) < 1_Tm for all x € G, then it is a fuzzy subquasigroup of G.

Proof. Let x,y € G and t1,ty € (0,1] be such that x;, € p and y, € p.
Then p(z) > t; and p(y) > ta. It follows from Theorem 3.5 that

1—-m

pu(z * y) > min {u(fc% 1(y), T} = min{yu(z), u(y)} = min{t1, t2},

80 (T * Y)min{t; 12} € M- Hence p is a fuzzy subquasigroup of G. 0
Theorem 3.9. If 0 < m < n < 1, then each (€, € Vqy,)-fuzzy subquasigroup
of G is an (€, €Vqy)-fuzzy subquasigroup of G.

Proof. Let p be an (€, € Vg, )-fuzzy subquasigroup of G and let z,y € G.
Then

1—m

(e e y) > min {p(e), (), "} > min L), w), - )
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Thus from Theorem 3.5, it follows that u is an (€, € Vg,)-fuzzy subquasi-
group of G. O

Note that an (€, € Vgy,)-fuzzy subquasigroup may not be an (€, € Vg, )-
fuzzy subquasigroup for 0 <m <n < 1.

Example 3.10. Let G = {0,a,b,c} be a quasigroup defined in Example
3.2. Consider a fuzzy set

0.42 if =0,

)04 if z=aq,

ple) = 04 if x=c¢
0.48 if =

If n=0.16, then

G for t e (0,0.4],

Ulpst) = {{o, b} for te (0.4,0.42].

Since G and {0, b} are subquasigroups of G, so U(u;t) is a subquasigroup
for t € (0.4,0.42]. Hence p is an (€, € Vqo.16)-fuzzy subquasigroup of G.
If m =0.04, then

Ulst) = G for te(0,0.4],
BEUZ 40y for te (0.4,0.48].

Since {b} is not a subquasigroup of G, so U(u;t) is not a subquasigroup for
t € (0.4,0.48]. Hence p is not an (€, € Vqo.04)-fuzzy subquasigroup of G. O

Theorem 3.11. A nonempty subset M of G is a subquasigroup of G if and
only if its characteristic function is an (€, € Vam)-fuzzy subquasigroup of G.

Proof. Let M be a subquasigroup of G. Then x,,(xz) = 1 for x € M and
Xo (@) =0 for @ ¢ M. Thus U(pa;t) = M for all ¢ € (0,152]. Hence, by
Theorem 3.6, x,, is an (€, € Vg, )-fuzzy subquasigroup of G.
Conversely, suppose that pys is an (€, € Vg, )-fuzzy subquasigroup of G.
Then
; 1—m . 1-m 1—-m
pla ) > min {x,, (@), (1), — - | = min {1, ="} =
2 2 2
for z,y € G. Since m € [0, 1), it follows that x,,(z*y) =1,s0 xxy € M.
Hence M is a subquasigroup of G. O
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Corollary 3.12. For every subquasigroup M of G and every t € (0, —m]
there exists an (€, €V qm)-fuzzy subquasigroup p of G such that U(u;t) = M.
Proof. Indeed, x,, is this (€, € Vgp,)-fuzzy subquasigroup. O

Theorem 3.13. The intersection of any family of (€, € Vam)-fuzzy sub-
quasigroups of G is an (€, € Vqn,)-fuzzy subquasigroup of G.

Proof. Let p = (\;c pi for some (€, € Vg, )-fuzzy subquasigroups u; of G.
Then

pu(x  y) = sup;ep pi(z * y) = sup;ep min{p (), piy), 52
:mm{SUPieA pi(z), SUP;ea iy ) m}
= min{(en #6(2), Mien 1i(y)s 52} = minu(e), wly), 1521

Hence, by Theorem 3.5, p is an (€, € Vg, )-fuzzy subquasigroup of G. [

The union of two (€, € Vg, )-fuzzy subquasigroups of G is not an (€, €
V@ )-fuzzy subquasigroup, in general.

Example 3.14. Let G be as in Example 3.2. Consider two fuzzy sets:

0.6 if z=0, 0.4 if z=0,

0.7 if z=a 0.5 if z=0

= ’ and = ’

H) 0.3 if z=10, " v(@) 0.3 if z=a,
0.3 if z=c¢, 0.3 if z=

For m = 0.2 we have

Upst) = G ff t €(0,0.3], (i) = G %ft (0, 0.3],
{0,a} if t e (0.4,0.4], {0,b} ift e (0.3,04]

Since G, {0,a} and {0, b} are subquasigroups of G, 1 and v are (€, €Vqp.2)-
fuzzy subquasigroups by Theorem 3.6.
The union p U v has the form

0.6 if z=0,
0.7 if x=a,

U =
(nuv)(@) 0.5 if z =0,

03 if z=c
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For m = 0.2 we have

G if ¢e(0,0.3],

UlpUv;t) = {{O,a, b} if t€(0.3,0.4].

Since {0, a,b} is not a subquasigroup, p U v is not an (€, € Vqp.2)-fuzzy
subquasigroup of G. O

Theorem 3.15. The union of ordered family of (€, € Vam)-fuzzy subquasi-
groups of G is an (€, EVqny)-fuzzy subquasigroup of G.

Proof. Let {u;|i € A} be an ordered family of (€, € Vg, )-fuzzy subquasi-
groups of G, i.e., p; € pj or p; C p; for all 4,5 € A. Then for p = J;cp pi
we have

pi(z *y) = infiep pi(x + y) > infica mln{ﬂz( ) 1i(y), 5"}
= min{infiEA Mi( ) lnszA Mz( ) }
iUy ). U (0. 552} = i), ), 1523

It is easy to see that

inf min {m(w),m(y), ﬂ} < | min {m(w)vm(y)y ﬂ}

i€A 2 A
Suppose that

inf min {ui(fﬂ),m(y) Lom }# |J min {uz z), ui(y),ﬂ}-

i€EA ih 2
Then there exists s such that
. . 1—m 1—m
inf min {m(w),m(y), T} <s< ZLEJ min {Mz( ), 1i(y), T}

Since p; € pj or pj C p; for all 4,5 € A, there exists k& € A such that s <

min {uk(x),uk(y), 1_Tm} On the other hand, min {,u,( ), i (y), X } > s
for all ¢ € A, a contradiction. Hence

infien min { i (), pi(y), 152 b = min { Ujen 1i(2), Usen i), 252 |
1-m

= min { u(z), p(y), T}

Theorem 3.5 completes the proof. ]
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Theorem 3.16. For any finite strictly increasing chain of subquasigroups

of G there exists an (€, € Vam)-fuzzy subquasigroup p of G whose level sub-

quasigroups are precisely the members of the chain with pi-m = Gog C G1 C
2

..CGr=G.

Proof. Let {t;|t; € (0,252],i = 1,...,n} be such that 15 > ¢; > t; >
t3 > ... > t,. Consider the fuzzy set u defined by

{12"1 if € Gy,

€Tr) =
'u() tr if xGGk\Gk,l,k:L...,n

Let z,y € G be such that z € G;\Gij—1 and y € G;\ Gj_1, where 1 < i,j <
n. When ¢ > j, then x € G;, y € G;, so x xy € G;. Thus

. . 1-m
e+ y) >t = minfti, t;} = min {u(@), p(y), —5 .
When ¢ < j, then z € G, y € Gj, so x xy € Gj. Thus

p(x *y) > t; = min{t;, ;} = min {u(ﬂﬂ), 1(y), 1_Tm}

Hence p is an (€, € Vg, )-fuzzy subquasigroup of G. O

Definition 3.17. For any fuzzy set p in G and t € (0, 1], we define two
sets

(W] = {z € Glat € Vam p}

and
Qust) ={x € Gl zeqmp}-
It is clear that [u]; = U(u;t) U Q(ust).

Example 3.18. Let G = {0,a,b,c} be a quasigroup which is given in
Example 3.2. Consider fuzzy sets

0.67 if =0, 0.60 if x =0,

0.56 if x=a, 0.05 if x=a,
ME) =0 047 if z—b, V@) =93 050 if z—b,

041 if = =c, 0.06 if o=

(1) When m = 0.6, then U(u;t) = G and Q(u;t) = G for all t € (0,0.2].
Thus [p]; = G for all ¢ € (0,0.2]. Hence [u]; is an (€, € Vqo)-fuzzy
subquasigroup of G.
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(2) When m = 0.8, then U(v;t) = G and Q(v;t) = {0,b} for all ¢ €
(0,0.1]. Thus [v]; = G for all t € (0,0.1]. Hence [v]; is an (€, € Vqo.5)-
fuzzy subquasigroup of G. O

Problem 1. Prove or disprove that each nonempty [ul: is an (€,€ Vgnm)-
fuzzy subquasigroup of G.

Problem 2. Find a simple characterization of [u];.

An (€, € Vgp,)-fuzzy subquasigroup of a quasigroup G is proper if Imu
has at least two elements. Two (€, € Vg, )- fuzzy subquasigroups of G are
equivalent if they have the same family of level subquasigroups. Otherwise,
they are said to be non-equivalent.

Theorem 3.19. Let pu be a proper (€,€ Vaqm)-fuzzy subquasigroup p of
G having at least two values t1,ty < 2. If all [u]y, t € (0,552], are
subquasigroups, then p can be decomposed into the union of two proper non-

equivalent (€, € Vqm)-fuzzy subquasigroups of G.

Proof. Let u be a proper (€, € Vg, )-fuzzy subquasigroup of G with values
ISm > 4 >ty > ... > t,, where n > 2. Let Go = [/,L]lme and Gy = [u],
for k=1,2,...,n. Then p1-m = Gy C G1 C ... C G, = G is the chain of
(€, € Vg )-subquasigroups. ’

Consider two fuzzy sets A1, Ao < p defined by

M (@) tp if z € Gy,
xr) =
! tp, if z€Gg\Gr_1, k=2,3,...,n,

w(z) if z € Gy,
)\Q(ZE) = ta, if xe€ Gy \Go,
ti, ifﬁEGk\Gk_l,k:?),...,n.

Then A1 and \g are (€, € Vg, )-fuzzy subquasigroups of G with
GicGycC...CcGy

and
GocGyC...C Gy

being respectively chains of (€, € Vg, )-fuzzy subquasigroups. Obviously
= A1 U Ag. Moreover, A1 and Ay are non-equivalent since Gy # G1. O
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Vague Lie subalgebras over a vague field

Muhammad Akram and Kar-Ping Shum

Abstract. The concept of a vague subfield and some of its fundamental properties are
introduced. We then introduce the vague Lie subalgebra over a vague field and present
some of its properties. In particular, different methods of constructions of such vague

sets are given.

1. Introduction

The concept of fuzzy set was first initiated by Zadeh [14] in 1965 and since
then, fuzzy set has become an important tool in studying scientific subjects,
in particular, it can be applied in a wide variety of disciplines such as
Computer Science, Medical Science, Management Science, Social Science,
Engineering and so on. In fact, if we let U be a universe of discourse, then
a fuzzy set A is a class of objects of U along with a membership function
A. The grade of membership of z(z € U) in the universe U is 1, but the
grade of membership of z in a fuzzy subset A (of U) is a real number in
[0, 1] denoted by pa(x) which signifies that x is a member of the fuzzy set
A up to certain extent. The degree of membership could be zero or more
and at most one. The greater u4(z) means the greater is the truth of the
statement that the element x belongs to the set A.

Different authors from time to time have made a number of generaliza-
tions of Zadeh fuzzy set theory [14]. Recently, the notion of Vague Set (VS)
was introduced by Gau and Buehrer in [10]. This is because in most cases
of judgments, the evaluation is done by human beings and so the certainty
is a limitation of knowledge or intellectual functionaries. Naturally, every
decision-maker hesitates more or less on every evaluation activity. For ex-
ample, in order to judge whether a patient has cancer or not, a medical
doctor (the decision-maker) will hesitate because of the fact that a fraction
of evaluation he thinks in favor of the truthness, another fraction in favor

2000 Mathematics Subject Classification: 04A72, 17B99
Keywords: Vague field, vague Lie subalgebras, normal vague Lie subalgebra.
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of the falseness and the rest part remains undecided to him. This is the
breaking philosophy in the notion of vague set theory introduced by Gau
and Buehrer in [10]|. The notions of fuzzy ideals and fuzzy subalgebras of
Lie algebras over a field were considered in [13] by Yehia. In this paper, we
first introduce the concept of a vague subfield and study some fundamental
properties. Then we introduce the notion of a vague Lie subalgebra over a
vague field and present some properties. Finally, we give some important
properties of a vague Lie subalgebra over a vague field of different types
and describe some methods of constructions for such vague sets. The def-
initions and terminologies that we used in this paper are standard. For
other notations, terminologies and applications, the readers are refereed to
[1, 3,4, 6,7, 10, 11].

2. Preliminaries

Throughout this paper, L is a Lie algebra and X is a field. It is clear
that the multiplication of a Lie algebra is not necessary associative, that is,
[[z,y], 2] = [z, [y, z]] does not hold in general, however it is anti- commuta-
tive, that is, [z,y] = —[y, x].

Let o be a fuzzy set on L, that is, a map p: L — [0, 1].

Definition 2.1. [12] A fuzzy set F of X is called a fuzzy field if
(1) (vm,ne€ X)(F(m—n) > min{F(m), F(n)}),
(2) (Vm,n € X,n#0)(F(mn~!) > min{F(m), F(n)}).

Definition 2.2. [10] A vague set (in short, VS) A in the universe L is a
pair (ta, fa), where t4 : L — [0,1], fa : L — [0,1] are true and false
memberships, respectively such that t4(z) + fa(z) < 1 for all x € L. The
interval [ta(z),1— fa(x)] is called the vague value of x in A, and is denoted
by Va(z).

Definition 2.3. [10] Let A = (ta, fa) and B = (tp, fB) be two vague sets.
Then we define:

(3) A= (an 1- tA)?
(4) ACB&oVy(x) < Vp(z),ie,ta(x)<tp(x)and 1— fa(x) < 1—fp(z),

(5) A= B & Va(z) =Vg(x),
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(6) C=ANB <& Vo(r)=min(Va(z),Ve(z)),
(7) C=AUB & Ve(x) =max(Va(x), Vp(x))

for all z € L.

Definition 2.4. [10] A vague set A = (t4, fa) of a set L is called
(8) the zero vague set if ta(z) =0 and fa(x)=1forall x € L,
(9) the unit vague set if ta(z) =1 and fa(x) =0 for all x € L,

(10) the a-vague set if ta(z) = a and fa(x) = 1 — « for all x € L,
ac (0,1).

We also denote the zero vague and the unit vague value by intervals 0 = [0, 0]
and 1 = [1, 1], respectively.

For o, 8 € [0, 1], we define the («, 3)—cut and the a-cut of a vague set.

Definition 2.5. [6] Let A = (t4, fa) be vague set of a universe L. Then
the (a, 3)— cut of a vague set A is a crisp set A, ) of L given by

Aap) ={r € L:Va(z) 2 [, B}

Obviously, A(g,0) = L. The («, B)-cuts are also the vague-cuts of the vague
set A. The a-cut of the vague set A = (ta, fa) is a crisp set A, of L given
by Ao = A(q,q). Note that Ag = L. Clearly, Ay = {z € L:ts(x) > a}.

By an interval number D, we mean an interval [a~,a™] with 0 < a= <
a™ < 1. The set of all interval numbers is denoted by D|0, 1]. The interval
[a, a] is identified with the fuzzy number a € [0, 1].

For any two interval numbers Dy = [a],b]] and D2 = [a; , b5 |, we define

min(Dy, Da) = min([ay, bf], [ay, b3]) = [min{a;, ay }, min{by", by }],

max(Dy, Dy) = max([a7, bt [ag, b5) = [max{ar, a3 }, max{b}, b} },
and put

e D1 <Dy <+=a; <ay andbfgb;,

e Dy =Dy <= a] =a, and b] =b],

e D < Dy <= Dy < Dy and D1 # Do,

e mD = mla],b{] = [may,mbf], where 0 < m < 1.
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It can be easily verified that (D]0,1],<,V,A) forms a complete lattice
under the set inclusion with [0, 0] as its least element and [1, 1] as its greatest
element.

3. Vague fields

Definition 3.1. A vague set F' = (tp, fr) of X is said to be a vague subfield
of the field X if the following conditions are satisfied:
(11) (Y myn € X)(Vr(m —n) = min{Vr(m), Vr(n)}),
(12) (Vm,n € X,n # 0)(Ve(mn=t) > min{Vp(m), Vr(n)}),
that is,
(13) { ta(m —mn) = min{t4(m),ta(n)},

1— fa(m —n) 2 min{l — fa(m),1 = fa(n)},
(14) { ta(mn=t) = min{tp(m),ta(n)},

1 — fa(mn™") > min{l — fp(m),1 - fa(n)},

Example 3.2. Consider a field X = {0,1,w,w?}, where w = _1%/:3,
with the following Cayley tables:

[

+ ‘ 0 1 w o w? . ‘ 0 1 wow
00 1 w w? 0/o o o0 0
1 1 0 w? w 1 |10 1 w o w?
w w w? 0 1 w0 w w? 1

w? | w? w 1 0 w? | 0 w? 1 W

It can be easily seen that the vague set
{(0,[0.3, 0.2]), (1, ]0.4, 0.5]), (w, [0.3, 0.6]), (w?,[0.5, 0.4])}
forms a vague subfield of the field X. g

The following Lemmas can be easily proved and hence we omit their
proofs.

Lemma 3.3. If F = (tp, fr) is a vague subfield of X, then
Vr(0) > Vr(1) =2 Vp(m) = Vr(—m) for me X, and
Vi(—m) = Ve(m™) form e X —{0}.

Lemma 3.4. A vague set A = (ta, fa) of X is a vague subfield of X if and
only if ta and 1 — fa are fuzzy subfields.
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Proposition 3.5. If A and B are vague subfields of X, then AN B is a
vague subfield of X.

Proof. Let m, n € X. Then we have

tang(m —n) =min{ta(m —n),tp(m —n)}
ta(n)}, min{tp(m),tp(n)}}
= min{min{t4(m),tp(m)}, min{t4(n),tp(n)}}
= min{tanp(m), tans(n)},

> min{min{t4(m),
)

and hence, we derive that

tanp(mn™Y) = min{t4(mn=1), tg(mn1)}
> min{min{t4(m),ta(n)}, min{tg(m),tp(n)}}
= min{min{t4(m),tp(m)}, min{ta(n),tp(n)}}
= min{tang(m),tans(n)},

1—fanp(m—n) =min{l — fa(m—n),1 — fg(m—n)}
> min{min{1—f4(m), 1=fa(n)}, min{1-fp(m), 1-f5(n) } }
= min{min{1—f4(m), 1—=fp(m)}, min{1—fa(n), 1-fp(n)}}
=min{l — fanp(m),1 — fanp(n)},

1—fanp(mn™) = min{l — fa(mn™Y),1 - fg(mn=1)}
> min{min{ 1 f£4(m), 1-fa(n)}, min{ 1-f5(m), 1-f5(n)}
= min{min{1—fa(m), 1—=fp(m)}, min{1—fa(n), 1-fs(n)}}
=min{l — fans(m),1 — fanp(n)}.

Therefore, we have proved that AN B is indeed a vague subfield of X. O

Proposition 3.6. The zero vague set, unit vague set and a- vague set are
all vague subfields of X.

Proof. Let A = (ta, fa) be a vague subfield of X. For m,n € X, we have
ta(m —n) > min{ta(m),ta(n)} = min{a, a} = a,

1= fa(m —n) > min{l — fa(m),1 — fa(n)} = min{e, a} = «a,
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ta(mn™t) > min{t4(m),ts(n)} = min{a, a} = a,
1 — fa(mn™) > min{l — t4(m),1 — t4(n)} = min{o, o} = .

This shows that a-vague set of X is a vague subfield of X. The proofs for
the other cases are similar. O

Proposition 3.7. Let A be a vague subfield of X. Then for a € [0,1], the
vague-cut Ay 18 a crisp subfield of X.

Proof. Suppose that A = (t4, fa) is a vague subfield of X. For m,n € A,
we can deduce that
talm) 2o, 1— fa(m)>=a, ta(n)Za, 1— fa(n) > a,
so that
ta(m

1— fa(m—n)
-1

) = min{ta(m),ta(n)} > min{e, a} = «a,
> min{l — fa(m),1 — fa(n)} > min{e, a} = a,
ta(mn™") =2 min{ta(m),t4(n)} > min{a, a} = «,
1 — fa(mn™b) > min{l — t4(m),1 — tx(n)} > min{o, o} = a.
This implies that m —n, mn~! € A,. Hence A, is a crisp subfield of X. [

Proposition 3.8. Any subfield K of X is a vague-cut subfield of some
vague subfield of X.

Proof. Consider the vague set A of X given by

] if mekK,
Va(m) _{ 0,0 if m¢K,

where t € (0, 1). Clearly, Aqq) = K. Let m,n,p € X. We now consider
the following cases:

Case (i): If m,n,p € K, p# 0, then m —n,mp~! € K and
Vie(m —n) = min{Vp(m), Vp(n)} = [t, t],
Vr(mp~') > min{Vr(m), Vr(p)} = [t, t].
Case (ii): If m,n,p € K, p # 0, then V4(m) = [0,0] = V4(n) = V(p), and
Vie(m —n) = min{Vr(m), Vr(n)} = [0, 0],
Vp(mp~") > min{Vy(m), Vr(p)} = [0, 0].
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Case (iii): If m € K and n,p € K, p # 0, then Vp(m) = [t, t], Vr(n) =
[0, 0] = V(p), so

Ve(m —n)
Vi (mp~")

min{Vg(m),Vr(n)} = [0, 0],

>
> min{Vr(m), Vr(p)} = [0, 0].

Case (iv): If m ¢ K and n,p € K, p # 0, then by using the same argument
as in Case 3, we conclude the results. Hence, we have proved that K is a
vague field of X. O

Proposition 3.9. Let K be a vague set of X which is defined by

| Is, 9] if me K
Vic(m) = { [t, 1] otherwise

for all s, t € [0,1] with s > t. Then K is a vague subfield of X if and only
if K is a (crisp) subfield of X.

Proof. Let K be a vague subfield of X. If m,n,p € K, p # 0, then

Vic(m —n) = min{Vi (m), Vi (n)} = min{[s, s, [s, s]} = [s, s],

VK(mpil) > min{VK(m)va(p)} = min{[S)S]v [573]} = [87 5]7

and so m —n, mp~! € K.
Conversely, suppose that K is a (crisp) subfield of X. We consider the
following situations:

(i) fm,n,pe K, p+#0, then m —n,mp~! € K. Thus
Vk(m —n) = [s,s] = min{Vk (m), Vk(n)},

Vic(mp™) = [s, 5] = min{Vi (m), Vi (p)}.
(iil) Tm¢& K or n,p & K, p# 0, then

Vi (m —n) > [t,t] = min{Vg(m), Vi (n)},

Vic(mp™t) > [t,t] = min{Vx(m), Vk(p)}.

This shows that K is a vague subfield of X. O



126 M. Akram and K. P. Shum

4. Vague Lie subalgebras over a vague field

Definition 4.1. A vague set A = (ta, fa) of L is called a vague Lie subal-
gebra over a vague field F = (tp, fr) (briefly, vague Lie F-subalgebra) of L
if the following conditions are satisfied

(a) Va(z+y) 2 min{Va(z),Va(y)},

(b) Va(mz) Z min{Vp(m), Va(z)},

(¢) Va(lz,y]) = min{Va(z), Va(y)}
for all z,y € L and m € X.

In other words,

@ { faa ) > minitate) Lo
1= fa(o+y) > min{l = fa(e), 1 - falo)},

@ { talma) > mintr(m taa),
L= falma) > min{1 — fr(m),1 - fa()},

(0) { ta(fz, y]) = min{ta(z), ta(y)},
1= fa(lz, y]) = min{1 - fa(z),1 - fa(y)}.

From (b), it follows that V4(0) > Vg (0).

Example 4.2. Let ®% = {(x,9) : 2,y € R} be the set of all 2-dimensional
real vectors. Then R? with [z,y] = x x y form a real Lie algebra. Define a
vague set A = (ta, fa): N2 — [0,1] by

Ealz,y) 0.4 ifz=y=0, Fa(z,9) 0.3 ifz=y=0,
x,Y) = T,y) =
AT Y 0.3 otherwise, AW Y 0.4 otherwise,

and define F' = (tp, fr) : R — [0, 1] for all m € R by

Lo [o3 itmee,
P =93 02 if0meR-0QW3),

) 02 iftmeQ,
JFM) =9 04 ifomeR-0W3)

By routine verification, we can easily check that A is a vague Lie F-subalgebra.
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The proofs of the following propositions are obvious.

Proposition 4.3. A vague set A = (ta, fa) of L is a vague Lie F-subalgebra
of L if and only if t4 and 1 — fa are fuzzy Lie F-subalgebras over a fuzzy
field.

Proposition 4.4. Let {A; : i € A} be a family of vague Lie F-subalgebras
of L. Then NijcpA; is a vague Lie F-subalgebra of L.

Proposition 4.5. The zero vague set, unit vague set and a-vague set are
vague Lie F-subalgebras of L.

Theorem 4.6. Let A be a vague Lie F-subalgebra of L. Then for any o, 3
€ [0,1], the vague-cut A, gy is a crisp Lie subalgebra of L.

Proof. Suppose that A = (ta, fa) is a vague Lie subalgebra of L over a
vague field F' = (tr, fr). Let ,y,m € Ao gy, v,y € L, m € X. Then

tA(:E) }O&, 1_fA('T) 257 tA(y) 20[, l_fA(y) 257 tF(m) 205

and 1— fp(m) > B.
From Definition 4.1, it follows that

ta(x +y) = min{ta(z),ta(y)} > min{e, a} = a,

1= fa(z +y) 2 min{l — fa(z),1 - fa(y)} = min{B, 5} = 5,
ta(maz) > min{tp(m),ta(z)} > min{e, o} = a,

1= fa(mz) Z min{l —tp(m),1 —ta(z)} > min{5, 5} = 05,
ta([z,y]) = min{ta(z),ta(y)} > min{a, a} = o,

1 — fa([z,y]) 2 min{l — fa(z),1 - fa(y)} > min{3, 3} = 5

This implies that x +y, mz, [x,y] € A(, ). Hence A, g is a crisp Lie
subalgebra of L. O

Corollary 4.7. Let A be a vague Lie F-subalgebra of L. Then for o € [0, 1],
the vague-cut Ay is a crisp Lie subalgebra of L.

The proofs of the following propositions are obvious.
Proposition 4.8.

(i) Let f : L1 — Lg be an onto homomorphism of Lie algebras. If B =
(ts, fB) is a vague Lie F-subalgebra of La, then the preimage f~(B)
of B under f is a vague Lie F-subalgebra L.
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(ii) Let f: L1 — Lo be an epimorphism of Lie algebras. If A = (ta, fa)
is a vague Lie F-subalgebra of Lo, then f~1(A¢) = (f~1(A))e.

(iii) Let f : Ly — Lo be an epimorphism of Lie algebras. If A = (ta, fa)
is a vague Lie F-subalgebra of Lo and B = (tp, fB) is the preimage of
A= (s, a) under f. Then B = (tp, fB) is a vague Lie F-subalgebra
of L1.

Definition 4.9. Let g : L1 — Lo be a homomorphism of Lie algebras. For
any vague fuzzy set A = (t4, fa) in a Lie algebra Lo, we define a vague
fuzzy set A9 = (%, f) in L by

th(z) =talg(z)), [fi(z)= fa(g(x))
for all € L;. Clearly, A9(z1) = A9(xs) = A(x) for all 1,22 € g~ (2).
Lemma 4.10. Let g : L1 — Lo be o homomorphism of Lie algebras. If

A = (ta, fa) is a vague Lie F-subalgebra of L, then AY is a vague Lie
F-subalgebra of L.

Proof. Let z,y € L1 and m € X. Then

th(z+y) =talg(x+y)) =talg(z) + g(y))
> min{ta(g(x)),ta(g(y))} = min{t} (z), ¢} (y)},

1= filw+y)=1-fal(glz+y) =1 - falg(x) + 9(y))
> min{l — fa(g(z)), 1*fA( ()}
=min{l — f4(z),1 - f4(v)}.

The verification of the other conditions is similar. Hence, A9 is a vague Lie
F-subalgebra of L. O

Theorem 4.11. Let g : Ly — Lo be an epimorphism of Lie algebras. Then
AY is a vague Lie F-subalgebra of Ly if and only if A is a vague Lie FF-
subalgebra of L.

Proof. The sufficiency follows from Lemma 4.10. In proving the necessity,
we first recall that g is a surjective mapping. Hence for any x,y € Lo, there

exist 1, y1 € L1 such that = g(z1), y = g(y1). Thus ta(z) = t%(z1),
ta(y) =th (1), 1 — falz) =1 - fi(21), 1 = faly) = 1 — fi(y1), whence

ta(r +y) =talg(x1) +g(y1)) = talg(z1 +y1))
=t (w1 +y1) = min{t} (z1),t% (1)} = min{ta(x), ta(y)},
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1—falz+y)=1— falglx) +g(y1)) =1 — falglz1 +11))
=1— fi(@1 +y1) > min{l — f4(z1),1 — f4(s1)}
=min{l — fa(x),1 — fa(y)}.

The verification of the other conditions is similar. This proves that A =
(ta, fa) is a vague Lie F-subalgebra of Ls. O

5. Special types of vague Lie subalgebras

Definition 5.1. Let A = (t4, fa) be a vague Lie F-subalgebra in L. Define
inductively a sequence of vague Lie F-subalgebras in L by Lie brackets

AV = A, Al =[A° A%, A2 =[AY AY, ..., A" =[A"1 A,

Then, A™ is said to be the nth derived vague Lie F-subalgebra of L. More-

over, a series
A"D Al D A%2D...DA"D ...

is said to be a derived series of a vague Lie F-subalgebra A in L. A vague
Lie F-subalgebra A in L is called a solvable vague Lie F-subalgebra if there
exists a positive integer n such that A™ = 0.

Definition 5.2. Let A = (t4, fa) be a vague Lie F-subalgebra in L. We
define inductively a sequence of vague Lie F-subalgebras in L by Lie brackets

Ag=A, A=A A, As=[AA], ..., A, =[A A_1].
Then we call the series
A)D A1 DA DDA, D

the descending central series of a vague Lie F-subalgebra A in L. An vague
vague Lie F-subalgebra A in L is called a nilpotent vague Lie F-subalgebra
if there exists a positive integer n such that A, = 0.

By using similar arguments as in the proof of Theorem 4.7 in [2], we
obtain the following theorem.

Theorem 5.3.

(I) The homomorphic image of a solvable vague Lie F-subalgebra is a
solvable vague Lie F-subalgebra.
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(IT) The homomorphic image of a nilpotent vague Lie F-subalgebra is a
nilpotent vague Lie F-subalgebra.
(III) If A is a nilpotent vague Lie F-subalgebra, then it is solvable.

Definition 5.4. A vague Lie F-subalgebra A = (t4, f4) of a Lie algebra L
is said to be normal if there exists an element xg € L such that Va(xg) = 1,
ie., ta(zrg) =1 and fa(zg) =0.

The following Lemma is easy to prove and we hence omit the proof.

Lemma 5.5. Let A = (ta, fa) be a vague Lie F-subalgebra of L such that
ta(x) + fa(z) < ta(0) + f4(0) for all x € L. Define At = (t], f1), where
th(z) =talx)+1—1ta(0), fi(z) = fa(z) — fa(0) for all x € L. Then A
is normal vague set.

By using the above lemma, we deduce the following theorem.

Theorem 5.6. Let A = (ta, fa) be a vague Lie F-subalgebra of a Lie al-
gebra L. Then the vague set AT is a normal vague Lie F-subalgebra of L
containing A.

Proof. Let z,y € L and m € X. Then
min{V,{ (z), Vif (y)} = min{Va(z) + 1 = Va(0), Va(y) + 1 = Va(0)}
=min{Va(z), Va(y)} + 1 — Va(0)}
<Va(z+y) +1-Va(0) = Vs (z +y),

min{V; (m), Vj(az)} =min{Vp(m) + 1 — Vp(0),Va(z) + 1 — V4(0)}
=min{Vp(m),Va(z)} + 1 — (Vr(0) + V4(0))}
< Va(mz) +1— (Vr(0) + Va(0)) = Va+ (ma),

min{V; (), V{ ()} = min{Va(2) + 1 = Va(0), Va(y) + 1 — Va(0)}
=min{Va(z),Va(y)} +1 - Va(0)}
< Va([z,y]) + 1 = Va(0) = Va+([z, y)).
Thus, A" is a normal vague Lie F-subalgebra of L. Clearly A C A™. O

The following theorems are obvious.

Theorem 5.7. A vague Lie F-subalgebra A of a Lie algebra L is normal if
and only if AT = A.

Theorem 5.8. If A = (ta, fa) is a vague Lie F-subalgebra of a Lie algebra
L, then (AT)t = AT,
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Corollary 5.9. If A is normal vague Lie F-subalgebra of a Lie algebra L,
then (A7)t = A.

Theorem 5.10. Let A and B be vague Lie F-subalgebras of a Lie algebra
L. Then (AUB)t = AT uB™T.

Proof. Let A = (ta, fa) and B = (tp, fB) be two vague Lie F-subalgebras
of a Lie algebra L. Then AU B = (taup, fau), where

taup(x) = max{ta(z),tp(z)}, faup(r)=min{fa(z), fe(z)}, Va e L.

Thus (AU B)* = (t(aup)+ (@), faup)+ (), where

tcaus)+ (7) = taup) (@) + 1 —t(aum) (0)
=max{ta(x),tp(x)} +1 —max{t4(0),t5(0)}
=max{ta(x) +1—1ta(0),tp(x)+1—tp(0)}

— max{t 4+ (2), tg+ (2)} = Larope (@),

Similarly, we can prove that faup)+(z) = fa+up+(z) for z € L. Hence,
(AUB)tT = At UB™T. O

The proof of the following theorem is obvious.

Theorem 5.11. Let A be a vague Lie F-subalgebra of a Lie algebra L. If
there erist a vague Lie F-subalgebra B of L satisfying B C A, then A is
normal.

Corollary 5.12. Let A be a vague Lie F-subalgebra of a Lie algebra L.
If there emists a vague Lie F-subalgebra B of L satisfying BT C A, then
At = A,

Denote the family of all vague Lie F-subalgebras of a Lie algebra L by
VLS(L), and the set of all normal vague Lie F-subalgebra of L by N (L).
It is clear that A/(L) is a poset under set inclusion.

Theorem 5.13. A non-constant mazimal element of (N(L),C) takes only
the values 0 and 1.

Proof. Let A € N(L) be a non-constant maximal element of (N(L), C).
Then t4(xog) = 1 and fa(zp) = 0 for some zg € L. Let x € L be such that
Va(z) # 1. We claim that V4(x) = 0. If not, then there exists a € L such
that 0 < V4(a) < 1. Let B be a vague set in L over vague field K defined
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by Vp(z) := ${Va(z) + Va(a)}, Vi (2) := 1{Vp(z) + Vr(a)} for all z € L.
For z, y € L and m € X, we have

Ve +5) = 5{Vale +4) + Va(@)} > 3 {min{Va(e), Va)} + Vao)}

= {min{5(Va(x) + Va(@)), 5 (Va(y) + Via(a))}
= min{Vs(x), Vi ()},

Vime) = 3 {Valme) + Va(a)} > 3 {min{Vie(m), Va(a)} + Va(a)}

= min{5(Vir(m) + Vi(a)), 5 (Va(a) + Va(a))}
= min{VK(m)7 VB ($)},

V() = 5 {Valeu]) + Va(a)} > 5 {min{Va(@), Valu)} + Va(a)}

= min{ 5 (Va(2) + Va(a)), 5 (Va(y) + Va(a)))
=min{Vp(z), Va(y)}.
This proves that B is a vague Lie F-subalgebra of L. Now we have
Vp+(z) = Vp(x) +1 - Vp(0)
= S min{Va(2), Va(a)} + 1 — 5 {min{Va(0), Via(a)}
=Va(z)+1,
which implies that Vg+(0) = 1{V4(0) + 1} = 1. Thus BT forms a normal
vague Lie F-subalgebra of L. But V+(0) =1 > Vg+(a) = 3{Va(a) + 1} >
Va(a), so BT is a non-constant normal vague Lie F-subalgebra of L and

Vp+(a) > Vy4(a), which is a contradiction. Hence, a non-constant maximal
element of (NV(L), C) takes only two values: 0 and 1. O

Definition 5.14. A non-constant vague Lie F-subalgebra A € VLS(L) is
called mazimal if AT is a maximal element of the poset (N(L), C).

Theorem 5.15. A mazimal vague Lie F-subalgebra A € V. LS(L) is normal
and takes only two values: 0 and 1.

Proof. Let A € VLS(L) be maximal. Then A" is a non-constant maximal
element of the poset (NM(L),C) and, by Theorem 5.13, the possible values
of V; (x) are 0 and 1, that is, ¢t} takes only two values 0 and 1. Clearly,
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th(z) = 1if and only if ta(z) = ta(0) = 0; t}(z) = 0 if and only if
ta(x) = ta(0) = 1. But A C A" implies ta(z) < t}(z) for all z € L.
Hence, t}(x) = 0 implies t4(z) = 0. Consequently, V4(0) = 1. O

Theorem 5.16. A level subset of a mazimal A € VLS(L) is a mazimal
Lie subalgebra of L.

Proof. Let S be a level subset of a maximal A € VLS(L), ie., S =L =
{z € L|Va(x) = 1}. It is not difficult to verify that S is a Lie subalgebra
of L. Obviously S # L because V4 takes only two values. Let M be a
Lie subalgebra of L containing S. Then Vg C V). Since V4 = Vg and Vy
takes only two values, Vs also takes only these two values. But, by our
assumption, A € VLS(L) is maximal so that Vg = V4 = Vs or Vi (z) =1,
for all z € L. In the last case, we have S = L which is impossible. So, we
must have V4 = Vg = Vi; which implies that S = M. This means that S
is a maximal Lie subalgebra of L. O

Definition 5.17. A normal vague Lie F-subalgebra A € VLS(L) is called
completely normal if there exists x € L such that A(z) = 0. The set of all
completely normal A € VLS(L) is denoted by C(L). Clearly, C(L) C N(L).

Theorem 5.18. A non-constant mazimal element of (N(L),C) is also a
mazimal element of (C(L), Q).

Proof. Let A be a non-constant maximal element of (NV(L),C). Then, by
Theorem 5.13, A takes only the values 0 and 1 and so Va(zo) = 1 and
Va(xz1) = 0, for some xg,x1 € L. Hence A € C(L). Assume that there
exists B € C(R) such that A C B. Then, it follows that A C B in N(L).
Since A is maximal in (NM(L),C) and B is non-constant, we have A = B.
Thus A is maximal element of (C(L), C). This completes the proof. O

Theorem 5.19. Every mazimal A € VLS(L) is completely normal.

Proof. Let A € VLS(L) be maximal. Then by Theorem 5.15, A is normal
and A = A" takes only two values 0 and 1. Since A is non-constant, it
follows that V4(xzg) = 1 and V4(x1) = O for some zg,z1 € L. Hence A is
completely normal, ending the proof. O

In closing this paper, we state a method of construction for a new normal
vague Lie F-subalgebra from an old one.
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Theorem 5.20. Let f : [0,1] — [0,1] be an increasing function and A =
(ta, fa) a vague set on a Lie algebra L. Then Ay = (ta,, fa,;) defined
by ta,(z) = f(ta(z)) and fa,(z) = f(fa(x)) is an vague Lie F-subalgebra
if and only if A = (ta, fa) is an vague Lie F-subalgebra. Moreover, if
f(ta(0)) =1 and f(fa(0)) =0, then Ay is normal.
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A probabilistic model of error-detecting codes

based on quasigroups
Verica Bakeva and Natasa llievska

Abstract. Error-detecting codes are used to detect errors when messages are trans-
mitted through a noisy communication channel. We propose a new model of error-
detecting codes based on quasigroups. In order to detect errors, we extend an input
block aiaz...an to a block aiaz...anbibs ... by, where b; = a; * Qpyyqy * Qpg o % Qr
. . . . j | <n

i =1,2,...,n where % is a quasigroup operation and r; = { ;’ mod 7, i ;n . We

calculate an approximate formula which gives the probability that there will be errors

i+k—1

which will not be detected in two special cases: for the set A = {0,1} and k = 4; and
for the set A = {0,1,2,3} and k¥ = 2. We find the optimal block length such that
the probability of undetected errors is smaller than some previous given value . Also,
we compare two considered codes and conclude that quasigroups of higher order give
smaller probability of undetected errors. At the end of this paper we give a classification

of quasigroups of order 4 according to goodness for proposed codes.

1. Introduction

We propose a new model of error-detecting codes based on quasigroup op-
erations. Recall that a quasigroup (Q,*) is a groupoid (i.e., algebra with
one binary operation * on the set ) satisfying the law:

Vu,v e Q) 3Fz,y e Q) (zxu=v&uxy=0) (1)

In fact (1) says that the equations = x u = v, u*y = v for each given
u, v € @ and x,y unknown, have unique solutions.

In paper [1], using the image pattern authors gave classification of quasi-
groups of order 4 as fractal and non-fractal. In paper [2]|, the following
definition of linear quasigroup is given. Let (@, *) be a quasigroup of order
2™ and let

2000 Mathematics Subject Classification: 68P30

Keywords: error-detecting codes, quasigroup, noisy channel, probability of undetected
errors
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flxy, ..o xn) = (f(z, - sxn), ooy fu(X1, ooy 2p))

be its corresponding representation as vector valued Boolean function. If
all f; for ¢ = 1,2,...,n are linear polynomials, then this quasigroup is
called linear quasigroup. Otherwise, if there exists function f; for some i =
1,2,...,n which is not linear, this quasigroup is called nonlinear quasigroup.

In papers [4] and [5], there are some design of codes based on quasigroups
of order 2. Here, we define the code design based on quasigroups of arbitrary
order (Section 2). In Section 3, we find the probability of undetected errors
for the codes based on quasigroups of order 2 and k = 4 where k is number
of symbols used in calculation of each redundancy symbol. On the same
way, in Section 4, we give the probability of undetected errors for the codes
based on quasigroups of order 4 and k = 2. We filter the 576 quasigroups
of order 4 such that the probability of undetected errors does not depend
of the input message. On that way, we obtain 160 quasigroups. In Section
5, we describe how to choose the block length n such that the probability
of undetected errors is smaller than a given value €. Also, we compare the
maximums of the obtained probability functions of undetected errors for
two considered codes and make some conclusions. In Section 6, we give a
classification of obtained 160 quasigroups according to their goodness for
our codes.

2. Designing of the codes

Let A be an arbitrary finite set called alphabet and (A, %) be a given quasi-
group. Let consider an input message

a102 ... plp 41042 - .. Q22041 -+ -, (@ € A, 1 =1,2,...)

which will be transmitted through a noisy channel. Since of the noise, the
received message can be different of the sent one. Our goal is designing a
code which will detect the errors during transmission such that the proba-
bility of undetected errors will be as small as possible. For that reason, we
have to add some redundancy to the message, i.e., some control bits.

Let divide the input message to blocks with length n:

aiag ...an, Ap+10np+2 ... A2n,y - ..

We extend each block ajas...a, to a block ajas...anb1bs...b, where
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b1 = ap*xagx---kag
b2 == ag * Az * - - % Q41 (2)
b, = ap*aip*---*aqQp_1

where £ < n.

At first, each letter from the extended block ajas . ..ayb1bs ... b, will be
presented in 2-base system. After that the obtained binary block will be
transmitted through the binary symmetrical channel with probability of bit
error p (0 < p < 0.5) (Figure 1)

1—p
Figure 1: Binary symmetrical channel

The rate of this code is 1/2. Because of the noises in the channel, some of
the characters may not be correctly transmitted. Let a; be transmitted as
ai, by as b, i € {1,2,...,n}. If the character transmission is correct than
a} will have the same value as a;. Otherwise, a] will not be the same as a;.
So, the output message is ajaj...a,bib,...0),. To check if there are any
errors during transmission, the receiver of the message checks if

b} = ajkxayx---xay
by = ahxagx---xap
/ _ / / /
b, = apxap*---kap_y

If any of these equalities are not satisfied, the receiver concludes that some
errors occured during the block transmission and it asks from the sender to
send that block once again. But, some equality can be satisfied although
some characters in that equality are incorrectly transmitted. In that case,
incorrect transmission (error in transmission) will not be detected. We will
consider two special cases of the proposed code. For the first one, we choose
A ={0,1} and k = 4 and for the second one, A = {0, 1,2,3} and & = 2. Our
goal is finding approximately the probability of undetected errors and make
that probability as small as possible. In the both codes, each redundant
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symbol b;, defined in (2), includes the same number of bits, i.e., 4 bits from
the input message, so it is reasonably to compare the obtained probabilities
of undetected errors.

3. An error-detecting code based on quasigroup
of order 2 and k=4

Let consider the binary set A = {0,1}. There are only two quasigroup
operations on the set A, and here we took (A, ) to be defined by the table

= OO
O ==

*
0
1
Denote that same results will be obtained if another quasigroup is used.
Each block ajasz . ..ay (a; € A) is extended to a block
a1as . ..apbibs ... by,

where b; = a; * ar,, * ar, , * ar,, . Here

- Js Jsn
J j(modn), j>mn

forj=i+1,i+2,i+3.
Let introduce the following notation:

g(T1, T2, ..., Tp) = T1 ¥ To * -+ % Tp,

where z; € {0,1}, i =1,2,...,n. In order to determine the probability of
undetected errors, we need the following proposition which proof is obvious.

Proposition 1. If odd number of x1,x2,...,x, (z; € {0,1}) change their

values then g(x1,x9,...,2,) will change its value, too. If even number of
x1,%2,...,%, change their values then the value of g(x1,xa, ..., x,) will be
unchanged. O

Using the previous proposition and some combinatorics the following
theorem can be proved.
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Theorem 1. Let fa(n,p) be the probability function of undetected errors
m a transmitted block with length n through the binary symmetric channel
where p is the probability of incorrect transmission of a bit. Then fa(n,p)
15 given by the following formulas:

fa(4p) = 6p°(1—p)°+p'(1—p)* +4p°(1 —p)® + 4p"(1 - p)

fo(5,p) = 10p*(1 —p)% + 16p°(1 — p)° + 5p*(1 — p)?

f2(6,p) = 2p°(1—p)? +6p*(1 —p)® +18p°(1 — p)”
+16p°(1 — p)S 4 6p" (1 — p)° + 9p*(1 — p)* + O(p?)

f(7,p) = Y1 —p)0 +21p°(1 —p)? + 21p°(1 — p)® +29p7(1 — p)”
+28p*(1 — p)5 4+ O(p?)

f2(8,p) = 14p*(1 —p)'2 +8p°(1 — p)'t +24p5(1 — p)1® 4+ 56p7 (1 — p)°
+49p%(1 — p)® + O(p°)

f2(9,p) = (1 —p)*+9p°(1 —p)t3 +36p5(1 — p)'2 + 81p" (1 — p)it
+63p°%(1 — p)'* + O(p%)

f2(10,p) = 10p*(1 —p)'® + 12p°(1 — p)*® + 20p°(1 — p)** 4 100p™ (1 — p)*?
+120p%(1 — p)'2 + O(p?)

fo(11,p) = 11p*(1 —p)*® + 11p°(1 — )17 + 22p%(1 — p)16 +99p7(1 — p)*°
+132p8(1 — p)* + O(p°)

f2(12,p) = 12p*(1 —p)?° + 12p°(1 — p)*® + 30p°(1 — p)*& + 72p7 (1 — p)*7
+162p%(1 — p)'® + O(p°)

fo(13,p) = 13p*(1 —p)?2 + 13p°(1 — p)?* + 26p°(1 — p)?° + 78p7(1 — p)**
+182p8(1 — p)18 + O(p°)

fo(n,p) = npt(1—p)*~* +np®(1 — p)?>" =5 + 2np®(1 — p)2" 6
+6np™ (1 —p)** =7 + ApS(1 — p)*" =8 + Bp"/2(1 — p)*"/2 + O(p?),

forn > 14,
where
M, n=15,17,19,... 0, nodd
A= (n —I?S)n B =< 2, neven, but 4in
o n=14,16,1s,.. 6, 4n
O

The remainder O(p?) denotes that the coefficients are exactly deter-
mined in terms which contain p’, i < 9. To obtain exactly the probability
of undetected errors, i.e., to obtain exactly O(p”), one has to make much
complicated combinatorial calculations. In the Figure 2, we can see that
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for small values of n, all functions have maximum in p = 0,5. When the
block length n increases, the maximum becomes smaller, it goes to the left
and the sequence of maximums converges to 0.

0.014 0. 0005 T e
0.012 g ’
0. 0004
0.01 . L,
e “~<
0.008 S 0. 0003 iy Sl
. - L1 S~
- v~ TTTE e
0. 006 - 0. 0002 -
F - i
o~ - o ~
0.004 S o 7 - .
A= 0. 0001 E/
0. 002 T
e i—
01 0.2 0.3 s 05 0.1 0.2 0.3 0.4 0.5
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........ e T T o _ _ —
0.0005 0.0005
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\\\\: ................... PPt ..
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Figure 2: The probability functions of undetected errors

4. An error-detecting code based on quasigroup
of order 4 and k=2

Let consider the set A = {0,1,2,3} and let * be an arbitrary quasigroup
operation on A. According to (2), we extend each block ajas . ..ay, (a; € A)
to a block ajas...a,b1bs...b,, where b, = a; x a(; mod n)+1, ¢ =1,2,...,m.
The extended message is transmitted through the binary symmetrical chan-
nel again. As previous, we want to calculate the probability that there will
be errors which will not be detected. There are 576 quasigroups of order
4. We find that for some quasigroups, the probability of undetected errors
depends on the distribution of letters in the input message. So, we filtered
the quasigroups such that this formula is independent from the distribution
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of the input message. After filtering, from the 576 quasigroups of order 4,
only 160 quasigroups remain. All of them are fractal quasigroups, but not
all fractal quasigroups are in these 160 quasigroups ([1]). For the filtered
160 quasigroups, we obtained a formula for calculating the probability func-
tion of undetected errors. It is given by the following theorem which proof
is done in [3].

Theorem 2. Let fy(n,p) be the probability of undetected errors in a trans-
mitted block with length n through the binary symmetric channel where p is
the probability of incorrect transmission of a bit. If one of the filtered 160
quasigroups is used for designing the code, then the probability of undetected
errors is given by the following formulas:

fa(2,p) = 2vov1 + 12
f1(3,p) = 3vdvy + 3vgva + 13
fa4,p) = 4vfvr +4vvs + 20507 + dvgus + 74
-3
faln,p) = m;lv(%”*?’ + nvgv§"75 + 471(”2 )vagnw + nv3v§”77
—4 -5
+n(n — d)vgvyvg™ 8 + n(n = 4)(n=5) g(n )vf’vgn_g + nvgug"?
-5
+n(n — 5)1}31}11)3"_10 + 7n(n2 )vgvgn_lo
-5 —6 -5 —6 -7
+n(n 2)(” )wv%vgn—n + n(n )(n24 )(n ),Uzllvgn—12’

forn = 5. In the formulas, we use the following notations:

v - the probability of undetected errors when exactly k consecutive charac-
ters of the initial message ajas . . .ay are incorrectly transmitted (the char-
acters a;, Giy1, .. .,0i+k—1 are incorrectly transmitted, but a;—1 and a;1y are
correctly transmitted), k = 1,2,3,4;

vg - the probability of correct transmission of a character;

ri - the probability of undetected errors in a block with length k if all k
characters are incorrectly transmitted, k = 2,3, 4. 0

Now, using the Theorem 2 and formulas for the probabilities vy, func-
tions f4(n,p) can be determined for all 160 fractal quasigroups. These 160
quasigroups do not define 160 different functions for the probability of un-
detected errors, but only 7. These functions are given in Section 6 (Figure
5) where using these functions, we give a classification of the quasigroups
of order 4 according to goodness for our codes.

The quasigroups which give the smallest probability of undetected errors
are the best for code design. For these quasigroups, using some combina-



142 V.Bakeva and N.Ilievska

torics we calculate the following expressions for v; and r;.

v = (1-p)?

v = 3(1-p)’p*

va = (1-p)°p*(9p" — 16p° +12p> —dp + 1)

vs = (1-p)*p°(3p° — 4p+2)(9p" — 20p° + 18p” — 8p +2)

v = (1—p)2p(81p° — 432p" + 1060p5 — 1548p° + 1475p* — 944p® + 400p?
—104p + 13)

ro = p4(9p4 —32p% +48p% — 32p + 8)

r3 = ph27p® — 144p” + 348p5 — 484p° + 429p* — 252p> 4 98p% — 24p + 3)

ry = po(81pt° — 576p” + 1904p® — 3792p” + 5012p° — 4576p° + 2928p* — 1312p°

+404p? — 80p + 8)

Now, the probability of undetected errors is determined by the following
formulas:

f11(2,p) = p*(15p* —56p° + 84p” — 56p + 14)

f21(3,p) = p*(63p® —372p" 4+ 990p5 — 1540p° + 1545p* — 1032p> + 452p>
—120p + 15)

fai(4,p) = p*(255pt% — 2032pt + 7560p0 — 17360p" 4 27556p° — 32112p”

+28440p° — 19440p° + 10206p* — 4000p> + 1104p? — 192p + 16)
far(n,p) = np*(l—p)?n¥x
x [4 — 48p + 274p? — 980p° + (8n + 2431)p* — 8(8n + 547)p°
+2(130n + 2853)p° — 4(166n + 1259)p” + (9n? + 1078n + 2297)p®
—4(9n% 4 270n — 139)p” + (81n2 + 371n — 890)p'°
—2(45n2 — 165n + 194)p' + (3/8)(9n® — 42n? + 75n — 34)p12]
+0(p"), for n > 5.

The function f41(n,p) without the remainder O(p”) gives the probabil-
ity that at most 4 characters of the input message are incorrectly transmit-
ted and the errors are not detected. As previous, to obtain the probability
of undetected errors exactly, one has to calculate the probability that more
than 4 characters are incorrectly transmitted and the errors are not de-
tected, which is much complicated combinatorial problem. The shape of
the probability functions of undetected errors is similar as in the previous
case. When the block length n increases the maximum of these functions
becomes smaller, it goes to the left and the sequence of maximums converges
to 0 (Figure 3).
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Figure 3: The probability functions of undetected errors

5. Controlling of undetected errors and comparing
of the previous two codes

We want to control the probability of undetected errors, actually to make
that probability smaller than some previous given value €. So, we can find
for which values of n the maximum of the function f(n,p) (f(n,p) can be
fa(n,p) or fa1(n,p)) is smaller then e. Since the sequence of maximums of
the functions f(n,p) is strictly decreasing and converges to 0 when n — oo,
there will be ng € N, such that the maximum of the function f(n,p) will
be smaller than e, for all n > ng and the maximum of the function f(n,p)
will be greater than ¢, for all n < ng. We choose n = ng (see Figure 4).

0.00014

0.00012

0.0001

0.00008 |
0.00006 | "
0.00004 |

0.00002 | ~ -

Figure 4: Choosing of ng
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Now, we separate the message in blocks with length n and we code
every block individually. From all values of n which satisfies the condition
f(n,p) < e, we choose the smallest one since in this case we have fastest
transmission. Namely, if the receiver detects errors in the received block,
it asks for repeated transmission, so it is better the block length to be as
small as possible.

In the Table 1, we give the maximums of the probability functions of
undetected errors for the first and the second proposed code. From this
table, we can conclude that the maximums of the functions of undetected
errors are smaller when the quasigroups of order 4 are used. It suggest that
using the quasigroup of order 4 we obtain better and more efficiently codes.

n | Quasigroups of order 2 | Quasigroups of order 4
10 9.75609 x 10~ 9.35406 x 10~°
11 5.29529 x 10~ 7% 6.82458 x 10~°
12 3.52349 x 10~ % 5.14707 x 1077
13 2.48784 x 1077 3.97896 x 10~5
14 1.86131 x 10~ * 3.14013 x 1075
15 1.43616 x 10~* 2.52198 x 10~°
16 1.13480 x 10~* 2.05631 x 10~°
17 9.13489 x 1077 1.69878 x 105
18 7.47017 x 107° 1.41968 x 10~°
19 6.19084 x 10~° 1.19860 x 10~°
20 5.19030 x 107> 1.02120 x 10~°
21 4.39585 x 1075 8.77182 x 1076
22 3.75666 x 10~° 7.59050 x 109
23 3.23631 x 1077 6.61231 x 10~
24 2.80827 x 10~° 5.79537 x 1076
25 2.45283 x 1077 5.10775 x 106
26 2.15517 x 107 4.52483 x 10~©

Table 1: The maximums of the probability functions

6. Classification of quasigroups of order 4
according to goodness for proposed codes

As we mentioned in Section 4 we filtered 576 quasigroups of order 4 such
that the probability of undetected errors does not depend on the distribution
of letters in the input messages. After filtering only 160 quasigroups remain
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and they give 7 different functions of probability of undetected errors. The
best of these functions is fy1(n,p) given in Section 4. Others are given with
the following formulas.

fa,2(2,p) = (1—p)?p?(3p* —4p+2)(5p® —2p+1)

f12(3,p) = 3(1—p)*p*(21p* — 40p® + 44p* — 24p + 6)

fa2(4,p) = (1 —p)*p*(255p% — 1012p7 + 1982p°% — 2468p° + 2145p* — 1320p3 + 556p>
—144p + 18)

faz2(n,p) = npt(1—p)2@n=8x

X [4 — 48p + 275p% — 990p> + (8n + 2475)p* — 8(8n + 561)p°

+2(130m + 2943)pS — 4(166n + 1305)p7 + (9n? + 1078n + 2409)p®
—4(9n? 4 270n — 131)p? + (81n2 + 371n — 890)p'°

—2(45n2 — 165n + 194)p'! + (3/8)(9In3 — 42n2 + 75n — 34)p12]
+0(p"), for n > 5.

f1,3(2,p) = p*(—p°+8p° —12p* +8p —p? —2p+1)
fa3(3,p) = p3(—p? + 12p8 — 66p7 + 220p% — 411p® + 456p* — 312p3 + 132p? — 33p + 4)
fa3(4,p) = p3(—p'3 + 16p'2 — 120p*! + 560p'° — 1628p” + 3216p® — 4568p” + 4800p°

—3765p° + 2188p* — 918p3 + 264p? — 47p + 4)

fra(np) = (1/24)np?(1 —p)2CEn—100x
x {24 — 384p + 2952p? + 12(n — 1203)p® — 48(3n — 1045)p? + 48(18n — 2731)p°
+4(n? — 837n + 66488)p5 — 8(4n? — 1158n 4+ 53327)p”
+4(37n2 — 4845n + 136880)p® + (n® — 44612 + 312590 — 566302)p°
—4(n3 — 22612 + 9701n — 118268)p'0 + 2(5n3 — 658n? + 18469n — 159020)p'!
—4(4n3 — 347n? 4 66651 — 42412)p*2 + (19n3 — 1078n2 + 14453n — 69890)p!3
—4(4n3 — 14902 + 1433n — 5314)p'* + 2(5n3 — 116n? + 817n — 2302)p'®
—4(n3 — 14n2 + 71n — 154)p'® + (n3 — 10n2 + 35n — 50)p17}
+0(p"), for n > 5.

f142,p) = (1—-p)*p(—p*+6p> —Tp+4)
faa(3,p) = (1—p)°p?(p® — 9p° + 36p* — 44p® +30p* — 12p + 3)
fua(4,p) = (1 —p)*p3(—p° +12p® — 66p7 + 220p° — 399p°® + 440p* — 300p° + 128p> — 32p + 4)
faa(n,p) = (1/24)np3(1 — p)2(n=10)x
X {24 — 384p + 2976p? 4 12(n — 1229)p3 — 144(n — 361)p* + 24(37n — 5729)p°
+4(n? — 891n + 70274)p% — 4(8n? — 2535n + 113035)p”
+8(20n? — 2709n + 72514)p8 + (n® — 530n2 + 35747n — 601066)p°
—4(n3 — 289n? + 11342n — 126548)p'0 + 2(5n3 — 880n2 + 21883n — 172004)p'!
—16(n3 — 11902 + 1979n — 11494)p'2 + (19n3 — 1474n2 + 17129n — 74834)p13
—4(4n® — 197n2 + 1721n — 5698)p* + 10(n3 — 28n? 4 197n — 518)p'®
—4(n® — 14n2 + T1n — 154)p'6 + (n3 — 10n2 + 35n — 50)p17}
+0(p"), for n > 5.
fa52,p) = (1—p)p(p®+ 9p* —19p° + 17p? — 8p + 2)
fa5(3,p) = (1—p)°p°(p° — 9p® + 36p* — 60p° + 54p? — 24p + 5)
fas(,p) = (1—p)?p°(—p'! + 14p'0 + 37p? — 276p® + 567p” — 526p° + 125p° + 216p* — 252p°

+128p2 — 34p + 4)
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f4,5(nap)

f4,6(2»p)
fa,6(3,p)
f4,6(4) p)

fa,6(n, p)

fa,7(2,p)
f4,7(3ap)
f4,7(4»p)
f4,7(n’p)

(1/24)np (1 — p)>Cn=10)x

X {24 — 330p + 2544p? 4 12(n — 933)p3 — 24(5n — 1424)p? + 12(47n — 6355)p°
+4(n? — 411n + 31844)p% — 4(5n? — 849n + 39922)p”

+4(7n? — 1431n + 37058)p® 4 (n? 4 82n2 4 8855n — 100714)p°

—4(n3 4+ 116n2 + 3131n — 14012)p'° + 2(5n3 + 518n2 + 7177n — 20420)p*!
—4(4n3 4 36102 + 277Tn — 9916)p12 + (19n3 + 1334n2 + 4385n — 28466)p'3
—4(4n3 4 20502 — 133n — 2602)p'* + 2(5n3 + 148n2 — 647n — 286)p!®

—4(n® +10n2 — 97n + 134)p'6 + (n® — 10n2 + 35n — 50)p17}

+0(p"), for n > 5.

(1 —p)?p*(—p* + 6p® — 3p> + 1)
(1 — p)3p?(pS — 9p° + 36p* — 52p> + 42p2 — 18p + 4)
(1 = p)*p3(—p°® + 12p8 — 66p” + 220p8 — 319p° + 280p* — 180p3 + 88p?

—27p +4)

(1/24)np3 (1 — p)22n=10) x

x |24 — 360p + 2592p% + 12(n — 995)p® — 120(n — 329)p* + 12(51n — 8297)p°
+4(n? — 537n + 49598)p8 — 20(n? — 285n + 15938)p”

+4(13n2 — 2955n + 104282)p® + (n® — 110n2 + 19199n — 445066)p°

—4(n3 — 52n2 + 6047n — 96152)p'°® + 2(5n3 — 178n2 + 11749n — 133004)p*?
—4(4n3 — 119n? + 4349n — 36172)p*2 + (19n3 — 490n? + 9761n — 60338)p'3
—4(4n3 — 89n? + 1013n — 4594)p'* + 2(5n3 — 92n2 + 649n — 2014)p'®
—4(n3 — 14n2 + 71n — 154)p'® + (n3 — 10n2 + 35n — 50)p17}

+0(p"), for n > 5.

(1 —p)2p%(1 + p)(—p® + 7p? — 6p + 2)

p)*p*(
(1 =p)*p3(4 —p)(p* —4p® +12p*> — 8p +2)
(1 — p)*p3(—p® + 6p% — Tp + 4)(p® — 6p°® + 23p* — 36p> + 30p% — 12p + 2)
(1/24)np3(1 — p)2(2n =12 x
X {48 — 960p + 9168p? + 24(2n — 2319)p® — 48(16n — 5021)p*
+48(122n — 16489)p® + 16(2n2 — 1785n + 127894)pS
—24(16n2 — 4188n + 178017)p” + 48(42n2 — 5635n + 152925)p8
+4(4n3 — 1492n2 + 142127n — 2630189)p°
—48(4n3 — 224n2 4 19395n — 263790)p!°
+48(22n% — 263n? + 24382n — 265501)p!!
—8(436n3 — 1819n? + 1394090 — 1320164)p'2
+144(53n3 — 208n2 + 5721n — 49048)p'3
—48(240n3 — 128512 + 11191n — 79021)p'4
+4(3030n3 — 21073n2 + 94395n — 427394)p15
—24(366n° — 303502 + 11013n — 29366)p'°
+12(354n3 — 3268n2 + 11509n — 21701)p'7
—8(163n3 — 1588n2 4 5591n — 8906)p'8 + 12(20n3 — 199n? 4 699n — 1030)p'?

—24(n3 — 10n? + 351 — 50)p2° + (n3 — 10n2 + 35n — 50)p?!
+0(p7), for n > 5.

The plots of the previous functions for n = 7 are given on the Figure 5.
We can see that the function f41(n,p) is the best one, it gives the smallest
probability of undetected errors. But the function fy2(n,p) is very closed
to the fi1(n,p). Their plots almost overlap each other. Using functions
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Figure 5: Seven different functions of probability of undetected errors

Fach quasigroup is presented by a number according to lexicographic
ordering of the set of quasigroups of order 4. Namely, each quasigroup is
presented as a string of 16 letters that is a concatenation of the rows of the
corresponding Latin square. Then lexicographic ordering of that strings is
applied, assuming that the letters are already ordered. The obtained sets of
quasigroups are ordered such that the quasigroups from the first set give the
smallest, and the quasigroups from the last set give the biggest probability
of undetected errors.
Set 1: 46, 92, 111, 127, 160, 213, 222, 274, 303, 355, 364, 417, 450, 466, 485, 531
Set 2: 43, 93, 101, 133, 157, 196, 235, 275, 302, 342, 381, 420, 444, 476, 484, 534
Set 3: 40, 80, 116, 138, 166, 206, 228, 269, 308, 349, 371, 411, 439, 461, 497, 537
Set 4: 14, 21, 37, 54, 71, 77, 100, 132, 163, 179, 192, 197, 234, 243, 253, 272, 305

324, 334, 343, 380, 385, 398, 414, 445, 477, 500, 506, 523, 540, 556, 563
Set 5: 27, 83, 113, 139, 146, 203, 229, 285, 292, 348, 374, 431, 438, 464, 494, 550
Set 6: 4, 24, 26, 60, 70, 82, 110, 126, 147, 169, 182, 212, 223, 252, 262, 284, 293,

315, 325, 354, 365, 395, 408, 430, 451, 467, 495, 507, 517, 551, 553, 573

Set 7 can be presented as union of two subsets:
Subset 7': 1, 11, 51, 57, 172, 189, 246, 259, 318, 331, 388, 405, 520, 526, 566, 576
Subset 7": 7, 9, 49, 63, 174, 185, 242, 263, 314, 335, 392, 403, 514, 528, 568, 570

Repeat that all of these 160 quasigroups are fractal. The sets 1-6 contain
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only linear fractal quasigroups. The set 7 contains two subsets such that the
subset 7' contains linear fractal quasigroups too, but the subset 7’ contains
16 nonlinear fractal quasigroups with nonlinear part x1x3 + xox3 + x124 +
xox4 (see [2]). Also, one can check that there is not quasigroup in Set 1
which is a group.

7. Conclusion

In this paper we compare two special cases of these codes: the first one
with the binary set A = {0,1} and k£ = 4 and the second one with the set
A ={0,1,2,3} and k£ = 2. In the both codes, each control bit includes 4
bits from the input message and the rates of the both codes are the same,
so the comparing of two codes are reasonable. From this comparing we can
conclude that the obtained results are much better when we use quasigroups
of order 4. Also, in this paper we give a classification of quasigroups of order
4 according to goodness for proposed codes. Our next step is to develop
some other codes based on quasigroups of order 4 or 2% for k > 3, which
give smaller probability of undetected errors.

Acknowledgment. We are particularly grateful to Professor Smile Mar-
kovski for the valuable ideas and suggestions while working of this paper.
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Pure ideals in ternary semigroups

Shahida Bashir and Muhammad Shabir

Abstract. In this paper we introduce the notions of pure ideals, weakly pure ideals in
ternary semigroups. We also define purely prime ideals of a ternary semigroup and study

some properties of these ideals. The space of purely prime two-sided ideal is topologized.

1. Introduction

Cayley and Sylvester along with several other mathematicians, in the 19th
century considered ternary algebraic structures and cubic relations. The
n-ary structures, which are the generalizations of ternary structures create
hopes because of their possible applications in Physics. A few important
physical applications have been recorded in |2, 3, 12, 19]. Ternary semi-
groups exhibit natural examples of ternary algebras.

Banach find some applications in ternary semigroup. He gave an ex-
ample to show that a ternary semigroup is not necessarily reduce to an
ordinary semigroup. Los [13] studied some properties of ternary semigroup
and proved that every ternary semigroup can be embedded in a semigroup.
Sioson at [18] introduced the ideal theory in ternary semigroups. He also in-
troduced the notion of regular ternary semigroups and characterized them
by using the properties of quasi-ideals. In [16], Santiago developed the
theory of ternary semigroups and semiheaps. He studied regular and com-
pletely regular ternary semigroups. Dixit and Dewan studied quasi-ideals
and bi-ideals in ternary semigroups at [5, 6]. Ternary regular semigroups
are studied in [8] and [17]. The nice characterization of regularity by ideals
is given in [8].

M. Shabir and A. Khan at [14] studied prime ideals and prime one sided
ideals in semigroups. Ahsan and Takahashi at [1] have brought forwarded

2000 Mathematics Subject Classification: 20N05,
Keywords: Pure ideal, weakly pure ideal, purely prime ideal, weakly regular ternary
semigroup.
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the concept of pure and purely prime ideals in semigroups.

M. Shabir and S. Bashir at [15] launched prime ideals in ternary semi-
groups. At cite8 and [17] ternary and n-ary semigroups are given along with
an immaculate characterization of regularity by their ideals. At [7] appli-
cations of ideals to the divisibility theory in ternary and n-ary semigroups
is presented.

In this paper we start the study of pure ideals, weakly pure ideals and
purely prime ideals in ternary semigroups. We characterize ternary semi-
groups by the properties of pure and weakly pure ideals.

2. Preliminaries

A non-empty set 7" with a ternary operation () is called a ternary semigroup
if it satisfies the following associative law:

((z120m3)245) = (T1(T23%4)T5) = (T1X2(23T4T5))

forall z; € T, 1 <7 < 5.

To avoid complexity we denote (x1x2x3) as xixexs and take the opera-
tion () as multiplication. It is evident that each ordinary semigroup (7', *)
induces a ternary semigroup (7, ( )) by defining (abc) = (a*b) *c. Whereas
in [13] it has been demonstrated that every ternary semigroup does not
enjoy the status of an ordinary semigroup. A ternary semigroup 7T is said
to be a ternary semigroup with zero if there exists an element 0 € T such
that 0ab = a0b = ab0 = 0 for all a,b € T. Then 0 is called the zero element
of T. If A, B,C are non-empty subsets of a ternary semigroup 7T then their
product ABC is defined as

ABC = {abc:a € A;be B and c € C}.

A non-empty subset S of a ternary semigroup 7T is called a ternary
subsemigroup of T if SSS = S3 C S. A non-empty subset A of a ternary
semigroup T is called a left (right, lateral) ideal of Tif TTA C A (ATT C A,
TAT C A). If Ais a left, right and lateral ideal of T, then it is called an
ideal of T and if A is a left and right ideal of T, then it is called two-sided
tdeal of T'. Lateral ideals are also known as middle ideals. 1t is clear that
every left, right and lateral ideal is a ternary subsemigroup of T'. An ideal
A of a ternary semigroup T is called idempotent if A3 = AAA = A. A
ternary semigroup 7' is called semisimple if each ideal of T' is idempotent.
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An element x € T is regular if there exists an element a € T such that
x = xax, that is x € Tx. A ternary semigroup T is regular if each element
of T is regular.

The intersection of all the left ideals of T containing X C T is the
smallest left ideal of T' containing X. It is denoted by (X); and called the
left ideal generated by X. Clearly (X); = X U XTT.

Similarly,

(X), = XUTTX

(X)m = X UTXTUTTXTT
(X);=XUTTXUXTTUTTXTT
(X)=XUTTXUXTTUTXT UTTXTT

are the right, lateral, two-sided, and ideal of T' generated by X, respectively.

It is well known that if A, B and C are two-sided ideals of T, then
(ABC) = {abc : a € A,b € B,c € C} is a two-sided ideal of T. The
intersection of any family of (two-sided) ideals of a ternary semigroup 7' is
either empty or a (two-sided) ideal of 7. Union of any family of (two-sided)
ideals of a ternary semigroup 7" is a (two-sided) ideal of T'.

3. Pure ideals

In 1|, Ahsan and Takahashi studied pure ideals in semigroups. In this
section we define pure ideals in ternary semigroups.

Definition 3.1. A two-sided ideal I of a ternary semigroup T is called right
(left) pure if for each = € I there exist y, z € I such that zyz = z (yza = x).

An ideal I of a ternary semigroup T is called right (left) pure if for each
x € I there exist y,z € I such that zyz = x (yzz = ).

Similarly we define one-sided right (left) pure ideals.
The following example shows that right pure ideals need not be left pure.

Example 3.2. Let T' = {0, a,b,c,1}. Define the ternary operation ( ) on
T as (abc) = a * (b* c) where the binary operation * is defined as

=0 S Q O %

b
0
0
b
b
b

S O O O o0
QO O O O|R
o0 Qe OO0
=0 o Q Ol
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Then (T, ( )) is a ternary semigroup and the ideal I; = {0, a} is neither
right pure nor left pure; the ideal Iy = {0, b} is both right and left pure; the
ideal I3 = {0, a, b, c} is right pure but not left pure.

Proposition 3.3. Each right pure right ideal of a ternary semigroup T is
contained in a right pure two-sided ideal of T

Proof. Let A be a right pure right ideal of 7. Then AU TTA is a two-
sided ideal of T generated by A. Let x € AUTTA. Suppose x € A, since
A is right pure right ideal of T, therefore there exist ¢,z € A such that
r = zyz. If x+ € TTA, then x = titoa for some t1,t5 € T and a € A.
Again, since A is right pure so there exist b, c € A such that a = abc. Hence
x = titaa = tita(abc) = (titea)bc = xbe. This shows that AUTTA is a
right pure two-sided ideal containing the right pure right ideal A. O

Proposition 3.4. A two-sided ideal I of a ternary semigroup T is right
pure if and only if JN I = JII for all right ideals J of T.

Proof. Suppose [ is a right pure two-side ideal of T'. For every right ideal J
of T, JIT C JNI always. Let x € JNI. Since I is a right pure two-sided
ideal, so there exist y,z € I such that zyz = . Thus ¢ = xyz € JII.
Hence JNI C JII. Thus JNI = JII.

Conversely, assume that J N1 = JII for every right ideal J of T. We
show that I is a right pure two-sided ideal. Let = be any element of I and
J =2 UxTT be the right ideal of T' generated by z. Then by hypothesis

(xUaTT)NI = (xUaTT)II = xIT U («TT)II C xII Uzll = zI1.

Since z € (xUxTT) NI, so x € xIl. Hence there exist y,z € I such that
x = xyz. Thus I is right pure. O

Similarly we can show that, an ideal I of a ternary semigroup T is right
pure if and only if JNI = JII for all right ideals J of T.

Definition 3.5. A ternary semigroup T is said to be right weakly reqular
if for each x € T, x € (xTT)3.

Every regular ternary semigroup is right weakly regular but the converse
is not true.

Theorem 3.6. For a ternary semigroup T, the following assertions are
equivalent:
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(a) T is right weakly regular.

(b) Ewvery right ideal of T is idempotent, that is J3 = J for every right
ideal J of T

(¢) JNI=JII for every right ideal J and two-sided ideal I of T'.

(d) JN1I=JII for every right ideal J and for every ideal I of T.

Proof. (a) = (b) Let J be a right ideal of T, then J3 C JTT C J. Let
x € J. Then x € (2TT)3 C J3. Thus J C J3. Hence J = J3.

(b) = (a) Suppose that every right ideal of 7" is idempotent. Let z € T'.
Then J = 2 UzTT is the right ideal of T, so idempotent, that is

zUzTT = (zUzTT)(xUaTT)(xUxTT)
=gxx UzzxT T UxxTTxUxxTTzTT UxTTexJxTTxxTTU
Uz TxTTxUxTTxTTxTT.

Simple calculations shows that 2 € (27'T)3. Hence T is right weakly regular.

(a) = (¢) Suppose T is right weakly regular ternary semigroup and
J a right ideal and I a two-side ideal of T. Then JII C J NI always.
Let z € JNI. Since T is right weakly regular, so z € (zI'T)3. Thus
x = (xs1t1)(xsate)(xssts) for some s1,t1, S2,t2,83,t3 € T. Hence x € JII,
which shows that J NI C JII. Hence JNI = JII.

(c) = (d) Obvious.

(d) = (a) Let z € T and J = xUzTT be the right ideal of T generated
by x, I =xUzTTUTTxUTzT UTTxTT be the ideal of T generated by
x. Then, by hypothesis, (xUzTT)N (zUaTTUTTzUT2T UTT2TT) =
(zUxTT)(zUzsTTUTT2zUT2aTUTT2TT)(xUaTTUTT e UTxTUTT2TT)
= (zzxxUzzeTT UzeTTe UxaTeT UxaTTeTT U xTTre UxTTexTT U
2T TxTT2U T TaTaTUzsTTaTTaTT U TaTeUaTaTaTT UaTxTTxT).

Simple calculations shows that x € (z7'T)3. Hence T is right weakly
regular ternary semigroup. O

Theorem 3.7. For a ternary semigroup T, the following assertions are
equivalent:

(1) T is right weakly regular.

(2) Ewvery two-sided ideal I of T is right pure.

(3) Ewvery ideal I of T is right pure.

Proof. The proof follows from Theorem 3.6 and Proposition 3.4. O

Proposition 3.8. Let T be a ternary semigroup with 0. Then
(1) {0} is a right pure ideal of T'.
(2) Set theoretic union of any number of right pure two-sided ideals
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(ideals) of T is a right pure two-sided ideal (ideal) of T.
(3) Any finite intersection of right pure two-sided ideals (ideals) of T is
a right pure two-sided ideal (ideal) of T.

Proof. (1) Obvious.

(2) Let {Ix}rex be a family of right pure two-sided ideals of T'. Then
kUKIk is a two-sided ideal of T'. Suppose = € kUKIk. Then there exists
€ €

some k € K such that « € I. Since Ij is a right pure two-sided ideal of T,
so there exist y, z € I such that x = zyz. It follows that y, z € kUKIk such
€

that x = zyz. Hence kUKI i is a right pure two-sided ideal of T'.
€

(3) Let I, I be right pure two-sided ideals of 7" and = € I; N Is.
Then z € Land x € Is. Since [1and I are right pure two-sided ideals
of T', so there exist y1,21 € I1 and ys,20 € Is such that x = xyi121 and
x = xyo2z. Thus we have x = xy121 = (zy222)y121 = ((TY121)Y222) Y121 =
x(y12192)(22y121), where y121y2 and 2z9y121 € 1 NIy, Thus 1 N 15 is a right
pure ideal of T'. O

Similarly we can prove the case of ideals.

Proposition 3.9. Let I be any two-sided ideal of a ternary semigroup T
with zero 0. Then I contains a largest right pure two-sided ideal. (We call
it the pure part of I and denote by S(I)).

Proof. Let S(I) be the union of all right pure two-sided ideals contained
in I. Such ideals exist because {0} is a right pure ideal contained in each
two-side ideal. By the above Proposition S(I) is a right pure two-sided
ideal. It is indeed the largest right pure two-sided ideal contained in I. [

Similarly we can show that if I is an ideal of T then I contains a largest
right pure ideal.

Proposition 3.10. Let I, K be two-sided ideals of T and {I}rcx be the
family of two-sided ideals of a ternary semigroup T with zero 0. Then

(1) SUNK)=8SI)NS(K).

2 1) C Ii).

(2) Y .SU) €S(Y Ik)

Proof. (1) Since S(I) C I, S(K) C K, thus S(I)NS(K) C INK. But
S(I) N S(K) is right pure by Proposition 3.8, so S(I) N S(K) C S(I N K).
On the other hand S/ N K) C INK C I and S(I N K) is pure, so
S(INK) C S(I). Similarly, S(INK) C S(K). Thus S(INK) C S(I)NS(K).
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Hence, SUNK) =S(I)NS(K).

2 i I) C I I) C I,. A Iy,) is righ

(2) Since S(I) C Ij so kgKS( k) C kgK k- As S(Iy) is right pure, so
I;;) is right . Th h 1) C Iy). O

kgKS( %) is right pure us we have kgKS( k) C S(kéJK k)

Definition 3.11. Let I be a right pure two-sided ideal of T, then [ is called
purely maximal if I is maximal in the lattice of proper right pure two-sided
ideals of T'.

A proper right pure two-sided ideal I of T is called purely prime if
LTI, C I implies Iy C I or Is C I for any right pure two-sided ideals I;
and I of T. Equivalently I; NIy C I implies I; C I or I C I (Because
LT, CIiNnlyand 1 NIy = 111515 C I1T15. Thus [1T1s =11 N Iz).

Proposition 3.12. Any purely mazimal two-sided ideal is purely prime.

Proof. Suppose [ is purely maximal two-sided ideal of T" and Iy, I> are right
pure two-sided ideals of T such that Iy NIy C I. Suppose I} ¢ I. Then
I; U T is a right pure ideal such that I C I; U I. Since I is purely maximal,
so [y UI =T. Thus

IQZIQOT:IQH(IlLJI):(IZQIl)U(IQOI)QIUI:I.
Hence I is purely prime. O

Proposition 3.13. The pure part of any mazimal two-sided ideal of a
ternary semigroup with zero is purely prime.

Proof. Let M be a maximal two-sided ideal of T" and S(M) be its pure part.
Suppose I} NIy € S(M) where I, Is are right pure two-sided ideals of T'.
If 1 CMthen I; CS(M). If I;  S(M) then I ¢ M. Thus [ UM =T
because M is maximal. Hence we have

Iy = LNT = LN(LHUM) = (Ion1h)U(INM) C S(M)UM € MUM = M.

But S(M) is the largest right pure two-sided ideal contained in M. Thus
I, C S(M). Hence S(M) is purely prime. O

Proposition 3.14. Let I be a right pure two-sided ideal of T and a € T

such that a ¢ I, then there exists a purely prime two-sided ideal J of T such
that I C J and a ¢ J.
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Proof. Let
X ={J:J is aright pure two-sided ideal of ', I C J and a ¢ J},

then X # () since I € X. X is partially ordered by inclusion. Let {Jg brex

be any totally ordered subset of X. By Proposition 3.8, kUKJk is a right
€

pure two-sided ideal. Since I C U Jyanda ¢ U Jg,so U Jp € X. Thus
keK keK keK

by Zorn’s Lemma, X has a maximal element, say, J such that J is pure,
I C Jand a ¢ J. We claim that J is purely prime. Suppose I; and Iy
are right pure two-sided ideals of T' such that I; ¢ J and Iy € J. Since
I(k = 1,2) and J are right pure so I, U J is a right pure two-sided ideal
such that J C Iy UJ. Thusa € I UJ (k =1,2). Asa ¢ J,s0a € I}
(k=1,2). Thus a € Iy N1I5. Hence [y NIy ¢ J. This shows that .J is purely
prime. ]

Proposition 3.15. Any proper right pure two sided ideal I of T is the
intersection of all the purely prime two-sided ideals of T containing I.

Proof. By Proposition 3.14, there exists purely prime two-sided ideals con-

taining I . Let {J; }rek be the family of all purely prime two-sided ideals of

T which contain I. Since I C J, forall k € K,so I C kﬂKJk. To show that
€

kﬁKJk C I. Let a ¢ I, then by Proposition 3.14, there exists a purely prime
€
two-sided ideal J such that I C J and a ¢ J. It follows that a ¢ kﬂKJk.
€
Thus N J, CI. Hence I = N Jg. L]
keK keK

4. Weakly pure ideals

In this section we generalize the concept of pure two sided ideal and define
weakly pure two-sided ideal.

Definition 4.1. A two-sided ideal A of a ternary semigroup 7T is called left
(resp. right) weakly pure it AN B = AAB (resp. AN B = BAA) for all
two-sided ideals B of T.

Every left (right) pure two-sided ideal is left (right) weakly pure.

Proposition 4.2. If A, B are two-sided ideals of a ternary semigroup T
with zero 0, then

BA' ={tcT:aytc B forall z,y € A}
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and
AB={teT :tzy € B forall x,y € A}

are two-sided ideals of T'.

Proof. BA™! # () because 0 € BA™!. Let s, € T and t € BA~!. Then for
all z,y € A, (zy(srt)) = (z(ysr)t) = zzt € B because z = ysr € A. Hence
srt € BA™L. Also, (zy(tsr)) = (wxyt)sr € BTT C B, because zyt € B.
Thus tsr € BA™!. Hence BA™! is a two-sided ideal of T

Now, let s,r € T'and t € A_1B. Then ((srt)zy) = sr(tzy) = srb €
TTB C B forall z,y € A, because b = txy € B. Hence srt € A_1 B.

Also, (tsr)xy = t(srx)y = txyy € B because z; = srx € A. Thus
tsr € A_1B. Hence A_1B is a two-sided ideal of T'. O

Proposition 4.3. For a two-sided ideal A of a ternary semigroup T, the
following assertions are equivalent.

(1) A is left (right) weakly pure.

(2) (BATY)YNA=BnA (A.1BNA=AnNB) for all ideals B of T

Proof. (1) = (2) Suppose A is left weakly pure. Since BA~! is a two sided
ideal, we have (BA™')N A= AA(BA™!).

Now we show that AA(BA™!) C B. Let atx € AA(BA™!), where
a,t € A, v € BA™'. Then atz € B (by the definition of BA™!). Hence
AA(BA™Y) C B. Also AA(BA™') C ATT C A and (BA™')NA =
AA(BA™Y) C AN B. Thus (BA™'))NnAC BnA.

Let b€ BN A, then azyb € B for all z,y € A. Hence b € BA™!. Thus
BNAC (BA™Y)YN A. Therefore (BA™))NA=BnNA.

(2) = (1) Assume that A, B are two-sided ideals of a ternary semigroup
T and (BA7')N A = BN A. We show that A is left weakly pure. First
we show that B C (AAB)A™!. Let b € B, then for each x,y € A, we have
zyb € AAB. Thus b € (AAB)A~!. Hence B € (AAB)A~!. This shows
B C (AAB)A™!'. Thus AN B C (AAB)A™'NA = AABN A C AAB by
hypothesis. But AAB C AN B always. Hence AN B = AAB. Thus A is
left weakly pure. O

Proposition 4.4. For a ternary semigroup T the following assertions are
equivalent.

(1) Each two-sided ideal of T' is left weakly pure.

(2) Each two-sided ideal of T is idempotent.

(3) Each two-sided ideal of T is right weakly pure.
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Proof. (1) = (2) Suppose each two-sided ideal of T is left weakly pure. Let
X be a two-sided ideal of T, then for each two-sided ideal Y of T" we have
XNY = XXY. In particular X = X N X = XX X. Hence each two-sided
ideal of T is idempotent.

(2) = (1) Suppose each two-sided ideal of T is idempotent. Let X be a
two-sided ideal of T', then for any two-sided ideal Y of T we always have
XXY C XNY. On the other hand,

XNY=(XNY)(XNY)XNY)C XXY.

Hence we have X NY = X XY. Thus X is left weakly pure.
(2) = (3) Similarly as (2) = (1).

(3) = (2) Suppose each two-sided ideal of T is right weakly pure. Let X be
any two-sided ideal of T'. Then X is right weakly pure. Hence for each two-
sided ideal Y of T, we have X NY = Y X X. In particular X N X = X X X.
Hence each two-sided ideal of T' is idempotent. ]

Example 4.5. Any set 7" with the ternary operation (zyz) =z ifx =y =
z, and (xyz) = 0 otherwise, where 0 is a fixed element of T, is a ternary
semigroup in which every subset containing 0 is its two-sided ideal. Every
two-sided ideal of this semigroup is its right (left) pure ideal.

If |T) =1 or 2, then every two-sided ideal of T is purely prime. But if
|T'| > 3, then the ideal {0} is not purely prime. Because if a,b € T — {0},
then I ={0,a} and J = {0,b} are right pure ideals of 7" such that I NJ =
{0} but neither I ¢ {0} nor J ¢ {0}.

5. Pure spectrum of a ternary semigroup

In this section T is a ternary semigroup with zero such that 73 = T.
Let P(T) be the set of all right pure ideals of 7" and P(7") be the set of
all proper purely prime ideals of 7. Define for each I € P(T),

Br={JeP(T):1¢J}, S(T)={B;: 1 €P(T)}.
Theorem 5.1. I(7T') forms a topology on P(T).

Proof. As {0} is a right pure ideal of T', so Bygy = {J € P(T) : {0} € J} =
(), because 0 belongs to every right pure ideal. Since T is a right pure ideal
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of T, Br ={J € P(T) : T ¢ J} = P(T) because P(T) is the set of all
proper purely prime ideals of T'.
Let {Br, : a € A} C (T, then

B, ={7€P(T): I, J for someac A}={J€ P(T): UL, & J}=Buy,.
acA

To prove that By, N By, € S(T) for any Br,,Br, € S (T') we consider
J € By, NBy,. Then JeP(T), I ¢ Jand I, ¢ J.

Suppose that I; N Is € J. Since J is a purely prime ideal, therefore
either I1 C J or Is C J, which is a contradiction, hence I; N I Q J, which
implies J € Br,nr,. Thus By, N Br, € Brni,-

On the other hand, if J € Br,nr,, then

Lhnh¢J=L¢Jand I, L J=Je By and J € By, = J € By, N By,.

Hence Br,n1, € By, N By,. Consequently, Br,n1, = Br, N Br,, which implies
Bh N BIQ S %(T)
Thus I (T') is a topology on P(T). O
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Secret-sharing schemes

and orthogonal systems of k-ary operations

Galina B. Belyavskaya

Abstract. We suggest a general method of the construction of secret-sharing schemes
based on orthogonal systems of partial (in particular, everywhere determined) k-ary ope-
rations which generalizes some known methods of the construction of such schemes by
a finite fields and point the orthogonal systems of k-ary operations respecting to these
known schemes. The different transformations of orthogonal systems of k-ary operations
are reformulated and applied to orthogonal systems of polynomial k-ary operations over

finite fields, in particular, to orthogonal systems corresponding to some known schemes.

1. Introduction

It is known that for receiving the secret information the secret key is used.
The problem of construction of secret-sharing schemes is one of tasks of
modern cryptography connected with partition of the secret (more exactly,
with sharing the secret key). The method of sharing the secret key provides
safety of the procedure of acceptance of decision in some critical situation.
It consists in definition the group of person which have a right to accept
decision. Every member of this group has a part of the secret key, only the
full collection of these parts allows to restore the secret key giving access to
the secret.

There are many applications for such schemes including communication
networks, financial institutions and computing. One of the aspects of a
such scheme is a possibility to share responsibility for acceptance of an
important decision, concerning application of systems of weapon, signature
of bank checks or of access to the bank depository. One example arises in
the military where it would be necessary for several high-level officers to

2000 Mathematics Subject Classification: 94A60, 20N05, 20N15, 05B15
Keywords: secret-sharing scheme, k-ary operation, k-ary quasigroup, orthogonal sys-
tem of partial k-ary operations, transformation of an orthogonal system.
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reconstruct the necessary key required to release very important decision.

The problem of construction of a secret-sharing scheme can be gener-
alized when a decision can be accepted not one but any of several distinct
groups of users. In this case the secret key is distributed between all mem-
bers of groups of users and every user obtains his part of the secret.

One of main aims of a such secret-sharing scheme is defence of a key
away from loss. It is better to share a key between several users such
that the possibility its restoration by a few groups with in advance defined
participants, acting in agreement. That eliminates a risk of loss of a key.
The possibility of restoration of a secret must appear when all or sufficiently
great part of owners of the secret key was joined. But some of keepers of
secret key can be absent with respect to different reasons so it need to
restoration the secret if an incomplete collection of owners of the secret key
but if their number is greater of some threshold value.

Let 1 < k < n. A secret-sharing scheme between n users is called
(n, k)-threshold if any group of k from n users can restore a secret but none
group of the smaller number of users cannot obtain an information about
the secret key [1].

Secret-sharing schemes were introduced in 1979 by A. Shamir [12]. Later
his idea was generalized by other authors, which will be mentioned below.
In [13] various secret-sharing schemes known at that time were surveyed.

We suggest a general secret-sharing scheme based on orthogonal systems
of partial (in particular, everywhere determined) k-ary operations which
generalizes some of the known schemes and find the orthogonal systems
of k-ary operations respecting to these known schemes. Some little-known
transformations of orthogonal systems of k-ary operations are recalled and
are applied to orthogonal systems of polynomial k-ary operations over finite
fields GF'(q), in particular, to orthogonal systems corresponding to known
secret-sharing schemes.

2. Orthogonal systems of partial k-ary operations

At first we recall some necessary definitions and results. By :UZ we will
denote the sequence x;, xiy1,...,7j, ¢ < j. Let @ be a finite or infinite set,
k > 2 be a positive integer, and let Q* denote the k-th Cartesian power of
the set Q.

Let @ be a nonempty set and D C Q¥, D # (. If A is a mapping of
D into @, then A is said to be a partial k-ary operation (and (Q, A) to be
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a partial k-ary groupoid). If D = Q% we have a usual k-ary operation (or
shortly, k-operation) given on the set @ (see, for example, [14]).

A E-groupoid (Q,A) of order n is a set @ with one k-ary operation A
defined on @, where |Q| = n.

A k-ary quasigroup or a k-quasigroup is a k-groupoid (Q, A) such that
in the equality A(z¥) = x4, each set of values of k elements from zt+!
uniquely defines the value of the (k+1)-th element. Sometimes a quasigroup
k-operation A is itself considered as a k-quasigroup.

The k-operation E;, 1 <i <k, on Q with E;(2¥) = 2; is called the i-th
identity operation (or the i-th selector) of arity k.

For k > 2, an k-dimensional hypercube (briefly, a k-hypercube) of order
nisann x n x --- X n array with n* points based upon n distinct symbols.

k

A k-dimensional permutation cube of order n [6]) is a k-dimentional
n Xn X --- X n matrix of n elements with the property that every column
(that is, every sequence of n elements parallel to an edge of the cube)
contains a permutation of the elements. In particular, a two-dimentional
permutation cube is simply a latin square of order n which is an n x n array
in which n distinct symbols are arranged so that each symbol occurs once
in each row and column [6].

A k-operation (a k-quasigroup) defined on a set @) corresponds to every
k-hypercube (to every permutation k-hypercube) with the elements of @
and vice versa (see, for example, [4]).

Definition 1. [14] Let (Q, A1), (Q, A2),...,(Q, Ax) be partial k-groupoids
with the same domain D = D(A1) = D(A3) = ... = D(Ay) C QF. The k-
tuple of k-operations (A¥) = (A1, Ag, ..., Ay) is called orthogonal if for every
(a1,az,...,a;) € QF for which the system {A;(z}) = a;}%_, has a unique
solution.

The k-tuple (A¥) of partial k-operations with the same domain D is
orthogonal if and only if the mapping (2%) — (A1 (2¥), Aa(zY), ..., Ar(2}))
is a bijection when (z}) € D.

The set of different partial k-operations of the same domain D is said to
be an orthogonal system of partial k-operations (a k-OSPO) if each k-tuple
of the k-operations of this set is orthogonal [14].

For coding of information it is useful the following

Theorem 1. [14] To every orthogonal system of k-ary partial operations
> ={A1, s, ... A}, t = k, in which all partial operations are defined
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on a set of q elements, the set D has p elements and ¢ < p < ¢F, there
corresponds a code of p t-sequences of code distance t — (k — 1) over an
alphabet of q letters, ¢ < p < ¢*, and vise versa.

An orthogonal system of k-ary operations (k-OSO) is a partial case of
k-OSPOs. Such systems were studied in many works (see, for example,
[6, 7]).

A k-OSPO, in particular, a k-OSO can be used for construction of secret-
sharing systems in the following way.

Let Y = {41, Ag,..., A} be a k-OSPO of partial k-operations given on
aset @ of order g with | D |= p. Choose n, k < n < t, of partial k-operations
A;, = B1,A;, = By, ..., A;, = By of)_, some k-tuple a = (ag,a1,...,ax_1)
of D C QF and suppose that the element ag (or some elements of this k-
tuple) is the secret. The k-tuple a we express in coded form as the n-tuple
b = (b1,be,...,b,), where b; = Bj(ag,a1,...,ax—1). As ) is a k-OSPO
and a = (ag,a1,...,ax—1) € D C QF, any k elements bj,, by, ..., b;, of b
define uniquely a k-tuple a, as by the definition of a k-OSPO the system
{Bj,(z¥) = bj,, Bj,(a%) = bj,,...,Bj,(z}) = b;,} has a unique solution
(a;l,a;g, . ,(L'k) = (ao, at, ... ,ak,l).

Taking that into account, one can suggest the following construction of
an (n, k)-threshold secret-sharing scheme between n users, any k of which
can unlock the secret.

1. Choose a k-OSPO Y = {A;, Ag,..., A} with a great domain D the
partial operations of which is given on a set @) of sufficiently great
order q.

2. Choose a k-tuple a = (ag, a1, ...,a,_1) of D in which the element ag
(or some elements) is (are) the secret.

3. Choose an n-tuple (i1,1i9,...,0,) of {1,2,...,t}, k< n <t
4. Calculate the n-tuple b = (b1, ba,...,b,) =

(Aiy(ag™), Ay (ag ™), -5 Ai (ag 1) =(Bi(ag ™), Ba(ag ™), -, Balag ).
5. The pairs (i1, b1), (i2,b2), ..., (in, by), which form the secret key, can

be separated between n users which are the keepers of the secret.

Using this system any group of k from n users having k pairs (i;,,b;,), ...,
(ij,,bj,) unlocks the secret deciding the system {Bj, (z}) = bj,, Bj, (2¥) =
bjs,- -, Bj, (zF) = bj, } and none another group of smaller numbers of users
cannot to receive an information about the secret.
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This system allows to increase a number of keepers of the secret adding
l elements 441, %n+42, - - -, tnti, where n+1 < ¢, in point 3.

If there is only one group of the keepers of the secret, then in item 3 we
choose n = k.

The pointed algorithm is the same when we use an orthogonal system
of k-ary operations (a k-OSO) given on a set (. In this case D = Q*.

As one variation on theme of secret-sharing schemes, we might want a
scheme where some participants’ share carry more weight than others. In
this case we require that a share from participant ¢ can be replaced by a
collection of shares from participant of lower weights. Such a system is
often called a multilevel scheme. For example, assume that in a bank, one
wants to have a valid signature for transfer of a great sum of money only
if the shares of two tellers and one vice-president or two vice-presidents are
entered.

In such case we can in the suggested scheme to share secret (i1, b1), (i2, b2),
<oy (in, by) between [ < n keepers giving more parts of the secret key to the
participants with more weight and less parts to the participants with lower
weight.

3. Some known secret-sharing schemes

The following connection between k-OSOs and codes is well known.

Theorem 2. [15] A code of ¢* words of length t with the code distance
t — (k — 1) in an alphabet from q letters corresponds to every orthogonal
system of k-ary operations Y = {A1, Aa, ..., A}, t > k, defined on a set
Q of order q and vice versa.

It is a partial case of Theorem 1 when p = ¢*. In this case we have an
MDS-code (that is a code with the maximal Hamming distance n — (k — 1)
between codewords).

In his book [16] W. W. Wu stated that all the secret-sharing schemes
known at the time his book was written are connected with latin squares
and provided some constructions of such schemes using orthogonal latin
squares. All his examples construct secret-sharing schemes in which only
two parts of the secret key are need to unlock the secret. J.Dénes and
A.D.Keedwell [7, Chapter 9] made a more general observation that all
these schemes can be constructed with the aid of Reed-Solomon codes.

A code of Reed-Solomon over GF(q) is a code with codewords of length
g — 1. The codes of Reed-Solomon over GF(q) are MDS-codes [7, Ch. 9].
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The scheme with the secret (so, s1,. .., Sg—1) due to A. Shamir [12] based
on a polynomial q(x) = so+s12+. ..+s_12" "1 modulo p, where p is a prime
greater than n and where the polynomial is so chosen that it has distinct
values modulo p for n different values x1, x2, ..., x, of . The secret key is
the n different ordered pairs of integers (x;, q(x;)) for i = 1,2,...,n. The

polynomial ¢(z) is calculated by the Lagrange’s interpolation formula

k
o(z) = Z q(xi)(x—z1)(x —22) ... (x — zj—1) (. — Tig1) - .. (x — @)
i1 (l’z — xl)(xl — .TQ) Ce (.CC, — xi_l)(xi — «Tz‘—&-l) . (JZZ — xk)
for polynomials where x1,xo, ...,z are any k of n parts of the secret key.

The second scheme of such kind is due to R.J. McEliece and D. V. Sar-
warte [11|. In this scheme a Reed-Solomon code over a finite field GF(q)
with words of length ¢ — 1 is defined by the following matrix G:

1 1 ... 1
aj as Gg—1
G = a% a% a37
k=1 k-1 k—1
where ag = 0,a1 = 1,ag,...,a4—1 are the different elements of GF(q) with
g =p™ (p is prime) elements. Every k-tuple s = (sg, s1,...,8k—1) in coded

form is the (¢ — 1)-tuple b = (b1, b2, ...,by—1), where b = sG. In this case
b; = q(a;), where g(x) = so + s12¢ + ... + sp_12° 71, so this method is a
generalization of that Shamir. The subset of n < (¢ — 1) pairs of the set
{(i,b;) | i =1,2,...,q — 1}, any k of which unlock the secret, can be the
secret key.

J.W.Greene, M. E. Hellman and E.D. Karnin used the matrix G over a
finite field to construct an extended Reed-Solomon code [8]:

1 0 1 r .- 1

0 0 a az 0 Qg1
G=]|0 0 da? a3 - a27

01 a’ffl agfl e a’(;:ll

Thus, the matrix G of an extended Reed-Solomon code is the matrix G
with two first added columns. The first (the second) column contains the
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element 1 on the first (on the last) place and the element 0 on the rest
places.

According to Theorem 5.1 [7] every extended Reed-Solomon code (and
that means the corresponding secret-sharing scheme) with a generating ma-

trix of two rows
10 1 1 --- 1
01 a az -+ ag

which is defined over a field GF(q) can be constructed from a complete set
of orthogonal latin squares (binary quasigroups) of order g.

This result can be generalized to the k-ary case. At first we remind
that an i-invertible k-operation A defined on @ is a k-operation for which
the equation A(ai_l,x,afﬂ) = aj41 has a unique solution for each fixed

k-tuple (a1,az,...,ai—1,ait1,...,ak41) of QF.
A k-ary quasigroup can be defined as a k-groupoid (@, A) such that the
k-operation A is i-invertible for each i = 1,2,... k.

A k-ary operation A(z¥) = a1z1 +agze+. .. +agwy, over a field GF(q) is
i-invertible, if a; # 0 and it is a k-quasigroup if and only if all its coefficients
are different from 0.

Theorem 3. FEuvery secret-sharing system corresponding to the extended
Reed-Solomon code over a field GF(q) with the matriz G is equivalent to
the orthogonal system Y = {E1, Ey, A1, As, ..., Ag—1} of k-operations of

order q, where El(mlgfl) = 19, Ek(:ngfl) = Tp_1,

k—1 2 E—1
Ai(xg ") =zo+ a1 +ajra+ ...+ a; Tp_q.

All k-operations A;, i =1,2,...,q — 1, are k-quasigroups.

Proof. Let us consider a secret-sharing scheme corresponding to the ex-
tended Reed-Solomon code over a field GF(q) with the matrix G. The
determinant formed by any k of the columns of this matrix is nonsingu-
lar, so the system of k-operations ) = {Ey, Ey, A1, Ag, ..., Ag—1} defin-
ing by the columns of the matrix G: Fy(zh 1) = w0, Ep(zf™") = x4,
Ai(z:lgfl) = m0+aix1+a?1‘2+. . .—}—afflxk_l, 1=1,2,...,q—1, is orthogonal.
All k-operations A; are k-quasigroups as a; # 0 foranyi=1,2,...,¢—1, so
a system of permutation k-hypercubes corresponds to these k-quasigroups.
The k-tuple (so, s1,...,Sk—1), including the secret, is coded as

(50, k-1, A1 (sE™1), Ao(sE1), .o, Agma(sh™h).
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Converse is evident since the system ) = {E, Ex, Ay, Aa, ..., Ag—1} of
k-operations defines the columns of the matrix G. So this system defines

the secret-sharing scheme, corresponding to the extended Reed-Solomon
code. O

Note that Ai(slg_l) =q(a;),i=1,2,...,q — 1, where ¢(z) is the poly-
nomial of Shamir over the field GF(q).

It is easy to see that the system ) = {FEi, Es, A1, As,..., Ag_1} of
orthogonal binary operations, where F1(z,y) = x, Ea(x,y) = vy, Ai(z,y) =

x+ay,t=1,2,...,q9—1, corresponds to the secret-sharing scheme, which
respect to the matrix of two rows of Theorem 5.1 [7]. In this case all
operations A;(z,y), 1 =1,2,...,q — 1, are binary quasigroups.

In the case of the matrix G we have the following

Corollary 1. Every secret-sharing system corresponding to the Reed-Solomon
code over a field GF(q) with the matriz G is equivalent to the orthog-
onal system y, = {A1,As,...,Ag_1} of k-quasigroups of order q, where
Ak Y =zo+aimi +adea+ . Fad Ty, i =1,2,..,¢— 1.

Note that instead of the matrix G one can take the matrix over a field
GF(q) with a primitive element (that is a generating element of the mul-
tiplicative group) a and with the following k-operations (corresponding to
the columns of this matrix): E1(zE~1) = zo, Ex(zE™1) = 4y, Ay(ak™!) =
To+2x1+ ...+ T_1, Ai+1($lgil) = x9 + aixl + a2i332 + ...+ a(k_l)il‘k_l,
i=1,2,...,q — 2, where k-operations Aj, As,..., A;_1 are k-quasigroups.
We may take the matrix with the ¢ + 1 rows defined by these k-operations.

4. Transformations of orthogonal systems

With the point of view of ciphering of an information it is important to
obtain many orthogonal systems from one system. In the connect with
that we recall some transformations of orthogonal systems of k-operations
known in the algebraic theory of orthogonal systems of k-operations with
some additions.

At first we reremind some necessary information from [2] with respect
to k-OSOs (for the case k = 2 see [3]).

Let (A1, Ag,..., A) = (A¥) be a k-tuple of k-operations defined on
a set Q. This k-tuple defines the unique mapping 6 : Q¥ — QF in the
following way: 0 : (2¥) — (Ay(2}), Aa(zh), ..., Ap(zh)), (or briefly, 0 :
(k) — (A1) (b)),
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Conversely, any mapping Q¥ into Q* uniquely defines a k-tuple (A%) of
k-operations on Q: if (x%) = (y¥), then we define A;(x%) = y; for all i =
1,2,...,k (or shortly, i € 1,k). Thus, we obtain 6 = (A}), where (z}) =
(AF)(2%) = (A¥(2})). If C is a k-operation on Q and @ is a mapping Q¥
into Q*, then the operation C defined by the equality CO(z¥) = C(0(z}))
is also a k-operation. Let Cf = D and 6 = (A}), then D(2¥) = C(A¥(2}))
or briefly, D = C(A¥). If § = (BY) and @ = (A}) are mappings Q¥ into QF,
then o = (A})f = (A6, Asf), ..., Ayf) = ((Aié)le = (Ai(Blf))le'

If & = (Bf) is a permutation of Q*, then B; = E;§ and B;0~! =
Bi(BW) ' =E;, i€,k

Definition 2. [2] A k-tuple (A¥) of different k-operations on @ is called
orthogonal if the system {A;(z}) = a;}*_, has a unique solution for all
(af) € Q.

The k-tuple (E¥) of the selectors of arity k is the identity permutation
of Q¥ and is orthogonal.

There is a close connection between orthogonal k-tuples of k-operations
on @ and permutations of Q¥ (such permutations will be called k-permutati-
ons).

Proposition 1. [2] A k-tuple (A% of k-operations is orthogonal if and only
if the mapping 0 = (A¥) is a permutation of QF.

In [2] it was introduced the notion of a strongly orthogonal system of
k-operations.
Definition 3. [2] A system X = {4, Ay, ..., A} = {A}}, ¢t > 1, of k-
operations, given on a set @, is called strongly orthogonal if the system
Y = {E¥, AL} is orthogonal.

In this case all k-operations of 3 are k-quasigroups since an i-invertible
k-operation A defined on @ is i-invertible if and only if the mapping
(E1,Fo,...,E;_1,A,Eiy1,...,E}) is a permutation of Q.

The system X is called the orthogonal system of k-quasigroups (k-OSQs).

A k-operation A is a k-quasigroup if and only if the set X = {A} is
strongly orthogonal. A set ¥ = {A!{} of k-quasigroups when k > 2, t > k,
can be orthogonal but not strongly orthogonal in contrast to the binary
case [2].

Note that in the case of a strongly orthogonal set ¥ = {41, Ao, ..., A} =
{A!} of k-operations the number ¢ of k-operations in X can be less than
arity k.
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According to [2] if 3 is a k-OSO given on a set @, then ' = 570 =
{A10, As0, ..., A0}, where 0 is a permutation of Q, is also a k-OSO.

Two k-OSO 3" and > given on a set @ are conjugate if there exists a
permutation § of Q¥ such that ' = > 6. They are called parastrophic if
S = 25_1 where § = (A, Aiy, ..., Ai,), Ay, € Y for any j € 1 k. In
this case S =30 ' = {Ey, Ba,..., Ep, AD i€ T,t,i#14;,5€1,k}

By Theorem 1 of [2] every k-OSO is conjugate to a k-OSQ and by Lemma
3 of [2] two k-OSQs are conjugate if and only if they are parastrophic.

In [2] the transformation of isostrophy of k-OSOs described below (for
k = 2 see [3]) which is more general than conjugation was also considered.

Let >, = {A}} be a k-OSO given on a set Q, T = (a1, a9,...,q4)
be a system of permutations of Q. The transformation Y. — > where
S = oA, a0y, ., Ay, A; € Y s called isotopy of k-OSOs and
denoted by 3 = 37

Remark 1. Note that if a k-OSO > = {A!} is strongly orthogonal and
=T

T = (041,042, ey atJrk), t@ Z = {OélEl,OéQEQ, N ,OékEk, Bl,BQ, ey Bt}

where B; = a1 A;, j € 1,t, are k-quasigroups.

It is true [2] that (3°0)T = (1), ie., if B e S = (X 0)T, i e 1,1,
then

Bi(a}) = (ci(Ai0))(a}) = (a1 4;)b(a7). (1)

The transformation Y_ — (32 0)T = 3 is called in [2] isostrophy.

The system ' is also orthogonal. Indeed, any k-tuple with different
k-operations of > defines a permutation of Q*: (B, Biy, ..., B;,) =
((ailAil)O, (OZZ'ZAZ'Z)G, ey (azkAzk)a) = (ailEla ai2E2, PN 7aikEk)(Ai17Ai27
..., A;.)0. Thus, this k-tuple is the product of three permutations of Q¥
so it is orthogonal.

In addition, we consider the following case of the transformation of
isostrophy of a k-OSO, namely, > = (3.6,)7, where 6; = 66y, 6y =
(B1E1, BoEa, ..., BiEL), B1, B2, - - -, B are permutations of Q, that is fp(z}) =
(BLE1, B2Ea, . .., BuEy)(x}) = (Biz1, Baxa, . .., Br).

In this case, if B; € >, then

Bi(x}) = (0 Ai)01 (2]) = (i A;)0 0o (2}) = (4 Ai)0)0o(2]).  (2)

Let § = (C1,Cy,...,Cy), then (2) can be written as
Bi(z}) = aiAi(Cl(ﬁjiﬂj)?:la 02(53‘333')?:1, ce Ck(ﬁjmj);?:l): (3)

where (Bjz;)h_; = (121, Bawa, - ., Brv).



Secret-sharing schemes 171

Transformation (3) of a known k-OSO > = {A!} is realized with the
help of a tuple of permutations «;, i € 1,1, some known orthogonal k-tuple
of k-operations (Cy,Cq,...,Ck) = 6 and k permutations 3;, j € 1,k, of Q.

Remark 2. The transformation (3) can be represented by conjugations
and isotopy of k-operations. Remind that two k-operations (@, A) and
(Q, B) are isotopic if there exists a (k + 1)-tuple T' = (b1, B2, ..., Bk, @)
of permutations of @ such that aB(x}) = A(Biz1, fo2, . .., Bray) for any
xlf € QF or, shortly, B = AT. Any k-operation isotopic to a k-quasigroup
is a k-quasigroup. Using isotopic k-operations transformation (2) can be
written as Y. = {B1,Ba,...,B;} = {(A410)"1, (A:0)"2, ... (A0} =
{Ozl(ilg)TO, a2(A2§)TO, ey Oét(Atg)To}, where Tz = (51, 52, P ,ﬁk, Ozi_l), oy,
i€ 1,t, 55, j €1,k, are permutations of Q, Ty = (51, 2, ..., 0k, 1) (1 is the
identity permutation of Q).

If Q(A) is a k-quasigroup, then the system > = {Ej, Es, ..., E, A} is
orthogonal and 6 = (E, ..., Ey, A) is a k-permutation of QF.

By Proposition 3 of [9] the systems
SN 0={Es,FEs,...,E, A, A0}, > 0>={Es3,Ey4,...,Ey, A A0, A0%},. ..,
SNGF — {A, AG, A%, ..., AG*} and Y0° — {AGE, AGE1, L A6
are orthogonal for every s > k4 1. Each of these systems contains k + 1
operations, any k of which define a k-permutation of QF.

The transformation of isotopy, conjugation or isostrophy of a k-OSO >,
described above, corresponds to the transformation of the secret-sharing
scheme, based on the £-OSO ), which it is possible to call the transfor-
mation of isotopy, conjugation or isostrophy of the secret-sharing scheme
respectively.

5. Transformations of orthogonal systems

Consider transformations of k-OSOs which consist polynomial k-operations,
i.e., k-operations of the form

A(:c]f) =a1x1 +asxo + ...+ apTk
over a field GF(q). Any selector E; of arity k can be considered as a

polynomial k-operation: El(x’f) = a1 + aoxo + ...+ a;T; + ...+ apTk
where a; = 1,a; = 0,4,5 € 1k, j #i.
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Let X ={Ay,Ag,..., A}, k> 2,t >k, be a set of k-operations each of
which is a polynomial k-operation over a field GF(q), that is

Al(a:
AQ(ZL‘

]f) =anr; +axe + ... + a1y,
If) = a21x1 + a22T2 + ... + a2x Tk, (4)

At(fb"]f) = a2+ aex2 + ...+ Qg

Let A be the matrix t x k defined by (4). The system Y = {A!{}, k > 2,
t > k, of polynomial k-operations from (4) is orthogonal if and only if all
k-minors of the matrix A, defined by these k-operations, are different from
0 (Proposition 1 of [5]).

Consider the transformations of isotopy, conjugation and isostrophy of
k-OSOs which consist of polynomial k-operations over a finite field GF(q),
in particular, when the k-OSOs are defined by the columns of the matrix
GorG.

Denote by » =, > and ) = the k-OSOs of polynomial k-operations
defined by (4), by the columns of the matrix G and by the columns of
the matrix G respectively. In the following statements the definitions of
corresponding transformations of these k-OSOs described in the previous
item (which give new k-OSOs) are applied for the polynomial k-operations.

We will consider only these k-OSOs over a field GF(q) which contain ¢

k-operations Ay, Ao, ..., As.

Proposition 2. Let B; € Z%, where T = (a1, a0, ...,04), Q; 1S a permu-
tation of a set Q for i € 1,t, then
Bz(xlf) = ai(aﬂxl + ajox + ...+ aikl'k), 1€ 1,t.

Indeed, Bz(xlf) = oziAi(xlf) = a;(aix1 + apre + ... + ajpxg), i € 1,t.
For the polynomial k-operations defined by the matrix G or G we have

Corollary 2. If B; € Zg, T=(o,0,...,04-1), then

Bi(a;lg_l) = a;(z0 + aiz1 + a?xa + ... + af_lxk,l), iel,g—1, and
B =o1FE, By =asFy, Bl(ﬂflgil) = ai($0+ail‘1 +a?x2+. . .+(L§71$k_1),
i€3,q+1, if BieY L.

Proposition 3. Let B; € Y 40, where § = (C1,Cs,...,Cy), then
B,(a:’f) =a;n1C1 (Cl?]f) + ai202($lf) + ...+ alk(]k(x’f), 1€ H

Indeed, BZ(:L‘]{’,) = Aﬁ(m’f) = aﬂCl(ﬂs’f) JraiQCQ(CCIf) +... +aszk(x’f) for
all i € 1,1,
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Corollary 3. If B, € >0, where § = (C1,Ca,...,Cy) , then

Bi(xlg_l) = C’l(x’g_l) + ang(xlg_l) + a%Cg(xlg_l) + o+ af‘le(a:’g_l),

i € 1,q — 1. The k-operations of Y 70 have the form: By = C1, By = Cy,
ok=1y k—1 _ k—1 2 k—1 k—1 k—1

Bi(xy ") = Ci(zg ) +a;Calxy ") +aiCs(xg ) ... +a; Crlag ),

1€3,q+ 1.

Indeed, By = E10 = Cy, By = E0 = C}, by the definition.

Corollary 4. Let A;, be a k-operation from Y (from Y &, Ay, # E1, Ey),
0 = (E15E27"')Ek—17A’i0)' If B, € ZG97 1 €1 q—l ) 75 i, then
Bi(xk™Y) = (14 af1ywo + (az—l—af_laio)xl 4.4 (ah —i—ak ! fo Hap_ot
afflafoflxk_l and Bj,(zf ) = (1 + afofl):co + ai, (1 + aio Doy 4+ ...+

afO_Q(l + af’o_l)xk,g + a?f 2.%']6,1. If Bi S 2597 then Bl = El, Bg = Aio
and B;, i € 3,q+ 1, have the same form as above.

Proof. 0 = (Ey, Es, ..., Ex_1, A;,) is a k-permutation, A;, is a k-quasigroup,
so by Corollary 3 Bi(zf ) = Ey(af™") + a;Ba(xf ) + a2 B3 (zh ) +.. . +
af_2Ek,1(x§_1) + af_lAiO(aclg_l) = 20 + a;x1 + aixa + ... + af_2xk,2 +
akfl(xo—}—aloxl—i— +a’?71xk 1) = (1+a§71)x0—{—(ai—&—af*laio)ﬁ—|—...—|—
(aF=2 4+ o1 fo g + a7t fo 'op_1,i € T,q— 1, if B; € > 50. For
1 =19 we obtaln B;,.

When B; € > 50, then By = Ei(E1, Es,...,Ey_1,Ai) = E1, By =
Ey(E1, Ea,...,Ex_1,A;,) = Aj,. The rest k-operations has the form as in
the first part of the corollary. O

Note that the transformation of Corollary 4 corresponds to the following
transformation of the matrix G (or G): the last row (that is the k-th row)
multiplied by a! ' is added to the j-th row, j =1,2,...,k— 1, the last row
is multiplied by afo_l (assume a) = 1). The k-operation B; is defined by
the i-th column of the obtained matrix.

Let 0 = (E1, Es, ..., E,_1,A), where the k-operation A is k-invertible.
In this case 6 is a k-permutation and g = (E1,Eq, ..., Ej_ 1, &) A), where
(k) A is the k-operation such that A(zy,zs,...,z5_1,*) A(2h)) = Ep(zh) =
z. If Ais a polynomial k-operation, that is A(2}) = a121+agze+. . .+apwy,
where ap # 0, then (k)A(:n’f) = a;l(—alxl —agTy — ... — Qfp_1Tk_1 + Tk)-

Corollary 5. Let Ay € >, B; € ZGg_l, 0= (El,Eg,...,Ek_l,AiO).
Then B, (o)) = (1= ot ol oo + (1 — ak—2<a’i;2>*1>x i

) i )

al-“z(l — ai(aio)_l)xk_g + affl(akfl) Tg_1, if i € 1,q—1, i # i;, and

[ 20

B;, = E). All B; for i # iy are polynomial k-quasigroups.
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Proof. If A;; € 3, then Ay, is a k-quasigroup and *) A; (zf~1) = (a, k=ly—1
(—x0 — ajpx1 — ... ak 22p_9 + Tp_1), 50 Bi(zh™l) = A6 ( -1 =
El(l‘]g_l)—l-aiEg(l’ )—f—ang(xlg_l)—l—...—i-a? 2Ek_1( )+ k= 1(k)AZO($IS 1)

’L

= 2o + a;r1 + airy + ... + af_%k_g + ak_l(afo_l) Yz — ajoz1 — ... —

ak ka Q—f—xk 1) = (1—af_1(af0_1)_ )zo+ (a; k 1( —h- 1a20)a:1—|-...+
%—2 E—1y—1 k-2 E—1 k=1, k—1y—

a; “Hap )~ ¢ (aj, )" Hxo+

io ag )Tk 2+ak_ (az Tho1 = (1 a;

(
(ai—a;~ (ak D et (e e ) Daeea el ag ) e =
(

1—af (@ Y Dzota(1—af 2 (af ) Vo +. . +al 2 (1-ai(ai,) V) zp_at

i
al€ (af0 DWle,y,ieT,q—1,if B; € ZGgil. From this expression it
fol]ows that B;, = Ej and all k-operations B;, i # g, are polynomial k-

quasigroups since all coefficients are different from 0. O

20

Pr0p051t10n 4. If in Proposition 3 0 (Ail,AiQ,...,Aik), A, € X1,
l €1,k gt = (D1, Da,...,Dy), then Z Yisa k-OSQ and B;, = Ej,
1€k, Bi(zh) = allDl(:Ul) + aipDo(2¥) + ...+ agDy(2h), i € 1)1, i # 1y,
lelk, if B, 50

Proof. If © € ﬂ, i # i1,02,...,1, then B; = Ai(Dl,DQ,...,Dk-). But
A;, = B0 and Ailé_l = E},s0 B;, = Ailg_l = Ej and the system 219_1 =
{E1,Es,...,Ex,Bili € 1,t,i # i1,i2,...,i} is an orthogonal system of k-
quasigroups (k-OSQ). O

Let S° — (320600)" = (3. 6)"0y. Then, using (3), we obtain

Pr0p051t10n 5. Assume that B; € (3.5 0)70y, where 0 = (C1,Cs,...,Ck),

(ﬂlEl,ﬁgEQ, .. ;ﬁkEk) and T = (041,042,.. th) then Bi lf) =

Oéi(ailcl(ﬁjxj)§:1 + ainCo(Bjwj)imy + . + anCr(Bja)k_)), i€ Tt

Indeed, according to (3) B;(z}) = ;A (Cl(ﬂjaz])] 1,02(@1“])] e
(ﬁ]%)g 1) = QZ(azlcl(ﬁyxj) 1+a1202(ﬁ]x]) —1t-- +aszk(ﬁj$J) 1)

1€ 1,t.

Corollary 6. If B; € (ZG 0)T0o, 6 = (01,02, .., Cr), 0o = (BoEr, B1E2,
.5 Br—1Ey), then B; (330 ) = aZ(Cl(ﬁ]x])] —0 T azC?(ﬂij)f_é + -
kflck(ﬁ]x])] D), i e Tg—1. IfBi € g )Teo, then By(zk ) =

04101(53373)] =0> B2( = 042019(51'33])5 s B( = 041(01(@33])3-:0 +

a;Co(Bjx )2y + ..+ al T Ch(Biay)h2)), i €3+ 1,

Indeed, if B; € (3>-z0)" 0y, then
By(zf") = a1 By (C, Co, . .., Ck) (Bzj)h2g = an C1(B25)5 2,




Secret-sharing schemes 175

Ba(af ") = aaBp(Ch, Cy, ..., Cr) (Bjz) 20 = aaCr(Bjm)h=).

Now let 3 — (80 80)" = (30 )78y (see (1)).
Proposition 6. If B; € (Zzg_l)Tgo, where 0 = (Aiy, Aiy, ..., Ai ), A; €
[ 771 p—
ZZ’ lelk, 0 (Dl,DQ,.. Dk) 0y = (ﬂlEl,,BQEQ,...,ﬂkEk) then
By, = a; BB, 1 € 1, 1,k, B (531) = az(alel(ﬁj%)] 1 +al2D2(ﬁj$J)] 1t
+aZka(ﬂ]xJ) ) /Le]' t 7’7éZ157’27'- Zk,' where B27Z#117227"'7 1k,
are k-quasigroups.

This proposition is a consequence of Proposition 4, Proposition 5 and
Remark 1 since
B, (fﬁlf)=(aizAilafl)go(fclf)=(OénEl)ao(xlf)=0411El(ﬁj90j)f:1 = oy BBy (a),
lelk.
Corollary 7. [f ZG = {El, Ek,Al,AQ, . q 1} = {Pl, PQ, . ,Pq+1},
0 = (P“,Plz, .. sz) 11,12, ..., € I,g+1 q+1 9 = (Dl,DQ,...,Dk),
0o = (BoEr, B1Es, ..., Bk_1Ey), Bi € (g0 )Teo, then B, = ;08— 1E17
1€ Lk, Bi(ag ') = ai(Dl(ﬁjwj)fléJraiDz(ﬁm)j o+af T DR (Bim)h)),
1€l,q+1,9%#141,00,...,0. All By, © # 11,142, ...,1k, are k-quasigroups.

Indeed, in this case By, (zf 1) = (ailpilé‘l)éo(x’g*) = (a;, B (zF)
= ailEl(ﬂjxj)z?;é = ailﬂl,lEl(aclg_l), Il € 1,k. The rest k-operations are
k-quasigroups by Remark 1.

e = (D1, Ds,...,Dy), then the k-operations B; of (3 g_l)Tgo,
i €1,q—1, where ZG = {A17A2’...,At}, 0= (A,Ll,Am,...,Aik), Ay €
Yo leld, k have the same form as in Corollary 7.

The transformations of k-OSOs, given above, allow to construct new
secret-sharing schemes or to renew (to renovate secret keys) the known
secret-sharing schemes, in particular, based on a Reed-Solomon or an ex-
tended Reed-Solomon code in the pointed numerous ways.
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Prolongations of quasigroups

by middle translations
Ivan I. Deriyenko and Andrey I. Deriyenko

Abstract. This article is a continuation of the study of prolongations of quasigroups
and Latin squares. Now using complete mappings and middle translations we present
various characterizations of prolongations of quasigroups described in [4]. Based on these

characterizations we find isotopic prolongations.

1. Introduction

Let Q@ = {1,2,3,...,n} be a finite set, ¢ and 1 permutations of ). The
composition of permutations is defined as v (z) = ¢ (¢ (z)). Permutations
will be written in the form of cycles, and cycles will be separated by points:

_<123456

=315 5 4 6)2(132.45.6.)

@ (-) always denotes a quasigroup.
Definition 1.1. A permutation ¢; of the set @) such that

r-pi(r)=14, 1€Q (1)
all z € Q is called the track of an element 3.

It is clear that for a quasigroup @ (-) of order n the set of permutations

{9017 ©2,P3, .-, Spn}7

satisfying (1) uniquely determines its Latin square (i.e., its multiplication
table). Therefore, we can identify @ (-) with the above set of permutations
and write

Q() = {9017()027@37 .. '79071}'

2000 Mathematics Subject Classification: 05B15; 20N05
Keywords: quasigroup, prolongation, isotopism.
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In [3] the following very useful result is proved

Lemma 1.2. Let Q(-) = {p1,92,...,0n} and Q (o) = {¢1,¢2,..., 0}
be two quasigroups. Then for any bijections «, 8,7 : Q — Q satisfying the

identity y(z o y) = a(z) - B(y) we have ;) = Boia™t. O

Definition 1.3. Any mapping o of @) defines on a quasigroup @ (-) a new
mapping & such that

The number rg (o) = |5 (Q) |, where 7 (Q) = {7 (x) |x € Q}, is called the
range of a mapping o on a quasigroup Q(-).

If 5(Q) =Q,ie., rg(c) =n =|Q|, then we say that o is a complete
mapping. A quasigroup having at least one complete mapping is called
admissible. If rg (0) =n — 1, the mapping o is called quasicomplete. Every
track has range 1.

For a quasicomplete mapping o we define its defect def (o) putting

def (o) =Q—a(Q).

If def (0) = d, then 57! (d) = ). In this case a = & (a1) = & (az) for some
a,ai,as € Q.

It is clear that a permutation ¢ of @ can be extended to Q' = Q U {q},
where ¢ € @, by putting ¢(q) = q.

2. Classical prolongation

The classical method of prolongation of admissible quasigroups proposed
by V. D. Belousov [1] is based on the following construction. Let @ (-) be
a fixed admissible quasigroup, o its complete mapping. The operation (o)
on Q' = QU {q} is defined by the formula:

vy if x#q y#q y#o(r),
ool (y) if x=gq, y#q @)
(x) if z#4q, y=q,

q if y=o(z), z€Q’.

Toy =

Qi

We say that this prolongation is induced by a complete mapping o.
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By A, we denote the set

A, = {0'1,0'2, c..y0n | 0; = ((La-_l (Z))}7

where @Q (+) is a quasigroup, ¢ ¢ @ and o is a complete mapping of @ (+).
Below we present the new description of this prolongation. But first we
make some useful observations.
Note first that
X, 0 (.%'Z) = 5’(.771) = 1. (3)

Hence
zi =" (7). (4)

Thus the transposition o; in A, can be written in the form o; = (g, z;).
Moreover, from (1) it follows z; - ; (z;) = 4, which together with (3) gives

o (zi) = @i (i) - (5)
Now we can give the new characterization of the classical prolongation.

Theorem 2.1. Let Q (-) = {1, 92, ¢3,...,¢n} be a quasigroup with a com-

plete mapping o. The quasigroup Q' (o) = {11, 92,43, ..., ¢n,Yq} coincides
with the prolongation of Q (-) defined by (2) if and only if

{zzi?m 1=1,2,...,n, (6)

where o; = (q,571 ().

Proof. The first, the second and the third row of (2) is equivalent to the
first row of (6). The last row of (2) is equivalent to the second row of (6).
Indeed, the first row of (2) says that

zoy=x-y for x#q y#q y#Fo(r).
This for y = ¢; (x) gives
rxo;(x)=x-p;(xr)=1.
Since x o ¢); (z) = 4, the last implies

pi=1v; for x#q y#q y#o(z). (7)
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If © = g, then from the second row of (2), we obtain
goy=0o0 '(y) for y#q yeq, 8)

whence putting y = ; (q) we get do 1; (¢) = qo¥;(¢) = i. Thus
o i (q) =61 (3). But 2, = 61 (4), so ¢; (¢) = o (z;), and consequently

i ((J) = ¥ (361) . (9)

In the case y = ¢, according to the third row of (2), we have xoq = 7 (z).
If z0q =i, then & (x) =14, i.e., x = ! (i), which, by (4), implies = = ;.
Hence z; o ¢ = i. But on the other hand, by the definition of 1);, we have
x; 0 (x;) =i. So,

wi (.%‘Z) =4dq. (10)

Let us consider the first row of (6).

If z # q and x # x;, then 0; = (q,x;) can be eliminated from v¢; = p;0;.
Hence v¢; = ;. This coincides with (7) and corresponds to the first row of
(2).

If © = q, then ; (¢) = wioi (q) = wi (x;). This coincides with (9) and
corresponds to the second row of (2).

If x = x;, then ; (x;) = @i (x;) = ¢i(q) = ¢q. This coincides with
(10) and corresponds to the third row of (2).

So, the first, the second and the third rows of (2) correspond to the first
row of (6).

Let us consider the fourth row of (2). Then y = o (z) and zoo (z) = q.
But, by the definition, = o ¢, () = ¢. Thus 9, (z) = o (x). This means
that the fourth row of (2) is equivalent to the second row of (6). O

Since quasigroups may have several complete mappings, the natural
question is: when prolongations obtained from the same quasigroup by dif-
ferent complete mappings are isotopic.

Below we give the partial answer to this question. Our answer is based
on the concept of the equivalence of complete mappings.

Remind (see for example [1]) that two permutations p and o of a quasi-
group Q(-) are equivalent if

p=Poa"
for some autotopism T = («, 3,7) of Q(-).

Proposition 2.2. Any mapping equivalent to a complete mapping of a
quasigroup Q (+) also is a complete mapping of Q (-).
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Proof. Let p = Bca~!, where ¢ is a complete mapping of a quasigroup Q (-)
and T = («, 3,7) its autotopism.

Let {¢1,92,93,...,¢n} be tracks of @ (-). We can choose elements
x1,T2,...,%, of @ for which o (x;) = ¢; (z;).

Since ) = Bpia~! (see Lemma 1.2), for 1,ys,...,yn such that
yi = a(x;),1=1,2,...,n, we have

p(yi) = Boa™ (y;) = Bo (x:) = Bei (2i) = oy (25) = 0ai) (Ui) -

Thus p(yi) = pya) (i)
Multiplying this equation by y; we obtain

Yi - p(Yi) = ¥i - Py (vi) =7 (4),
which proves that p is a complete mapping. O

Corollary 2.3. If « is an automorphism of a quasigroup Q () and o is its
complete mapping, then p = aca™" also is a complete mapping of Q (-). O

Corollary 2.4. If T = (o, 3,7) is an autotopism of Q (-) and og is its
complete mapping, then

O — ﬁkaa_k

is a complete mapping of Q (). d
Corollary 2.5. Equivalent permutations have the same range. g

Theorem 2.6. Classical prolongations induced by equivalent complete map-
pings are isotopic.

Proof. Let Q;, (o) = {¥1,%2,...,¥n, ¥} and Q, (¥) = {w1,wa, ..., wn,wy}
be prolongations of a quasigroup @ () = {®1,¥2, ..., s} induced by com-
plete mappings o and p = Boa ™!, respectively. Then, according to Theorem
2.1, we have

{1/}129010-1 7::1,2,...,?17 and {Wz:SOsz i:1727"'7n7
wq:Ua Wqg = P,

where o; = (q, :EZ'), Pi = (%yz’)-

Let us consider two sequences x1,Z3,...,T, and y1,Y2,...,Yy, of ele-
ments of @ such that

pi (i) =0 (x;) and i (y:) = p(yi) (11)
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fori=1,2,...,n
Since T' = (o, 3,7) is an autotopism of @ (-) such that p = Boa™!, by
Lemma 1.2, we obtain ¢, ;) = By;a~t. Thus

Pyye (1) = Bpi (i) = Bo (i) = pa(zi)

s Py (zi) = pa(x;), which for o (z;) = 2 glves ©y()(2) = p(z). But,

by the assumption ¢ ;) (yv ) =p (y7 ) see (11)), hence z = Yr(i)- There-
fore

a (i) = Yy() (12)
for every i =1,2,...,n.

Now we will prove that
aoi Tt = Pry(i)- (13)
Indeed, according to the definition o; = (g, ;) and py(;) = (q,yw(i)). Thus
acia™! (yw(i)) = ao; (z;) = a(q) =g,
agia”! () = aoi (q) = a (i) = Yy

This means that ac;a™! = (q,yw(i)) = Py(i) S0, (13) is valid.
Moreover,

Biat = B (pioi) a™! = i (a7 la) oo™
= (Bpia ) (agia™) = 0 ) py6) = Wy

and
&pqa_l = BO'O[_l =p=uwy.

From the above it follows that 7' = («, 3,7) is an isotopism between
Q' (o) and Q' (x). This completes the proof. O]

Example 2.7. Consider the quasigroup @ (-) with the multiplication table:

Y UL W N | =
UL O Wk = NN
=N O Ok W (W
N = Ot O Wk
W DN = O OOt
WDt | O

S T W N
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This quasigroup can be written as Q(-) = {1, ¥2, ¥3, ¥4, 5, 6}, where

o1 = (1.2.3546.), @y = (12.3645.), 3 = (13.24.56.),
o1 = (14.235.6.), @5 =(15.26.3.4.), s =(16.25.34.).

Choose the following two complete mappings of this quasigroup:
po = (1.3.6.245.) and 6 = (1.23456.).

Then pg = (1.23564.) and 0 = (1.24.365.).
Consider now the autotopism 7" = («, 3,7) of Q(-), where

= (163254.), (= (164.253.), = (146235.).

We can construct this autotopism used, for example, the method proposed
in [3].
Let p1 = Bpoa~t =T (po) and T*(pg) = pp for k > 1. Then
T (po) = (1345.2.6.) = p1, T (p1) = (13462.5.)
T (p2) = (143562.) = ps, T (p3) = (12356.4.)
T (pg) = (1.4.2365.) = p5, T (ps) = (1.3.6.245. ) = po.

By Corollary 2.4 all mappings p1, p2, - - -, p5 are completeon Q(-). These
mappings are equivalent. Hence, by Theorem 2.6, all prolongations ) ;}i (o)
of Q(+) are isotopic.

We select two prolongations Q (o) and Q ,(¥). For simplicity po will
be denoted by o, p3 — by 7. Slnce B3ca=3 =7, pand T are equivalent,
and & — (1.23564.), 7 — (14653.2.).

Let Q) (o) = {t1,¢9,..., 06,907}, QL (%) = {wi,w2,...,ws,wr}. Then
q =7 and

AU:{01:(7, 1), 0‘2:(7, 4), 0'3:(7, 2), 0'4—( ,0), 05= (7 3) 0'6:(7, 5)},

6)
={n=(7,3), n=(7,2), 3=(7,5), m=(7,1), 5=(7,6), 76=(7,4)}.
According to (2), the multiplication table of @/ (o) has the form:

o|1 2 3 4 5 6 7
117 2 3 4 5 6 1
212 1 4 7 6 5 3
313 4 5 6 7 2 1
414 3 7 5 1 1 6
515 6 2 1 4 7 3
66 7 1 2 3 4 5
712 5 6 4 1 3 7
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By Theorem 2.1, Q. (o) has the following tracks:

b1 = 1oy = (1.2.3546.7.) (7,1) = (17.2.3546.) ,
W = a0y = (12.3645.7.) (7,4) = (12.36475.)
by = 303 = (13.24.56.7.) (7,2) = (13.274.56.) ,
Wy = pao4 = (14.23.5.6.7.) (7,6) = (14.23.5.67.) ,
s = 505 = (15.26.3.4.7.) (7,3) = (15.26.37.4.) ,
e = peo6 = (16.25.43.7.) (7,5) = (16.257.43.),
Yr= o =(1.3.6.245.7.).
Similarly, Q! (%) has the multiplication table:
* 11 2 3 4 5 6 7
111 2 3 7 5 6 4
2|7 1 4 3 6 5 2
313 4 5 6 7 2 1
414 3 7 5 1 1 6
55 6 2 1 4 7 3
6|6 7 1 2 3 4 5
712 5 6 4 1 3 7
and tracks:
= o171 = (1.2.3546.7.) (7,3) = (1.2.37546.),
wy = @ams = (12.3645.7.) (7,2) = (127.3645.),
= 373 = (13.24.56.7.) (7,5) = (13.24.576.) ,
wy = ars = (14.23.5.6.7.) (7,1) = (174.23.5.6.) ,
= 575 = (15.26.3.4.7.) (7,6) = (15.267.3.4.) ,
= pg16 = (16.25.43.7.) (7,4) = (16.25.473.),
wr= 1 = (143562.7.).

T3 = (a3,ﬂ3,73) is an isotopism between @)/ (o) and Q! (x). Hence, by
(3) from [3], we have B31;a3 = = Wys(; ) This fact can be deduced from the
above calculations because 3% = ¢, a3 = (12.34.56.7.), v3 = (12.24.56.7.)
and, as it is not difficult to see, ¥;a™3 = wy3(j) for every z' €Q.

Consider now the prolongation Qg (x) of @ (-) induced by the complete
mapping 6 = (1.23456.). Then 0 = (1.24.365.), 6~ = (1.24.356.) and

Ng={01 = (T,1), 0o=(7,4), 05=(7,5), 02 =(7,2), 05=(T,6), 0= (7,3)}.

uasigroups Qg (x) and Q. (*) are not isotopic because complete map-
g [/ T
pings 6 and 7 are not equivalent. @4 (x) has the multiplication table:
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x|1 2 3 4 5 6 7

117 2 3 4 5 6 1

212 1 7 3 6 5 4

313 4 5 7 1 2 6

414 3 6 5 7 1 2

515 6 2 1 4 7 3

66 7 1 2 3 4 5

711 5 4 6 2 3 7

and tracks:

AL = @161 = (1.2.3546.7.) (7,1) = (17.2.3546.),
Ao = palfly = (12.3645.7.) (7,4) = (12.36475.),
A3 = 33 = (13.24.56.7.) (7,5) = (13.24.576.),
A = pg04 = (14.23.5.6.7.) (7,2) = (14.273.5.6.) ,
A5 = @505 = (15.26.3.4.7.) (7,6) = (15.267.3.4.),
X6 = webls = (16.25.43.7.) (7,3) = (16.25.437.),
Ar= 6 =(1.23456.7.).

The fact that these two quasigroups are non-isotopic can be also deduced
from Theorem 2.5 in [3]. O

3. Prolongations by fixed element

Consider now the prolongation proposed by G. B. Belyavskaya (see |2] or
[4]). This prolongation is a modyfication of a prolongation proposed by V.
D. Belousov.

Let Q(:) be a quasigroup with a complete mapping o. Then for an
arbitrary fixed element a € () there exists an uniquely determined element
ZTq € Q such that

Zg -0 (x4) = a. (14)

Using this fixed element a € @) and a complete mapping o we can define
the prolongation @/ , (o) of Q () by putting
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Ty y#o(x), z,y €Q,

q y=o(r), # x4,

a T =1Tq, Yy=0(x4),

o (z) T # T, Y=,

TOU=N Gol(y) w=q y#0(z), (15)

q $:q,y20($a),

q T=Tq, Y=,

a l‘:y:q

It is clear that for one complete mapping o of Q(-) one can find n =
|Q| different elements satisfying (14). So, one complete mapping induces
n different prolongations of the form @ , (o). Obviously, some of these
prolongations can be isotopic.

First observe that the prolongation @ , (o) can be characterized by
their tracks. Namely, we have

Theorem 3.1. Let Q (-) = {1, 2, ..., pn} be a quasigroup with a complete
mapping o. The quasigroup Q'(0) = {¢1,¢2,...,¥n, 1} coincides with the
prolongation Q, , (o) of Q(-) defined by (15) if and only if

1/)1‘ = Yi0i, { ?é a,dq,
wa = Pa, (16)
ﬂ}q = O'O'a,

where o4 = (q,24) and o; = (q,5 1 (7)).
Proof. The proof of this theorem is similar to the proof of Theorem 2.1. [
Using this theorem we can prove

Theorem 3.2. Let T = (a, 3,7) be an autotopism of a quasigroup Q (-)
with a complete mapping o. If Boa™' = p, then prolongations Qé,a (o) and
;b (x), where b = ~v(a), are isotopic.

Proof. Let Qé’a (o) = {¥1,%2,..., ¥y, 1y} and Q;’b () = {wr,wa, ..., wn, Wy},

where b= ~y(a). In this case

wi = ©i0j, { 7é a,dq, Wi = YipPi, { 7é b7 q,
Ya = Pa, and Wp = Pb,
wq = 00gq, Wq = 0 Pb,

where 04 = (¢, %4), pp = (g, y) and o3 = (¢, 2;), pi = (¢, Yi)-
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Since @) = Bpsa~! for any autotopism T = (a, 3,7) of Q(-) (Lemma
1.2), for i # a, q we have

Bibia~t = Bpioia = Beia aciaT = i) pyi) = Wy

where ao;a™! = p~(iy (as in the proof of Theorem 2.6).
For i = a we obtain SBy,a ! = (@) = $p = wp. Similarly, if ¢ = g,
then

1

an—l = Booga” !t = foa"tao,a! = cac,at = TPr(a) = OPb = Wy

From the above it follows that 7' = («, 3,7) is an isotopism between
0. (0) and Q) (). O

Corollary 3.3. Is o is a complete mapping on Q (-) such that aca™ = p

for some automorphism o of Q(-), then prolongations Qg , () and Q, , (*),
where b = a(a), are isomorphic.

Example 3.4. Consider the group Q(-) isomorphic to the group Zs.

1 2 3 4 5
111 2 3 4 5
212 3 4 5 1
313 4 5 1 2
414 5 1 2 3
515 1 2 3 4

This group has the following tracks: ¢1 = (1.25.34.), ¢2 = (12.35.4.),
o3 = (13.45.2.), ¢4 = (14.23.5.), @5 = (15.24.3.).

The permutation o = (1.2453.) is a complete mapping of this quasi-
group, o = (1.2354.) is its automorphism such that aoca™' = o. Since
o = (1.25.34.) = 57!, for a = 1 the formula (15) gives the prolongation

Q1 (), where:

o1 2 3 4 5 6 U1 = @1 = (1.25.34.6.),
11 2 3 4 5 6 b = a9 = (12.356.4.),
g § 2 ;1 ? ; i by = p303 = (13.465.2.),
e s 1 9 6 3 by = pioq = (14.236.5.),
s 16 3 4 2 s = o5 = (15.264.3.),
66 4 2 5 3 1 e = ooy = (16.2453.).
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For a = 2 and the same o we obtain the second prolongation Q ,(*):

x11 2 3 4 5 6 w1 = p1o1 = (16.25.34.),
116 2 3 4 5 1 we = oy = (12.35.4.6.),
; ; 2 ;1 ‘13 ; i w3 = 303 = (13.465.2.),
A4 5 1 2 6 3 wy = pg04 = (14.236.5.),
515 1 2 3 4 6 ws = p505 = (15.264.3.),
6|1 4 6 5 3 2 we = oog = (1.24563.).

From Theorem 2.5 in [3] it follows that these two prolongations are not
isotopic, as (1) # 2.

Observe by the way, that for the automorphism « we have «(2) = 3,
a(3) =5, a(b) =4, a(4) = 2, which, by Corollary 3.3, means that for this

/
o,a(k)
U

~ / ~ /

quasigroup Qo = Q3 = Q5 = Q, 4. The isomorphism Q,, — Q
for k = 2, 3,4, coincides with a.

4. Prolongations by quasicomplete mappings

The method of prolongations of quasigroups having at least one quasicom-
plete mapping was proposed in [4].

Let @ (-) be an arbitrary finite quasigroup with a quasicomplete mapping
0. Then def () = d and for some a € @ there are two different elements
ay, ag of @ such as 7 (a1) = 7 (az) = a. Choosing one of these elements
(for example a;1) we obtain the prolongation Qg, (o) of Q(-) defined by:

-y xvyery#o—(x):
q reQ—{a}, y=o0(v),
a r=a, y=o(x),

_ 6(:6) er—{aha@}? Yy=4q,

TOUZY Gol(y)  y=g y#0(a),y£0(a), a7)

q r=a1, y=q or x=q, y=o(a1),
a r=az, y=q or v=gq, y=o0(az),
d rT=1y=4q.

Replacing a; by ag we obtain the second prolongation of Q(-) which may
not be isotopic to the first.

This construction is a generalization of the previous constructions. Pro-
longations of Q(-) obtained by these three constructions are not isotopic in
general (for details see [4]).
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Theorem 4.1. Let Q(-) = {p1,92,...,0n} be a quasigroup with a qua-
sicomplete mapping o. The quasigroup Q' (o) = {1, 2, ..., ¢n,Yq} coin-
cides with the prolongation of Q () obtained by the formula (17) if and only
if

Vi =ioi  for i#a,q,d,

q/Jd = ©Yd¢, (18)
Yo = Pa0ay or  PaOasy,
Vg = 00, or 00gq,,

where o; = (q, g1 (z)) fori & {d,ai,a2}, 0q =€, 04, = (q,a1) and o4, =
(Q7 CLQ)-

Proof. The proof of this theorem is similar to the proof of Theorem 2.1. [

Theorem 4.2. Let T = («,3,7) be an autotopism of a quasigroup Q (-)
with a quasicomplete mapping o. If oo™ = o, &(a1) = & (a2) = a and
v (a) = a, then prolongations Q. (o) and Q. (*) induced by o are isotopic.

Proof. The proof of this theorem is similar to the proof of Theorem 3.2. [

Example 4.3. Consider the quasigroup @ (+), where

1 2 3 4 5 o1 :(1 23.4.5.6.),
11 2 3 4 5 6 = (12.3.465.),
212 3 1 5 6 4 @3_(13.2.456.),
5131261 -Gz
cls 46 2 1 3 = (15.2436.),
6|6 5 4 3 2 1 = (16.2534.).

The permutation o = (1425.3.6) is a quasicomplete mapping of this
quasigroup,

(1 2 3 4 5 6 1 (1 2 45 6 6
“\46265 1) 7 T\ 631524
def(o0)=3, a=6, a1 =2, ag =4, and o1 = (7,6), 02 = (7,3), 03 =¢,

0'4:(7a1)7 05:(7a5)7 O-a1:(7’2)7 0a2:(7a4)'
Then Q, (o) = {¥1,%2,...,%7} and Q., () = {wi, w2, ..., wr}, where
Wy = oy fori=1,2,4,5, w; = pio; fori=1,2,4,5,
VY3 = p3e, VY3 = 3¢,
Y6 = P60a,, W6 = P6Tay,

7 = 00g,, W7 = 00g,.
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It is not difficult to verity that T' = («, 3,7), where a = (15.24.36.),
B = (14.25.36.) and v = (12.45.3.6.) is an autotopism of a quasigroup
Q(+). For this autotopism we have Boa~! = o, v(6) = 6, which means
that prolongations @/ (o) and Q, (x) are isotopic. This isotopism has

the form T' = (o, 3,7), where o = (15.24.36.7.), § = (14.25.36.7.) and
v = (12.45.3.6.7.). 0
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Periodic quasigroup string transformations

Vesna Dimitrova, Smile Markovski and Aleksandra Mileva

Abstract. Given a finite quasigroup (Q, *), a quasigroup string transformations e; and d;
over the strings of elements from @ are defined as follows. e;(a1az...an) = biba...by if
and only if b; = bi—1 * a; and di(a1az...an) = biba...b, if and only if b; = a;—1 * a;, for
each 1 = 1,2,...,n, where | = ap = b is a fixed element of ). A quasigroup string e- or
d-transformation ¢ is periodical if for some periodic string we have t(a1az...ara1az2 ... ak . ..
@102 ...aK) = a1G2 ...AKG1G2 ... Ak ... Q102 . . . ak. The quasigroup string transformations are
used in many fields, like: cryptography for designing different cryptographic tools, coding
theory for designing error-detecting and error-correcting codes, etc. The properties of the
quasigroup string transformations depend on the used quasigroups, and some quasigroups
are suitable for cryptographic designs, while some others are suitable for code designs. We
give a characterization of the quasigroups producing periodic string transformations, and
for that aim quasigroups with period k are defined. One can use this characterization for

choosing suitable quasigroups in some applications.

1. Introduction

Classification of finite quasigroups is very important for successful application
of quasigroups in many fields of applied mathematics or computer science. It
is a difficult problem, but it has a practical importance. The classification of
quasigroups is difficult, because the number of quasigroups even of small order
is very large (there are 161280, 8.1 x 108, 6.1 x 10'3 quasigroups of order 5,
6, 7, respectively). In many applications quasigroup string transformations
are used, so for application purposes the classification of the class of quasi-
groups of some fixed order should be given according to the properties of their
string transformations. The quasigroup string transformations e; and d;, for
given finite quasigroup (Q, %), are defined by Markovski et al. [6], where some
important properties suitable for applications are proved.

2000 Mathematics Subject Classification: 20N05, 05B15
Keywords: quasigroup with period &, periodic quasigroup string transformation.
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There are several classifications of quasigroups by their algebraic properties.
There are also some classification of the quasigroups by the properties of their
string transformations, e.g., by random walk on torus [8], by image patterns
[2], etc.

In this paper we classify the finite quasigroups according to the prop-
erty their string transformations to preserve the periodicity of some start-
ing strings. These quasigroups ) have the property some periodical string
a1as...ara1as . ..ag...a1ds ... ag, a; € Q, with smallest period k, to be trans-
formed into a periodical string with period k after arbitrarily many applications
of e-transformations, i.e.,

n
e/'(a1az...axa1az...ak...a1az...ag) = C1€2...CLCICY ... Ck ... CIC2 . .. Ck,

for each n = 1,2,3,..., where [ is some fixed element of the quasigroup and
¢; € Q. We define the notion of a quasigroup with period k& and we give
characterizations of that kind of quasigroups.

In Section 2 we give a brief introduction to the notion of quasigroups and
quasigroup string transformations. The method for obtaining graphical pre-
sentation of quasigroup string transformations is given in Section 3. In Section
4 are given definitions and characterizations of quasigroups with period k and
of periodic quasigroup string transformations. Some experimental results and
analysis of experiments made on all quasigroups of order 4 are presented in
Section 5.

2. Quasigroup string transformations

A quasigroup (@, ) is a groupoid (i.e., algebra with one binary operation * on
the set Q) satisfying the law:

NVuveQ) (A z,yelG) (zxu=v N uxy=n0)

In other words, the equations x *x u = v and u * y = v, for each given
u, v € @, have unique solutions z, y.

Equivalent combinatorial structure to quasigroups are Latin squares. To
any finite quasigroup (@, *) given by its multiplication table a Latin square can
be associated, consisting of the matrix formed by the main body of the table,
since each row and column of the matrix is a permutation of (). Conversely,
each Latin square L on a set @ gives rise up to (|Q|!)? different quasigroups
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(depending of the bordering of the matrix of L by the main row and the main
column of the multiplication table).
Let @ be a set of elements (|Q] > 2). We denote by

QT ={aas...an|a; €Q, n =2}

the set of all finite strings with elements of Q. For a given quasigroup (@, )
and a fixed element [ € @), called leader, we define the so called quasigroup
string transformations (q.s.t.) e;,d; : QT — Q7 as follows:

b1 =1 *xaq

= (byby ... b,) — )
el(araz ... ay) = (b1bz...by) {bi+1:bi*ai+17 1<i<n-—1,

cr=1 *xap
di(aias ...ay) = (c1co...cp) — ;
1(araz n) = (c1ea...cn) Cit1 = @i * ajp1, 1<i<n—1

By using a string of leaders ly,ls,...,lx, we can apply consecutively e—
(or d—) transformations on a given string, as a composition of transforma-
tions. These compositions of e— or d—transformations are called E— or
D—transformation respectively and they are defined as

E=e¢,0e,0---0¢,, D=dyod,o---od,.

Further, we will use only one leader | = [;, for 1 < ¢ < k.

Example 2.1. Let the quasigroup (Q,*) be given by the table

If we apply consecutive e—transformations with leader [ = 1 on the string
a=34422212341111233 34, we obtain the followings strings:

| 3 4 4 2 2 2 1 2 3 4 1 1 1 1 2 3 3 3 = «
1/4 3 41 3 2 1 3 1 1 2 1 2 1 3 1 4 2 = a=cla)
1/]1 4 3 3 1.3 3 1 2 1 3 3 2 1 4 4 3 2 = ax=ei(o)
112 2 3 1 2 3 1 2 4 4 2 3 2 1 1 1 4 1 = az=ei(az)
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3. Graphical presentation of strings

We use the lexicographic ordering of the set of quasigroups, defined as follows.
For the set of quasigroups of order n, we represent the quasigroups by strings
of n? letters that are concatenation of the rows of the corresponding Latin
squares. Then we apply the lexicographic ordering of those strings.

Example 3.1. There are 576 quasigroups of order 4. For the quasigroups
given below by their multiplication tables, the corresponding numbers in the
lexicographic ordering are respectively 5, 106 and 275.

*|1 2 3 4 *|1 2 3 4
1{1 4 2 3 112 4 3 1
2(3 1 4 2 203 1 2 4
34 2 3 1 314 2 1 3
412 3 1 4 411 3 4 2

We make a graphical presentation of q.s.t. for their better review. The us-
age of this presentation helps us to investigate their properties. The method for
obtaining graphical presentation of £— or D—transformation is the following.

Let @ be a quasigroup. We treat each element of ) as a pixel with corre-
sponding color. If we take a string s € Q' (of length t) then, by consecutive
application of e— or d—transformations k£ times, we obtain £ X ¢ matrix with
elements from (). By treating the elements as pixels we obtain images that
present the corresponding E— or D—transformation.

Example 3.2. Take the first two quasigroups from Example 3.1, the periodic
string s = 32413241 ...3241 of length ¢ = 100, leader [ = 1 and make k = 100
times applications of e—transformations (d—transformations); the correspond-
ing images are shown on Figure 1 (Figure 2).

Figure 1. Images of e—transformations of quasigroups 5 and 106
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5 106

Figure 2. Images of d—transformations of quasigroups 5 and 106

The third quasigroup from Example 3.1 gives a pattern shown on Figure
3, that we call a periodical pattern, since e} (s) = s for each n = 1,2,3,....
(The same pattern appears when the transformation d; is used as well.)

275

Figure 3. The periodical pattern of e—transformations of quasigroup 275

Example 3.3. Let the starting periodic string be s = 32413241...3241. We
asked for quasigroups on the set {1,2,3,4} and q.s.t. ¢; that give periodical
pattern. Only the quasigroups with lexicographic numbers 275 and 467 for
leader I = 1 produced periodical patterns.

4. Quasigroups with period k&

We define a quasigroup with period k as follows. Let (Q,*) be a finite quasi-
group of order n. If there are an element [ € @ and a periodical string
S =aias...aE0103...0k...0103...0k, a; € @, of smallest period k such that
for each n = 1,2,3,... we have that ¢}'(s) is again a periodical string of small-
est period k, then we say that Q is a quasigroup with period k. In that case we
say that the transformation e; is a periodical e-transformation of the string s.

Proposition 4.1. If the transformation e; is a periodical e-transformation of
the string s, then s is a fized element of e, i.e., e;(s) = s.
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The proof of Proposition 4.1 is almost straightforward and rather technical,
so we consider only the case k = 3. We have the following situation

al ag as aq as as al a9 as cee = S
{ b1 b2 b3 b1 b2 bg b1 b2 bg = 6[(5)
llca ¢ 3 ¢ ¢ ¢33 ¢ ¢ c3 = e%(s)
l dl d2 d3 d1 d2 d3 d1 d2 d3 ce. = 6?(5)
g 92 95 o1 92 9 o g g5 -..= €s)
l
meaning that [xa; = by, by *xag = ba,baxag = bs,...,lxby =c1,c1%by =ca,....
The equalities [ * a; = bg x a1 = by imply b3 = [. In the same manner we
have | = b3 = c3 = d3 = g3 = ... Then, co x b3 = c3, do * c3 = d3 means
caxl =1, doxl =, implying co = dy and, in the same way, co = dy =
g2 = ... Now, by the previous equalities and dj * co = da2, g1 * co = go we
get di =¢g1 =... Thenlxcy =dy, Ixdy = g1, [ b1 =1, I *xa; = by gives
a1 =by =c =d; =.... In that way, one can see that a; = b1 =¢; =d; =
cey CLQ:bQZCQ:dz:..., a3:b3203:d3:...
Note that [ = a3 =b3 =c3 =ds = ..., so in the general case we have the

following property too.

Proposition 4.2. If the transformation e; is a periodical e-transformation of
the string aias...apa1as...ag...a102...ax, a; € Q, of smallest period k,
then | = a and

a; * Aj+1 = Aj41, i:1,2,3,...,]€, (1)
where a1 = aj.

Proposition 4.3. If the transformation e; is a periodical e-transformation of
the string s = ajas...apai1as...a...a1as...a5, a; € @, of smallest period

k, then a; # a; for i # j.
Proof.  Assume that a; = a; for some 1 < ¢ < j <k, and let choose ¢ and j to
be the smallest indices with that property. If ¢ > 1 then by (1) we have

Aj—1 * a; = Qg

aj—1 * aj = a4,
and that implies a;—1 = a;_1, a contradiction with the choice of 7 and j.

If i = 1 then by (1) we have
a;—1*ap = aq,
ap * ay = a,
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and that implies a;_1 = a. Then we have

aj—2*aj—1 = aj—1,
ap—1 *aj—1 = Qj-1,

and that implies a;_2 = ai—1. Continuing that way we have aj_; = ap_¢41 for
each t such that j > t.

If for some p > 0 we have k = p(j — 1), then we will obtain that the
string aias...a, reduces to ajas...aj—1...a1az...a;-1, which means that

p
the string s has period 7 — 1 < k, a contradiction.
The other possibility is & = p(j — 1) + r for some p > 0, 0 < r < j — 1.
Then the string ajas ... ax reduces to

aiaz...a;—1a105—r41...-05-101...05-1...041...0a5-1 .

J/

p—1
Now, by (1) we have
a1 * Qj—r41 = Qj—r41,
Aj—r ¥ Qj—r41 = Aj—r+41,
and that implies a1 = a;_,, a contradiction with the choice of j. O

As a consequence of Proposition 4.2 and Proposition 4.3 we get the main
result of the paper.

Theorem 4.1. Let (Q, *) be a quasigroup of a finite order n. Then Q is with
period k if and only if there are different elements x1,xs, ...,z € Q such that

Tj * Tj41 = Tj+1, i:1,2,3,...,]€, (2)
where T4 = x7.

Proof. Let x1,x9,...,2) be different elements from @ satisfying (2). Then
the string s = x122... 22122 .. Tk ... T122 . . . T satisfies (1), so the trans-
formation e, is a periodical e-transformation for the string s. So, @ is with
period k.

The opposite statement follows by Propositions 4.2 and 4.3. O

Note that if (2) holds, then for the d-transformation d,, and the string s =
1T ... TRT1L2 ... L) ... L1Z2 ... L, We have dg, (s) = s. So, all results for peri-
odical e-transformations can be reformulated for periodical d-transformations
too.
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Corollary 4.1. A period k of quasigroup of order n cannot be larger than n.

Proposition 4.4. Let k andn, k < n, n > 2, be positive integers. Then there
15 a quasigroup of order n with period k.

Proof. The proof follows immediately from the results given by Smetaniuk
[3], and Wanless [10]. Smetaniuk proves that any partial n x n Latin square
with & < n entries can be completed to an n x n Latin square, and Wanless
proves that if n > 2 then there is an n x n Latin square that contains a

transversal. Now, given a subset {ai,...,ax} of @ = {a1,...,a,}, where
k < n, we define a partial quasigroup (Q,*) by the equalities ax * a1 = ay,
a1 * ay = a2,a3 * a3 = as,...,ay—1 * ax = ai. This partial quasigroup can be

completed to a quasigroup (Q, *) that satisfies (2).

In the case n = k > 2, there is an n X n Latin square () with a transversal
{alm(l),agm(g),...,anm(n)}, where a;, € @ denotes the element at the po-
sition (I,7) and 7 is a permutation of {1,2,...,n}. Now, we can obtain a
wanted quasigroup (Q,#*) by a suitable bordering of the Latin square. The
main row of the multiplication table of the quasigroup is bordered by the
String (@z-1(1),15@r-1(2)2s - - - » Gx—1(n),n), and the main column by the string
(an,ﬂ(n)7 A1,7(1)) A2,7(2)5 - -+ » an—l,ﬂ'(n—l))- Then Ap(n)*A1,m(1) = A1,m(1)y A1,7(1)*
0277r(2) = a27ﬁ(2), PN 7an—1,7r(n—1) * anm(n) = anﬂr(n). SO, by Theorem 4.1, (Q, *)
is a quasigroup with period n. ]

Example 4.1. The partial quasigroup given in Table 4.1 can be completed
to two different quasigroups. Both are with periods 4; the periodic string s is
32413241.. . ..

|1 2 4 *|1 2 3 4 «|1 2 3 4
1 112 4 3 1 114 1 3 2
2 4 213 1 2 4 212 3 1 4
3 2 314 2 1 3 313 2 4 1
4|1 411 3 4 2 411 4 2 3

Table 1. Completions of a partial quasigroup

Proposition 4.5. If a quasigroup of order n is with different periods ni,na,
sy, thenmy +no + - +ny < N

Proof. Let (@, *) be a quasigroup with different periods ni,...,n; such that
ny +ng + ---+ng > k. Then there are periodic sequences s; = x1x2...
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and sy = y1y2 ... with smallest periods z1x2... 2y, and y1y2 ... Yn, such that
xp =y, for some p < n;, r < nj (n; # n;). We choose p to be the smallest
index such that x, = y,.

If » > p>1, then we have x),_1 * T, = Tp, Yr—1 ¥ Tp = Yr—1 * Yr = Yp =
Zp, implying x,_1 = y,—1, a contradiction with the choice of p. A similar
contradiction will be obtained when p > r > 1.

Let p =1 < r. Then we have x,, = y,—1 since x1 = y, implies z,, * r1 =
T1, Yr—1 * L1 = Yr—1 *Yr = Yy = x1. Continuing that way we have either
Tn; = Yr—1y Tn;—1 = Yr—2, Tn;—2 = Yr—3, ..., L1 = Yr—n; in the case n; <r,or
Tng = Yr—1y Tng—1 = Yr—2, Tn;—2 = Yr—3, -+, Tp;—p42 = Y1 D the case r < n;.

In the case n; < r we have that the smallest period y1ys . - Yn; of s9 is
Yl e Yron;—1T1 - T T1Yr 41 - - - Yn, that contains two times the same element
x1, a contradiction with Proposition 4.3.

The case r < n; remains yet. Then the smallest period zixy...z,, of
$1 18 1...ZTn;—r+1Y1 ... Yr—1. Then we have Tp, ry1 = yYn, Since yp, * y1 =
Y1, Tp,—r+1*Yy1 = y1. Continuing that way we have either z,, ,4+1 = Ynjs Tpi—r
= Yn;—1, Tnj—r—1 = Yn;—2y -+ L1 = Yn,;—n;+r 10 the subcase n; —r < nj, or
Tni—r+1 = Yn;> Tn;—r = Yn;—1, Tn;—r—1 = Yn;—2;-- -, Tn;—r—n;+2 = Y1 in the
subcase n; — r = n;. Now, the subcase n; — r > n; implies that y; appears
two times in the string xizo...x,,, and the subcase n; — r < n; implies
that x1 appears two times in the string y1y2...yn;- (Namely, y, = 1 and
Yn,;—ni+r = 1, and n; # n; implies n; —n; +1r # r.) O

5. Experimental results

For finding the set of quasigroups of order 4 with period k& a module Perio-
dicQlg, s] in the software package Mathematica is given in Appendix 1. Using
this module we have made experiments for all 576 quasigroups of order 4 and for
all periodical strings with the smallest periods z1zo ... 2k, x; € {1,2,3,4}, k =
1,2,3,4. The obtained results of these experiments show that: 12 quasigroups
are with period 4, 64 are with period 3, 186 with period 2, and 414 with period
1. Also, 16 quasigroups are with period 1 and 3, and 84 quasigroups are with
period 1 and 2. The lexicographic numbers of these quasigroups are given in
Appendix 2.

The analysis of these classes of quasigroups gives the following.

All of the quasigroups with period 4 are linear [4], non-idempotent, non-
commutative, non-associative, non-semisymmetric, without left nor right unit
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and without proper subquasigroups. (A quasigroup is called semi-symmetric
if it satisfies the identity (y % z) * y = x. It is linear if its representation as
vector valued Boolean function contains only linear polynomials.) All of them
satisfy the following two identities:

xx(zx(x*x(xxy)) =y, ((y*xx)*xz)*x)*z)*x2="1.

All of the quasigroups with period 3 are non-idempotent, non-associative,
non-semisymmetric, without left unit, without proper subquasigroups. The
quasigroups in the subclass {149, 151,201, 207, 226, 257, 282, 288, 291, 295, 317,
347,351,370, 373,426,437, 460, 463, 489, 493,516, 519, 545} are non-linear and
commutative quasigroups, without right unit. Non-linear and non-commutative
quasigroups in the subclass {150, 152,195,200, 221, 244, 268, 270, 299, 311, 327,
353,357,369, 379, 423,442, 470, 480, 490, 499, 522, 525, 544} satisfy the identity:

(((y*z) x 2) x2) = y.

Other two subclasses have the period 1 also and they are linear. The quasi-
groups in the subclass {77, 100, 197, 272, 305, 380,477,500} are non-commutati-
ve, with right units and all of them satisfy the following two identities:

The quasigroups in the subclass {83,113, 203, 285,292, 374,464,494} are com-
mutative, without right unit and all of them satisfy the following two identities:

wx(zx (@ (zry))) =y, (((yxa)xz)*a)rr=y.

All of the quasigroups with period 1 and 2 are non-idempotent, non-
associative, non-semisymmetric, non-commutative, without proper subqua-
sigroups. They can be grouped in tree subclasses. The quasigroups in the sub-
class {38,45,56,66,74,81,90,98, 105,115, 124,129, 153, 162, 202, 205, 216, 225,
240, 255, 258,279,281, 283, 300,310, 312, 316, 328, 337, 350, 362, 363, 366,412,
424,440,441, 469,473,479, 483, 486, 487,512, 518, 533, 543} are without left nor
right unit. The quasigroups in the subclass {80, 82,93,101, 110, 116, 206, 284,
308, 365,476,484} are without left nor right unit and all of them satisfy the
following two identities:
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The quasigroups in the subclass {73,75,78,97,99,103,154, 161, 208, 224, 245,
287,307,329, 340, 356, 368, 425, 454, 475, 481, 509, 524, 546} are with right unit
and all of them satisfy the following identity:

(((y*z) x2) xx) ¥ x) x 2 = y.

The sets of quasigroups with period 2 and period 1 are larger ones, and we
do not discuss them.

The experiments show that for any given periodical string s of a period k,
there is a fixed number ng of quasigroups with period k for that string s. The
numbers ny are given in Table 2.

k4321
ng |2|8]32] 144

Table 2. Numbers of quasigroups with period k for a string s.

This means that in the set of all quasigroups of order 4, 2 of them are
with period 4 for a given starting periodic string of period 4, 8 are with period
3 for a given starting periodic string of period 3, 32 are with period 2 for a
given starting periodic string of period 2 and 144 are with period 1 for a given
starting periodic string of period 1. We can conclude that the numbers ny do
not depend on the chosen string s.
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Appendix 1
Module for finding the set of quasigroups of order 4 with period &

PeriodicQ]g, ]
q - lists of quasigroups
s - starting periodic string

(x list of quasigroups x)
q = Get[’quasigroups.dat’];
(x length of the smallest period *)

k = Input| J;
(* number of repeating of the smallest period *)
n = Input] |;

(x list of elements of the string *)

ss={}

Forli=1,i <=k,i+ +,

z[i] = Input[ |; ss = Append|ss, x[i]]]

(* starting periodic string x)

s = Flatten[Tablelss, {i,1,n}]]

(xmodule for e — transformationx)

etransflg_ ,s_ |:= Module[{},a[0] = Last[ss];

For[i =0,i <= Length[s] — 1,1+ +, a[i + 1] = g[[a[d], s[[¢ + 1]]]]];
Tablelali], {3, 1, Length[s]}]]

(xmodule for finding the set of quasigroups of order 4 with period kx)
PeriodicQlg_ ,s_ | :== Module[{}, P = {};

For[gn = 1,qn <= Lengthl[q]], qn + +, s1 = etransf[First[q[[gn]]], s];
If[s1 == s, P = Append|[P, qn]]]; P]
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Appendix 2

List of quasigroups of order 4 with period k

Quasigroups with period 4:
196, 212, 269, 275, 293, 302, 371, 381, 461, 467, 495, 497.

Quasigroups with period 3:

77, 83, 100, 113, 149, 150, 151, 152, 195, 197, 200, 201, 203, 207, 221, 226, 244, 257, 268, 270, 272,
282, 285, 288, 291, 292, 295, 299, 305, 311, 317, 327, 347, 351, 353, 357, 369, 370, 373, 374, 379, 380,
423, 426, 437, 442, 460, 463, 464, 470, 477, 480, 489, 490, 493, 494, 499, 500, 516, 519, 522, 525, 544,
545.

Quasigroups with period 2:

38, 45, 56, 66, 73, 74, 75, 78, 80, 81, 82, 90, 93, 97, 98, 99, 101, 103, 105, 110, 115, 116, 124, 129,
153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 173, 175, 180, 191, 199,
202, 205, 206, 208, 210, 211, 213, 214, 216, 219, 222, 224, 225, 235, 238, 240, 243, 245, 247, 249, 252,
255, 258, 267, 273, 274, 276, 277, 279, 281, 283, 284, 287, 296, 298, 300, 301, 303, 304, 307, 308, 310,
312, 315, 316, 319, 321, 324, 328, 329, 337, 338, 339, 340, 341, 342, 343, 344, 346, 349, 350, 352, 355,
356, 358, 360, 361, 362, 363, 364, 365, 366, 367, 368, 375, 378,391, 393, 394, 396, 412, 417, 418, 419,
420, 424, 425, 436, 439, 440, 441, 445, 448, 454, 459, 465, 466, 468, 469, 471, 473, 475, 476, 479, 481,
482, 483, 484, 485, 486, 487, 488, 492, 501, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 517, 518,
521, 523, 524, 527, 533, 537, 538, 539, 540, 543, 546, 560, 561, 562, 565.

Quasigroups with period 1:

1,2,3,4,5,6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, T4, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 153, 154,
161, 162, 169, 170, 171, 172, 174, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190,
192, 193, 194, 197, 198, 202, 203, 204, 205, 206, 208, 209, 215, 216, 217, 218, 220, 223, 224, 225, 227
228, 229, 230, 231, 232, 233, 234, 236, 237, 239, 240, 241, 242, 245, 246, 248, 250, 251, 253, 254, 255,
256, 258, 259, 260, 261, 262, 263, 264, 265, 266, 271, 272, 278, 279, 280, 281, 283, 284, 285, 286, 287
289, 290, 292, 294, 297, 300, 305, 306, 307, 308, 309, 310, 312, 313, 314, 316, 318, 320, 322, 323, 325,
326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 340, 345, 348, 350, 354, 356, 359, 362, 363, 365,
366, 368, 372, 374, 376, 377, 380, 382, 383, 384, 385, 386, 387, 388, 389, 390, 392, 395, 397, 398, 399,
400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413,414, 415, 416, 421, 422, 424, 425,
427, 428, 429, 430, 431, 432, 433, 434, 435, 438, 440, 441, 443, 444, 446, 447, 449, 450, 451, 452, 453,
454, 455, 456, 457, 458, 462, 464, 469, 472, 473, 474, 475, 476, 477, 478, 479, 481, 483, 484, 486, 487,
491, 494, 496, 498, 500, 502, 503, 504, 509, 512, 514, 518, 520, 524, 526, 528, 529, 530, 531, 532, 533,
534, 535, 536, 541, 542, 543, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 563,
564, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576.

Quasigroups with periods 1 and 3:
77, 83, 100, 113, 197, 203, 272, 285, 292, 305, 374, 380, 464, 477, 494, 500.

Quasigroups with periods 1 and 2:

38, 45, 56, 66, 73, 74, 75, 78, 80, 81, 82, 90, 93, 97, 98, 99, 101, 103, 105, 110, 115, 116, 124, 129,
153, 154, 161, 162, 202, 205, 206, 208, 216, 224, 225,240, 245, 255, 258, 279, 281, 283, 284, 287, 300,
307, 308,310, 312, 316, 328, 329, 337, 340, 350, 356, 362, 363, 365, 366, 368, 412, 424, 425, 440, 441,
454, 469, 473, 475, 476,479, 481, 483, 484, 486, 487, 509, 512, 518, 524, 533, 543, 546.
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Skew endomorphisms on some n-ary groups

Wieslaw A. Dudek and Nikolay A. Shchuchkin

Abstract. We characterize n-ary groups defined on a cyclic group and describe a group
of their automorphisms induced by the skew operation. Finally, we consider splitting

automorphisms.

1. Introduction

The idea of investigations of n-ary groupoids, i.e., algebras of the form
(G, f), where G is a non-empty set and f : G — G, (n > 2), seems to
be going back to E. Kasner’s lecture [21] at the fifty-third annual meeting
of the American Association for the Advancement of Science in 1904 where
the subsets of groups closed under group multiplication of n elements are
considered. But the first paper containing significant results on some n-
ary groupoids, called now n-ary groups, was written (under inspiration of
Emmy Noether) by W. Dérnte [2]. In this paper Dornte observed that any
n-ary groupoid (G, f) with the operation of the form f(x1,2z2,...,2,) =
X102 0...0T,, where (G,0) is a group, is an n-ary group but for every
n > 2 there are n-ary groups which are not of this form.

In recent years, n-ary operations find interesting applications in physics.
For example, Y. Nambu [23] proposed in 1973 the generalization of classical
Hamiltonian mechanics based on the Poisson bracket to the case when the
new bracket, called the Nambu bracket, is an n-ary operation on classical
observables. The author of [33] suspects that different n-ary structures
such as n-Lie algebras, Lie ternary systems and linear spaces with additional
internal n-ary operations, might clarify many important problems of modern
mathematical physics (Yang-Baxter equation, Poisson-Lie groups, quantum

2000 Mathematics Subject Classification: 20N15, 08N05

Keywords: n-ary group, skew element, endomorphism, automorphism.
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groups). For example, ternary Zs—graded algebras are important (cf. [22])
for their applications in physics of elementary interactions.

2. Preliminaries

An n-ary groupoid (G, f) is solvable at the place i if for all ay, ...,an,b € G
there exists x; € G such that

f(al,...,ai,l,:zl-,aprl,...,an) :b (1)

If this solution is unique, we say that this groupoid is uniquely v-solvable.
An n-ary groupoid which is uniquely i-solvable for every ¢ = 1,2,...,n is
called an n-ary quasigroup or n-quasigroup (cf. [1]).

An n-ary groupoid (G, f) is called (i, j)-associative if

f(l’h <oy L1, f(xiv e 7$n+i—1)’xn+i7 e ,ﬂfzn—l) =
f(xlv sy Tj—1, f($]7 s 7xn+j—1))xn+j7 s 7$2n—1)

holds for all x1,...,x2,—1 € G. If this identity holds for all 1 < i < j < n,
then we say that the operation f is associative and (G, f) is called an n-ary
semigroup. An associative n-ary quasigroup is called an n-ary group. Note
that for n = 2 it is an arbitrary group.

It is worth to note that in the definition of an n-ary group, under the
assumption of the associativity of the operation f, it suffices to postulate
the existence of a solution of (1) at the places i = 1 and 7 = n or at one

place ¢ other than 1 and n. Then one can prove uniqueness of the solution
of (1) foralli=1,...,n (cf. [25], p.213'7).

Proposition 2.1. (DUDEK, GLAZEK, GLEICHGEWICHT, 1977)
An n-ary groupoid (G, f) is an n-ary group if and only if (at least) one of
the following conditions is satisfied:

(a) the (1,2)-associative law holds and the equation (1) is solvable for
i =n and uniquely solvable for 1 =1,

(b) the (n—1,n)-associative law holds and the equation (1) is solvable for
t =1 and uniquely solvable for i =n,

(c) the (i,i+ 1)-associative law holds for some i € {2,....,n — 2} and the
equation (1) is uniquely solvable for i and some j > i. |
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In some n-ary groups exists an element e (called a neutral element) such
that

fle,...;e,x,e,....e) ==
—— =
i—1 n—i
forallz € G and for alli = 1,...,n. There are n-ary groups without neutral

elements and n-ary groups with two, three and more neutral elements. The
set of all neutral elements of a given n-ary group (if it is non-empty) forms
an n-ary subgroup (cf. [9] or [16]).

Directly from the definition of an n-ary group (G, f) it follows that for
every « € GG there exists only one z € G satisfying the equation

This element is called skew to x and is denoted by Z.
One can prove (cf. [2]) that in any n-ary group (G, f) the following two
identities are satisfied

f(y,x,,x,:i’,x,,x)zy (1<]<7’L—1) (2)
—_—
n—j—1 7—1
flx,...;ze,Z,z,...;e,y) =y (1<i<n-—1) (3)
—— =
i—1 n—i—1

Thus, in some sense, the skew element is a generalization of the inverse
element in binary groups. In some n-ary groups we have T = x, but there
are n-ary groups in which one fixed element is skew to all elements (see
Theorem 2.3 below) and m-ary groups in which any element is skew to
itself.

A very nice description of n-ary groups is given by the following theorem.

Theorem 2.2. (HosszU, 1963)
An n-ary group (G, f), n > 2, has the form

flx1,...,xn) = x10p(x2) 0 @2(363) o gpS(:m) 0...0 gp"_l(:nn) ob, (4)

where (G, 0) is a some group, b — a fized element of G, ¢ — an automorphism
of (G, 0) such that ©(b) =b and " (x)ob=>box for everyx € G. O

In connection with this fact we say that any n-ary group (G, f) is (¢, b)-
derived from some group (G, o). In the case when ¢ is the identity mapping,
we say that an n-ary group (G, f) is b-derived from (G, o). If e is the identity



208 W. A. Dudek and N. A. Shchuchkin

of (G,0), then an n-ary group e-derived from (G, o) is called reducible to
(G,o0) or derived from (G,0). An n-ary group is reducible if and only if it
contains at least one neutral element (cf. [2]).

One can prove (cf. for example [14] or [32]) that for a given n-ary group
(G, f) the group (G, o) from the above theorem is determined uniquely up
to isomorphism and can be identified with the group (G,-) = ret.(G, f),

where x -y = f(z,a,...,a,a,y). Fixing in an n-ary operation f arbitrary
n — 2 internal elements we obtain a new operation which depends only on
two external elements. Choosing different sequences ao, ..., a,—1 we obtain

different binary groupoids (G, o) of the form x oy = f(x,a2,...,an,-1,Y).
For a given n-ary group (G, f) all these groupoids are groups. Moreover,
all these groups are isomorphic to the retract retq(G, f).

An n-ary group having a commutative retract is called semicommutative.
It satisfies the identity

f(J:l,J:Q, o 7xn—17xn) = f($n7x27 cee 7$n_1,l’1).

An n-group (G, f) satisfying the identity

f(xlvl‘Qv <o ’xn) = f(xa(l)vxcr@)) B xo(n)))

where o is an arbitrary permutation of the set {1,2,...,n}, is called com-
mutative. In view of Theorem 2.2 any commutative n-ary group is b-derived
from some abelian group.

An n-ary power of z in an n-ary group (G, f) is defined in the following
way: <% =z and x<F1> = f(x, ...z, 2<F>) for all k > 0. 2<% is
an element z such that f(z<F"1> 2, ...z 2) = 250> =z (cf. [25]). Then
Z=2<"!> and

f(x<k1>7 L ,I<k”’>) — x<k1+...+kn+1> (5)
(x<k>)<t> — :L‘<kt(”_1)+k+t>. (6)

The order of the smallest subgroup of (G, f) containing an element z of
G is called the n-ary order of x and is denoted by ord, (x). It is the smallest
positive integer k such that x<*> = z (cf. [25]). If ord,(z) = k, then the
smallest subgroup of (G, f) containing x has the form

(z) = {z, <1, 2<% . o<k
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It is called cyclic. From (5) it follows that a cyclic n-ary group is commuta-
tive. A cyclic n-ary group of order k can be identified with the n-ary group
(Zg, f1), where

filxr,...,zp) = (r1+ 22+ ... + 24 + 1)(mod k).

The n-ary group (Zg, f1) is generated by 0. In the case when all n-ary powers
of x are different, we say that x has an infinite n-ary order. The smallest
n-ary subgroup containing all these n-ary powers is called the infinite cyclic
n-ary group generated by x. It is isomorphic to (Z, g1), where

g1(x1, ... xp) =21+ 22+ ...+ 2, + 1. (7)

This isomorphism has the form h(z<%>)

Observe also that according to Theorem 2.2 any cyclic n-ary group
(G, f) generated by a can be considered as an n-ary group a<!=">-derived
from a cyclic group (G,*), where x xy = f(z,a,...,a,y). Then @ is the
identity of (G, *) and a<*> = a**1 in (G, %), which means that (G, *) and
(G, f) are generated by the same element a.

Consider the sequence of elements: z, Z, Z@®, 2 ... where z*+1
denotes the element skew to T*) and Z(® = z. All these elements belong
to the same n-ary subgroup generated by z. Moreover, in view of (6) and
<~1> we have

= S.

T=x
72 — (x<_1>)<_1> — x<”_3>,

(3) — ((x<_1>)<_1>)<_1>,

5]

and so on. Generally: Z(™ = (Z(m=1D)<=1> for all m > 1. This implies
that

s  2-n)m—1
M = <>  for S, =— ;(2 —n)' = 1 (8)

(cf. [6] and [10]). If ord, (x) = k is finite, then T = x<k~1> 7 (2) = g<n=3>
7 = £<2-">_ Since T belongs to the n-ary subgroup generated by z, from
Lagrange’s theorem for finite n-ary groups (cf. [25], p.222), we obtain

ord,(z) = ord, () > ord,(z?) = ord,(z®) > ...

In fact, ord, (%) is a divisor of ord,(x) (cf. [3]). Moreover, if ord,(z) < oo,
then ord, () = ord, () if and only if ord,,(z) and n—2 are relatively prime.
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In this case ord,(Z(®)) = ord,(z) for every s. Thus lim ord,(Z()) = 1 if

and only if ord, () is a divisor of n — 2 (cf. [3]). Obviously ) # 7®
means that also Z(5) #£ y(5> for every 0 < s < t.

Note by the way, that in some n-ary groups (described in [5] and [8])
we have £<5> = (=51 Sych n-ary groups are the set-theoretic union of
disjoint cyclic n-ary subgroups of order k isomorphic to the subgroup

{e,z, 2P, . z* D}

The problem when one fixed element is skew to others was solved by
the following theorem proved in [7].

Theorem 2.3. (DUDEK, 1990)
T =7 for all elements x,y of an n-ary group (G, f) if and only if (G, f) is
derived from a binary group of the exponent t|n — 2. |

Generally, as it was observed in [28], from Theorem 2.2 it follows that
T =7y if and only if the sequences z, ...,z and y, ...,y are equivalent in the
—— —

n—2 n—2

sense of Post (cf. [25]).

3. Skew endomorphisms of n-ary groups

In [17] was proved that in semiabelian n-ary groups we have

f(a;l, .. ,l‘n) = f(fl, .. ,fn),

i.e., the operation ~: # — T is an endomorphism. In this case also h(z) =
7() is an endomorphism for every s > 0. The converse is not true since, for
example, in all ternary (n = 3) groups T = = and f(z,y,2) = f(Z,7,%) (cf.
[2]). So, h(x) =T is an endomorphism, but ~: # — T is an endomorphism
only for ternary groups satisfying the identity f(z,y,z) = f(z,y,x).

This means that h(z) = 7(®) is an automorphism of semiabelian n-ary
groups in which Z® = z holds for all z € G' and some fixed k.

Any map of the form h(z) = Z®), where s > 0, is called a skew map or
a skew endomorphism if it is an endomorphism.

The natural question (posed in [6], see also [10]) is:

When h(x) =T is an endomorphism?

The first partial answer was given in [10]. The full, rather complicated,
characterization of n-ary groups for which h(z) = T is an endomorphism is
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presented in [31]. It is based on two identities. Later it was proved that
such n-ary groups can be characterized by one identity containing n + 2
variables [27].

Below we present new characterizations of such n-ary groups .

Theorem 3.1. The map h(z) =Z®) is an automorphism of a cyclic n-ary
group of order k if and only if k and n — 2 are relatively prime.

Proof. A cyclic n-ary group of order k is isomorphic to the n-ary group
(Zy, f1) in which the skew element has the form T = ((2 —n)x — 1)(mod k).
Since (Zg, f1) is commutative, h(z) = Z*) is an endomorphism.

Assume that h(z) = T is an automorphism and ged(k,n — 2) = d.
Then k = dv and n — 2 = du for some u,v. Since

filv,...,0,0)=(n—2)v+v=duv+v=Fku+v=uv(modk),

we have 0 = ©. Thus h(k) = h(0) = 0 =50 = h(v). Hence k = v and
d=1,1.e., k and n — 2 are relatively prime.

Conversely, if k and n — 2 are relatively prime, then h(u) = h(v) im-
plies (2 — n)*(u — v) = 0(mod k). Hence u = v. So, h(z) = T is an
automorphism. ]

Corollary 3.2. If each element of an n-ary group (G, f) has a finite n-ary
order, then h(z) = z©) s a bijective map if and only if for every x € G
ged(ordy, (z),n —2) = 1.

Proof. If h(z) = ) is a bijection, then the restriction of h to an arbitrary
cyclic n-ary subgroup (a) of (G, f) is an automorphism. Hence, by Theorem
3.1, ord,(a) and n — 2 are relatively prime.

Conversely, let @) = &) for some a,c € G. If ord,(a) = k < oo
and n — 2 are relatively prime, then ord,(a) = ord,(@) = ord,(@®) =
ord, () = ord,(¢) and (a) = @) = @®) = €®) = (@) = (c) since

zW € (x) for every t. Thus ¢ = a<™> for some 0 < m < k. Hence,
by (8), for some S we have ¢(8) = ¢<9> = (@<">)<9> = (g<5>)<m> =
(@) )y<m> = (€(®))<m> which implies m = k. So, ¢ = a<*> = a. This

proves that h(z) = Z®) is a bijection. O

Corollary 3.3. If each element of a semiabelin n-ary group (G, f) has finite
n-ary order, then the skew map h(x) = Z) is an automorphism of (G, f)
if and only if ged(ord,(z),n —2) =1 for every z € G. O
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Corollary 3.4. The skew map h(z) =T®) is an automorphism of a semi-
abelian n-ary group of finite order k if and only if k and n — 2 are relatively
prime. O

Corollary 3.5. For n > 3 an n-ary group b-derived from an infinite cyclic
group has no non-trivial skew endomorphisms.

Proof. Let (G, f) be an n-ary group b-derived from a cyclic group generated
by a. Then b = a' for some t and am () = qm2—n)*+T g0, every a™ € (a),
where T = —t(2 —n)* 1 —t(2—-n)*"2—... —t. So, if h(z) =Z® is a
non-trivial automorphism, then for every a” € (a) there exists a™ € (a)
such that a? = h(a™). In particular, for a'*” there exists a* such that
a7 = h(a*) = a*@=°+T which implies 1 = k(2 — n)®. Thus n = 3. So,
for n > 3 no non-trivial skew endomorphisms. O

A ternary group b-derived from an infinite cyclic group has a non-trivial
skew endomorphism. Indeed, in such ternary groups x # T, * = T and
flz,y,2) = f(Z,9,7) = f(Z,y,%) (cf. [2]). So, h(x) = T is a non-trivial
skew automorphism of this group.

All n-ary groups b-derived from finite cyclic groups have non-trivial skew
endomorphisms since, as it is not difficult to see, h(z) = T = 227 "b ! is
such endomorphism.

4. Precyclic n-ary groups

In this section we describe n-ary groups (¢, b)-derived from cyclic groups.
Such n-ary groups are called semicyclic or precyclic.

An infinite cyclic group has only two automorphisms: ¢(z) = z and
¢(z) = 271, Hence, according to Theorem 2.2, on an infinite group (a) we
can define two types of n-ary groups. The operation of an n-ary group of
the first type is induced by the identity automorphism ¢(z) = = and has
the form

f(a81’a527a53’ . aan’asn) — a51+52+53+---+5n71+5n+l. (9)

The operation of an n-ary group of the second type is induced by the auto-
morphism ¢(z) = x~1. Since, by Theorem 2.2, 0"~ !(x) = z for all x € (a),
n must be odd. Moreover, in this case for b = a' should be ¢(a!) = d/,

which means that b must be the identity of (a). Thus, in this case

f(asl , a52, a53, L 7a3n—1 , asn) — aﬁ—52-&-53—54-5-4..—577,—1-&-sn7 (10)
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where n is odd.

In the first case we say that this n-ary group id (1,[)-derived from an
infinite cyclic group, in the second case that it is (—1,0)-derived.

Now, consider n-ary groups (¢, b)-derived from finite cyclic groups. Au-
tomorphisms of a cyclic group of order 2 < k < oo have the form p(z) = 2™,
where 0 < m < k and ged(m, k) = 1. So, the operation of an n-ary group
defined on a cyclic group (a) of order k has the form

2 3 n—2
f(asl,aSQ, o 7a5n—17a5n) — aS1+m82+m s3+mosa+...+m Sp—1+sn+l (11)

)

where 0 < m < k, ged(m, k) = 1, m"! = 1(modk), 0 < I < k and
Im = l(mod k). We say that such n-ary group is (m,[)-derived from a finite
cyclic group of order k.

It is clear that n-ary groups (¢,b)-derived from the same group may
be isomorphic. The answer to the question when two n-ary groups (¢, b)-
derived fom cyclic groups of the same order are isomorphic can be deduced
from the existence of some special isomorphisms of their retracts (cf. [15]
or [12]) or from the following theorem proved in [14].

Theorem 4.1. (DUDEK, MICHALSKI, 1982)

Let an n-ary group (A, f) be (¢, a)-derived from a group (A,-) and an n-ary
group (B, g) be (¢,b)-derived from a group (B,o). Then (A, f) and (B, g)
are isomorphic if and only if there exists an isomorphism [ : (A,-) — (B, o)
of groups and an element c € B such that

Bla)=cor(c)o...op"2(c)ob and P(p(x))oc=cor)((z))

for all x € A. O

As a consequence of the above theorem we obtain two important cha-
racterizations of n-ary groups defined on the same infinite cyclic group.

Corollary 4.2. Two n-ary groups (1,11) and (1,13)-derived from the ad-
ditive group (Z,+) are isomorphic if and only if 1; = lo(mod (n — 1)) or
l1 = —la(mod (n — 1)). O

Corollary 4.3. On an infinite cyclic group one can defined [”T_l] nomn-
1somorphic commutative n-ary groups. Each such n-ary group is isomorphic
to one of the n-ary groups (1,1)-derived (0 < 1 < 252) from the group (Z,+).

O
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Below, for the simplicity of formulations of our results for n-ary groups
(m,1)-derived from finite cyclic groups, by S(m) we will denote the sum
1+m4+m?2+...+mn 2

We start from one arithmetical lemma. The proof of this lemma is
analogous to the proof of Lemma A in [18].

Lemma 4.4. Let 0 <ly,la,m < k. Then for k,n > 2 the congruence
zly = (yS(m) + l2)(mod k),
where ged(m, k) = 1, has a solution in x and y if and only if
ged(ly, S(m), k) = ged(ly, S(m), k). O
Using this lemma and Theorem 4.1 we can prove

Theorem 4.5. Two n-ary groups (m,l1) and (mae, l2)-derived from a cyclic
group of a finite order k are isomorphic if and only if

gcd(ly, S(ma), k) = ged(l2, S(m2), k) and my = ma. O

Corollary 4.6. Any k-element n-ary group defined on a cyclic group is
isomorphic to one of the n-ary groups (m,l)-derived from the group (Zy,+),
where | is a divisor of ged(S(m), k). O

Proposition 4.7. Forn > 3, a precyclic n-ary group has a non-trivial skew
endomorphism if and only if it is finite and non-idempotent.

Proof. A precyclic n-ary group is semiabelian, hence h(x) = T is its skew
endomorphism. It is non-trivial only in the case when an n-ary group is
non-idempotent.

If a precyclic n-ary group is infinite, then its operation f is defined by
(9) or (10). In the first case it is commutative. Hence, by Corollary 3.5,
for n > 3 it has no non-trivial skew endomorphism. In the second case it is
idempotent and has only trivial skew endomorphism. O

Any ternary non-idempotent group has a non-trivial skew endomor-
phism. Since in ternary groups T = x, a skew endomorphism is an au-
tomorphism. An infinite precyclic n-ary group has no non-trivial skew au-
tomorphisms.

Corollary 4.8. A skew endomorphism of a precyclic n-ary group of a finite
order k is its automorphism if and only if ged(n — 2,k) = 1.

Proof. 1t follows from Corollary 3.4. O
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5. Subgroups of n-ary precyclic groups

It is not difficult to verify that in an n-ary group (G, f) which is (m,1)-
derived from a finite cyclic group (a), each coset a"(a") of (a), where
rS(m) + 1 = 0(modwv), is an n-ary subgroup of (G, f). But not all n-ary
subgroups of (G, f) are of this form. For example, in a 5-ary group (1,0)-
derived from a cyclic group {(a) of order 4 two 5-ary subgroups So = {a’, a®}
and S; = {a', a3} are cosets of (a) with respect to So. Subgroups {a’}, {a'},
{a?}, {a®} are cosets of (a) with respect to {a’} but not with respect to Sp.

Obviously, each n-ary subgroup of an n-ary group (G, f) is a subgroup
of some retract of (G, f). Indeed, if H is an n-ary subgroup of an n-ary
group (G, f), then ret,(H, f) is a subgroup of ret,(G, f) for every a € H.
This means that any n-ary subgroup of a precyclic n-ary group ({a), f) is
normal subgroup of some cyclic group isomorphic to (a).

In any precyclic n-ary group (G, f) the map h(z) = T is an endomor-
phism. So, h(G) = G = {Z |z € G} is an n-ary subgroup of (G, f). Also
h%(G) = G® = {Z |z € G} is an n-ary subgroup of (G, f). In this way we
obtain the sequence of n-ary subgroups

GoGW oGP oa® o ..

In finite n-ary groups G®) = G*+D = for some natural k, but
there are n-ary groups for which G®) % G*+D for all k. Moreover, GV
is an m-ary subgroup also in some n-ary groups for which h(xz) = T is not
an endomorphism. For example, in a 4-ary group (G, f) derived from the
symmetric group Sz we have T = x for 23 = e and T = e for 22 = e. Thus
G = Az is a subgroup of (G, f) but h(x) = T is not an endomorphism of
(G, f) because f(y,z,y,2) # f(y,2,y,2z) for y = (12) and z = (123).

The list of unsolved problems connected with G*) one can find in [6]
and [10].

If h(z) =7 is an endomorphism of (G, f), then the relation

TPy <=7T =79y (12)

is a congruence on (G, f). We say that this relation is determined by the
skew endomorphism. Obviously, p is a congruence on any precyclic n-ary
group.

It is not difficult to see that a congruence 7 of an n-ary group (G, f) is a
congruence of its retract ret, (G, f). The converse is not true. A congruence
0 of a group (G,o0) is a congruence of an n-ary group (¢, b)-derived from
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(G, 0) only in the case when for all z,y € G from z6y it follows p(z)0p(y),
or equivalently, if o(H) C H for a normal subgroup H of (G, o) determining
6. Thus, a relation 6 defined on an n-ary group (G, f) b-derived from a
group (G, o) is a congruence if and only if it is a congruence on (G, o). The
similar result is valid for precyclic n-ary group since for any automorphism
¢ and any subgroup (a") of a cyclic group (a) holds ¢({(a™)) C (a™).

Thus we have proved

Proposition 5.1. A relation 0 defined on a precyclic group is a congruence
if and only if it is a congruence of the corresponding cyclic group. ]

For relation defined by (12) we have stronger result.

Proposition 5.2. On an n-ary group (m,1)-derived from a cyclic group {(a)
of order k the relation p determined by its skew endomorphism is a congru-
ence which coincides with the congruence on (a) induced by the subgroup

<a§>, where d = ged(S(m) — 1,k). In this case, the class [a®], coincides

with the coset as(a%>.

Proof. At first we consider the case m = 1. In this case d = ged(n—2, k), i.e.,
n — 2 =dd; and k = dk; for some natural dy, k1 such that ged(dy, k1) = 1.
Since an n-ary group (G, f) is (1,1)-derived from a cyclic group (a) of order
k, we have a® = a*?~™~! for every a® € (a). Thus a®'pa® if and only if
s1(n —2) = sa(n — 2)(mod k), i.e., if and only if s1dd; = sadd;(mod dky).
This is equivalent to s1dy = sadi(modky). In view of ged(di, k1) = 1,
the last congruence means that s; = sg(mod %) So, a®pa®? if and only if
a®7% ¢ (a§>.

Now let m # 1, ged(m, k) = 1 and d = ged(S(m) — 1, k). Then a®pa®?
if and only if s1(S(m) — 1) = s2(S(m) — 1)(mod k), i.e., if and only if

n—2_1

slm;:l_l = 82% (mod k). Since S(m) — 1 =m™ ——= = mdm; and
k = dky, where ged(my,k1) = 1. The last congruence, similarly as in the

first part of this proof, means that s; = sg(mod %) So, a®pa®? if and only
ita®7%2 ¢ <a§). O

As is well known in binary groups one equivalence class of any congru-
ence is a subgroup. This class coincides with a normal subgroup determining
this congruence. For n-ary group it is not true. In a ternary group 1-derived
from the additive group Zs the congruence p defined by (12) has two equi-
valence classes: [0], and [1],. These classes are not ternary subgroups. But
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the same congruence defined on a ternary group 2-derived from the group
Zy4 has two classes which are not ternary subgroups and two classes which
are ternary subgroups. So, the natural question is: how many (and which)
the classes are n-ary subgroups. For precyclic n-ary groups the answer is
given by the following theorem.

Theorem 5.3. Let ((a), f) be an n-ary group (m,l)-derived from a cyclic
group {(a) of order k. If ged(S(m), k) divides [, then the congruence deter-
mined by the skew endomorphism of ({a), ) has exactly gcd(S(m), k) equi-
valence classes which are n-ary subgroups. These classes are defined by ele-
ments a®, where sS(m) = O(modW). In the case ged(S(m), k) 11
no such classes.

Proof. According to Proposition 5.2, in an n-ary group (m,!)-derived from
a cyclic group (a) of order k the equivalence class [a®], coincides with the
coset as<a§>, where d = ged(S(m) — 1, k). As it is easy to see, this coset is
an n-ary subgroup only in the case when

k
sS(m)+1= O(modg). (13)
At first we consider the case when m = 1. In this case S(m) =n — 1
and (13) has the form

s(n—1)+1= O(mod%)7 (14)
where d = ged(n — 2, k).

Since n — 1 and n — 2 are relatively prime, ged(n — 1, k) = ged(n —1, %)
Thus ged(n—1, k) is a divisor of n—1 and g. This together with (14) proves
that ged(n — 1,k) is a divisor of I. So, gcd(l,n — 1,k) = ged(0,n — 1,k).
Hence, by Theorem 4.5, this n-ary group is isomorphic to the n-ary group
(1,0)-derived from a cyclic group (a) of order k. But in the last n-ary
group the equivalence class [a®], is an n-ary subgroup only in the case when
s(n—1)= O(modg).

Since gcd(n — 1,n — 2) = 1, the equation x(n — 1) = O(mod%) has
ged(n — 1, k) solutions. So, exactly ged(n — 1,k) classes of the form [a®],
are n-ary subgroups. In the case ged(n — 1,k) 11 no s satisfying (14).

This completes the proof for m =1 .

Now let m # 1. In this case we have gcd(S(m),k) = ged(S(m), %),
where d = ged(S(m) — 1, k). Indeed, since k = dk;, for any common divisor
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p>1of S(m)= m:n_jl_l and k, in view of ged(m, k) = 1,

n—2 n—2
-1 -1
S(m)—lzmm m—1 and S(m):%ﬁ‘mni{
from p|d it follows p[m — . Hence p|m which is a contradiction because

ged(m, k) = 1. Thus pJ[d, ie, plk1 = ];. So, ged(S(m), k) = ged(S(m), %)
If ged(S(m), k)|l, then, according to Theorem 4.5, an n-ary group (m, [)-
derived from a cyclic group of order k is isomorphic to some n-ary group
(m,0)-derived from this group. In this n-ary group the class [a°], is an
n-ary subgroup only in the case when sS(m) = O(modg).
Further argumentation is similar to the argumentation used in the first
part of this proof. O

Corollary 5.4. If an n-ary group (G, f) is (m,l)-derived from a cyclic
group (a) of order k, then the image of G under the skew endomorphism
h(z) = T of (G, f) coincides with the coset a='{a?) of (a), where d =
ged(S(m) — 1, k).

Proof. Indeed, h(G) = {a® |a® € (a)} = {a~"sEM-1Y = ¢=1(a?), where
d = gcd(S(m) — 1,k). O

6. Automorphisms of precyclic n-ary groups

Theorem 6.1. Any endomorphism 1 of a precyclic n-ary group ({a), f)
can be presented in the form (x) = @(z)at, where ¢ is an endomorphism

of a group (a) and a® = 1(e).

Proof. Let o(z) = (z)a™", where a' = 9(e). Since 1 is an endomorphism
of n-ary group (m, [)-derived from a cyclic group (a), we have ¥(T) = ¢(z)
for every = € (a) and € = a® = a~!. Thus ¢(€) = ¥(a™") = a= "2 for

m(m™

2 1)
m=1,and ¥(a=)) =a~ =1 ' for m# 1. Hence in the case m = 1
for all a®, a®* € (a) we have

p(a1a®?) = (ata®?)at = (f(a*t,e,..., e, ¢, a”))a_t

fp(a™), ()?"-a¢() P(€), ¥(a™))a”

= f(W(a*),a’,... at a2 (a2))a
e ) = plaela®),

which proves that ¢ is an endomorphism of (a).

(
(
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For m # 1 the proof is analogous. Similarly for infinite precyclic n-ary
groups. O

Since in the above theorem v is bijective if and only if ¢ is bijective, we
obtain

Corollary 6.2. If 1) is an automorphism of a precyclic n-ary group ({a), f),
then ¢(z)=1(x)a"t with a'= (e), is an automorphism of a group {(a).

O
Theorem 6.3. If o(x) = x% is an automorphism of a cyclic group (a) of
order k, then 1(x) = p(x)al is an automorphism of an n-ary group ({a), f)
(m,1)-derived from (a) if and only if tS(m) = l(w — 1)(mod k).

Proof. The map 1 is a bijection because ¢ is an automorphism of (a). We
prove that v is an endomorphism of an n-ary group ({(a), f).
Since ((a), f) is (m,1)-derived from (a), for ¥ (z) = ¢(z)a’ and m # 1

we obtain

O(f(a,. .. a)) = w(a81+m82+..‘+m”‘28n—1+sn+l) —

— aw(51+m32+...+m”_23n,1+sn+l)+t — awsl+wm32+...+wm”_25n,1+wsn+tawl

and
f(w(aﬁ)’ o ,ZZ)(CLS")) — aw81+tam(w82+t) o am"’2(wsn_1+t)awsn+tal

— awsl+wm52+...+wm"’2sn_1+wsn+tat(1+m+...+m"’2)+l

This means that v is an endomorphism of an n-ary group ({a), f) if
and only if wl = (t(1 +m + ... +m"2) + [)(mod k), i.e., if and only if
tS(m) = l(w — 1)(mod k).

For m =1 the proof is analogous. O

Corollary 6.4. Any automorphism ¥ of an n-ary group (m,1)-derived from
a cyclic group {a) of order k can be presented in the form ¥ (a®) = a®*T,
where ged(w, k) =1 and tS(m) = l(w — 1)(mod k).

Proof. Let ¢ be an arbitrary automorphism of an n-ary group (m, [)-derived
from a cyclic group (a) of order k. Then, according to Theorem 6.1, the
map ¢ : a® — (a®)a~t, where ¢(e) = a, is an automorphism of (a). Thus

Y(a®) = ¢(a®)al = a¥**t for some w relatively prime to k and tS(m) =
l(w—1)(mod k). O

This means that any automorphism of an n-ary group (m,[)-derived
from a finite cyclic group is uniquely determined by two numbers: w and t.
Hence, it will be denoted by )y, ¢.
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Corollary 4.6 shows that each precyclic n-ary group of order k is iso-
morphic to some n-ary group (m,l)-derived from the group Zj, where [ is
a divisor of d = ged(S(m), k). For such defined [ and d

d
Ay =A{w € Zi [w = 1(mod 7)}

is a subgroup of the multiplicative group Z; of the ring (Zg, +,-).
We use this subgroup to the description of the automorphism group of
finite precyclic n-ary groups.

Theorem 6.5. The automorphism group of an n-ary group (m,l)-derived
from a cyclic group of order k is isomorphic to the extension of a cyclic
group of order g, where d = ged(S(m), k), by the multiplicative group AZ/['

Proof. Let ({(a), f) be an n-ary group (m,l)-derived from a cyclic group
(a) of order k. Then <a§>, where d = ged(S(m), k), is a group of order d
contained in (a).

Consider the homomorphism ( : Az/l — Aut<a§> such that ((w) = ¢y,
where 7 is the remainder of w after dividing by d. In this way, we obtain the
extension Aj (a§> of the group (a§> by the group Ay, (see for example
[19]) with the group operation

wlam% 'wga”% = (wle)a(w2”1+U2)§, (15)

The map 7 : Aut({a), f) — AZ/Z <a§>, where T(Yy.) = wa”g, is a
bijection. Moreover, for Y, v, Yw, v, € Aut((a), f) and a® € (a) we have
¢w1,v1 o ww27v2 (as) = 1/1w2,v2 (¢w1,v1 (as)) = ww27v2 (asw1+t1)
— gBwitt)wetts — jswiwettiwetts
_ asw1w2+(t’1w2+t’2)+(wzv1+v2)%

= ww1w2,w201+02 (as)’

for t; = t] + vlg, ty = th + 7)2% and (tjws + té)s(;”) = l(w“ﬁf_l) (mod%).
Thus

Yy 1 © Yws vy = Yurws,wav +va-

This together with (15), implies

T(wwl,m o ww2,v2> = (wle)a(w2v1+v2)§ = T(wwhm) : T<¢w2,v2)'

alx

So, 7 is an isomorphism. Therefore Aut({a), ) = Al (ad). O



Skew endomorphisms on some n-ary groups 221

Corollary 6.6. The automorphism group of a cyclic n-ary group of a finite
k
order k is isomorphic to the direct sum A} @(ad), where d = ged(n—1,k).

Proof. Any cyclic n-ary group of order £k < oo can be identified with
(Zg, f1). So, it is (1,1)-derived from Zj. Its automorphism group is isomor-
phic to A} <a§>, where d = ged(n—1,k) and A = {w € Zj |w = 1(mod d)}.

Since A} and <a§> are subgroups of A% <a§> which can be identified with
A% x (a%) and {1} x <a§>, respectively, and 1a% - wa’d = wa’d - 1a¥4 for
all w € A}, avi € <a§> we obtain A} <a§) = AZ@(a%) O

Corollary 6.7. The automorphism group of a cyclic n-ary group of a prime
order p 1s 1somorphic to Z,, or to Zy, X Zy.

Proof. In this case d = 1 or d = p. If d = 1, then A} = Z and (ad) = {a°}.
Thus, A} <a§> & Z,,. For d = p we obtain A} = Z; and (ad) = (a) = L.
Hence A} (a§> = 7oy X L. O

Corollary 6.8. If S(m) and k are relatively prime, then the automorphism
group of an n-ary group (m,1)-derived from a cyclic group of order k is iso-
morphic to the multiplicative group 7.

Proof. Indeed, in this case d = ged(S(m), k) =1, A}, = Zj and <a§) =

(a*) = {a®}. Hence AL <a%> = A3, =1, O

Theorem 6.9. A commutative precyclic n-ary group of infinite order has
at most two automorphisms.

Proof. Any infinite precyclic n-ary group is isomorphic to some n-ary group
(m, 1)-derived from the additive group Z of all integers. If it is commutative,
then, by Corollary 4.3, there exists 0 < 1 < ["T_l] for which this n-ary group
is isomorphic to an n-ary group (1,[)-derived from the group Z. But, by
Theorem 6.1, for any automorphism v of an n-ary group (1,1)- derived from
the group Z the map ¢(x) = ¥ (x) —t, where t = ¥ (0), is an automorphism
of (Z,+). Thus ¢(z) =z +1t or ¢Y(z) = —x +1.

Let ¢(z) =z +t. Then ¢¥(f(0,...,0)) =1+t and f(¢(0),...,9(0)) =
nt + I, which implies [ + ¢ = [ 4+ nt. Thus t = 0. Hence ¢(x) = x.

In the case (x) = —z + ¢ we obtain (f(0,...,0)) = —I + ¢ and
f(@(0),...,9(0)) = nt + 1. Thus 5t (—t) = 1. If I = 0, then also t = 0.
So, an n-ary group (1, 0)-derived from the group Z has two automorphisms:

Y(z) =z and P(z) = —=.
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Ifl = "51 (in this case n must be odd), then ¢ = —1. This means that
an n-ary group (1, %51)-derived from the group Z has two automorphisms:
Y(z) =z and YP(r) = —v — 1.

For 0 <1< 251 no t € Z such that 5% (—t) = I. So, in this case is

only one automorphism: ¢ (z) = z. O

Corollary 6.10. For 0 <[ < "T_l , an n-ary group (1,1)-derived from an
mfinite cyclic group has no non-trivial automorphisms. O

Corollary 6.11. An infinite cyclic n-ary group has no non-trivial auto-
morphisms.

Proof. Indeed, an infinite cyclic n-ary group is isomorphic to the n-ary
group (Z,g1), where g; is defined by (7). Hence, it is isomorphic to an
n-ary group (1,1)-derived from the group Z, which , by Corollary 6.10 has
no non-trivial automorphisms. O

Lemma 6.12. A non-commutative n-ary group ((a), f) of infinite order
has infinitely many automorphisms. All these automorphism have the form
a® — a**t or a® — a7t where t is an arbitrary fized integer.

Proof. A non-commutative n-ary group ({a), f) of infinite order exists only
for odd n. Its operation is defined by (10).

By Theorem 6.1, any automorphism % of such n-ary group induces on
(a) an automorphism p(x) = ¥(x)a~t, where a® = 1(a®). Thus, ¥(z) =
o(z)dl, ie., Y(a®) =a*tt or Y(a®) = a 5. O

Theorem 6.13. The automorphism group of an infinite non-commutative
precyclic n-ary group is isomorphic to the holomorph of the group (Z,+).

Proof. Consider the holomorph Z*Z of the group (Z,+) with the group
operation
wity - waty = (wiwe)(waty + t2),

where wy,wy € Z* = {—1,1} (see for example [19]). Since any automor-
phism of an n-ary group (—1,0)-derived from the infinite cyclic group (a)
has the form vy, (a®) = a****, where w = 1, t € Z, (Lemma 6.12) the
map 7 : Aut({a), f) — Z*Z defined by 7(1+) = wt is a bijection.
Moreover, for all Yy, 1, , Y, ts € Aut({a), f) and a® € (a) we have

¢w1,t1 o ww27t2 (as) = ¢w2,t2 (wuu,tl (as)) — ¢w2,t2 (awls-i-tl)

_ wa(wis+tr)+te _  wiwastwati+io
=a =a ,
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which means that 1w, 11 © Yws ts = Vwiwe,waty +to-
Thus
7'(¢w1,t1 © ¢w2,t2) = (w1w2)(w2t1 + t2) = T(’QZJth) : T(wwzyb)'
Hence Aut({a), f) = Z*Z. O

7. Splitting automorphisms

In some n-ary groups h(z) = T is an automorphism satisfying for every
1=1,2,...,n the identity

h((f(.’El, e ,ZEn)) = f(:El, ey Lj—1, h(l‘l), L1y :En).

Such n-ary groups are called distributive (cf. [8] and [5]). Any distributive
n-ary group is a set theoretic union of disjoint cyclic n-ary subgroups of the
same order. But it is not precyclic, in general.

An endomorphism 1 of an n-ary groupoid (G, f) is called splitting (cf.
[24]) if for every i = 1,...,n the identity

V(f(x1,...,zn)) = f(z1, ..y xic1, Y(2), Tig1, - -+, Tn) (16)

is satisfied.

It is not difficult to see that the set of all splitting endomorphisms of
a given n-ary groupoid (G, f) forms a commutative semigroup. Moreover,
for every splitting endomorphisms of (G, f) holds ™ = .

Proposition 7.1. Any splitting endomorphism of an n-ary group is its
automorphism.

Proof. Let 1 be a splitting endomorphism of an n-ary group (G, f). If
Y(z) = ¢(y) for some x,y € G, then

f(w(l‘),xg, L3y a:En) = f(u}(y)a X2, X3, - a$n)
for all x9,x3,...,2, € G. This, by (16), gives

f(x7d}(x2)ax3a s 7mn) = f(va(x2)7$3a s >$n)'

Hence x = y. So, ¥ is one-to-one.

Since (G, f) is an n-ary group, for all z,¢(x2),x3,...,2, € G there
exists y € G such that z = f(y, ¥ (x2),23,...,2,) = V(f(y,x2,23,...,2Tn)).
Thus, for every z € G there exists © = f(y,x2,x3,...,2,) € G such that
z =1(x). So, ¥ is onto. Consequently it is an automorphism. O
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Corollary 7.2. "' =idg for any splitting automorphism 1 of an n-ary
group (G, f). O

Proposition 7.3. A non-trivial splitting automorphism of an n-ary group
has no fized points.

Proof. Indeed, if ¥(a) = a for some a € G, then, according to (2), for every
x € G we obtain

(z) =Y(f(z,a,...,a,a)) = f(z,9(a),a,...,a,a) = f(z,a,...,a,a) =z,

which means that v is a trivial automorphism. O

Corollary 7.4. An n-ary group with only one idempotent has no non-trivial
splitting automorphisms.

Proof. Indeed, if a is an idempotent, then ¢(a) also is an idempotent.
Hence, in the case when (G, f) has only one idempotent, we obtain ¥ (a) = a.
Thus 1 is the identity mapping. O

Theorem 7.5. The mapping ¥ : G — G is a non-trivial splitting automor-
phism of an n-ary group (G, f) (¢, b)-derived from a group (G, o) with the
identity e if and only if ¥(e) # e and

(i) (e) belongs to the center of (G, o),

(i1) Y(x) =z o)(e) for every x € G,
(i4i) 1(e) = pip(e )
(iv) ¥(e)o ( )o...ot(e) =

n—1

Proof. Let (G, f) be an n-ary group (¢, b)-derived from a group (G, o) with
the identity e. Then, according to Theorem 2.2, o(b~') = b~!. Moreover,
since " ~!(z)ob = box holds for all x € G, the equation (4) can be written
in more useful form

F(@1,- . 0) = 21 0p(w2) 0 92 (w3) 0 (@4 0. . 06" (1) 0boy. (17)
Thus
(o) = bwoe) = (@b e, ) = fla.b e, e, u(e)) = 20 ue)

for every splitting automorphism 1 of (G, f) and every x € G. This proves

().
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Similarly, using (17), we obtain

Q;Z)(li): ¢(€Ox): 1/J(f(6,b_1,6, cee 7671‘)): f(q/)(e),b_l,e, .- '76733): ¢(€)O$,

which together with the previous identity gives zow(e) = 1(e)ox. So, ¥ (e)
belongs to the center of (G, o).

Further, from f(¢(x),e,...,e) =¥(f(z,e,...,€)) = f(z,¥(e),e,...,e)
and (17) we conclude (4i7).

Now, using (17) and (iii) we obtain

() =P(f(e,....e)) = f(¥(e),...,1d(e)) = v(e)o...o(e) obot(e),

which together with (i7) implies (iv).

Hence, any splitting automorphism ¢ of (G, f) satisfies (i), (i7), (i)
and (iv). By (i), it is non-trivial if and only if 1(e) # e.

The converse statement is obvious. O

Corollary 7.6. A splitting automorphism of an n-ary group (p,b)-derived
from a group (G, o) commutes with ¢.

Proof. By Theorem 7.5, for every x € G we have
Yop(x) = p(x)orp(e) = p(z)opy(e) = p(zov(e)) = ¢y (x). O

Corollary 7.7. An infinite precyclic an n-ary group has no mnon-trivial
splitting endomorphisms.

Proof. 1t follows from Theorem 7.5 (iv) and (i7) or Corollary 6.11. O

Corollary 7.8. An n-ary group (¢,b)-derived from the centerless group has
no non-trivial splitting endomorphisms.

Proof. Indeed, in such n-ary group v (e) = e for every splitting endomor-
phism . This, by Proposition 7.3, means that 1 is trivial. [

As a simple consequence of the above theorem we obtain the following
characterization of skew splitting automorphisms firstly proved in [8].

Theorem 7.9. The mapping h(x) = T is a splitting automorphism of an
n-ary group (G, f) if and only if on G we can define a group (G, o) with the
identity e and an automorphism @ such that

f(z1,...,2) =210 p(x2) 0 *(x3) 0... 0 " 2(2p_1) 0y 0D,

p(b) =b, 0"t =, zop(z)op’(w)o...0p" 2(z) = e and ¢" }(z) = x

for all x,x1,...,x, € G and some b from the center of (G,o0).
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Proof. Directly from the definition of the skew element it follows that in an
n-ary group (¢, b)-derived from a group (G, o) we have h(e) =e =b"1. In
this case also ¢(b) = b and " 1(x) ob = boz (see Theorem 2.2).

If h(z) = T is a splitting automorphism, then, in view of Theorem 7.5,
b~! = h(e) belongs to the center of (G,0), bt = (h(e))" ! = eand h(z) =
xob~!. Hence also b belongs to this center. Consequently ¢" !(z) = x.
From f(xz,...,7,7) = z it follows x 0 p(z) 0 p?(x) 0...0 " 2(z) = e.

Conversely, from (17) it follows that in an n-ary group (G, f) we have

Top(x)op?(xz)o...op" %(x)ob=c¢

for every x € G. Hence T = b~! o (p(x) 0 p?(x) o ... 0" 2(x))~ L. Thus in
an n-ary group satisfying the conditions mentioned in this theorem holds
Z=b"loxr =x0b ! Thereforee=>b"! and T = zoe. This means that the
mapping h(z) = T satisfies the conditions (i) and (i) from Theorem 7.5.
The last two conditions also are satisfied. Hence, h(z) = T is a splitting
automorphism. O

Corollary 7.10. An n-ary group containing at least one idempotent has no
non-trivial splitting skew endomorphisms. O

Proof. Suppose that an n-ary group (G, f) has an idempotent a. If it has a
splitting skew endomorphism, then, by Theorem 7.9, a = f(a,...,a) = aob.

Thus b = e. Consequently, f(z,...,x) = e-x-e = x for every z € G.
Hence (G, f) is an idempotent n-ary group. It has no non-trivial skew
endomorphisms. O

Corollary 7.11. A non-trivial splitting skew endomorphisms there are only
in trreducible n-ary groups. |

Proposition 7.12. The mapping i is a non-trivial splitting automorphism
of an n-ary group (m,1)-derived from a cyclic group (a) of order k if and only
if ¥(z) = zat for some 0 <t < k such that t(m—1) =t(n—1) = 0(mod k).

Proof. The proof is based on Theorem 7.5. From (i7) it follows that any
splitting automorphism of a precyclic n-ary group has the form ¢ (z) = zat,
where a' = 9(e) and t # 0. Thus 0 < t < k. From (iii) we obtain
t(m —1) = 0(mod k). In the same way, (iv) implies t(n — 1) = 0(mod k).
On the other hand, it is not difficult to see that ¥(z) = za' with ¢
satisfying the above conditions is a non-trivial splitting automorphism. [
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Construction for subdirectly irreducible sloops

of cardinality n2™

Enas M. A. E |-Zayat and Magdi H. Armanious

Abstract. Guelzow [8] and similarly Armanious [1] [2] gave generalized doubling con-
structions to construct nilpotent subdirectly irreducible SQS-skeins and sloops. In [5] the
authors have given recursive construction theorems as n — 2n for subdirectly irreducible
sloops and SQS-skeins, these constructions supplies us with a subdirectly irreducible
sloop of cardinality 2n satisfying that the cardinality of the congruence class of its mono-
lith is equal to 2. In this article, we give a construction for subdirectly irreducible sloops
of cardinality n2"" having a monolith with a congruence class of cardinality 2™ for each
integer m > 2. This construction supplies us with the fact that each sloop is isomor-
phic to the homomorphic image of the constructed subdirectly irreducible sloop over its

monolith.

1. Introduction

A Steiner triple system is a pair (L; B) where L is a finite set and B is a
collection of 3-subsets called blocks of L such that every 2-subset of L is
contained in exactly one block of B (cf. [7]). Let STS(n) denote a Steiner
triple system ( briefly a triple system ) of cardinality n. It is well known
that an STS(n) exists iff n =1 or 3 (mod6) (cf. [7] and [9]).

There is one to one correspondence between STSs and sloops (Steiner
loops) (see |7] and [8]). A sloop L = (L;e,1) is a groupoid with a neutral
element 1 satisfying the identities:

rToey=yeux,
lex=ux,

ze(ey) =y.

A sloop L is called Boolean sloop if the binary operation satisfies in

2000 Mathematics Subject Classification: 05B07, 20N05
Keywords: Steiner loop, sloop, subdirectly irreducible sloop, Steiner triple system.
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addition the associative law. Each Boolean sloop is a group that is also
called a Boolean group.

Let SL(n) denote a sloop of cardinality n. Then SL(n) exists iff n = 2
or 4 (mod6) (cf. [7], [10]). If SL(n) is Boolean, then n = 2™ for m > 1.
Notice that for any a and b € L the equation a ¢ x = b has the unique
solution x = a e (a @ x) = aeb; i.e., L is a quasigroup [6].

A subsloop N is called a normal subsloop of L if and only if :

ze(yeN)=(rxey)e N forall zye€L.

Equivalently, a subsloop N of L is normal if and only if N = [1]0 for a
congruence 6 on L (cf. [7], [10]).

In fact, there is an isomorphism between the lattice of normal subsloops
and the congruence lattice of the sloop [10]. Quackenbush has also proved
that the congruences of the sloops are permutable, regular and uniform.
Moreover, he has shown that for any finite SL(n), a subsloop N of cardi-
nality %n is normal.

Guelzow [8] and Armanious ([1], [2]) gave generalized doubling construc-
tions for nilpotent subdirectly irreducible SQS -skeins and sloops of cardi-
nality 2n. In [5] the authors gave recursive construction theorems as n — 2n
for subdiredtly irreducible sloops. All these constructions supplies us with
subdirectly irreducible sloops having a monolith 6 satisfying |[x]0| = 2 (the
minimal possible order of a proper normal subsloop). Also in these construc-
tions, the authors begin with a subdirectly irreducible SL(n) to construct
a subdirectly irreducible SL(2n) satisfying that the cardinality of the con-
gruence class of its monolith is equal 2. Armanious [3] has given another
construction of a subdirectly irreducible SL(2n). He begins with a finite
simple SL(n) to costruct a subdirectly irreducible SL(2n) having a monolith
0 with |[z]0] = n (the maximal possible order of a proper normal subsloop).

In this article, we begin with an arbitrary SL(n) for each possible value
n > 4 to construct a subdirectly irreducible SL(n2™) for each integer m > 2.
This construction enables us to construct a subdirectly irreducible sloop
having a monolith 6 satisfying that the congruence class containing the
identity is a Boolean SL(2"). Moreover, its homomorphic image modulo 6
is isomorphic to L.

In view of this result, we may construct several distinct examples of
subdirectly irreducible sloops that cannot be able to consrtuct by the well
known constructions (cf. 1], [2], [3], [5], [8])-
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2. Construction of subdirectly irreducible sloops
of cardinality n2™

Let L = (L;*,1) be an SL(n) and B = (B;e, 1) be a Boolean SL(2™), where
L={l,z1,22,...,2p—1} and B = {1,a1,az,...,a,m_, ;. In this section we
extend the sloop L to a subdireclty irreducible sloop L X, B of cardinality
n2™ having L as a homomorphic image.

We divide the set of elements of the direct product L x B into two
subsets {1, z1} x B and {z2,...,z,—1} x B. Consider the cyclic permutation
a = (a1az...a,m_,) on the set {1,a1,a9,...,a,m_,} and the characteristic
function y from the direct product L x B to B defined as follows

aea~l(a) for x=1,y=ua,

bea (b)) for z=uxz1,y=1,

ceafc) for x =21 =yandaeb=c,

1 otherwise.

The last term means that x((z,a),(y,b)) = 1 when x =y = 1, (z,a) ¢
{1,z1} x B or (y,b) ¢ {1,z1} x B.

Lemma 1. The chamcteristic function x has the following properties:

X(((L’, CL), (y7 b)) =

(1) x((z,a),(1,1)) =

(i) x((z,a),(z,a)) =

(#1) x((z,a),(y,b)) = ((y,b)( a));

(iv) x((z,a), (x*y,aebex((z, a) (,0)))) = x((z,a), (y,0)).

Proof. To prove (i), let & = z1. Then x((z1,a),(1,1)) = 1ea~1(1) = 1.
Otherwise if © # z1, then x((x,a),(1,1)) = 1.

Also in (i7), if x = z1, then x((z1,a),(z1,a)) = aeaealaea) = 1.
Otherwise, if x # z1, then x((z,a), (z,a)) = 1.

According to the definition of x, we may deduce that x((z,a), (y,b)) =
x((y,b), (z,a)) i.e., (iii) is also valid.

To prove the fourth property we consider four cases:
(1) If z =27 and y = 1, then

X(($17 a)v (1'1 * 1a aebe X((mlv CL), (1’ b)))) = X((xl,a)i((g:)l)’ (I.(O[_l(b)) (b))
)-

=bea '(b) = x((z1,a), (1,b)
(2) If z =1 and y = x1, then
X((La)’(l*xl’a.b.X((lva)’(xlvb)))) (( )v(xl’b.a l(a))
=aea !(a) =x((1,a),(z1,b)).
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(3) If z =y = x1, then

x((z1,a),(1,aebeceac))
x((z1,0), (1, a(c)) = cealc)
x((z1,a), (961, b)) = 1.

(4) Otherwise, when x = y = 1 or when (z,a) or (y,b) ¢ {1,21} x B, we

have ((z,a), (4.b)) = x(2,a), (& * y,a o b e x((z0), (4,1)))) = 1, because
{x, 2 xy} € {1,21}. This completes the proof of the lemma. O

X((xlv a): (xl *T,ae be X((xlv a)v (1‘1, ))))

Lemma 2. Let L = (L;*,1) be an arbitrary SL(n), and B = (B;e,1) be
a Boolean SL(2™) for m > 2. Also let o be a binary operation on the set
L x B defined by:

(z,a) 0 (y,0) == (x xy,a e bex((x,a),(y,b)))-
Then L x4 B = (L x B;o,(1,1)) is an SL(n2™) for each possible number
n > 4.

Proof. Let L = {1,z1,29,...,2n—1} and B = {1,a1,0a2,...,aym_,}. We
note that the operation o is the same operation of the direct product L x B
for all elements (z,a), (y,b) of the set {2, x3,...,zn_1} x B. The difference
occurs only if x,y € {1,21}.

For all (z,a), (y,b) € L x B, we have:
(1) According to Lemma 1 (i)

(z,a)o (1,1)=(x*x1,aelex((x,a),(1,1))) = (z,a).
(2) By using Lemma 1 (i7)
(r,a) o (xz,a) = (z*xx,a0aex((x,a),(z,a)))=(1,1).

(3) Using Lemma 1 (i4i) we obtain:

(z,a) 0 (y,b) = (zxy,aebex((z,a),(y,b)))
= (y*xz,beaex((y,b),(z,a)))
= (y,b) o (z,a).
(4

Lemma 1 (iv) gives:

)

(z,a) o ((z,a) o (y,b)) = (z,a) o (x xy,a e bex((x,a),(y,b)))

= Ey a)Oa-b°x((w ,a), (y,0)) e x((z,a), (z+xy,aebex((z,a),(y,b)))))
y?

(1), (2), (3) and (4) imply that Lx, B = (L x B;o,(1,1)) is asloop. O
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We note that ((z,a;)) o (x1,a5) o (z1,ar) # (x,a;) o ((x1,0a;) o (21, ax)),
for any = ¢ {1, 21} and a; # ay, i.e., the operation o is not associative even
if the operation * is associative.

In the next theorem we prove that the constructed Lx,B is a subdirectly
irreducible sloop having a monolith #; satisfying that |[(1,1)] 61| = 2™.

Theorem 3. The constructed sloop Lx,B = (L x B;o,(1,1)) is a subdi-
rectly irreducible sloop.

Proof. The projection II : (z,a) — x from L x B into L is an onto homo-
morphism and the congruence Ker Il := 0 on Lx,B is given by

0, = Utol (zi, 1), (z5,a1) ..., (xi7a2m_1)}2,

where zg = 1; so one can directly see that

[(1,1)]61 = {(1,1),(1,a1),..., (L, apm_,)}-

Now Con(L) = Con((L x4 B)/61) = [61 : 1]. Our proof will now be
complete if we show that 6; is the unique atom of Con(L X, B).

First, assume that 6; is not an atom of Con(L x, B). Then we can
find an atom ~ such that v C 6; and |[(1,1)]v] =r < |[(1,1)] 61| =2™. In
this case we get a contradiction by proving that [(1,1)]~ is not a normal
subsloop of L x, B.

Suppose that [(1,1)]y = {(1,1), (1, as,), (1,as,), ..., (1,as._,)} . We will
prove that there are two elements (z, a) (y,b) € L x B such that:

((z,a) o (y,0)) o [(1, 1)7] # (,a) o ((y,0) o [(1, D]).

It {asl,a52, RN asr_l} is an increasing subsequence of {al, a2y ..., azm_l}
and if a(as ) = as,, for all i = 1,2,...,7r — 1, then a(as, ,) = as, ¢
{asl,a52, e ,asr_l}. If {asl,a52, e ,asr_l} is increasing and not succes-
sive subsequence of {al, as,. .. ,aszl} then there exists an element a; €
{as,, sy, ... as,_, } such that a(a;) = aj41 ¢ {as,as,,...,as,_,}. For
both cases, we can always find an element (1,ax) € [(1,1)]7 such that
(1,a(ar)) ¢ [(1,1)]y (ax = as,_, for the first case, and ap = a; for the
second case).

Consider the two elements (z1,a1) and (z2,a2) with 1 # x2 # 1, and
assume that ((z2,a2) o (z1,a1)) o [(1, )]y = (z2,a2) o ((z1,a1) o [(1,1)] ),
then for the element (1,ay) (determined above) there exists an element
(1,as,) € [(1,1)] v such that

((w2,a2) o (v1,a1)) o (1,ar) = (w2,a2) o ((z1,a1) o (1,as,)).



234 E. M. A. El-Zayat and M. H. Armanious

In this case ((x2,a2) o (z1,a1)) o (1,a;) = (x2 * x1,a2 @ a1) o (1,a;) =
(9 * 21,02 ® a1 ® ag) and (z2,a2) o ((z1,a1) o (1,as,)) = (x2,a2) o (x1,a1 ®
a Y as,)) = (z2 % x1,a2 ® a1 ® a"(as,)) we obtain a; = a~'(as,), which
implies a(ar) = as,. This contradicts the assumption that (1,a(ay)) ¢
[(1,1)]y. Hence, we may say that there is no atom v of Con(L x, B) sat-
isfying v C 601. Therefore, #; is an atom of the lattice Con(L x, B).

Secondly, 6 is the unique atom of Con(L X, B). Indeed, if 0 is another
atom of Con(Lx, B), then §;Nd = 0. Hence, one can easily see that there is
only one element (z,a1) € [(z,a1)]d with the first component x (note that
[(z,a:)]61 = {(z,1),(z,a1),...,(z,a),...,(x,aym_,)}). For this reason
we may say that the class [(1,1)]d has at most one pair (z1,a;) with first
component z1. So we have two possibilities: either

(¢) [(1,1)]6 contains only one pair (x1,a;) with first component z;, or

(7i) [(1,1)]0 has no pairs with first component z;.

For the first case, we choose two elements (z,a)&(x1,as) € L x B such
that 1 # x # z1, and ag # a; then

((z,a) o (x1,as)) o (z1,a;) = (x xx1,a @ as) o (x1,a;) = (x,a ®as e a;).
Also,
(z,a) o ((x1,as) o (z1,a;)) = (xz,a) o (1,a(as @ a;)) = (z,a ® afas ® a;)).

Since the class ((z,a) o ((x1,as))o[(1,1)]d contains at most one element
with a first component z, it follows that if ((x,a) o (z1,as)) o [(1,1)]0 =
(z,a) o ((x1,as) o [(1,1)]5), then a(as ® a;) = as ® a; hence a5 ® a; = 1,
which contradicts the choice that as # a;. This implies that [(1,1)]d is not
normal.

For the second case [(1,1)]d has no pairs with first component ;. Let
(z,a),(x,b) € [(1,1)]0 such that 1 # x # 1, and a # b Then

((x1,¢) o (w,a)) o (x,b) = (z1 *x,cea)o (x,b) = (x1,ceaeb).
Also,
(z1,¢) o ((x,a) o (z,b)) = (z1,¢) 0 (1,a 8 b) = (z1,cea '(aeb)).

By using the fact that the class ((z1,¢) o (x,a)) o[(1,1)]é contains only one
element with the first component x;, we may say that if

((z1,¢) 0 (x,a)) o [(1,1)]6 = (z1,¢) o ((z,a) o [(1,1)]5),
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then o~ '(a @b) = a b, hence a b = 1, which contradicts that a # b.
Thus [(1,1)]¢ is not a normal subsloop of L x, B. This mean that there is
no another atom 0, and 6; is the unique atom of Con(L x,, B). Therefore,
L x4 B is a subdirectly irreducible sloop. O

Note that in the constructed sloop L X, B, we may choose B a Boolean
SL(2™) for each m > 2. Therefore, as a consequence of the proof of Theorem
3, the following holds.

Corollary 4. Let B be a Boolean SL(2™) for an integer m > 2. Then the
congruence class [(1,1)]01 of the monolith 01 of the constucted subdirectly
irreducible sloop L X B is a Boolean SL(2™).

Also, Theorem 3 enable us to construct a subdirectly irreducible sloop
L x4 B having a monolith 6 satisfying that (L x, B)/ 61 = L. Then we
have the following result.

Corollary 5. Ewvery sloop L is isomorphic to the homomorphic image of
the subdirectly irreducible sloop L X, B over its monolith, for each Boolean
sloop B.

In view of these results, we may construct several distinct examples of
subdirectly irreducible sloops.

The smallest non-trivial application of our construction is of cardinal-
ity 16. Indeed, if we choose two SL(4)s, L = ({1,z1,x2,23};%,1) and
B = ({1,a,b,c};e,1), then the constructed sloop L X, B is a subdirectly
irreducible SL(16) having 3 normal sub-SL(8)s:

S = {(17 1)7 (1,&), (17 b)? (17 C), (1)1, 1)7 (‘Tlﬂ a)? (‘Tla b)? (‘Tla C)} ’

S2 = {(L 1)7 (1,&), (17 b)? (17 C)? (an 1)7 (CL‘Q,CL), (.Tg, b)a (.1'2, C)} and
S3 = {(L 1)7 (1,&), (1, b)? (1,0), (x3,1), (.%'3, a), (‘T?n b)7 (1‘3, C)} .
The constructed SL(16) corresponds to an STS(15) having 3 sub-STS(7)s.

In the classification of all subdirectly irreducible SL(32) given in [5]
there are two classes having a monolith 6; satisfying |[(1,1)]61] = 4 and 8.
The well-known constructions for subdirectly irreducible sloops given in [1],
[2], [3]. [5], [8] dose not enable us to construct examples for these classes.

In the following example we apply our construction to describe subdi-
rectly irreducible SL(32) having a monolith 6; satisfying |[(1,1)]01| =4 (or
8).



236 E. M. A. El-Zayat and M. H. Armanious

Example. Let L be the Boolean SL(8) (or SL(4)), B be the Boolean SL(4)
(or SL(8)) and « be the cyclic permutation on the non-unit elements of B.
By apply our construction L x,, B, we get a subdirectly irreducible SL(32)
having a monolith 6; satisfying (L x, B), /01 = L = SL(8) (or SL(4)) in
which its monolith 6; satisfying |[(1,1)]01] =4 (or 8).

This example of an SL(32) corresponds to a subdirectly irreducible
SL(32) having exactly 7 normal sub-SL(16)s. (or 3 normal sub-SL(16)s).

Similarly, we can use our construction to give an example for a subdi-
rectly irreducible SL(n2™) having a monolith 6; satisfying |[(1,1)]0;] = 2™
for each possible n > 4 and each integer m > 2.
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N-fuzzy quasi-ideals in ordered semigroups

Asghar Khan, Young Bae Jun and Muhammad Shabir

Abstract. In this paper, we introduce the concept of N-fuzzy quasi-ideals in ordered
semigroups and investigate the basic theorem of quasi-ideals of ordered semigroups in
terms of N-fuzzy quasi-ideals. We characterize left (resp. right) regular and completely
regular ordered semigroups in terms of AN -fuzzy quasi-ideals. We define semiprime N-
fuzzy quasi-ideals and characterize completely regular ordered semigroups in terms of
semiprime N -fuzzy quasi-ideals. We provide characterizations of some semilattices of

left and right simple semigroups in terms of A/-fuzzy quasi-ideals.

1. Introduction

A fuzzy subset f of a given set S is described, as an arbitrary function
f S — [0,1], where [0, 1] is the usual closed interval of real numbers.
This fundamental concept of a fuzzy set was first introduced by Zadeh in
his pioneering paper [26] of 1965, provides a natural frame-work for the gen-
eralizations of some basic notions of algebra, e.g. logic, set theory, group
theory, ring theory, groupoids, real analysis, topology, and differential equa-
tions etc. Rosenfeld (see [21]) was the first who considered the case when S
is a groupoid. He gave the definition of a fuzzy subgroupoid and the fuzzy
left (right, two-sided) ideals of S and justified these definitions by showing
that a subset A of a groupoid S is is a subgroupoid or left (right, or two-
sided) ideal of S if and only if the characteristic mapping fa : S — {0,1}
of A defined by

lifxe A
foA(x)::{ Oifz ¢ A

is respectively, a fuzzy subgroupoid or a fuzzy left (right or two-sided) ideal
of S. The concept of a fuzzy ideal in semigroups was first developed by

2000 Mathematics Subject Classification: 06F05, 06D72, 08A72
Keywords: N-fuzzy subset; N-fuzzy quasi-ideal; left (right regular), semilattice of
left (right) simple semigroups; completely regular ordered semigroup.
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Kuroki (see [13-17]). He studied fuzzy ideals, fuzzy bi-ideals, fuzzy quasi-
ideals and semiprime fuzzy ideals of semigroups. Fuzzy ideals and Green’s
relations in semigroups were studied by McLean and Kummer in [18]. Ah-
san et. al in [1]| characterized semigroups in terms of fuzzy quasi-ideals. A
systematic exposition of fuzzy semigroups was given by Mordeson, Malik
and Kuroki appeared in [20], where one can find theoretical results on fuzzy
semigroups and theoretical results on fuzzy semigroups and their use in
fuzzy coding, fuzzy finite state machines and fuzzy languages. The mono-
graph given by Mordeson and Malik [19] deals with the applications of fuzzy
approach to the concepts of automata and formal languages. Fuzzy sets in
ordered semigroups/ordered groupoids were first introduced by Kehayopulu
and Tsingelis in [8]. They also introduced the concepts of fuzzy bi-ideals
and fuzzy quasi-ideals in ordered semigroups in (see [9]).

The quasi-ideals in rings and semigroups were studied by Stienfeld in [25]
and Kehayopulu extended this concept in ordered semigroups and defined
a quasi-ideal of an ordered semigroup S as a non-empty subset @) of S such
that

(1) (QS]N(SQICQ and (2)Ifae @ and S>b<athenbde Q.

The purpose of this paper, is to initiate and study the new sort of fuzzy
quasi-ideals called N-fuzzy quasi-ideals in ordered semigroups. We char-
acterize regular, left and right simple ordered semigroups and completely
regular ordered semigroups in terms of AV/-fuzzy quasi-ideals. In this respect,
we prove that: An ordered semigroup S is regular, left and right simple if
and only if every N -fuzzy quasi-ideal of S is a constant N -function. We also
prove that S is completely regular if and only if for every N-fuzzy quasi-
ideal f of S we have f(a) = f(a?) for every a € S. We define semiprime
N-fuzzy quasi-ideal in ordered semigroups and prove that an ordered semi-
group S is completely regular if and only if every N -fuzzy quasi-ideal f of
S is semiprime. Next, we characterize semilattices of left and right simple
ordered semigroup in terms of NV -fuzzy quasi-ideals. We prove that an or-
dered semigroup S is a semilattice of left and right simple if and only if for
every N-fuzzy quasi-ideal f of S, we have f(a) = f(a?) and f(ab) = f(ba)
for every a,b € S. In the last of this paper, we discuss ordered semigroups
having the property a < a® for all a € S and prove that an ordered semi-
group S (having the property a < a? for all a € S) is a semilattice of left and
right simple ordered semigroup if and only if for every N -fuzzy quasi-ideal
f of S we have f(ab) = f(ba) for all a,b € S.
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2. Some basic definitions and results

By an ordered semigroup (or po-semigroup) we mean a structure (S,-, <) in
which

(OS1) (S,-) is a semigroup,

(0S52) (S5,<) is a poset,

(0S3) (Va,b,xz € S)(a < b= ax < bx and za < xb).

Let (S,-, <) be an ordered semigroup. For A C S, we denote

(A] :={t € S|t < hforsomehe A} and AB:={abla € A,b<€ B}.

A non-empty subset @ of S is called a quasi-ideal (see [8]) of S if:

(1) (QS]N(SQICQ and (2) Ifac@and S>b< athenbeq.

Let A, B C S. Then A C (A], (A|(B] C (AB], ((4]] = (A] and
((A](B]] € (AB]J (see [8]).

) = A C S is called a subsemigroup of S if A> C A, and a right (resp.
left) ideal of S if (1) AS C A (resp. SAC A)and (2) a€ A, S>b<a
imply b € A. If A is both a right and a left ideal of S, then it is called an
ideal. A subsemigroup B of S is called a bi-ideal of S if: (1) BSB C B and
(2) ae B, S>b<aimply b€ B.

By a negative fuzzy subset (briefly, an N -fuzzy subset) of S we mean a
function f: S — [—1,0]. An N-fuzzy subset f of S is called an N -fuzzy
left (resp. right) ideal of S if:

(1) <y = f(z) < f(y) and (2) f(zy) < f(y) (vesp. f(zy) < f(x))
for all x,y € S.

If f is both an N-fuzzy left and an N -fuzzy right ideal of S. Then it is
called an N -fuzzy ideal of S.

For a non-empty family of N-fuzzy subsets {f;}ics, of an ordered semi-

group S, the N-fuzzy subsets A f; and \/ f; of S are defined as follows:
i€l iel

(A#)@ =inficr{fi@} (V)@ = sl i)
el iel

The characterisitic N -function k4 of ) # A C S is given by:

() = —lifz e A,
RAT 0ifa ¢ A

For NV-fuzzy subsets f and g of S we define the N-composition fNg by

{ A max{f(y),9(2)} if A, #0,
fNg(z) == (2)eA
0 if A, =0,
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where

Ay ={(y,z) € S x S|z <yz}.

The set NF(S) of all N-fuzzy subsets of Swith such defined N-composition
and the relation

f=Xgifandonlyif f(z) < g(z) forallz € §

is an ordered semigroup denoted by (NF(S),N,=). The fuzzy subsets
B(xz) = 0 and a(z) = —1 (for all z € S) the greatest and least element of
(NF(S),=). The fuzzy subset (3 is the zero element of (NF(S), N, <) (that
is, fNB=pNf=pand f < for every f € NF(S)). Obviously, fs = «
and fp = .

Definition 2.1. (cf. [11]). Let S be an ordered semigroup. An N-fuzzy
subset f of S is called an N-fuzzy subsemigroup of S if

f(zy) < max{f(z), f(y)} for all z,y € S.

Definition 2.2. (cf. [11]). Let S be an ordered semigroup. An N-fuzzy

subsemigroup f of S is called an N-fuzzy bi-ideal of S if:
(1) = <y implies f(z) < f(y).
(2) f(zay) <max{f(z), f(y)} for all z,a,y € S.

Proposition 2.3. (cf. [11]). Let S be an ordered semigroup and A,B C S.
Then

(a) BC A ifand only if kp < KA.

(b) KAV KB = KanB.

() KaNKp = K(apB]-
Lemma 2.4. (cf. [22]). Let S be an ordered semigroup. Then every
quasi-ideal of S is subsemigroup of S.

Lemma 2.5. (cf. [24]). An ordered semigroup (S,-, <) is a semilattice of
left and right simple semigroups if and only if for all quasi-ideals A, B of
S, we have

(A%] = A and (AB] = (BA].

An ordered semigroup S is called regular (see [5]) if for every a € S there
exists x € S such that a < aza or equivalently, (1) (Va € S)(a € (aSa))
and (2) (VA C S)(A C (ASA]).

An ordered semigroup S is called left (resp. right) simple (see |9]) if for
every left (resp. right) ideal A of S, we have A = S.



N-fuzzy quasi-ideals in ordered semigroups 241

Lemma 2.6. (cf. [9, Lemma 3|). An ordered semigroup S is left (resp.
right) simple if and only if (Sa] =S (resp. (aS] = S) for every a € S.

An ordered semigroup S is called left (resp. right) reqular (see [4]) if
for every a € S there exists x € S such that a < za? (resp. a < a?z) or
equivalently, (1) (Va € S)(a € (Sa?]) and (2) (VA C S)(A C (SA?]). An
ordered semigroup S is called completely regular if it is regular, left regular
and right regular [6].

If S is an ordered semigroup and () # A C S, then the set (AU(ASNSA)]
is the quasi-ideal of S generated by A. If A = {x} (z € 5), we write
(x U (xS N Sz) instead of ({z} U ({z}S N S{z})].

Lemma 2.7. (cf. [6]). An ordered semigroup S is completely regular if and
only if A C (A2SA?] for every A C S. Equivalently, if a € (a®?Sa?)] for
every a € S.

Lemma 2.8. (cf. [24]). An ordered semigroup (S,-,<) is a semilattice of

left and right simple semigroups if and only if for every right ideal A and
every left ideal B of S, we have AN B = (AB].

Lemma 2.9. Let (S,-,<) be an ordered semigroup and let A, B be quasi-
ideals of S. Then (AB] is a bi-ideal of S.

3. N-fuzzy quasi-ideals

In this section we prove the basic theorem which characterizes ordered semi-
group in terms of N -fuzzy quasi-ideals.

Definition 3.1. Let (S, -, <) be an ordered semigroup. An N-fuzzy subset
f of S'is called a N-fuzzy quasi-ideal of S if
(1) (fNa)V (aNf) = f.
(2) = <y, then f(x) < f(y) for all z,y € S.
The set
L(f;t) :={x € 5|f(z) <t}

is called a level subset of f.

Theorem 3.2. (cf. |[11]). Let S be an ordered semigroup and f an N -fuzzy
subset of S. Then Vt € [—1,0), L(f;t)(#£ () is a bi-ideal if and only if f is
an N -fuzzy bi-ideal.

Theorem 3.3. Let (S,-,<) be an ordered semigroups and O # A C S.
Then A is a quasi-ideal of S if and only if the characteristic N -function
ka of Ais an N-fuzzy quasi-ideal of S.
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Proof. Suppose that A is a quasi-ideal of S. Then (kaNa)V (aNk4) = Ka.
Indeed:

(kaNa)V (aNka) = (kaNks) V (ksNKA) = Kas) V K(s4] = K(ASN(SA]

by Proposition 2.3.

Since (AS] N (SA] C A, then by Proposition 2.3, we have r(45)n(s4] =
k4. Thus (kaNa)V (aNka) = ka. Let z,y € S be such that x < y. If
ka(y) = 0. Then ka(z) < ka(y), because ka(x) < OVr € S. If ka(y) = —1,
then y € A. Since S 3z <y € A, we have x € A, then k4(z) = —1 and
hence k4(x) < ka(y).

Conversely, assume that k4 is an N-fuzzy quasi-ideal of S. Then A
is a quasi-ideal of S since (kaNa) V (aNky) = k4 implies (kaNkg) V
(ksNka) = k4. By Proposition 2.3, ks Nka = r(ga) and kaNKs = K(ag),
then K(AS] V ’{(SA} = R(AS}O(SA} and we have ’{(AS}O(SA] >~ KA. Thus (AS] N
(SA] C A.

If r€ Aand S >y < z. Since y < z and k4 is an N-fuzzy quasi-ideal
of S, we have k4(y) < ka(x). Since z € A then k4(z) = —1, and hence
kaly) = —1,1e.,y € A O

Theorem 3.4. Let S be an ordered semigroup and f an N -fuzzy subset
of S. Then ¥t € [—1,0), L(f;t)(# 0) is a quasi-ideal if and only if f is an
N -fuzzy quasi-ideal.

Proof. Assume that f is an N-fuzzy quasi-ideal of S. Let z,y € S be such
that < y. If y € L(f;t), then f(y) <t. Since z <y and f(z) < f(y) <t
then x € L(f;t). Let a € S be such that a € (L(f;t)S] N (SL(f;t)] then
a € (L(f;t)S] and a € (SL(f;t)]. Then a < zy and a < 2’y for some
z,y € L(f;t) and o',y € S and so (z,y) € A, and (2',y') € A,. Since
Ay # 0, we have

f(a) < (fNa) V (aN f))(a) = max [(fNa)(a), (aN f)(a)]
—max| A max{f(p),a(@)}, A max{a®), /(g

(p,9)€Aa (v ,¢ )AL

< max |max{ f(a), a(b)}, max{a(a), F(o')}]
— max [max{ f(2), =1}, max{~1, f(y)}| = max [ f(2), F()] .
Since z,y € L(f;t) we have f(z) <t and f(y
f(@) < max | f(2), ()] <,

’

)]

!

) < t. Then
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so a € L(f;t). Thus (L(f;t)S) N (SL(f;t)] € L(f;

Conversely. Assume that for all ¢t € [—1,0], L(f
of S. Let x,y € S be such that x < y. If f(x) >
such that f(z) > t > f(y) then y € L(f;t) but
contradiction. Thus f(z) < f(y) for all z < y.

Let € S be such that f(x) > ((fNa) V (aNf))(z), then 3t € [—1,0]
such that f(z) >t > ((fNa) V (aNf))(z) = max[(fNa)(x), (aN f)(z)].

Then (fNa)(z) < t and (aNf)(z) < t and hence z € (L(f;t)S] and
x € (SL(f3t)], so w € (L(f;0)S] N (SL(f;t)]. But (L(f;2)S] N (SL(f;1)] €
L(f;t), hence x € L(f;t), i.e., f(x) < t. This is a contradiction. Thus

f(@) < ((fNa) V (aN f))(z). H

Example 3.5. Let S = {a,b,c,d, f} be an ordered semigroup with the
following multiplication

(fs1).

;t) # 0 is a quasi-ideal
f(y), then 3t € [—1,0]
x ¢ L(f;t). This is a

- la b ¢ d f
ala a a a a
bla b a d a
cla f ¢ ¢ f
dla b d d b
fla f a ¢ a

and let <:= {(a,a), (a,b), (a,c), (a,d), (a, f), (b,b), (c,c),(d,d), (f, f)}

The quasi-ideals of S are: {a}, {a,b}, {a,c}, {a,d}, {a, f}, {a,b,d},
{a,c,d}, {a,b, f},{a,c,f} and S (see [5]). Define f : S — [—1,0] by
f(a) = =08, f(b) =—0.6, f(d) = —0.5, f(c) = f(f) = —0.3. Then

S if [—0.3,0],
{a,b,d} if [—0.5,—0.3),
L(f;t):={ {a,b} if t€[-0.6,-0.5),
{a}  if [—0.8,—0.6),
0 if [-1,-0.8).

is a quasi-ideal and by Theorem 3.4, f is an N-fuzzy quasi-ideal of S.
Lemma 3.6. Every N-fuzzy quasi-ideal is an N-fuzzy bi-ideal.

Proof. . Let z,y,z € S. Then zyz = 2(yz) = (2y)z and (z,yz) € Azy. and
(zy,z) € Agy.. Since Agy. # 0 then
flzyz) <[(fNa)V (aN[f)] (zy2)
—max| A\ max{f()a(@)}, N max{a(p), far))

(p:Q)eAzyz (p17q1)EAa:yz
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< max[max{ f(x), a(yz)}, max{a(zy), f(2)}]
,—1}, max{—1, f(2)}] = max[f(z), f(2)].

If z,y € S, then zy = z(y) and hence (z,y) € Agy. Since Ay, # 0, we have
flay) <[(fNa)V (aN f)](zy)
—max| A\ max{f(p),a(a)}, /\ max{a(p), f(a)}]

(P,@) €Ay (P,@) €Ay
< max[max{f(z), a(y)}, max{a (), f(y)}]
= max[max{f(z), -1}, max{—1, f(y)}] = max[f(z), f(y)].

Let x,y € S be such that = < y. Then f(z) < f(y), because f is an
N-fuzzy quasi-ideal of S. Thus f is an N -fuzzy bi-ideal of S. O

)
)

= max[max{ f(z

The converse of above Lemma is not true, in general.
Example 3.7. Consider the semigroup S = {a,b,c,d}

. ‘ a b ¢ d
ala a a a
bla a a a
cla a b a
dla a b b
with the order <:= {(a,a), (b,b), (¢, c),(d,d), (a,b)}.

Then {a,d} is a bi-ideal but not a quasi-ideal of S. For an N-fuzzy set f
defined by f(a) = f(d) = —0.3, f(b) = f(c) = —0.7 we have

S if te[-03,0],
L(f;t):=4{ {a,d} if te[-0.7,-0.3),
0 if te[-07,-1).
Then L(f;t) is a bi-ideal of S and by Theorem 3.4, f is an N-fuzzy bi-ideal of

S. Moreover, L(f;t) is a bi-ideal of S but not a quasi-ideal for all ¢t € [-0.7, —0.3)
and by Theorem 3.4, f is not an N-fuzzy quasi-ideal of S.

Proposition 3.8. If (S, -, <) is an ordered semigroup and f1, f2, g1, g2 are N-fuzzy
subsets of S such that g1 = f1 and g2 < fao, then g1 Ngs < fiN fo.

Proof. Let a € S. If A, =0 then fiNfa(a) =0 > g1Nga(a). If A, # () then
ANfa(a) = N\ max{fi(y), f2(2)} = /\ max{gi(y),92(2)} = g1 Nga(a),

(y,z)EAa (y,Z)EAa
which completes the proof. O

From the above Proposition we see that the set of all N-fuzzy subsets of an
ordered semigroup is a complete lattice.
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4. Characterizations of regular ordered semigroups

In this section, we prove that an ordered semigroup S is regular, left and right
simple if and only if every N-fuzzy quasi-ideal f of S is a constant N -function.
We define semiprime N -fuzzy quasi-ideals of ordered semigroups and prove that
an ordered semigroup (5, -, <) is completely regular if and only if every N-fuzzy
quasi-ideal f of S is a semiprime N-fuzzy quasi-ideal of S.

Theorem 4.1. For an ordered semigroup S the following are equivalent:
(i) S is regular, left and right simple.
(17) Every N-fuzzy quasi-ideal of S is a constant N-function.

Proof. (i) = (ii). Let S be regular, left and right simple ordered semigroup. Let
f be an N-fuzzy quasi-ideal of S. We consider the set Eq := {e € S|e? > e}. Then
Eq is non-empty. In fact, i a € S, since S is regular, then there exists x € S such
that a < aza. We consider the element az of S. Then (az)? = (aza)z > ax, and
so axr € Eq.

(A) We first prove that f is a constant N-function on Eq. That is, f(e) = f(¢)
for every t € Eq. In fact: Since S is left and right simple, we have (St] = S and
(tS] = S. Since e € S then e € (St] and e € (tS]. Then e < zt and e < ty for
some z,y € S. If e < xt then e? = ee < (xt)(xt) = (xtx)t and (xtx,t) € A, If
e < ty then e? = ee < (ty)(ty) = t(yty) and (t,yty) € A.2. Since A2 # 0, and f
is an NV -fuzzy quasi-ideal of S, we have

f(€?) < ((fNa) V (aNf))(€*) = max[(fNa)(e®), (aN f)(e?)]
—max| A\ max{f().a()}, A\ max{a(z), f()}]
(y1,21)€EA 2 (y2,22)€EA 2
< max [max { £(1), a(yty)} , max {£(1), a(wtz)}]
= max [max {f(t), =1} ,max {f(t), =1}] = max [f(¢), f(t)] = f(?).
Since e € Eq, we have e? > e and f(e?) > f(e). Thus f(e) < f(t). On the
other hand since S is left and right simple and e € S, we have S = (Se] and
S = (eS]. Since t € S we have t € (Se] and ¢ € (eS]. Then t < ze and t < es for

some z,5 € S. If t < ze then t? = tt < (ze)(ze) = (zez)e and (zez,e) € Ap. If
t < es then t2 = tt < (es)(es) = e(ses) and (e, ses) € Az. Since A;z # 0, we have

F(2) < (FN@) V (@N))(E) = max((FN)(t2), (N £)(¢2)
=max| A max{f(po).al@)}.  /\ max{alpe). f(a)} ]

(p1,q1)€A,2 (p2,92)€A,2
< max [max {f(e), a(zex)}, max{a(yey), f(e)}]
= max [max { f(e), =1} ,max {—1, f(e)}] = max[f(e), f(e)] = f(e).
Since t € Eq then t? >t and f(t?) > f(t). Thus f(t) < f(e). Consequently,
f(t) = f(e).
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a)

(B). Now, we prove that f is a constant A/-function on S. That is, f(t) =
a < aza.

for every a € S. Since S is regular and a € S, there exists € S such that
We consider the elements ax and za of S. Then by (0S3), we have

(az)? = (aza)z > az and (za) = z(aza) > za,
then ax, xa € Eq and by (A) we have f(az) = f(t) and f(xa) = f(t). Since
(az)(aza) > axa > a,

then (az,aza) € A, and (aza)(za) > axa > a, then (aza,za) € A, and hence
A, # 0. Since f is an N-fuzzy quasi-ideal of S, we have

fla) < ((fNa) V (aN f))(a) = max[(fNa)(a), (aN f)(a)]
—max| A\ max{fm).a(z=)}, A max{a(), /(22)}
(y1,21)€Aq (y2,22)€Aq
< max [max { f(az), a(aza)} ,max {a(aza), f(za)}]
= max [max { f(ax), -1} ,max {—1, f(za)}]
= max [f(az), f(za)] = max[f(t), (2)] = F(b)
Since S is left and right simple we have (Sa] = S, and (aS] = S. Since t € S,
we have t € (Sa] and t € (aS]. Then t < pa and t < ag for some p,q € S. Then

(p,a) € Ay and (a,q) € A;. Since A; # 0 and f is an N-fuzzy quasi-ideal of S, we
have

1(6) < (FN) v (aN ) () = max((fNa)(®), (N £) (1)
—max[ A max{f(m).a(z)}, N\ max{al), f(2)}]

(y1,21)€4; (y2,22) €A,
max [max { f(a), a(p)} , max{a(q), f(a)}]
= max [max {f(a), -1}, max{—1, f(a)}] = max[f(a), f(a)] = f(a).

Thus f(t) < f(a) and f(t) = f(a).

(13) = (i). Let a € S. Then the set (aS] is a quasi-ideal of S. Indeed, (a)
(aS]N (Sa] C (aS] and (b) If z € (aS] and S 3 y < z € (aS], then y € ((aS]] =
(aS]. Since (aS] is quasi-ideal of S, by Theorem 3.3, the characteristic A/-function
K(as) Of (aS] is an N-fuzzy quasi-ideal of S. By hypothesis, r(,g] is a constant

N

N-function, so (.5 () = —1 or K(gs)(z) = —1 for every z € S.
Let (aS] C S and a be an element of S such that a ¢ (aS], then x(qg(7) = 0.
On the other hand, since a® € (aS] then k(,g)(a®) = —1. A contradiction to the

fact that r(,s) is a constant N-function. Thus (aS] = S. By symmetry we can
prove that (Sa] = S.

Since a € S and S = (aS] = (Sa], we have a € (aS] = (a(Sa]] C (aSa], hence
S is regular. O
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Theorem 4.2. An ordered semigroup (S, -, <) is completely reqular if and only if
for every N-fuzzy quasi-ideal f of S we have f(a) = f(a®) for every a € S.

Proof. Let S be a completely regular ordered semigroup and f an N-fuzzy quasi-
ideal of S. Since S is left and right regular we have a € (Sa?] and a? € (a295] for

every a € S. Then there exists 2,y € S such that ¢ < za? and a < a?y. Then
(z,a?), (a®,y) € A,. Since A, # ), we have

fla) < ((fNa) V (aN f))(a) = max[(fNa)(a), (aN f)(a)]
—max| A max{f(y),a(z)}, /\max{a(y), /(=)}
(y,2)€EAq (y,2)€Aq
< max[max{f(a®), a(y)}, max{a(z), f(
= max[max{ f(a?), -1}, rnax{ 1, f(a®)}
= max[f(a®), f(a®)] = f(a®) = f(aa) < max{f(a), f(a)} = f(a).

Thus f(a) = f(a®).
Conversely, let a € S. We c0n31der the quasi-ideal Q(a?) generated by a?

(a € S). That is, the set Q(a?) = (a® U (a*S N Sa?)]. By Theorem 3.3, the
characteristic N -function kq(,2) is an N-fuzzy quasi-ideal of S. By hypothesis

N

f(a®)}]

KQ(a?) (a) = KQ(a?) (a2).

Since a2 € Q(a?), we have kq(q2)(a?) = —1 then kg(e2)(a) = —1 and a €
Q(a?) = (a® (azS N Sa?)]. Then a < a® or a < a’r and a < ya® for some
xyES Ifaéa thena<a2—aa<a2 2 = gaa® < d%aad® € a?Sa? and

€ (a®Sa?]. If a < a®z and a < ya® then a < (a%7)(ya?) = a®(wy)a® € a®>Sa? and

€ (a*Sa?]. O

A subset T of an ordered semigroup S is called semiprime if for every a € S
from a? € T it follows a € T.
Definition 4.3. An AN -fuzzy subset f of an ordered semigroup (S, -, <) is called
semiprime if f(a) < f(a?) for all a € S.

Theorem 4.4. An ordered semigroup (S, -, <) is completely reqular if and only if
every N -fuzzy quasi-ideal f of S is semiprime.

Proof. Let S be a completely regular ordered semigroup and f an N-fuzzy quasi-
ideal of S. Let a € S. Then f(a) < f(a?). Indeed, since S is left and right
regular, there exist 2, y € S such that a < a? and a < a?y then (7,a?) € 4, and
(a?,y) € A,. Since A, # 0, then we have

f(a) < (fNa) V (aN ))(a) = max[(fNa)(a), (aN f)(a)
—max| A\ max{f(y).a(z)}, /\ max{a@), ()}

(y,2)€EAq (y,2)€EAq
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< max [max{f(a?), a(y)}, max{a(x), f(a?)}]
— max [max{f(a?), ~1}, max{~1, f(a®)}] = max [f(a?), f(a®)] = f(a?).

To prove the converse, let f be an A -fuzzy quasi-ideal of S such that f(a) <
f(a?) for all a € S. We consider the quasi-ideal Q(a?) generated by a?(a € S).
That is, the set Q(a?) = (a*U (a®*SNSa?)]. Then by Theorem 3.3, k¢(q2) is an N-
fuzzy quasi-ideal of S. By hypothesis kq(q2)(a) < Kg(a2)(a?). Since a® € Q(a?),
we have kg(q2)(a?) = —1 and kg(2)(a) = —1 we get a € Q(a?). Then a < a? or

a < a’p and a < qa? for some p,q € S. If a < a? then

a<a2:aa<a2a2

= aaa?® < a’ad® € a®>Sa® and a € (aQSaQ].
If a < a®p and a < ga®. Then a < (a?p)(qa®) = a®(pg)a® € a*Sa® and a €
(a®Sa?]. O

5. Some semilattices of simple ordered semigroups

A subsemigroup F' of an ordered semigroup S is called a filter of S if:
(1) a,be S and ab € F implies a € F and b € F.

(13) If a € F and ¢ € S such that ¢ > a then c € F' (see [7]).

For x € S, we denote by N(z) the least filter of S generated z (x € S) and by
N the equivalence relation

N ={(z,y) € S x S|N(x) = N(y)}.

Let S be an ordered semigroup. An equivalence relation o on S is called congruence
if (a,b) € o implies (ac, bc) € o and (ca,cb) € o for every ¢ € S. A congruence o
on S is called semilattice congruence if (a?,a) € o and (ab,ba) € o for each a,b € S
(see [7]). If o is a semilattice congruence on S then the o-class (z), of S containing
x is a subsemigroup of S for every z € S (see [7]). An ordered semigroup S is
called a semilattice of left and right simple semigroups if there exists a semilattice
congruence o on S such that the o-class (x), of S containing z is a left and right
simple subsemigroup of S for every xz € S.

Equivalent definition:
There exists a semilattice Y and a family {S,}acy of left and right simple
subsemigroups of S such that
(i) SaNSg=0Va,B€Y, a0,
(i) S= U Sa,

acY
(4i7) SaSp C Sap Va,B €Y.

Theorem 5.1. An ordered semigroup (S,-,<) is a semilattice of left and right
simple semigroups if and only if for every N-fuzzy quasi-ideal f of S, we have

f(a) = f(a®) and f(ab) = f(ba) for all a,b € S.
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Proof. Suppose that S is a semilattice of left and right simple semigroups. Then
by hypothesis, there exists a semilattice Y and a family {S, }ncy of left and right
simple subsemigroups of S satisfying (i), (é¢) and (i44).

(A) Let f be an N-fuzzy quasi-ideal of S and a € S. Since a € S = |J Sa,
acY
then there exists @ € Y such that a € S,. Since S, is left simple we have S, =

(Sqal. Since a € Sy, then a € (S,a] and so a < za for some x € S,,. Since z e Sas
we have z € (S,a, then 2 < ya for some y € S,,. Thus a < za < (ya)a = ya? and
we have (y,a?) € A,. Also S is right simple, we have S, = (aS,], since a € S,, then

€ (aS,] and we have a < az for some z € S,. Since z € S, we have z € (aS,]
then 2 < at for some t € S. Thus a < az < a(at) = a*t, and we have (a?,t) € A,.
Since f is an N-fuzzy quasi-ideal of S and A, # ), we have

fla) < ((fNa) Vv (aNf))(a) = max[(f Ne)(a), (aN f)(a)]
=max| A max{f().a(z)}h A\ max{a), f(2)}]
(y1,21)€Aq (y2,22)€Aa
< max [max{f(a*), a(t)}, max{a(y), f(a*)}]
= max [max{f(a®), -1}, max{—1, f(a®)}] = max [f(a®), f(a®)] = f(a?).

On the other hand, since every N-fuzzy quasi-ideal is an N -fuzzy subsemigroup
of 5, we have f(a?) = f(aa) < max{f(a), /(a)} = f(a). Thus f(a) = f(a?).

(B) Let a,b € S. By (A), we have f(ab) = f((ab)?) = f((ab)?). Since
(AB] = (BA] = AN B, by Lemmas 2.5 an 2.8, we have

(ab)* = (aba)(babab) € Q(aba)Q(babab) C (Q(aba)Q(babab)]

(ab
= (Q(babab)Q(aba)] = ((babab U (bababS N Sbabab](aba U (abaS N Sabal]
C ((babab U (bababS](aba U (Saba)] C ((baS U (baS](Sba U (Sbal]

— ((baS](Sba]] = ((baSba]] = (baSba] = baS N Sba

Then (ab)* < (ba)x and (ab)* < y(ba) for some z,y € S. Then (ba,z) € Aggp)a
and (y,ba) € A(gp)s. Since f is an N—fuzzy quasi-ideal and A(4p)s # (), we have

F((ab)") < (fNa) V (aN£))((ab)*) = max|(fNa)(ab)", (aN f)(ab)*]
—max| A max{f(m).a)} A max{a(), f(22)}]

(y1,21) €A (434 (Y2,22) €A (4p)a
max [max{f(ba), a(z)}, max{a(y), f(ba)}]
= max [max{ f(ba), —1}, max{—1, f(ba)}] = max [f(ba), f(ba)] = f(ba).

N

By symmetry we can prove that f(ba) < f((ab)?) = f(ab).

Conversely, assume that conditions (1) and (2) are true. Then by (1) and
Lemma 2.7, S is completely regular. Let A be a quasi-ideal of S and let a € A.
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Since S is completely and a € S, there exists x € S such that a < a?za®. Then

a < a*za® € (a*Sa?) = a(a(Sa)a) C a(aSa) C a(aSal
=a(aSNSa) C A(ASNSA) C A(AS) C AA,

and so A C AA C (A2]. On the other hand, by Lemma 2.4, A is a subsemigroup
of S, we have A2 C A = (A% C (4] = A.

Let A and B be any quasi-ideals of S and let « € (AB], then x < ab for some
a € A and b € B. We consider the quasi-ideal Q(ab) = (abU(abSNSab)] generated
by ab. Then by Theorem 3.3, the characteristic N-function rq ) of Q(ab) is an
N-fuzzy quasi-ideal of S. By hypothesis kg qp)(ba) = kg (ap)(ab).

Since ab € Q(ab), we have kg.p)(ab) = —1 and Kgap)(ba) = —1. Therefore
ba € Q(ab) = (abU (abS N Sab)] and, by Lemma 2.9,

ba € (abU (abS N Sab)] = (abU (abSab]] C (AB U (ABSAB]]
C (ABU((AB]S(AB]] C (ABU(AB]] = ((AB]] = (AB].

Hence (BA] C (AB]. By symmetry we can prove that (AB] C (BA]. O

Lemma 5.2. Let (S, -, <) be an ordered semigroup such that a < a® for all a € S.
Then for every N-fuzzy quasi-ideal f of S we have f(a) = f(a?) for every a € S.

Proof. Let a € S such that a < a®. Let f be an N-fuzzy quasi-ideal of S. Since f is
an N-fuzzy subsemigroup of S. Then f(a) < f(a?) < max{f(a), f(a)} = f(a). O

Theorem 5.3. Let S be an ordered semigroup and a € S such that a < a? for all
a € S. Then the following are equivalent:

(i) ab € (baS] N (Sba] for each a,b e S.
(17) For every N-fuzzy quasi-ideal f of S, we have f(ab) = f(ba) for every
a,besS.

Proof. (i) = (ii). Let f be an N-fuzzy quasi-ideal of S. Since ab € (baS] N (Sbal,
then ab € (baS] and we have ab < (ba)x for some z € S. By (i), we have
(ba)z € (xbaS] N (Szba). Then (ba)x € (Szba] and we have (ba)zx < (yz)(ba) and
so, ab < (yx)(ba) = (yx,ba) € Aup. Again, since ab € (Sbal, then ab < z(ba)
for some z € S and by (i) we have z(ba) € (bazS], then z(ba) < (ba)(zt) for
some ¢t € S. So we have ab < (ba)(zt) = (ba,zt) € Agp. Since f is an N-fuzzy
quasi-ideal of S and Ay # ), then

fab) < ((fNa) V (aN ) (ab) = max[(fNa)(ab), (N f)(ab)
=max| A max{f(p).aG)l,  /\ max{a(w), f(=)}]

(y1,21) €A (y2,22)€Aap
< max [max{ f(ba), a(zt)}, max{a(yz), f(ba)}]
= max [max{f(ba), —1}, max{—1, f(ba)}| = max[f(ba), f(ba)] = f(ba).
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By symmetry we can prove that f(ba) < f(ab).

(ii) = (i). Let f be an N-fuzzy quasi-ideal of S. Since a < a® for all a € S,
by Lemma 5.2, we have f(a) = f(a?). By (i), we obtain f(ba) = f(ab) for each
a,b € S. By Theorem 5.1, it follows that S, is a semilattice of left and right
simple semigroups. Thus by hypothesis, there exists a semilattice Y and a family
{Sa}acy of left and right simple subsemigroups satisfying (i), (#¢) and (i#i) from
the equivalent definition of a semilattice of simple semigroups.

Let a,b € S, we have to show that a € (baS] N (Sba]. Let o, 3 € Y be such
that a € S, and b € Sg. Then ab € 5,53 C Sup and ba € SgSa C Sga = Sag-
Since Sqp is left and right simple we have Sog = (Sagc] and Sap = (¢Sap] for each
¢ € Sap. Since ab,ba € S,3, we have ab € (baSag] N (Sapba] C (baS] N (Sba]. This
complete the proof. O
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Generalized quadratic quasigroup equations

with three variables

Aleksandar Krapez

Abstract. F. M. Sokhats’kyi recently posed the problem of classification of (un)cancel-
lable generalized quadratic quasigroup equations. Refining relevant results of S. Krsti¢,
A. Krapez and D. Zivkovi¢ solved this problem by reducing it to the classification of con-
nected (3—connected) cubic graphs. They also started systematic investigation by solving
all equations with two variables. Here we consider equations with exactly three variables.
There are 330 of them and they split into five classes of parastrophic equivalence. We

give solutions to five representative equations, one from each class.

1. Introduction

This paper is a sequel of [7] by A. Krapez and D. Zivkovi¢. Although we
define the most important notions and state essential results of [7], it is
assumed that the reader is thoroughly familiar with it.

In [7] authors consider the correspondence between generalized quadratic
quasigroup functional equations and connected cubic graphs as established
by S. Krsti¢ in his PhD thesis [8]. It is proved that the important no-
tion of parastrophic equivalence of quadratic equations corresponds to the
isomorphism of graphs obtained from given equations. The set of nine nor-
mal equations with two variables is divided into two classes of parastrophic
equivalence corresponding to two nonisomorphic graphs.

Much more is known about the special case of parastrophically uncan-
cellable equations. Various authors obtained instances of number u, of
classes of parastrophically nonequivalent uncancellable equations with small
number n of variables. The results are: uy = 1 (KrapeZ and Zivkovié [7]),

2010 Mathematics Subject Classification: 20N05, 39B52, 05C25

Keywords: quasigroup, quadratic functional equation, connected cubic graph, para-
strophic equivalence.

The author is supported by grants 144013 and 144018 of the Ministry of Science and
Technology of Serbia.



254 A. Krapez

uz = 1 (Sokhats’kyi [10] after Duplak [4]), usa = 2 (Sokhats’kyi [10]), us = 4
(Koval’ [5]) and ug = 14 (Krapez, Simi¢ and Togi¢ [6]).

In this paper we prove that there are five classes of cancellable and
uncancellable equations with three variables, we give their Krsti¢ graphs
and solve five parastrophically nonequivalent representative equations.

2. Quasigroups and functional equations

Let us recall necessary definitions and results of [7]. For bare essentials
on quasigroups see |7|. More can be found in standard references V. D.
Belousov [2], O. Chein, H. O. Pflugfelder and J. D. H. Smith [3] and H.
O. Pflugfelder [9]. We just state that the language of quasigroups contains
six binary operations: multiplication (-), left (\) and right (/) division and
their respective dual operations: * (dual of -), \\ (dual of \) and / (dual
of /). These six operations are known as parastrophes of - (and of each
other) and the connection between them is: zy = z iff 2\z = y iff z/y =
ziff yxz=ziff 2\e =y iff y)z = x.

When we use prefix notation for operations and a quasigroup operation
is A, we define: A(xy,x5) = a3 iff AV (2, 20) = x5 iff A0 (29, 21) =
T3 iff A(l?’)(l'g,l‘g) = I iff A(Qg)(l'l,l‘g,) = X2 iff A(123)(IE2,ZE3) = I iff
AU32) (g3, 21) = x9. In general, A(zy,x0) = x3 iff A%(T(1), To2)) = To(3)
for o € S3.

We assume that all operations are quasigroups. Further:

Definition 2.1. Functional equation s = t is quadratic if every object
variable appears exactly twice in s = t.

Definition 2.2. Functional equation s = t is generalized if every functional
variable F' (including all parastrophes of F') appears only once in s = ¢.

We also need the following:

Definition 2.3. Let Eq[Fy,..., F,] be a generalized quadratic functional
equation on quasigroups. We write F; ~ F; (1 <4,j < n) and say that F;
and F} are necessarily isostrophic if in every solution Q1,...,Q, of Eq the
operations (); and @); are isostrophic.

A functional variable F; is loop, group, abelian if Q; is isostrophic to a
loop, group, abelian group respectively.

Definition 2.4. A ~—class with one or two elements is called small, other-
wise it is big.
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Definition 2.5. Two equations Fq and Eq’ are parastrophically equivalent
(EqPE E¢') if one of them can be obtained from the other by applying a
finite number of the following steps:

1. Renaming object and/or functional variables.

2. Replacing s =t by t = s.

3. Replacing equation A(t1,t2) = t3 by one of the following equations:
Ag(tg(l),tJ(Q)) = t0(3) for some o € Ss.

4. Replacing a subterm A(ty,t3) of s or t by A0 (to, ;).

5. Replacing a subterm A(z,t2) by a new variable y and simultane-
ously replacing all other occurrences of x by either A13)(y, t5) or
A(123) (t27 y).

6. Replacing a subterm A(t;,x) by a new variable y and simultane-
ously replacing all other occurrences of x by either A@3)(¢,y) or
A(132) (y’ tl)-

If we use notation Fql...,A,...], we denote by Eq[..., A%, ...] the
equation obtained by one of the steps (3) — (7) above, always preserving the
order of other functional variables. Using this convention we get:

Theorem 2.6 (Krsti¢ [8]) . If equations Eq[F, ..., F,] and Eq |G, ..., Gy)]
are parastrophically equivalent and Q1,...,Qyn and Ry, ..., Ry are solutions
of respectively Eq, Eq' on a set S, then the operations Q; and R; (1 <i < n)
are mutually isostrophic.

3. Graphs and functional equations

Following S. Krsti¢ 8] we represent functional equations by graphs. These
‘graphs’ may have loops and multiple edges between two vertices and are
technically known as multigraphs.

We define graphs as relation systems (V, E;I) with I C V x E. It is
assumed that the sets V' of vertices and E of edges are disjoint and that
for every edge e there are at most two vertices incident to e. A loop is an
edge with a unique vertex incident to it. A loop in a graph should not be
confused with a loop as a quasigroup with an identity.

A graph is cubic if for every vertex v there are exactly three edges to
which v is incident, provided that if edge is a loop it is counted twice.

Definition 3.1. Two vertices v, v9 of a graph G are 3—connected (and we
write v1 = v9) if there are three disjoint paths in G from vy to vy. A graph
G is 3—connected if all vertices of G are 3—connected.
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In graph theory, 3—connectedness, as defined above, is usually called
3-edge—connectedness, but we shortened it to 3-connectedness. A graph is
3—connected iff removal of any two edges does not disconnect it. Obviously,
a cubic graph G is 3—connected iff the relation = is a full relation on V.

Definition 3.2. A =class with one or two elements is called small, other-
wise it is big.

Based on the theory of S. Krstié¢ [8], two constructioins are presented
in |7] - the one which produces the graph K(Eq) for a given generalized
quadratic functional equation FEq and the other, which gives an equation
QE(G) for a given finite connected cubic graph G.

We have:

Theorem 3.3 (Krapez and Zivkovic |7] after Krsti¢ [8]). Generalized qua-
dratic quasigroup functional equations Eq and Eq are parastrophically equi-
valent iff their Krsti¢ graphs K(Eq) and K(Eq') are isomorphic.

The following theorem is also important.

Theorem 3.4 (Krstic [8]). Let Eq[F,. .., F,] be a generalized quadratic
functional equation. Then F; ~ F; in Eq iff F; = F; in K(Eq). Moreover:

Every F; is a loop functional variable.

A symbol F; is a group functional variable iff F;/ = is big iff Ky is
homeomorphically embeddable in K(Eq) within F;/ =.

A symbol F; is an abelian functional variable iff the subgraph of K(Eq)
defined by F;/ = is not planar iff K33 is homeomorphically embeddable in
K(Eq) within F;/ =.

4. Equations with three variables

In the paper [7] A. Krapez and D. Zivkovi¢ defined sequences (E,), (e,) and
(mp)(n > 1), where E,, is the number of generalized quadratic quasigroup
functional equations with n variables, e, is the number of normal equations
among them and 7, is the number of classes of parastrophically equivalent
equations with n variables. By the Theorem 5.9 of [7] 7, is also the number
of nonisomorphic cubic graphs with 2(n — 1) vertices. We have E3 = 3780
and es = 330. It is announced that w3 = 5. We give the proof of this fact
now but also a new proof that mo = 2.

By the Lemma 5.2 of [7], equations with 2, 3 variables have Krsti¢ graphs
which are connected, cubic and have 2, 4 vertices and 3, 6 edges respectively.
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: :Ho D,

Figure 1. Graphs with two vertices

AoF]
CA

Figure2. Graphs with four vertices

Theorem 4.1. Every connected cubic graph with two vertices is isomorphic
to either the dumbbell graph Hy or to the dipole graph Ds (Figure 1). Every
connected cubic graph with four vertices is isomorphic to either one of: Hy,
Hs, Hs, Hy, K4 (Figure 2). Consequently, mo =2 and w3 = 5.

Proof. Let G be a connected cubic graph with either two or four vertices.
There are four possibilities:

(1) G has a loop,
(2) G has no loops but has a triple edge,
(3) G has no loops or triple edges but has a double edge,
(4) G has no loops or multiple edges.
(1) G has aloop. Then there is a vertex, say 1, with the loop. Since G is
cubic, there is another edge in 1 connecting it to a new vertex 2. There are
three possibilities:
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(11) the vertex 2 has a loop,
(12) 2 has no loop but has a double edge,
(13) 2 has no loops or double edges.

(11) The vertex 2 has a loop. Since G is cubic and connected, no further
extension is possible. Therefore G is isomorphic to the dumbbell graph Hy.

(12) The vertex 2 has no loop but has a double edge. Let the vertex
2 connects to the vertex 3 by the double edge. The single remaining edge
at 3 has to connect it to the new vertex 4. All vertices except 4 now have
three edges. Therefore 4 has to connect to itself by the loop. The graph G
is isomorphic to Ho.

(13) The vertex 2 has no loops or double edges. Therefore 2 has to
connect to two more vertices 3 and 4 by single edges. There are two possi-
bilities:

(131) there is a loop in 3,

(132) there is no loop in 3.

(131) There is a loop in 3. There must be a loop in 4 as well and G is
isomorphic to Hj.

(132) There is no loop in 3. Then 3 and 4 must be connected by the
double edge. The graph G is isomorphic to Hs.

(2) G has no loops but has a triple edge. Then two vertices 1 and 2
are triply connected and no further extension is possible. The graph G is
isomorphic to the dipole graph Ds.

(3) G has no loops or triple edges but has a double edge. Assume that the
vertex 1 has a double edge to the vertex 2 and consequently a single edge
to another vrtex 3. There are two possibilities:

(31) there is an edge connecting vertices 2 and 3,

(32) there is no such edge.

(31) There is an edge connecting vertices 2 and 3. The edge must be
a single one since 2 is connected to 1 by the double edge. Then 3 must be
connected to the only remaining vertex 4 by the single edge. But then the
vertex 4 must have a loop which contradicts assumption (3).

(32) There is no edge connecting 2 and 3. Since no loops are alowed, 2
must be singly and 3 doubly connected to 4. The graph G is isomorphic to
Hy.

(4) G has no loops or multiple edges. Therefore 1 is singly connected to 2, 3
and 4. Since no loops or multiple edges are alowed, 2 must connect to both
3 and 4. Also, the 3 and 4 are connected and the graph G is isomorphic to
the graph Kjy. O
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We prove four usefull lemmas. They generalize Lemmas 8.1-8.4 from [7].

Lemma 4.2. Let a,b and e be elements and o a permutation of a set S. A
general solution to the equation

oF(a,b) =e¢ (1)

on a set S is given by:
F(z,y) = aL(\z, oy)
where:
— L is an arbitrary loop on S with the identity e,
— a, A and o are arbitrary permutations of S such that: oo =o', ha = e
and ob = e.

Proof. 1t is trivial to check that the above formulas always give a solution
to the equation (1). Next, we prove that every solution to the equation (1)
is of the form given in the statement of the Lemma.

Let F' be a particular quasigroup on S which satisfies (1). Define o =
oL, \r = oF(z,b), 00 = 0F(a,z) and L(z,y) = cF(A\"'z, 07 1y). We see
that A and p are permutations of S such that Aa = pb = e and F(x,y) =
aL(A\x, oy). The operation L is a quasigroup as an isotope of the quasigroup
F. Moreover, it is a loop, as follows from: L(e,x) = ocF (A" le,o7tx) =
oF(a,07'z) = oo~ 'z = x and L(z,e) = cF(\ "'z, 07 te) = s F(A\"lz,b) =
M lr =z O

S.

Lemma 4.3. Let b be an element and v,0 and T permutations of a set
A general solution to the equation

oF(yx,b) =712 (2)

on a set S is given by:
F(z,y) = aL(\z, oy)
where:
- L is an arbitrary loop on S with the identity e,
— o, \ and o are arbitrary permutations of S such that: o = o1,
Ay =T and ob = e.

Proof. 1t is easy to check that the above formulas always give a solution to
the equation (2).

Assume that a quasigroup F' is a solution of (2). We are proving that
F must be of the form indicated in the statement of the Theorem.
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Take a € S and define e = 7a,a = 0~ !, \x = o F(2,b), ox = 0 F(va, x).
Operations a, A and g are permutations such that Ayx = oF(yz,b) = T
and pb = oF(vya,b) = Ta =e.

Define a quasigroup L by L(u,v) = a ' F(A\"lu, 071v). We have L(e,z) =
a 'F(A\ e, o71l2) = oF(y77te,07'2) = 0F(va,0 'z) = oo 'z = x and
L(z,e) =a 'F(A\ 'z, 07 e) = o F(A\ "', b) = A\ "'z = 2 proving that L is
a loop with the identity e. O

By duality we have:

Lemma 4.4. Let a be an element and 6,0 and T permutations of a set S.
A general solution to the equation

oF(a,dz) =12 (3)

on a set S is given by:
F(z,y) = aL(Az, oy)
where:
— L is an arbitrary loop on S with the identity e,
— a, A and o are arbitrary permutations of S such that: a« = o~
and 00 = T.

L'dxa=e

Lemma 4.5. Let e be an element and v,6 and o permutations of a set S.
A general solution to the equation

oF(yx,dz) =e (4)

on a set S is given by:
F(z,y) = aL® Az, 0y)
where:
- L is an arbitrary loop on S with the identity e,
- a, A and ¢ are arbitrary permutations of S such that: cae = e, Ay =0
and pd = o.

Proof. Since L is a loop, we have L(x,e) = x i.e., L™2(x,x) = e. Therefore
oF (yz,é6x)=cal~?(\yz, 06x) =cal™?(ox,0r) =cae=e so F satisfies (4).
Assume that a quasigroup F' is a particular solution of (4). Define
ar = F(yo~le,d07'x). The function a is a permutation and cae =
oF(yo~le,d07te) =e.
Define also A = oy~ and o = 06~ !. It follows that Ay = ¢ and o6 = o.
If a quasigroup L is defined by L(u,v) = oF ~2(A~'u, av) then F(z,y) =
aL™2(\x, 0y), L(e,z) = oF 2(\"te,ax) = oF 2(\ " le, F(\le, 07 '2)) =

1
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oo tr =z and L(z,e) = oF 2(A\ "z, ae) = oF 2(A\ 1o, F(A\ "t 07 1)) =
o0 'z = x. Therefore L is a loop. O
There are three equations corresponding to the graph Hj:
A(B(z,z),C(y,y)) = D(z,2),
Az, B(C(y,y),D(2,2))) =z,  AB(C(z,),D(y,y)),z) = 2.

To reduce some space we shall not write appropriate generalized equa-
tions, as above, but the corresponding equations in the language with the
single operation -. So the three equations representing generalized equations
which correspond to the graph H; are:

x(yy.zz) = x (zxyy)z =z

One of the equations is also boxed, indicating the equation chosen to
represent the whole PE—class. The distinguished equation is then written
in full form and its solution is given in the following theorem. In this case
the representative equation is:

A(B(z,z),C(y,y)) = D(z,2) (5)

and the corresponding theorem is:

Theorem 4.6. A general solution of the equation (5) on a set S is given

by:
A(z,y) = L(Az, 0y)
B(z,y) = A 'Us(x,y)
C(z,y) = 0 'Us(z,y)
D(z,y) = Us(z,y)
where:

— L is an arbitrary loop on S with an identity e,

~ U; (2 <i < 4) are arbitrary unipotent quasigroups with a common
idempotent e,

- X and ¢ are arbitrary permutations of S.

Proof. 1) Let quasigroups A, B, C, D be given by the formulas above. Then
A(B(IL’, l‘), C(yv y)) = L(B(IL’, l‘), C(yv y)) = L(A)‘_1U2($v 'I)v QQ_1U3(y7 y))
= L(e,e) = e = Uy(z,2) = D(z,z). Therefore a quadruple of such quasi-
groups is a solution to (5).
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2) Let a quadruple of quasigroups A, B, C, D be a solution to (5). As-
sume p, q be arbitrary but fixed elements from S. Define b = B(p,p),c =
C(g,q) and e = A(b,c). Fixing z and y in the equation yields D(z,z) = e.
We can easily infer B(z,z) = b and C(y,y) = c. From A(b,c) = e, by the
Lemma 4.2, we find A(z,y) = aL(\zx, 0y) where L is a loop on S with an
identity e and «, A, ¢ are permutations of S such that a = Id and A\b = oc =
e. But then AB(x,z) = \b = e and if we define Us(x,y) = AB(x,y) we get
B(z,y) = A" Us(x,y). We can define Uz and Uy similarly. O

The ~—classes of (5) are all singletons.

The question arises as to why we use unipotent quasigroups to express
the solutions to functional equations when the Theorem 3.4 stresses the role
of loops, groups and/or Abelian groups. The reason is pure convenience
since we could use loops instead of unipotent quasigroups. Namely, by the
Lemma 4.5, for every unipotent quasigroup U the quasigroup U (23) with
the (unique) idempotent e is a loop with the identity e, and conversely, if
L is a loop with the identity e, then the quasigroup L(23) is unipotent and
has a unique idempotent e. The alternative general solution to (5) is then

given in:
Theorem 4.7. A general solution of the equation (5) on a set S is given
by:
A(z,y) = L(Az, oy)
B(z,y) = A\ 1LE (2,y)
Cla,y) = o~ L (2,y)
D(x.y) = L{ (2,y)
where:

— L, Lo, Ls and Ly are arbitrary loops on S with an identity e,
- X and ¢ are arbitrary permutations of S.

Further on, we state only one version of the solution, the one using
unipotent quasigroups.
There are 19 equations corresponding to the graph Ho:

TXY = Y.2%

XY = 22.Y

x(z.yy) = 2z z(yy.x) = 2z (xyy)r = 2z
(zx.y)y = 22 xy(y.zz) =x xy(zzy) =x
x.(y.zz)y =x x.(yy.2)z = x xx.(y.22) =y
zx.(yy.z) = z (zyy).zz =x (zxy).zz =1y
x(z.yy).z =z z(yy.x).z =z (zyy)r.z =z

(zzy)y.z =2
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The ~—classes of operations are again singletons. The representative
equation is

A(z, B(y,y)) = C(x, D(z, 2)) (6)
and its solution is given in the following theorem.

Theorem 4.8. A general solution of the equation (6) on a set S is given

by:
A(z,y) = Li(Mz, 01y)
B(z,y) = 07 'Us(,y)
C(z,y) = L3(A37, 03y)
D(x,y) = 05 'Us(x,y)
where:

— Ly and Ls are arbitrary loops on S with a common identity e,

- Uy and Uy are arbitrary unipotent quasigroups on S with a common
idempotent e,

- A1, 01, A3 and p3 are arbitrary permutations of S such that A\ = As.

Proof. 1) Let quasigroups A, B, C, D be given by the formulas above. Then
A(z,B(y,y)) = Li(\w, 010 ' Ua(y,y)) = Li(Mw,e) = Mz = A3z =
L3(Asz,e) = Ls(Asx, 93Q3_1U4(z, z)) = C(x, D(z, z)). Therefore the quadru-
ple of such quasigroups is a solution to (6).

2) Let a quadruple of quasigroups A, B, C, D be a solution to (6). Sup-
pose that p,q,r are arbitrary but fixed elements from S and define b =
B(q,q),e = A(p,b),d = D(r,r). Fixing z and y we get C(p,d) = e.

Define also Mz = A(x,b),01z = A(p,x),\3¢ = C(z,d) and g3z =
C(p,x). The relation A\; = A3 immediately follows. The equation (6)
reduces to the system: A(z,b) = A3z, 01B(y,y) = e, C(x,d) = Mz,
03D(z,z) =e.

By the Lemma 4.3 we can choose A(z,y) = Li(Aiz, 01y) for some L.
It is rather obvious that we have to take L;(u,v) = A(\; u, 0] 'v). Since
A1 and p; are translations of A, the operation L; must be a loop with the
identity e. Analogously, C(z,y) = L3(Asx, o3y) for a suitable loop Lz with
the identity e.

If we define Us(x,y) = 01B(z,y) we get Us(x,z) = ¢o1b = e and
B(z,y) = QIIUQ(:U,y). Similarly, D(z,y) = Q§IU4(x,y) for a unipotent
quasigroup Uy with the idempotent e. O
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There are 94 equations corresponding to the graph Hs.

TYY = 2.2T
TY.T = Y.2%2
TTY = 2Y.2

TYT = Y.2%2
TTY = 2.Yz
TY.Y = T.2%2
TY.T = 22.Y

TYY = 2.2
TTY = 2.2y
TTY = Yz.2
TY.Y = 22.T

x(y.xy) = zz x(yyzr) = zz x(y.zz) = zy
x(y.zz) = yx x(zy.y) = 2z x(yx.y) = 2z
x(yy.z) = xz x(yy.z) = zx TT.Yz = Yz
TTYZ = 2Y TY.rY = 22 TY.Yr = 22
TY.22 = TY TY.22 = YT (x.xy)y = 22
(ryx)y = 22 (r.yy)z = xz (x.yy)z = zx
(zxy)z = yz (zz.y)z = 2y (zy.x)y = 22
(zy.y)x = 2z r.x(y.zz) =y rxylr.zz) =y
xy(z.yz) =x x.y(z.2y) = r.x(yy.z) = z
xylyz.z) =x xy(zy.z) = xy(zz.x) =y
x(xy.zz) = x(yzr.zz) = x(yy.xz) = z
x(yy.zx) = x(yz.yz) = x(yz.2y) = x
©(zyy)s = 2 2(yy2)e =1 2(yoy)e =
z.(yzz)r =1y z.(yy.x)z = z z.(yy.2)r =z
z.(yz.y)z = x z.(yz.2)y == zx.(y.yz) = 2z
zx.(y.2y) = xy.(x.zz) =y y.(y.2z) =x
zx.(yz.y) = xx.(yz.2) =y xy.(zz.x) =y
xy.(zz.y) = (r.ay).zz=1y (ryz).zz =1y
(zyy).xz =z (z.yy).zx =z (zr.y).yz =z
(zz.y).2y = 2 (vy.z).zz =1y (zy.y).zz =2z
z(y.xy).z =z x(y.yzr).z = z x(y.zz)x =y
x(y.zz)y == x(ry.y).z =z z(yx.y).z =z
z(yy.z).x = z x(yy.z).z =x (zxyz)y =z
(zxyz)z =y (xy.xy)z =z (xy.yz)z = 2
(ry.zz)x =y (ry.zz)y ==z (z.xy)y.z =2
(ryx)y.z =z (xyy)z.x =z (xyy)z.z =x
(zry)zy =2 (zxy)z.z2 =1y (zy.x)y.z =2z
(zyy)r.z =2

In this case we have two ~—classes which are singletons and one class with
two elements. The representative equation is

Az, B(z,y)) = C(y, D(2,2)) (7)

and its solution is given in the following theorem.
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Theorem 4.9. A general solution of the equation (7) on a set S is given

by:
A(z,y) = L (\z, 01y)
B(z,y) = 07" L1(Aaz, 02y)
C(z,y) = L3(A3x, 03y)
D(z,y) = 05'Ul(z,y)
where:

— Ly and Ls are arbitrary loops on S with a common identity e,

— U 1is an unipotent quasigroup with the idempotent e,

— A1, 01, A2, 02, A3, 03 are arbitrary permutations of S such that A\ = Ao
and 09 = A3.

Proof. 1) Let quasigroups A, B, C, D be given by the formulas above. Then
A(z, B(z,y)) = L§23)(/\1m,gg_1L1()\2x, 02y)) = L§23)()\2m,L1()\2x,92y)) =
00y = A3y = L3(M\3y,e) = La(A3y, 0305 'U(2,2)) = C(y, D(2,2)). There-
fore the quadruple of such quasigroups is a solution to (7).

2) Let a quadruple of particular quasigroups A, B,C, D be a solution
to (7). Let p,q,r be arbitrary but fixed elements from S. Define b =
B(p,q),d = D(r,r) and e = A(p,b). Fixing = and y in the equation yields
C(q,d) = e. Define Asx = A(p,x), Bix = B(z,q), Bex = B(p,z),Cix =
C(z,d) and Cox = C(g,x) and their various compositions: A\; = Ay =
A9 By, 01 = Az, 09 = AsBs, A3 = C1, 03 = Cs. Equation (7) is equivalent to
the system:

A(z, B(z,y)) = Asy

C(y,d) = 02y
03D(z,2) =e .

Moreover, g2 = As.

By the Lemma 4.2, there is a unipotent quasigroup U such that D(z,y) =
03U (z,y) with a unipotent e. Also, by the Lemma , there is a loop Lg with
the identity e such that C(z,y) = L3(Asz, 03y). If we define a quasigroup
L1 by Ly (u,v) = A®3)(\ju, p1v), then it is a loop with the identity e and
Alz,y) = L (\z, 019), B(x,y) = 0111 (Ao, 021).

The rest of the requirements of the Theorem are satisfied too, which
completes the proof. O
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There are 114 equations corresponding to the graph Hy.

T.TY = 2.YZ
rYr = 2.2y
TY.T = 2.Yz
TY.Y = 2.2%
TY.T = Yz.2
TY.Y = 2X.2

x(x.yz) =yz
x(y.yz) = zx
x(yz.x) = yz
x(yz.y) = za
(z.xy)z = yz
(ryz)z = 2y
(zy.x)z = yz
(zy.y)z = 2z
r.x(yyz) =
rxy(y.zx) =z
r.x(yz.y) =z
xy(zrz.2) =y
z.(yxy)z =z
z.(yyz)r =z
z.(xyy)z =z
z.(yx.2)z =y
xy.(z.xy) =
xy.(z.yz) = x
xy.(xy.z) =

z
xy.(yz.z) = x
z
z
xY.xr).yz =z
z
z
z

)
z(yyz).z ==
)

).

(yz.x).y =
r(yzy)z=x
(z.ay)zy =2
(ryz)z.z2 =1y
(ry.x)zy =2z
(zy.y)

TY.Yy)z.2 =

T.XY = 2.2y
TY.T = 2.2y
xY.2 = 2.2y
TY.T = 2Y.2
TY.2 = XTY.Z

x(xyz) = zy
x(y.zy) = xz
x(yz.x) = zy
x(yz.z) = zy
r.xy)z = 2y
T.Yz)T =Yz

r.x(y.zy) =z
xy(z.xz) =
r.x(yz.z) =
ry(zzy) = 2

z.(yxz)y =z
:):Eyz:l:)y =2z

z.(zy.2)z =1y
z.(yz.y)r = z
xy.(z.xz) =y
xy.(z.zx) =y
xy.(xz.2) =y
xy.(zz.z) =y
(x.xy).2y = 2

TYz).yz = x

(
(ry.x).2y = 2
(ry.z).xy = 2

x(ryz).z =1y
z(y.zy).x =z
z(yz.x).z =y

2(yz2) =y
Tay)zz =y
rYyz)ry =2

(

(z.yz)
(ry.x)z.z2 =1y
(zy.2)

TY.2)z.x =Yy

TYT = 2.Yz
Yz = x.2Yy
TY.Y = 2.2
TY.Z = 2.9Yx
TY.Y = T2.2
TY.Z2 = Yx.Z

x(y.yz) =z
x(y.zy) = zx
x(yz.y) = xz
w(yz.z) = yx
(ryx)z = yz
(ryz)r = zy
(zy.y)z = 22
(zy.2)z = yx
rxyly.zz) =z
z.y(z.20) = y
vy(vzy) =
x.y(zx.z) =
z.(y.yz)z =
x.(y.zy)r =
(yz.y)z =
(yz.2)z =
xy.(z.yz) =
xy.(z.2y)
xy.(yz.z)

8
<
s
N
IS
|
W& N &8 8 w8 w8 w838 e v e
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There are two ~—classes with two elements each. The representative equa-
tion is
A(z,B(y, 2)) = C(z, D(y, 2)) (8)

and its solution is given in the following theorem.

Theorem 4.10. A general solution of the equation (8) on a set S is given

by:
A(z,y) = Li1(Aizx, 01y)
B(z,y) = oy 'La(Aat, 02y)
C(z,y) = L1(Asz, 03y)
D(x,y) = 05" La(Aaz, 0ay)
where:

— Ly and Lo are arbitrary loops on S with a common unit e,
— A1, 01, A2, 02, A3, 03, Mg, 04 are arbitrary permutations of S such that
AL = A3, Ao = Ay, 02 = 04.

Proof. 1) Let quasigroups A, B,C and D be given by the formulas above.
Then
A(z, B(y, 2)) = Li(Miz, 0107 ' La(Aay, 022))
= L1(A3x, 0305 ' La(My, 042)) = C(z, D(y, 2))

and the quadruple A, B,C, D is a solution to (8).
2) Let a quadruple A, B,C, D of quasigroups be a solution to (8) and

p,q,r arbitrary fixed elements from S. Define b = B(q,r), e = A(p,b) and
d = D(q,r). It follows that C(p,d) = e.

Define also \ix = A(z,b), o1z = A(p,x), Aox = 01B(z,r), 0ox =
QlB(qvx)a )‘3:17 = C(.’E7d), 03T = C(p7 x); )\4‘7: = Q3D( ) and 04T =
03D(q, ). Tt follows that \yz = A(x,b) = A(x, B(q,r)) = C(z,D(q,r)) =

C(z,d) = Aszx and oy = 01B(y,r) = A(p,B(y,r)) = C(p,D(y,r)) =
03D(y,r) = Agy. Analogously g2z = p42.

Let us define quasigroups Lj(u,v) = A\ u,07'v) and Lo(u,v) =
ng()\glu, lev). It is easy to check that L, and Lo are both loops with
a common identity e. Trivially A(z,y) = Li(M\izx,01y) and B(z,y) =
01 ' La(Maw, 02y). Also C(x, 05" \ay) = C(=, 05 03D(y, 7)) = C(x, D(y, 7))
= Az, B(y, 7)) = Az, 07 "1 B(y, 7)) = Alz, 01 ' Aay) = Li(Miz, 0107 ' A2y)
= Li( A3z, Q3Q§1A4y). Consequently C(z,y) = Li(\s3z, 03y).

Finally, D(y,2) = 05" 03D(y, 2) = 03 'C(p, D(y, z)) = 05 ' A(p, B(y, 2))
= 05'01B(y, z) = 03 ' La(A2y, 022) = 03 ' La(My, 04%). O
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There are 100 equations corresponding to the graph Kj.

TYZ = Y.xZ2
TYz = 2.Yx
TY.Z = Y.xZ2
TY.Z2 = Yz.x

x(y.xz) =yz
x(y.zz) = 2y
x(yzr.z) = yz

xY.xz = 2Y

xTY.2T = Yz

TY.2Y = 2T
(r.yz)z =y
(vy.2)x = zy
zylryz) =z
rxy(z.yx) = z
zylyz.x) =z
x(xy.zy) = 2

x. z=y
z.(yr.2)y = 2
xy.(ryz) =z
xy.(y.zx) = z
xy.(zxy) = 2
(ryz)zz=1y
(zy.2).xz =y
(xy.2).2zy =x
x(y.zz)y =z
x(zy.z).z =y
(ry.zz)y =2
(ry.yz)z =x
(ry.zy)x =z
(ryz)y.z =x
(zy.2)zy =2z

TYz = Y.2T
TY.Z2 = Y.2T
TY.z = Zx.Y

x(y.xz) = zy
x(xy.z) = yz
x(yzr.z) = zy
TY.Yz = x2
xy.zx = 2y
(r.yz)y = xz
(r.yz)z = yx
(ry.2)y = xz
zy(z.zy) =z
xy(ry.z) =z
rxy(zy.x) =z
z(yz.yz) =
x(yz.xz) =
ea gy = 2
z.(y.zx)z =y
z.(yz.x)y = 2
xy.(x.2y) =
xy.(xzy) =
xy.(zy.x) = 2
(r.yz)yx =z
(ry.2).yz =x
x(y.xz)y =z
x(y.zz)z =y
x(yx.z).y =z
(zy.zz)z =1y
(vy.ze)y = 2
(ry.zy)z =z
(ryz)zx =y
(ry.2)r.z =y
(zy.2)y.z =x

T.Yz = 2.2Y
TY.z = T.2Y
TY.Z = x2.Y
TY.2 = 2Y.T

x(y.zx) = yz
x(xy.z) = zy
TY.TZ = Yz
TY.Yyz = 2z

TY.2Y = T2

(r.yz)y = zx
(zy.2)z = yz
(ry.2)y = zx
z.y(z.2y) =
rylyr.z) = z
x(xy.yz) =z
x(yx.zy) = z
x(yz.yx) = z
z.(ryz)z =y
z.(xy.2)y =z
z.(yz.x)z =y
xy.(y.xz) = 2
xy.(yz.x) = z
(ryz).xy =z
(ryz).ze =y
(ry.z).2x =
z(y.xz).z =y
z(zy.z).y =2
z(yz.z).z =y
(xy.yz)xr =z
(vy.zx)z =y
(zyz)yx ==z
(ryz)zy ==
(zy.2)y.x =z

There is just one ~—class with four elements. The representative equation

is

A(B(z,y), z) = C(z, D(y, 2))

(9)
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and its solution is given in the following theorem.

Theorem 4.11 (Aczél, Belousov, Hosszu [1]). A general solution of the
generalized associativity equation (9) on a set S is given by:

where:
— - 18 an arbitrary group on S,
— A1, 01, A2, 02, A3, 03, Ag, 04 are arbitrary permutations of S such that:
A2 =A3, 02=MN\y, 01=04

The results are summarized in the Table 1.

Number of Number of Representative
PE-class Graph . .
~—classes equations equation
1 H, 4 3 (5)
2 H, 4 19 (6)
3 Hs 3 94 (7)
4 Hy 2 114 (8)
5 Ky 1 100 9)

Table 1: Equations with 3 variables — summary
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New primitives for digital signature algorithms

Nikolay A. Moldovyan and Peter A. Moldovyanu

Abstract. Particular types of the multiplication operation over elements of the finite
vector space over the field GF(pd)7 d > 1, are introduced so that there are formed
the finite fields GF ((p?)™) with fast multiplication operation that also suites well to
parallelized implementation. Finite fields implemented in such form are proposed for

accelerating the digital signature algorithms.

1. Introduction

The finite fields (FFs) GF(p) and GF(p?) represented by rings Z,, where p
is a prime, and polynomials, correspondingly, are well studied as primitives
for the digital signature (DS) algorithms design [8, 11, 13].

Finding discrete logarithm (DL) in a subgroup of the multiplicative
group of the FF is used as the hard computational problem put into the
base of the DS algorithms (DSAs).

The upper security boundary of such DSAs is limited by the difficulty of
the DL problem in the used FF. There are known the general-purpose meth-
ods for solving the DL, which work in arbitrary groups [8|. Such methods
have exponential complexity W = O(,/q), where O() is the order notation,
and ¢ is the largest prime divisor of the group order. If ¢ > 2%, then the
general methods are impracticable, i.e., computationally infeasible. How-
ever in the case of the mentioned above FFs some particular methods for
solving the DL problem can be applied, which have sub-exponential com-
plexity.

Therefore the DSAs based on computations in the ground FFs GF(p)
and in the polynomial FFs fields GF(p?) satisfy the minimum security re-
quirement (difficulty of the best attack should be equal to > 280 exponen-
tiation operations in the used FF), if the size of the FF order is greater or
equal to 1024 bits [4]. This fact restricts significantly the performance of

2000 Mathematics Subject Classification: 11G20, 11T71
Keywords: Cryptography, digital signature, vector space, finite field.
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the known DSAs based on computations in the FFs GF(p) and GF(p?).
Higher performance is provided by the DSA using the computations in the
finite groups of the elliptic curve (EC) points, while the EC are defined over
FFs the size order of which equals 160 to 320 bits [5, 9.

The complexity of the point addition operation is defined by the com-
plexity of the multiplication operation in the underlying FF. However in
many cases of the practical use of DSAs there are required the DS schemes
providing higher performance in hardware and in software. To meet such
requirements there have been proposed different approaches to accelerating
the EC-based cryptographic algorithms |9, 7].

These approaches can be categorized into two groups: i) high-level al-
gorithm that manage the ECs selection and ii) low-level algorithm that
manage the FF operation. Especially much attention in these researches
is paid to the EC-based algorithms implementation using the FFs GF(2%),
GF ((Qd)s), and GF(p?), because of their efficiency in hardware implemen-
tation [1, 2, 3].

However in the both approaches few attention is paid to accelerating the
EC-based DSAs with parallelization of the multiplication in the underlying
FF. Actually, in these approaches there are used the ground or polynomial
FFs in which the multiplication operation involves arithmetic division by a
prime or by an irreducible polynomial, respectively.

In present paper it is proposed a particular form of the FFs implemen-
tation, called vector FFs, providing possibility of efficient parallelization of
the multiplication operation.

Besides, in the proposed particular form of the extension FFs GF(p™)
the multiplication complexity is lower than in the ground FFs GF(p') and
in polynomial FFs GF(p?) for the same size of the FF order. The vector
FFs are proposed to implement ECs providing faster DSAs.

The rest of the paper is organized as follows. In Section 2, the multipli-
cation operation in the finite vector spaces over the FFs GF(p?) is defined
using so called basis vector multiplication tables (BVMTs). This particular
method allows one to define only a particular subclass of all possible vari-
ants of the associative multiplication. However this subclass includes the
multiplication variants for which the vector space represents a field.

Section 3 provides comparison of the computational efficacy of the mul-
tiplication operation in FFs implemented in different forms. Section 4 con-
cludes the paper.

In the paper the following specific term is used:
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The k-th power element a of the field GF(p?) is an element of the field
GF(p?) for which the equation z¥ = a has solutions in the field GF(p?),
d>1.

2. Extension of finite fields in the vector form

The vector form of the extension FFs implementation represents significant
interest for the applied cryptography due to lower complexity of the multi-
plication and possibility to efficient parallelization. This form of the imple-
mentation of the extension FFs is introduced using some subclass of possible
associative multiplications in finite vector spaces over the FF GF (p?), where
d > 1. The multiplication operation is introduced with BVMT.

This particular method is sufficiently simple and provides possibility to
define vector FFs GF ((p?)™) for arbitrary value of m.

The vector FFs can be defined with BVMT not for all possible triples
m, p, and d, though. However the proposed method suites well for defining
the vector FFs oriented to application in the applied cryptography.

2.1. Addition and multiplication operations
in finite vector spaces

Let us consider the set of the m-dimension vectors
ae+bi+ -+ cj,

where e, i, ... j are some formal basis vectors and a, b,...c € GF(p?),d > 1,
are coordinates. Vector can be also represented as a set of its coordinates
(a,b,...,c).

The terms ev, where ¢ € GF(p?) and v € {e,i,...,j}, are called com-
ponents of the vector.

The addition of two vectors (a,b,...,c) and (z,y,...,2) is defined in
the usual way as follows

(a,b,....c)+ (z,y,...,2) =(a+z,b+y,...,c+ 2),
where 47 denotes addition operation in the field GF(pd). It is easy to see

that the first representation of the vectors can be interpreted as sum of the
vector components.
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The multiplication of the vectors (a,b,...,c) and (z,y, ..., z) is defined
analogously to multiplication of polynomials, i.e., it is defined with the
formula

(ae +bi+---+¢j) - (re+yi+---+2j) =
=are-e+bri-e+---+cxj-etaye-i+byi-i+---+cyj-i+...
-t aze-jHbzi-j+---+czj-j,

where gh denotes multiplication of the elements ¢ € GF(p?) and h €
GF(p?). See [12] for more details.

In the final expression each product of two basis vectors is replaced by
a vector component ev (e € GF(p?)) in accordance with some given tables
called basis-vector multiplication tables (BVMT).

For example, if the used BVMT defines i - j = €e, then bzi - j = ebze.
The coordinate ¢ is called the expansion coefficient. The BVMT defines the
concrete variant of the multiplication in the finite vector space.

It is easy to see, if the BVMT defines commutative and associative mul-
tiplication of the basis vectors, then the multiplication in the finite vector
space is also commutative and associative. In this case the finite vector
space is a commutative ring. In some particular cases the finite vector rings
are FFs GF ((p)™), called vector FFs.

Below there are shown constructions of the vector FFs for diffrent values
m. For the case m = 2 the construction of the vector FF GF ((p?)?) is
sufficiently close to construction with attaching the root of the irreducible
(in GF(p?)) polynomial 22 — ¢ to GF (p?).

Principally for all values m the FFs GF ((pd)m) can be constructed with
the well known method using irreducible polynomials in GF(p?), however
this method constructs the extension FFs GF ((p?)™) as polynomial FFs
in which the multiplication operation is more complex and suites less to
parallelized implementation than multiplication in the FFs constructed with
BVMTs.

Indeed, in the polynomial FFs the multiplication is performed as arith-
metic multiplication of two polynomials and arithmetic division of the result
by the irreducible polynomial, while the multiplication in the vector FFs is
free of such division operation.

Actually, the BVMT-based construction method is less general, however
it provides efficient and immediate practical way to construct vector FFs
with fast multiplication for arbitrary values m.
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2.2. Vector finite fields GF ((p?)?)

In the case m = 2 the BVMT possessing commutativity and associativity
can be described as follows

where different values ¢ € GF(p?) define different variants of the multipli-
cation operation. Each of these variants defines a finite ring of the two-
dimension vectors. See, also, [12].

Let us consider a nonzero element of the vector ring Z = ae + bi. The
element Z~! = we 4 yi is called inverse of Z, if Z7'Z = e = (1,0), where
1 and 0 are the identity and zero elements in GF(p?).

In accordance with the multiplication definition we can write

7717 = (az + eby)e + (bx + ay)i = le + 0i.
For given (a,b) there exists a pair (z,y) satisfying the last equation, if
a? —eb? #£0.

The last condition holds for all vectors (a, b), except (0,0), if € is a quadratic
non-residue in the field GF(p?). In this case the vector space is a field
GF ((p")™).

If the vector space is defined over a ground field GF(p), then we have the
vector finite field GF(p?) the multiplicative group of which has the order
Q=p’-1=@-1p+1)

If € is a quadratic residue in the field GF(p?), where d = 1, then the char-
acteristic equation a? — eb? = 0 is satisfied for each value b€ 1,2,...,p — 1
at two different values a. In this case we have a finite group in the vector
space. The group order is equal to

Q=p*—20p-1)-1=(p- 1>

Example 1. For p = 101 and ¢ = 32 (quadratic non-residue mod 101)
the vector 93e + 24i has the order w = 10200 and is a primitive element
of the multiplicative group of the field GF(101?). For p = 101 and ¢ = 31
(quadratic residue mod 101) the vector 2e 4 3i has the order w = 100, the
last value being the maximum possible element order in the non-cyclic finite
vector group having the order £ = 10000.



276 N. A. Moldovyan and P. A. Moldovyanu

2.3. Vector finite fields GF ((p?)?)

In the case m = 3 the general representation of the BVMT possessing
commutativity and associativity is shown in Table 1, where u € GF(p?)
and ¢ € GF(p?) are the expansion coefficients. In accordance with the
multiplication operation defined by Table 1 for vectors Z = ae + bi 4 ck
and X = ze + yi + zk we can write

ZX = (ax+eucy+eubz)e+ (br+ay+ pcz)i+ (cx+eby+az)j = le+0i+0j.

If the last equation has solution relatively unknown X for all nonzero vectors
Z, then the vector space will be a vector finite field GF ((p?)?). From the
last equation the following system of equations can be derived

ax + epcy + eubz = 1
br +ay+pcz = 0
cx+eby+az = 0.

From this system the following characteristic equation can be get
a® — (3epbe) a + (62Mb3 +ep’c®) =0 (1)

Denoting B = (e2ub® + epc3) /2 and using the well known formulas [6]
for cubic equation roots we get the expression for the equation (1) roots a
in the following form
a=A "+ A", where,

A= f/B + v/ B2 — (eube)3 = /—ep?c3,
A" = {’/B — /B2 — (epbc)3 = v/ —e2ub3.

Thus, if both of the values ex? and €?p are not the 3rd-power elements
in the field GF(p?), then the characteristic equation (1) has no solutions
relatively unknown a for all possible pairs (a,b), except (a,b) = (0,0). In
this case the vector space is a field GF ((p?)3).

— — —
. ‘ € 1 7
— . .
€| e i j
— . .
1 i €j uee
— . s
J | J pee i

Table 1. The BVMT in the general case for m = 3.
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In the case of the vector space defined over a ground field GF(p) the
analysis of the characteristic equation leads to the following cases.

Case 1. The value p is such that 3 does not divide p — 1. Then
each nonzero element of the field GF(p) is the 3rd-power element and only
for @ = (p — 1)%(p + 1) different vectors there exist inverses and we have
non-cyclic finite vector group having order 2. Experiment has shown the
maximum vector order is w = (p — 1)(p + 1). In this case the finite vector
spaces are not fields.

CASE 2. The value p is such that 3|p — 1. This case is divided into the
following two cases.

CASE 2A. Each of the products €2y, and eu? is not a 3rd-power element
in the field GF(p). Then for each nonzero vector Z there exists its inverses
and the vector space is a field GF(p®) multiplicative group of which has the
order Q = p? — 1. Selecting properly the prime value p one can get prime
q|€2 such that ¢ = %(p2 +p+1). Thus, in the case of the field formation in
the finite vector spaces it is possible to get vector subgroups of the prime
order that has the size significantly larger that the size of the GF(p) field
order. Such cases are very interesting for designing fast DSAs.

Case 2B. Each of the products €2y and eu? is a 3rd-power element
in GF(p). In this case only for Q = (p — 1)? different vectors there exist
inverses and we have non-cyclic finite vector group having order €). The
maximum vector order is Q = (p — 1) (experimental result).

CaAse 3. For e =0 and p # 0 or for € # 0 and g = 0, or for ¢ = 0
and g = 0 we have degenerative case, when the characteristic equation has
the form a® = 0 mod p and unique solution a = 0 for all pair of the values
(b,c). In this case the vector space contains a vector group of the order
Q = p?(p — 1). This group is non-cyclic and the maximum vector order is
Q =p(p—1) (experiment).

Example 2. Suppose p = 67 (i.e.,, 3|Jp —1). Then for p =1, and e = 0
there is formed a vector group of the order Q = p?(p — 1) = 296274, in
which the maximum vector order is w = p(p — 1) = 4422. For p = 1 and
€ = 60 (this value is not the 3rd-power element) the vector field is formed,
in which there exist vectors having order w = p? — 1 = 300762. For u =1
and € = 1 (this value is the 3rd-power element) there is formed the vector
group of the order Q = (p — 1) = 287496, in which the maximum vector
order is w = p — 1 = 66.

Example 3. Suppose p = 63633348855432197 (i.e., 3 does not divide
p—1). Then for p = 1 and € = 3 there is formed the vector group having
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the order Q = (p—1)?(p+1). The maximum vector order is w = (p—1)(p+
1) = 4049203086557134095975355664246808. For = 1 and € = 0 there is
formed a vector group having the order Q = p?(p—1), the maximum vector
order being w = p(p — 1).

Example 4. Suppose p = 16406161737685927 (i.e., 3|p — 1). Then for
p =1 and € = 3 (this value is the 3rd-power element) there is formed a
vector field GF(p?), containing vectors of the order equal to Q = p — 1 =
4415917651114920002684537723583440985579861692982. Such vectors are
primitive elements of the vector field GF(p?).

2.4. Formation of the vector finite fields in the case m > 4

Analysis of the cases m = 2 and m = 3 shows that vector fields are formed
in the case m|p? — 1, provided some of the expansion coefficients are not the
mth-power elements in GF(p?). In this research it has been experimentally
established that under such conditions, while using the BVMTs shown as
Table 2 the vector fields are formed for m = 4,5,...,55, if m|p? — 1 and the
equation 27 = ¢ has no solutions in GF(p?) for each divisor 7|m, 7 > 1. Tt
appears that for arbitrary m there exists vector FFs defined over the field
GF(p?) such that m|p? — 1.

Our experiments have been stopped since we have estimated that the
investigated cases cover the demands of the practical cryptography. To de-
fine formation of the m-dimension vector FF the BVMT should be properly
designed and for given m there exist a variety of different BVMTs, but in
this paper the simplest variants of BVMTs have been used.

— — - - — —

. € 1 J k U w
— . .

e e i j k u w
e . .

B i €j ek €U €... €W €e
J j ek €u €... €W €e i
- . .

k k €u €... EW €e i j
— . .

U u  e€... EW €e i j k
. EW €e i j k u
— . .

w w €e i j k u

Table 2. The used variant of the BVMTs for the cases m = 4,5,...,55.

Let us consider some examples, where the finite polynomial fields GF (p?)
are defined with the irreducible polynomials P(z) of the degree d and the
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vector multiplication operation is defined with Table 2 in which the expan-
sion coefficients are polynomials € = €(x), where €(x) is not the mth-power
element in GF(p™).

Example 5. For prime p = 268675256028581 and coefficients 4 = 1 and
€ = 3048145277787 (e is not the bth-power element) the vector Go = 2e +
5i + 7j + 11k + 13u is a generator of the multiplicative group of the vector
field GF(p®). The vector Gg = 88815218764680e + 238886012231841i +
157317400153847j + 21593513218048k + 204824491909450u is a generator
of the g-th order cyclic subgroup, where
q=1042175072703434265745203478134729214503105234181740193961

is a prime.

Example 6. For m =5, p =2, P(z) = 101111011 = 2% + 2% + 2° + 2* +
23+ 2z +1 (mlp® — 1), and €(z) = 23 + 1 there is formed the vector field
GF ((2%)%). The vector G = (z* +1)e+ (e + 22+ 1)i+ (2 +2° + 2% + 2 +
1)j+ (z° + 1k + (' +1)u having the order w = 1099511627775 is generator
of the multiplicative group of the field.

Example 7. For m =5, p = 2,

P(x) =2 + 23 + ... +1 = 111101010100001110001100111010111

(m|p* — 1,) and €(z) = z + 1 there is formed the vector field GF ((2%2)°).
The vector G = (z* +1)e+ (2 + 23 + 2+ 1)i+ (25 + 2 + 22+ 1)j + (25 +
1)k + (2* 4 1)u having the order

w = 1461501637330902918203684832716283019655932542975

is a generator of the multiplicative group of the field.

Example 8. For m = 8, p = 233, P(z) = 23+1792%+132+81 = (m|p*—1),
and €(z) =  + 1 there is formed the vector field GF ((2%?)%). The vector
G = (3224 Tx+1, 30+3, 2+2, 22+ 2x+1, 2+5, Tle+1, 172+1, 1122+ To+1)
having the order w = 655453828661462718740867094804609871011228021078
182589120 is generator of the multiplicative group of the field (wg = Q =
pms — 1)

3. Comparison of the multiplication complexity
in FFs implemented in different forms

Performance of the DSAs based on computations on ECs is inversely pro-
portional to the difficulty of the point addition operation that is defined
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mainly by several field multiplications and one inversion operation in the
finite field over which the ECs are defined.

The inversion is the most contributing to the difficulty of the point ad-
dition operation. Even though there are some special techniques for com-
puting inverses in the finite field, inversion is still far more expensive than
the field multiplication.

The inverse operation needed when adding two points can be eliminated
by resorting to projective coordinates [9]. In this way adding two points is
performed with about ten field multiplications. Thus, the difficulty of the
multiplication in the underlying field defines difficulty of the point addition
operation.

The vector finite fields GF(p™) defined over the ground field GF(p)
can be applied to design the EC-based cryptographic algorithms providing
significantly higher performance. Indeed, in known EC-based algorithms
one can replace the underlying FF in usually used forms by the respective
vector FF [10]. For different values m € {2,3,4,5...} it is easy to generate
ECs the order of which contains large prime factor ¢ such that |q| ~ m|p],
where |q| is the bit size of q.

While comparing the computational efficiency of the multiplication op-
eration in different FFs one should consider the case of the approximately
equal values of the FF order. Let us compare the difficulty of the multi-
plication operation in the ground field GF(p) and in the vector extension
fields GF(p}') for different values m in the case |p| = m|p,|.

Multiplication in GF(p) is performed with arithmetic multiplication of
two |p|-bit values and arithmetic division of some 2|p|-bit value by some |p|-
bit value. Multiplication in the vector field GF (p") is performed with m?
arithmetic multiplications of two |p,|-bit values and m arithmetic divisions
of some 2|p,|-bit values by some |p,|-bit values (because of sufficiently low
difficulty we do not take into account the arithmetic additions and m?/2
multiplications with expansion coefficients having usually the size of two
bits).

Taking into account that difficulty of the both arithmetic multiplication
and arithmetic division is proportional to the squared size of operands one
can easily derive the following formula

Werp) — m(l+4c)

-~ Warey) m+c

)

where Wgp () (WGF(ng)) is the computational difficulty of the multipli-
cation in GF(p) (GF(p)')) and c is the ratio of the arithmetic division
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difficulty to the arithmetic multiplication difficulty.

The value ¢ depends on the hardware used to perform computations.
For many types of microcontrollers and microprocessors we have ¢ > 5. For
example, in this case for m = 5 and ¢ = 6 (¢ = 12) we have p ~ 3.2
(p ~ 3.8).

Analogous consideration of the computational efficacy of the multipli-
cation in polynomial and vector fields gives the ratio p > 2. The lower
multiplication efficacy in the polynomial fields is connected with the divi-
sion operation of the (2s — 2)-power polynomials by the s-power irreducible
polynomial, which is additionally required to multiplications and additions
in the ground field GF(p) over which the polynomial field is defined.

Thus, using elliptic curves over vector FFs one can design the DS algo-
rithms possessing significantly higher performance. Besides, the multipli-
cation in the vector field GF(p})') suites well to cheap parallelization while
being implemented in hardware. This is also a significant resource for ad-
ditional acceleration of the EC-based cryptography.

4. Conclusions

A new form of the extension FFs have been proposed to accelerate the
EC-based cryptographic algorithms. The proposed vector FFs GF ((pd)m),
d > 1, are formed in the m-dimension vector space over the ground FF
GF(p) or over the polynomial FF GF(p?) , while special types of the vector
multiplication operation is defined. It is proposed the BVMT possessing
simple structure and providing the associative vector multiplication.

It has been shown that the complexity of the multiplication in vector
FFs is lower than in the ground and polynomial FFs, while the size of the
field order is the same. This advantage and suitability of the efficient paral-
lelization of the multiplication operation provides possibility to significant
acceleration of the EC-based DSAs with application of the vector FFs as
underlying fields.
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Congruences on an inverse AG**-groupoid

via the natural partial order

Petar V. Proti¢

In memory of Neboj$a Stevanovié (1962—2009), my colleague and
dear friend.

Abstract. In this paper we first describe natural partial order on an inverse AG™*-
groupoid. With it we introduce a notion of pseudo normal congruence pair and normal

congruence pair and describe congruences.
1. Introduction
A groupoid S on which the following is true

(Va,b,ce S) ab-c=cb-a,

is called an Abel-Grassmann’s groupoid (AG-groupoid) [8] (or in some papers
Left almost semigroups (LA-semigroups)) [3]. It is easy to verify that in
every AG-groupoid medial law ab - ¢d = ac - bd holds. Thus, AG-groupoids
belong to the wider class of medial groupoids.

We denote the set of all idempotents of S by E(S) .

Abel-Grassmann’s groupoid S satisfying

(Va,b,ce S) a-bc=b-ac
is an AG*™*-groupoid. It is obvious that in AG**-groupoid for a,b,c,d € S

ab-cd=c(ab-d) =c(db-a) =db- ca.

2000 Mathematics Subject Classification: 20N02
Keywords: Abel-Grassmann’s groupoid, natural partial order, congruence pair
Supported by Grant ON 144013 of Ministry of science through Math. Inst. SANU
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If AG-groupoid S has the left identity e, then
a-bc=ea-bc=eb-ac=">b-ac,

so S is an AG**-groupoid.

In [5] an AG-groupoid S is called an inverse AG-groupoid if for every
a € S there exists a’ € S such that a = ad’ - a and o/ = d’a - a’. Then d’ is
an inverse element of a, and by V(a) we shall mean the set of all inverses
of a. It is easy to prove that if ' € V(a), b’ € V(b), then o't € V(ab) and
that aa’ or a’a are not necessarily idempotents.

Remark 1. In [1] it is proved that in an AG**-groupoid S the set E(S)
is a semilattice (Remark 2). Also, in [1] it is proved that in an inverse
AG**-groupoid for a € S, by Remark 3, we have |V (a)| = 1. If a7l is a

unique inverse for a, then by Lemma 1 aa™!,a'a € E(S) if and only if

aa~t = a la.

The following proposition is is trivially true.

Proposition 1. Let S be an inverse AG™-groupoid and p congruence re-
lation on S. Then S/, is an inverse AG**-groupoid. Also, if a,b € S then
apb if and only if a='pb~1. O

2. Natural partial order

In this section we define a natural partial relation on inverse AG**-groupoid
S and prove some of its properties.

Theorem 1. If S is an inverse AG**-groupoid, then the relation
a<b<=a=aa'-b (1)
on S 1s a natural partial order relation and it is compatible.

Proof. The proof that < is reflexive is obvious. For antisymmetry let us
suppose that a < band b < a. Then a =aa"' -band b=bb"! - a, and

a=aa "t b=aa - (Wb -a)=bb"(aa'-a) =00 -a =0,

imply antisymmetry.



Congruences on an inverse AG**-groupoid 285

Let us now suppose that a < band b < ¢. Thena =aa"'-b, b=0bb""¢,
and

a=aa"l-b=aat(bb7! ¢) = (( ca)a” )(bb_ c)
=(ata-aa )b c) = (ata-bb™ )( - )
=blata-b7Y) (aa™t-¢) =blaa™t D) - (a7t - ¢)

=ba ' (aa'c)=cat (aaTt D) =cat-a=aa"" ¢,

imply that a < ¢. Hence transitivity holds and < is a partial order on S.
Let a < band c€ S. Then

ca=claa™t - b) = (cct-e)(aa™) b= (cc™'-aa™t) - cb

=(ca-cta™l) b= (ca-(ca)™t) - cb,
and so the relation < is left compatible. Also, since

ac=(aa"t - b)e= (aa' -b)(cc™'-¢) = (aa™ - cc™t) - be
= (ac-a ‘el -be = (ac- (ac)™t) - be,

therefore the relation < is right compatible. Hence, < is compatible. O
Corollary 1. Let S be an inverse AG**-groupoid and a,b € S. Then
a<b<aa ' =ba"t.
Proof. If a < b then by (1) we have
ac ' =(aat - b)at=a-aa T =ata-ba =b(a e a7t) = baL
Conversely, for a,b € S, aa~! = ba~! implies that
a=aat-a=ba"t a=aa"t-0.

So, by (1), a < b. O

3. Normal congruence pair

In this section by S we mean an inverse AG**-groupoid in which for each

a € S we have aa~! = a~'a or equivalently aa~t,a"ta € E(S).

First, we prove the following consequence of Theorem 1.
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Corollary 2. Let a,b € S. Then
a<b < (Jee€ E(5)) a=eb.

Proof. Let a,b € S. Then a < b if and only if a = (aa~1)b. Since aa™! €
E(S), therefore if e = aa! implies that a = eb.
Conversely, let a,b € S be such that e € E(S) and a = eb. Because
aa~! =a"'a € E(S) and E(S) is a semilattice, we have
ac™t b= (eb-eb b= (bbL-e)b= (bb1-e)(bb!-b)
=t bb Y eb=bb"l-eb=e(bbl-b)=eb=0a
and so a < b. O

Let p be a congruence on S. The restriction p|gg) is the trace of p and
it is denoted by trp. Also, kernel p is kerp = {a € S| (e € E(S)) ape}.

If p is a congruence relation on 5, then kerp is a subgroupoid of S and
E(S) C kerp it is, kerp is a full subgroupoid of S. Also, trp is a congruence
on semillatice E(.5).

Definition 1. Let K be a full subgroupoid of S and 7 a congruence on
E(S) satisfying the following condition:
(i) For alla € S,b € K, b < a and aa~'7bb~! imply a € K.
We call (K, T) a pseudo normal congruence pair for S. If, in addition,
(ii) For every a € K, there exists b € S with b < a, aa~'7bb~! and
b lek
then (K, 7) is called a normal congruence pair for S.

For pseudo normal congruence pair (K, 7), we define a relation
ap(rrb <= ab La b ba b la e K, aat b b raa v bt
Lemma 1. Let (K, 7) be a pseudo normal congruence pair of S, a,b € S.

If apib and b€ K, thena € K.

Proof. From a p i b we have ab~!' € K and aa=!-bb~'7aa" 7 bb~!. Since
b e K, it follows that ab™! - b=bb"' - a € K.
We prove that ab~! - b < a. Here

((abt-b)(ab™t-b) a ab Loya -0 Ya= (00t a)b7b-a"1))a
b 1b)aaHNa = (bt - aaY)a
-bb Na = (aa™' -bb ) (aa™! - a)

aa" (b1 - a) =aa (Wb - a)
=bb~ (aa_ ca)=0bb"'-a=abt-0.

(
(

a

@

= (
(
= (
= (aa
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Hence, by (1), it follows that ab~! - b < a.
Also

(ab™t-b)(ab™t-b)"t = (ab"!-b)(a 1D b7

= (ab™t-a"'b)bb™t = (aa™t - b ib)bb !

=t b)) - aa) =0t - aa " raa ™!,
whence by Definition 1 (7) it follows that a € K. O

Theorem 2. If (K, 7) is a pseudo normal congruence pair for S, then p(x ;)
s a congruene on S with

ker pigr) ={a€ K[(3b€S), a >0, aa bt b7 € K} (2)

and the trace is equal to 7. Moreover, if (K1,71) and (Ka,72) are pseudo
congruence pairs for S with Ky C Ky and 11 C T2, then p(x, 1) C p(iym)-

Proof. Let (K, T) be a pseudo normal congruence pair for S and p = pk .-
Since K is full it follows that p is reflexive. Obviously, p is symmetric. We
verify that p is transitive after we prove that p is compatible.

Assume now that apb and let ¢ € S. Then

ac-(be) P =ac-b et =ab e C K- E(S) CK.

Similarly,
(ac)il ~be, be - (ac)fl, (bc)fl -ac € K.

Next we have

By symmetry, it follows that
(ac- (ac)™1)((be)™t - be) T be - (be) 7,

whence ac pbe. Thus p is right compatible. Analogously, p is left compatible.
Hence, p is compatible.
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Now, suppose that a pband b p c. Then by right compatibility ac™! pbe™!

and be pect. Since cc™! € E(S) C K and be1pec!, we have be™! € K
by Lemma 1, and subsequently ac™! € K. Similarly, aa=pba~', ba~'pca™!
yield ca™! € K by Lemma 1.

Similarly, by left compatibility, from apb and bpc we have a~'apa~'b,
a 'bpa—te, ¢ lapc™'h and ¢ 'bpc'c. So by Lemma 1 it follows that
ale,cta e K.

Also apb, bpc yields

ata-bb raa b, blb - ce b iree !

1

and by transitivity it follows that aa~'7cc™!. Moreover,

(bt -ceHaa™ e = (b -aa Hee traa! - ee,
(b=t ceV(aa™t - ec™t) = (b7 - aa e b ce T r et
whence aa™! - cc rect.
Now, ac Y, a7 te,ca™!,c7ta € K, aa™' - cc 'raa 7 cc™! is equivalent
to apc. Hence, p is a transitive relation and so is a congruence.

It is apparent that for e, f € E(S), epf if and only if e7 f whence trp = 7.

We let
H={acK|(FecS) a=bb'ecKa ‘b '}

1

and we show that kerp = H.

Let a € H, then there exists b € K such that b < a, b~' € H and
aa"'7bb~!. By (1) b < a it implies that b = bb~! - a. We next prove that
apbb~! that is

o toat et bt a, a-bb e K, bb Y aa traair b

Now b = bbbl a € Kand b™' = bb!-a! € K. Also we have
a-bb~t € K-E(S)C K and

al-bt=(ta-a )bt =b - aHalae K- E(S) CK.

Conversely, let a € ker p. Then ape for some e € E(S). If b = ea, then
b < a by Corollary 2 and b = ea € E(S)- K C K. From ape it follows
that aa™' = ea™" = b~! and since aa~' € K we have by Lemma 1 that
b~ € K. Because b,b~! € K we have bb~! = b~'b € K and so bpb~'. Now

b lpb ot =ea ! ea "t paat - ea?

=e(ata-a™t) =ea " paa!

Thus a € H implies that kerp C H, that is H = kerp. O
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Theorem 3. If (K,7) is a normal congruence pair for S, then p( ;) is a
congruence on S with kernel K and trace 7. Conversely, if p is a congruence
on S, then (kerp, trp) is a normal congruence pair for S and p = p(ierp trp)-

Proof. Let (K, 7) be a normal congruence pair and let p = p(k r). Then by
Theorem 2, p is a congruence with trace equal to 7 and kerp as in (2). Thus
kerp C K. Now let a € K. Then by Definition 1 (ii) there exist b € S,
b<a, b-' € K and bb~'7aa~! such that a € kerp due to Theorem 2. Thus
K = kerp.

Conversely, let p be a congruence on S and let K = kerp, 7 = trp. Then
K is a full subgroupoid of S and 7 is a congruence on E(S).

Leta € S,b € K and a > b. Suppose that aa'pbb~'. Then b =bb~!-a
(by (1)). From aa~tpbb~1! it follows that ap (bb~1)a and by above argument
we have apb. Hence a € bp C kerp = K. Thus (i) from the Definition 1
holds for (K, 7) and that it is a pseudo congruence pair for S.

Let a € K. Then there exists e € E(S) with ape. If b = ea, then b < a
by Corollary 2. From ape it follows that eape whence bpe and so apb.
Now a~'pb~! by Proposition 1 and so aa~'pbb~!. Moreover, from ape
follows that aa 'pea™ = (ea)™ = b1, that is b~! € K. Hence, (K,7) is
a congruence pair for S.

It remains to prove that p = pk ;). Let apb. Then

ab tpbb~t, b tapb b, aatpbat, atapath
and so ab', b la,ba"t, a7 b € kerp = K. Also

aa”t b tpah-bb 7 = (00! - b)a Tt = ba paa?,
aa™t b paat -bat = blaa -a) =bapbT b = b7,
whence it follows that ap(x )b and so p C ap(g -
Let ap( b. Then ab~ a7 ba b la € K, aat - bb 't aa b r bb T,
imply that ab~!pe, ba=lpf for some e, f € E(S). From aa~'pbb~!, it follows
that

apbbla=ab ! -bpeb and bpaa™t-b=0ba"t-ap fa.
Also
apebpe- fape(f-eb) =e(e- fb) =ee(e- fb)
= (fb-e)ee=(fb-e)e=ee-fob=e-fb=f-ebpfapb
imply that apb, that is px ;) C p. Then px ) = p. O
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