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Finite GS�quasigroups

Yahya Amad and M. Aslam Malik

Abstract. This paper is concerned with the determination of the set of possible orders
of �nite GS-quasigroups. Also some examples of �nite GS-quasigroups are given.

1. Introduction

The following de�nition of GS-quasigroups was given by V.Volenec in [4]
and [1].

De�nition 1.1. A quasigroup (Q, ·) is said to be GS-quasigroup (golden
section quasigroup) if the equalities

aa = a,
a(ab · c) · c = b,
a · (a · bc)c = b

hold for all its elements.

The study of GS-quasigroups in [4] is motivated by:

Example 1.2. Let C be set of complex numbers and ∗ an operation on set
C de�ned by:

a ∗ b =
1−

√
5

2
a +

1 +
√

5
2

b.

Let us regard complex numbers as points of the Euclidean plane, then the
point b divides the pair a and a ∗ b in the ratio of golden section, which
justi�es the term of GS-quasigroups.

Here, we'll give some examples of �nite GS-quasaigroups, and determine:
for which positive integer n there exists a GS− quasigroup of order n?

We require the following elementary results, whose proofs are simple.
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Lemma 1.3. Let (G1, ·1), (G2, ·2), . . . , (Gn, ·n) be GS − quasigroups, and
◦ be the operation de�ned on G = G1 ×G2 × . . .×Gn by:

(x1, x2, . . . , xn) ◦ (y1, y2, . . . , yn) = (x1 ·1 y1, x2 ·2 y2, . . . , xn ·n yn).

Then (G, ◦) is a GS − quasigroup.

Therefore, if GS-quasigroups of orders k1, k2, . . . , kn exist, then a GS-
quasigroup of order k1k2 · · · kn exists.

The following characterization of GS-quasigroups was given in [4].

Theorem 1.4. A GS − quasigroup on the set Q exists if and only if on

the same set exists a commutative group (Q,+) with an automorphism ϕ
satisfying the identity

(ϕ ◦ ϕ)(x)− ϕ(x)− x = 0. (1)

Then

a · b = a + ϕ(b− a). (2)

2. Commutative GS-quasigroups

By using Theorem 1.4 to study commutative GS-quasigroups we want to
�nd all commutative groups (Q,+) with an automorphism ϕ satisfying (1)
and with the additional condition that the operation · de�ned by (2) is
commutative. The commutativity of · implies

a + ϕ(b− a) = b + ϕ(a− b).

Thus

ϕ(b− a)− ϕ(a− b) = b− a,

and consequently

ϕ(x) + ϕ(x) = x (3)

for all x ∈ Q.

From (1) it follows ϕ(ϕ(x)) + ϕ(ϕ(x)) = ϕ(x) + ϕ(x) + x + x, which by
(3) gives ϕ(x) = x + x + x. Substituting this to (3) we get,

x + x + x + x + x + x = x.
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Therefore, x + x + x + x + x = 0 for all x ∈ Q, i.e., each element of the
group (Q,+) is of order 5 or 1. The only �nite groups which satisfy that
condition are (Z5)n, and the group of order 1.

On the other hand, if x + x + x + x + x = 0, for all x ∈ Q, then
ϕ(x) = x + x + x = −x − x, i.e. ϕ(x) = 3x = −2x is an automorphism
satisfying (1) and the operation de�ned by (2) is commutative.

Thus we have proved:

Theorem 2.1. The only non-trivial �nite commutative GS − quasigroups
are the quasigroups obtained in the technique described in Theorem 1.4 from

the group (Z5)n, for some n ∈ N.

From each group (Z5)n we obtain unique GS-quasigroup of order 5n.

Example 2.2. From the group (Z5)2 and the automorphism ϕ(x) = 3x =
−2x we obtain the GS-quasigroup of order 25:

·25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0 0 3 1 4 2 15 18 16 19 17 5 8 6 9 7 20 23 21 24 22 10 13 11 14 12
1 3 1 4 2 0 18 16 19 17 15 8 6 9 7 5 23 21 24 22 20 13 11 14 12 10
2 1 4 2 0 3 16 19 17 15 18 6 9 7 5 8 21 24 22 20 23 11 14 12 10 13
3 4 2 0 3 1 19 17 15 18 16 9 7 5 8 6 24 22 20 23 21 14 12 10 13 11
4 2 0 3 1 4 17 15 18 16 19 7 5 8 21 9 22 20 23 21 24 12 10 13 11 14
5 15 18 16 19 17 5 8 6 9 7 20 23 21 24 22 10 13 11 14 12 0 3 1 4 2
6 18 16 19 17 15 8 6 9 7 5 23 21 24 22 20 13 11 14 12 10 3 1 4 2 0
7 16 19 17 15 18 6 9 7 5 8 21 24 22 20 23 11 14 12 10 13 1 4 2 0 3
8 19 17 15 18 16 9 7 5 8 6 24 22 20 23 21 14 12 10 13 11 4 2 0 3 1
9 17 15 18 16 19 7 5 8 6 9 22 20 23 21 24 12 10 13 11 14 2 0 3 1 4
10 5 8 6 9 7 20 23 21 24 22 10 13 11 14 12 0 3 1 4 2 15 18 16 19 17
11 8 6 9 7 5 23 21 24 22 20 13 11 14 12 10 3 1 4 2 0 18 16 19 17 15
12 6 9 7 5 8 21 24 22 20 23 11 14 12 10 13 1 4 2 0 3 16 19 17 15 18
13 9 7 5 8 6 24 22 20 23 21 14 12 10 13 11 4 2 0 3 1 19 17 15 18 16
14 7 5 8 6 9 22 20 23 21 24 12 10 13 11 14 2 0 3 1 4 17 15 18 16 19
15 20 23 21 24 22 10 13 11 14 12 0 3 1 4 2 15 18 16 19 17 5 8 6 9 7
16 23 21 24 22 20 13 11 14 12 10 3 1 4 2 0 18 16 19 17 15 8 6 9 7 5
17 21 24 22 20 23 11 14 12 10 13 1 4 2 0 3 16 19 17 15 18 6 9 7 5 8
18 24 22 20 23 21 14 12 10 13 11 4 2 0 3 1 19 17 15 18 16 9 7 5 8 6
19 22 20 23 21 24 12 10 13 11 14 2 0 3 1 4 17 15 18 16 19 7 5 8 6 9
20 10 13 11 14 12 0 3 1 4 2 15 18 16 19 17 5 8 6 9 7 20 23 21 24 22
21 13 11 14 12 10 3 1 4 2 0 18 16 19 17 15 8 6 9 7 5 23 21 24 22 20
22 11 14 12 10 13 1 4 2 0 3 16 19 17 15 18 6 9 7 5 8 21 24 22 20 23
23 14 12 10 13 11 4 2 0 3 1 19 17 15 18 16 9 7 5 8 6 24 22 20 23 21
24 12 10 13 11 14 2 0 3 1 4 17 15 18 16 19 7 5 8 6 9 22 20 23 21 24
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2. Cyclic groups

The automorphism ϕ(x) = mx (m is relatively prime to n) of the group Zn

satis�es (1) if and only if m2 −m− 1 ≡ 0(modn).
Now by using Quadratic Reciprocity Law we want to �nd for which

n ∈ N the quadratic congruence has solution m (in that case m and n are
relatively prime).

Since m2 −m− 1 is odd, n cannot be even. Therefore, it seems appro-
priate to begin by considering the congruence

m2 −m− 1 ≡ 0(mod p),

where p is an odd prime and gcd(1, p) = 1. The assumption that p is an
odd prime implies that gcd(4, p) = 1. Thus, the quadratic congruence is
equivalent to

4(m2 −m− 1) ≡ 0(mod p).

Now, completing the square we obtain

4(m2 −m− 1) = (2m− 1)2 − 5

The last quadratic congruence may be expressed as

(2m− 1)2 ≡ 5(mod p).

Now, putting y = 2m− 1 in last congruence, we get

y2 ≡ 5(modp)

Thus, 5 is quadratic residue of p if and only if p = ±1(mod 5). So, that the
solutions are all primes of the form p = 5l± 1, l ∈ Z. Factors of m2−m− 1
are all primes of the form p = 5l ± 1.

This proves the following:

Theorem 2.1. The cyclic group Zn has an automorphism that satis�es

(1) if and only if its order n is a product of primes from the set {5l ± 1},
where l ∈ Z, i.e., if and only if n is an odd integer with any prime factor is

congruent to ±1 modulo 5.

Example 2.2. The group Z11 has two such automorphisms: ϕ(x) = 4x
and ϕ(x) = 8x. So, we obtain two GS-quasigroups of order 11.
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One induced by ϕ(x) = 4x:

·11 0 1 2 3 4 5 6 7 8 9 10
0 0 4 8 1 5 9 2 6 10 3 7
1 8 1 5 9 2 6 10 3 7 0 4
2 5 9 2 6 10 3 7 0 4 8 1
3 2 6 10 3 7 0 4 8 1 5 9
4 10 3 7 0 4 8 1 5 9 2 6
5 7 0 4 8 1 5 9 2 6 10 3
6 4 8 1 5 9 2 6 10 3 7 0
7 1 5 9 2 6 10 3 7 0 4 8
8 9 2 6 10 3 7 0 4 8 1 5
9 6 10 3 7 0 4 8 1 5 9 2
10 3 7 0 4 8 1 5 9 5 6 10

and one induced by ϕ(x) = 8x:

·11 0 1 2 3 4 5 6 7 8 9 10
0 0 8 5 2 10 7 4 1 9 6 3
1 4 1 9 6 3 0 8 5 2 10 7
2 8 5 2 10 7 4 1 9 6 3 0
3 1 9 6 3 0 8 5 2 10 7 4
4 5 2 10 7 4 1 9 6 3 0 8
5 9 6 3 0 8 5 2 10 7 4 1
6 2 10 7 4 1 9 6 3 0 8 5
7 6 3 0 8 5 2 10 7 4 1 9
8 10 7 4 1 9 6 3 0 8 5 2
9 3 0 8 5 2 10 7 4 1 9 6
10 7 4 1 9 6 3 0 8 5 2 10

Remark 2.3. Let p be an odd prime and suppose k > 1. If (a, p) = 1, then
x2 ≡ a(mod pk) has either no solutions or exactly two solutions, according
as x2 ≡ a(mod p) is or not solvable.

Corollary 2.4. The cyclic group Zpk has an automorphism satisfying (1)
if and only if p is a prime from the set {5l ± 1 : l ∈ Z}, i.e., if and only if

p ≡ ±1(mod 5).

3. Conclusions

The following theorem is simple but crucial.

Theorem 3.1. Let G be a commutative group of order m1m2, where m1 and

m2 are relatively prime positive integers, with an automorphism ϕ satisfying

(1). Then there exist groups G1 and G2 such that G = G1×G2, |G1| = m1,

|G2| = m1 with automorphisms satisfying (1).
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Example 3.2. The group Z55 = Z5 × Z11 has two automorphisms ϕ(x) =
8x and ϕ(x) = 48x satisfying (1). Z5 and Z11 have automorphisms ϕ(x) =
3x and ϕ(x) = 4x, ϕ(x) = 8x satisfying (1), respectively.

So, for GS-quasigroups of orders 5k and pk, where p is a prime of the
form 5l± 1 there is no any GS-quasigroup of order pk such that p 6= 5l± 1.

Thus the �nal result:

Theorem 3.3. Let n =
∏n

i=1 li be square free number. Then a GS−quasi-
group of order n exists if and only if each prime factor of n is congruent to

±1 modulo 5, i.e., if and only if li ≡ ±1(mod 5) for all 1 6 i 6 n.
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Check character systems and totally conjugate
orthogonal T-quasigroups

Galina B. Belyavskaya

Devoted to the memory of Valentin D. Belousov (1925-1988)

Abstract. We continue investigations of check character systems with one check
character over quasigroups under check equations without a permutation. These systems
always detect all single errors (i.e., errors in only one component of a code word) and
can detect some other errors occuring during transmission of data. For construction of
such systems we use totally conjugate orthogonal T -quasigroups. These quasigroups are
isotopic to abelian groups and have six mutually orthogonal conjugate quasigroups. We
prove that a check character system over any totally conjugate orthogonal T -quasigroup
is able to detect all transpositions and twin errors and establish additional properties of
a totally conjugate orthogonal T -quasigroup by which such system can detect all jump
transpositions and all jump twin errors. Some models of totally conjugate orthogonal
T -quasigroups which satisfy all of the required properties for detection of each of the
considered types of errors and an information with respect to the spectrum of such
quasigroups are given.

1. Introduction
In this article we deal with error detecting systems (codes) with a single
control symbol. Such systems have speci�c applications and are used for the
detection of certain types of errors. More exactly, we study check character
(or digit) systems with one check character.

A check character system (CCS) with one check character is an er-
ror detecting code over an alphabet A which arises by appending a check
digit an to every word a1a2...an−1 ∈ An−1 : An−1 → An, a1a2...an−1 →
a1a2...an−1an.

2000 Mathematics Subject Classi�cation: 94B60, 20N05
Keywords: check character system, T -quasigroup, conjugate orthogonal quasigroup,
orthomorphism.
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The purpose of using such a system is to detect transmission errors
(which can arise once in a code word), in particular, made by human opera-
tors during typing of data. These errors can be distinct types: single errors
(that is errors in only one component of a code word), (adjacent) transpo-
sitions, i.e., errors of the form . . . ab . . . −→ . . . ba . . . , jump transpositions
(. . . abc · · · → . . . cba . . . ), twin errors (. . . aa · · · → . . . bb . . . ), jump twin er-
rors (. . . aca · · · → . . . bcb . . . ) and so on can be made by human operators.
Single errors and transpositions are the most prevalent ones.

The examples of check character systems used in practice are the fol-
lowing:

- the European Article Number (EAN) Code,
- the Universal Product Code (UPC),
- the International Standard Book Number (ISNB) Code,
- the system of the serial numbers of German banknotes,
- di�erent bar-codes used in the service of transportation, automation

of various processes and so on.
The work of I. Verhoe� [13] is the �rst signi�cant publication relating to

these systems. In this work decimal codes known in the 1970s are presented.
A. Ecker and G. Poch in [8] have given a survey of check character systems
and their analysis from a mathematical point of view. In particular, the
group-theoretical background of the known methods was explained and new
codes were presented that stem from the theory of quasigroups. Studies
of check character systems were continued by R.-H. Schulz in [12]. He
established necessary and su�cient conditions for a quasigroup with control
formula (3) (see below) to detect transpositions and jump transpositions
not only in information digits but, in addition, in the control digit of a
code word a1a2...an. The complete survey of check character systems using
quasigroups one can �nd in [3] due to G.B. Belyavskaya, V.I. Izbash, and
V.A. Shcherbacov.

The control digit of a system based on a quasigroup (system over a
quasigroup) is calculated by distinct check formulas (check equations) using
quasigroup operations.

Choosing Q(·) as a �nite set endowed with a binary algebraic struc-
ture (a groupoid) we can take one of the following general check (coding)
formulas for calculation of the control symbol an:

an = (. . . ((δ1a1 · δ2a2) · δ3a3) . . . ) · δn−1an−1 (1)

(. . . ((δ1a1 · δ2a2) · δ3a3) . . . ) · δnan = c (2)
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for �xed permutations δi of Q, i = 1, 2, . . . , n and a �xed element c of Q.
It is easy to see that a CCS with check formula (1) or (2) detects all

single errors if and only if Q(·) is a quasigroup. The other errors will be
detected if and only if this quasigroup has speci�c properties.

Often a permutation δi in (1), (2) is chosen such that δi = δi−1, i =
1, . . . , n, for a �xed permutation δ of Q. In this case we obtain the following
check formulas respectively:

an = (. . . ((a1 · δa2) · δ2a3) . . . ) · δn−2an−1, (3)

(. . . ((a1 · δa2) · δ2a3) . . . ) · δn−1an = c. (4)

In [4] CCSs over quasigroups with the check equation (3) or (4) are stu-
died. In the article [5], which is a continue of [4], CCSs over T -quasigroups
are considered, some properties of a T -quasigroup so that the CCS over it
is able to detect transpositions, jump transpositions, twin errors and jump
twin errors are established. Besides, some models of T -quasigroups, which
satisfy all of the required properties for detection of errors of each of the
considered types are given.

It is known that if a CCS over a quasigroup detects some of �ve con-
sidered types of errors, then this quasigroup has orthogonal mate (see, for
example, [4, Corollary 1 and Corollary 5], [2, Proposition 3]).

On the other hand, in the article [6] the quasigroups, all six conju-
gates of which are distinct and pairwise orthogonal, are studied. Such
quasigroups were called totally conjugate orthogonal quasigroups (shortly,
totCO-quasigroups). Necessary and su�cient conditions that a T -quasi-
group be a totCO-quasigroup (a totCO-T -quasigroup) are established.

In this article we continue to research check character systems with one
check character over quasigroups under the check equation (3) or (4) when
δ = ε, n > 4. For constructing of such systems we use totally conjugate or-
thogonal T -quasigroups. These quasigroups generalize medial quasigroups
and have six mutually orthogonal conjugate quasigroups.

We prove that a CCS over any totally conjugate orthogonal T -quasigroup
is able to detect, besides single errors, all transpositions and all twin errors
and establish additional properties of a totally conjugate orthogonal T -
quasigroup such that a system over it can detect all jump transpositions
and all jump twin errors. Some models of totally conjugate orthogonal T -
quasigroups which satisfy all of the required properties to detect each of the
considered types of errors and an information with respect to the spectrum
of such quasigroups are given.
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2. Check character systems over T-quasigroups
In this section we remind some necessary notions and results of [4,5] with
respect to the check character systems using T-quasigroups.

A quasigroup is an ordered pair (Q, A) (or (Q, ·)) where Q is a set and
A (or ·) is a binary operation de�ned on Q such that each of the equations
A(a, y) = b and A(x, a) = b is uniquely solvable for any pair of elements
a, b in Q. It is known that the multiplication table of a �nite quasigroup
de�nes a Latin square [7].

A quasigroup Q(·) is called a T -quasigroup if there exist an abelian group
Q(+), with automorphisms ϕ and ψ, and an element c∈Q such that

x · y = ϕx + ψy + c

for all x, y ∈ Q. Such quasigroups were considered by T. Kepka and P.
Nemec in [10]. They are special cases of quasigroups, which are isotopic
to abelian groups and generalize the well-known class of medial quasigroups
when, in addition, the automorphisms ϕ and ψ commute, that is ϕψ = ψϕ.
Note that below maps in a composition act from the right to the left.

A permutation α of a group Q(+) is called an orthomorphism (respec-
tively a complete mapping) if x − αx = βx (x + αx = βx) where β is a
permutation of Q and −x = Ix is the inverse element for x in the group
Q(+) [9]. It is easy to see (cf. [9]) that an automorphism α of a �nite group
Q(+) is an orthomorphism if and only if α is a regular automorphism, that
is the identity 0 of the group Q(+) is the only element of Q �xed by α :
αx 6= x if x 6= 0. If α is an orthomorphism, then Iα is a complete mapping
of Q(+). A complete mapping of a quasigroup Q(·) is a bijective mapping
x → θx of Q onto Q such that the mapping x → ηx de�ned by ηx = x · θx
is again a bijective mapping of Q onto Q.

Denote by OrtQ(+) the set of all orthomorphisms of a group Q(+).
In [5] the following theorems with respect to check character systems over
T -quasigroups were proved (Theorem 1, Theorem 2 and Theorem 4 of [5]
respectively) which we shall use.
Theorem 1. [5] A check character system using a �nite T -quasigroup
Q(·) : x · y = ϕx+ψy + c and check formula (3) with n > 4 is able to detect

1. single errors;
2. transpositions if and only if ψδϕ−1, ψδψ−1ϕ−1, Iψδn−2 ∈ OrtQ(+);
3. jump transpositions if and only if ψδ2ϕ−2, ψδ2ψ−1ϕ−2, Iϕψδn−3

are in OrtQ(+);



Check character systems 11

4. twin errors if and only if iψδϕ−1, Iψδψ−1ϕ−1, ψδn−2 ∈ OrtQ(+);
5. jump twin errors if and only if Iψδ2ϕ−2, Iψδ2ψ−1ϕ−2, ϕψδn−3

are in OrtQ(+). 2

Theorem 2. [5] In Theorem 1 let δ = ε. Then a check character system
detects

1. single errors;
2. transpositions if and only if the automorphisms ϕψ−1, ϕ, Iψ are

regular;
3. jump transpositions if and only if the automorphisms ϕ2ψ−1, ϕ2,

Iϕψ are regular;
4. twin errors if and only if the automorphisms Iϕψ−1, Iϕ, ψ are

regular;
5. jump twin errors if and only if the automorphisms Iϕ2ψ−1, Iϕ2, ϕψ

are regular. 2

Theorem 3. [5] A check character system using a �nite T -quasigroup
Q(·) : x · y = ϕx + ψy + c and check formula (4) with δ = ε, n > 4, detects

1. single errors;
2. transpositions if and only if the automorphisms ϕ and ϕψ−1 are

regular;
3. jump transpositions if and only if the automorphisms ϕ2 and ϕ2ψ−1

are regular;
4. twin errors if and only if the automorphisms Iϕ, Iϕψ−1

are regular;
5. jump twin errors if and only if the automorphisms Iϕ2 and Iϕ2ψ−1

are regular. 2

3. Totally conjugate orthogonal T-quasigroups
In this section we shall give some necessary notions and results of [6] with
respect to the totally conjugate orthogonal T -quasigroups.

With any quasigroup (Q,A) the system Σ of six (not necessarily distinct)
conjugates (parastrophes) is connected:

Σ =
{
A,A−1,−1A,−1

(
A−1

)
, (−1A)−1, A∗

}
,

where A(x, y) = z ⇔ A−1(x, z) = y ⇔−1A(z, y) = x ⇔ A∗(y, x) = z.
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It is known [11] that the number of distinct conjugates in Σ can be 1,2,3
or 6. Using suitable Belousov's designation of conjugates of a quasigroup
(Q,A) of [1] we have the following system Σ of conjugates:

Σ =
{

A, rA, lA, lrA, rlA, sA
}

,

where 1A = A, rA = A−1, lA =−1A, lrA =−1(A−1), rlA = (−1A)−1,sA =
A∗. Note that

(−1(A−1)
)−1 =rlrA =−1

(
(−1A)−1

)
=lrlA =sA and rrA =llA =

A, στA =σ(τA).
Two quasigroups (Q,A) and (Q,B) are orthogonal if the system of equa-

tions {A(x, y) = a, B(x, y) = b} is uniquely solvable for all a, b ∈ Q.
A set Σ = {A1, A2, ..., An} of quasigroups, de�ned on the same set, is

orthogonal if any two quasigroups of it are orthogonal.
Quasigroups which are orthogonal to some their conjugates or two conju-

gates of which are orthogonal (known as conjugate orthogonal or parastrophic-
orthogonal quasigroups) have encouraged great interest.

In [6] the quasigroups (Q,A) all conjugates of which are pairwise or-
thogonal and the spectrum of such quasigroups were considered. For these
quasigroups the set of all conjugates Σ =

{
A, rA, lA, lrA, rlA, sA

}
is ortho-

gonal.
De�nition 1. [6] A quasigroup (Q,A) is called totally conjugate orthogonal
(shortly, a totCO-quasigroup) if all its conjugates are pairwise orthogonal.

It is clear that a totCO-quasigroup is invariant with respect to the
transformation of conjugation ( that is if a quasigroup (Q,A) is a totCO-
quasigroup then the quasigroup (Q,σA) is also a totCO-quasigroup for any
conjugate σA) and that all conjugates of a totCO-quasigroup are distinct.

Let ϕ and ψ be automorphisms of an abelian group (Q,+) and
(ϕ + ψ)x = ϕx + ψx for any x ∈ Q, then ϕ + ψ is an endomorphism
of group (Q,+). It is known that all endomorphisms of an abelian group
form an associative ring with a unity under the operations of addition and
multiplication.
Theorem 4. [6] Let (Q,A) be a �nite or in�nite T -quasigroup of the form
A(x, y) = ϕx + ψy. Then two its conjugates are orthogonal if and only if
the maps corresponding to these conjugates:

(1 ⊥ l or s ⊥ lr) → ϕ + ε, (r ⊥ rl) → ϕ + ε and ϕ− ε,
(1 ⊥ r or s ⊥ rl) → ψ + ε, (l ⊥ lr) → ψ + ε and ψ − ε,
(1 ⊥ lr or s ⊥ l) → ϕ + ψ2, (1 ⊥ rl or s ⊥ r) → ϕ2 + ψ,
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(r ⊥ lr or rl ⊥ l) → ϕ− ψ, (1 ⊥ s) → ϕ− ψ and ϕ + ψ,
(l ⊥ r or lr ⊥ rl) → ψϕ− ε are permutations. 2

As it was noted in [6], for a T -quasigroup of the form A(x, y) = ϕx +
ψy + c with c 6= 0 the conditions of Theorem 4 are the same and do not
depend on the element c. So if a T -quasigroup (Q,A): A(x, y) = ϕx+ψy is
a totCO-quasigroup, then the T -quasigroup (Q,B): B(x, y) = ϕx + ψy + c
is also a totCO-quasigroup for any c ∈ Q.
Theorem 5. [6] A T -quasigroup (Q,A): A(x, y) = ϕx+ψy+c is a totCO-
quasigroup if and only if all maps ϕ+ε, ϕ−ε, ψ +ε, ψ−ε, ϕ2 +ψ, ψ2 +ϕ,
ϕ− ψ, ϕ + ψ, ψϕ− ε are permutations. 2

The conditions of Theorem 5 we can write otherwise:
Theorem 5a. A T -quasigroup (a medial quasigroup) (Q,A): A(x, y) =
ϕx + ψy + c is a totCO-quasigroup if and only if all maps ϕ2 − ε, ψ2 − ε,
ϕ2 + ψ, ψ2 + ϕ, ϕ − ψ, ϕ + ψ, ψϕ − ε (all maps ϕ2 − ε, ψ2 − ε, ϕ2 + ψ,
ψ2 + ϕ, ϕ2 − ψ2, ψϕ− ε respectively) are permutations.

Proof. Indeed, (ϕ + ε)(ϕ− ε) = ϕ2− ε, (ψ + ε)(ψ− ε) = ψ2− ε, and in the
case of a medial quasigroup (ϕ− ψ)(ϕ + ψ) = ϕ2 − ψ2.

Note that an operation A of the form A(x, y) = (ax + by + c) (mod n),
n > 2, is a quasigroup if and only if the numbers a, b modulo n are relatively
prime to n. In this case ϕ = La, ψ = Lb, where Lax = ax (mod n),
x ∈ Q = {0, 1, 2, ..., n−1}, are permutations (automorphisms of the additive
group modulo n) and the quasigroup Q(A) is a T -quasigroup (moreover, a
medial quasigroup).

In [6] the following statement (Corollary 2 of [6]) is proved:
Corollary 1. [6] A medial quasigroup (Q,A): A(x, y) = (ax+by) (mod n)
is a totCO-quasigroup if and only if all elements a+1, a−1, b+1, b−1, a2 +
b, b2 + a, a− b, a + b, ab− 1 modulo n are relatively prime to n. 2

This corollary can be rewrite otherwise:
Corollary 1a. A medial quasigroup (Q, A): A(x, y) = (ax + by) (mod n)
is a totCO-quasigroup if and only if all elements a2 − 1, b2 − 1, a2 + b, b2 +
a, a2 − b2, ab− 1 modulo n are relatively prime to n. 2

The following theorem (Theorem 3 of [6]) gives an information with
respect to the spectrum of totCO-quasigroups.
Theorem 6. [6] For any integer n > 11 which is relatively prime to 2, 3, 5
and 7 there exists a totCO-quasigroup of order n. 2
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4. Totally conjugate orthogonal T-quasigroups
Now we shall prove that a CCS over a totCO-T -quasigroup with check
formulas (3) or (4) is able to detect some errors.
Theorem 7. A check character system using a �nite totCO-T -quasigroup
Q(·) : x · y = ϕx + ψy + c and check formulae (3) with δ = ε, n > 4, detects

1. single errors;
2. transpositions;
3. jump transpositions if and only if the mappings ψ − ϕ2 and ε + ϕψ

are permutations;
4. twin errors;
5. jump twin errors if and only if the mapping ε + ϕ2, ϕψ − ε are

permutations.

Proof. From Theorem 5 it follows that all conditions for transpositions of
Theorem 2 are fulled if we take into account that the automorphism ϕψ−1

is regular if and only if the mapping ε − ϕψ−1 (the same ψ − ϕ or ϕ − ψ)
is a permutation and the automorphism ϕ ( Iψ) is regular if and if ε − ϕ
(respectively ε + ψ) is a permutation.

By Theorem 2 a CCS detects jump transpositions if and only if the
automorphisms ϕ2ψ−1, ϕ2, Iϕψ are regular that is when the mappings
ε−ϕ2ψ−1 (the same ψ−ϕ2), ε−ϕ2 and ε + ϕψ are permutations. But by
Theorem 5a in a totCO-T -quasigroup the mapping ε−ϕ2 is a permutation.

According to Theorem 2 a CCS detects twin errors if and only if the
automorphisms Iϕψ−1, Iϕ, ψ are regular, that is the mappings ε + ϕψ−1

(the same ψ +ϕ), ε+ϕ and ε−ψ are permutations. This is by Theorem 5.
At last, by Theorem 2 a CCS detects jump twin errors if and only if

the automorphisms Iϕ2ψ−1, Iϕ2, ϕψ are regular. It means that the maps
ε + ϕ2ψ−1 (the same ψ + ϕ2), ε + ϕ2 and ε − ϕψ are permutations. By
Theorem 5 the mapping ψ + ϕ2 is a permutation.

Corollary 2. If in Theorem 7 a totCO-quasigroup Q(·) is medial, then in
item 5 the condition ϕψ − ε can be eliminated.

Proof. Indeed, in any medial quasigroup Q(·) : x · y = ϕx + ψy + c the
automorphisms ϕ and ψ commute, so the mapping ϕψ − ε = ψϕ − ε is a
permutation in a totCO-T -quasigroup.

Theorem 8. A check character system using a �nite totCO-T -quasigroup
Q(·) : x · y = ϕx + ψy + c and check formula (4) with δ = ε, n > 4, detects
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1. single errors;
2. transpositions;
3. jump transpositions if and only if the mapping ψ−ϕ2 is a permutation;
4. twin errors;
5. jump twin errors if and only if the mapping ε + ϕ2 is a permutation.

Proof. Follows from the proof of Theorem 7, if we take into account that
for jump transpositions and jump twin errors in Theorem 3 there are less
conditions than in Theorem 2.

As a consequence of Theorems 7, 8 and Corollary 2 we obtain
Theorem 9. A check character system using a �nite medial totCO-quasigro-
up Q(·) : x · y = ϕx + ψy + c and check formula (3) (resp.(4)) with δ = ε,
n > 4, detects single errors, transpositions, jump transpositions, twin errors
and jump twin errors if and only if the mappings ψ−ϕ2, ε+ϕψ and ε+ϕ2

(ψ − ϕ2 and ε + ϕ2 respectively) are permutations.
Corollary 3. A check character system using a medial totCO-quasigroup
Q(·) : x · y = (ax + by + c) (mod n) and check formula (3) (resp.(4)) with
δ = ε, n > 4, detects single errors, transpositions, jump transpositions, twin
errors and jump twin errors if and only if the mappings a2 − b, 1 + ab and
1 + a2 (a2 − b and 1 + a2 respectively) modulo n are relatively prime to n.

Proof. Indeed, in this case the maps

ϕ2 − ψ : (ϕ2 − ψ)x = (L2
a − Lb)x = (a2 − b)x (mod n),

ε + ϕψ : (ε + ϕψ)x = (ε + LaLb)x = (1 + ab)x (mod n),
ε + ϕ2 : (ε + ϕ2)x = (ε + L2

a)x = (1 + a2)x (mod n)

are permutations if and only if the corresponding elements modulo n are
relatively prime to n. Note that in this case the elements a, b are also
relatively prime to n, since (Q, ·) is a quasigroup.

Theorem 10. For any integer n > 11 which is relatively prime to 2, 3, 5
and 7 there exists a medial totCO-quasigroup of order n such that the check
character system over this quasigroup with the check formulas (3) or (4),
δ = ε, n > 4, detects all single errors, transpositions, jump transpositions,
twin errors and jump twin errors.

Proof. Let a be the element a modulo n and (m, n) be the greatest common
divisor of m and n. Consider the medial quasigroup (Q, ·): x · y = 3x + 5y
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(mod n) where (3, n) = 1 and (5, n) = 1, Q = {0, 1, 2, ..., n − 1}. In this
case a = 3, b = 5. According to Proposition 1 of [6] this quasigroup is a
totCO-quasigroup for any n relatively prime to 2,3,5 and 7.

Check the conditions of Corollary 3 for this quasigroup: (a2 − b)x =
(9 − 5)x = 4x, (1 + ab)x = 16x, (1 + a2)x = (1 + 9)x = 10x modulo n,
x ∈ Q. Since n > 11 then the maps 4x, 10x modulo n are permutations
if n is relatively prime to 2 and 5. Let n be relatively prime to 2,3,5 and
7, then n 6= 16 and n < 16 only for n = 11, 13. These orders are prime
numbers, so (16, n) = 1 for every of these numbers. If n > 16, then 16 = 16
and (16, n) = 1 since n is relatively prime to 2. Thus, the quasigroup
A(x, y) = 3x+5y (mod n) is the needed totCO-quasigroup for any n which
is relatively prime to 2,3,5 and 7.
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Con�gurations of conjugate permutations

Ivan I. Deriyenko

Devoted to the memory of Valentin D. Belousov (1925-1988)

Abstract. We describe some con�gurations of conjugate permutations which may be used
as a mathematical model of some genetical processes and crystal growth.

1. Introduction

Let Q = {1, 2, 3, . . . , n} be a �nite set. The set of all permutations of Q will
be denoted by Sn. The multiplication (composition) of permutations ϕ and ψ
of Q is de�ned as ϕψ(x) = ϕ(ψ(x)). Permutations will be written in the form
of cycles and cycles will be separated by points, e.g.

ϕ =
(

1 2 3 4 5 6
3 1 2 5 4 6

)
= (123.45.6.)

By a type of a permutation ϕ ∈ Sn we mean the sequence

C(ϕ) = {l1, l2, . . . , ln},

where li denotes the number of cycles of the length i. Obviously,

n∑
i=1

i · li = n .

For example, for ϕ = (132.45.6.) we have C(ϕ) = {1, 1, 1, 0, 0, 0}; for ψ =
(123456.) we obtain C(ψ) = {0, 0, 0, 0, 0, 1}.

As is well-known, two permutations ϕ,ψ ∈ Sn are conjugate if there exists
a permutation ρ ∈ Sn such that

ρϕρ−1 = ψ. (1)

2000 Mathematics Subject Classi�cation: 05B15; 20N05
Keywords: permutation, conjugate permutation, stem-permutation, symmetric group,
�ock, telomere, con�guration.
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Theorem 1. (Theorem 5.1.3 in [1]) Two permutations are conjugated if and

only if they have the same type. �

In this short note we �nd all solutions of (1), i.e., for a given ϕ and ψ
we �nd all permutations ρ satisfying this equation, and describe some graphs
connected with these solutions.

2. Solutions of the equation (1)

Let's consider the equation (1). If ϕ = ψ = ε, then as ρ we can take any
permutation from Sn. So, in this case (1) has n! solutions.

If permutations ϕ and ψ are cyclic, then without loss of generality, we can
assume that

ϕ = (1ϕ(1)ϕ2(1)ϕ3(1) . . . ϕn−1(1).),

ψ = (1ψ(1)ψ2(1)ψ3(1) . . . ψn−1(1).),

where ϕ0(1) = ϕn(1) = 1 and ψ0(1) = ψn(1) = 1. In this case for ρ0 de�ned
by

ρ0(ϕi(1)) = ψi(1) = xi, i = 0, 1, . . . , n− 1, (2)

we have

ρ0ϕρ
−1
0 (xi) = ρ0ϕρ

−1
0 (ψi(1)) = ρ0ϕ

i+1(1) = ψi+1(1) = ψ(ψi(1)) = ψ(xi),

which shows that ρ0 satis�es (1). Moreover, as is not di�cult to see, each
permutation of the form

ρ = ρ0ϕ
i, i = 0, 1, . . . , n− 1 (3)

also satis�es this equation. There are no other solutions. So, in this case we
have n di�erent solutions.

In the general case when ϕ and ψ are decomposed into cycles of the length
k1, k2, . . . , kr, i.e.,

ϕ = (a11 a12 . . . a1k1) . . . (ar1 . . . arkr),
ψ = (b11 b12 . . . b1k1) . . . (br1 . . . brkr),

the solution ρ, according to [1], has the form

β =
(
a11 a12 . . . a1k1 . . . ar1 . . . arkr

b11 b12 . . . b1k1 . . . br1 . . . brkr

)
, (4)
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where the �rst row contains all elements of ϕ, the second � elements of ψ written
in the same order as in decompositions of ϕ and ψ into cycles. Replacing in
ϕ the cycle (a11 a12 . . . a1k1) by (a12 a13 . . . a1k1 a11) we save the permutation ϕ
but we obtain a new ρ. Similar to arbitrary cycles of ϕ and ψ. In this way we
obtain all ρ satisfying (1).

Let's observe that the cycle (a11 a12 . . . a1k1) gives k1 possibilities for the
construction ρ. From m cycles of the length k we can construct m! km various
ρ. So, in the case C(ϕ) = C(ψ) = {l1, l2, . . . , ln} we can construct

Nϕ = l1! · l2! · 2l2 · l3! · 3l3 · . . . · ln! · nln

various ρ.

3. Con�gurations of conjugate permutations

As is well-known, any permutation ϕ of the set Q of order n can be decomposed
into r 6 n cycles of the length k1, k2, . . . , kr with k1 + k2 + . . . + kr = n. We
denote this fact by

Z = Z(ϕ) = [k1, k2, . . . , kr]

and assume that k1 6 k2 6 . . . 6 kr. Z(ϕ) is called the cyclic type of ϕ. The
set of all permutations of the set Q with the same cyclic type Zi is denoted by
Fi and is called a �ock. Permutations belonging to the same �ock are conjugate
(Theorem 1). The number of �ocks Fi ⊂ Sn is equal to the number of possible
decompositions of n into a sum of natural numbers.

In each �ock we select one permutation σ and call it a stem-permutation.
For simplicity we can assume that elements of this permutation are written in
the natural order.

Example 1. Let's consider the set Q = {1, 2, 3, 4, 5}. The number 5 has seven
decompositions into a sum of natural numbers, so the set of all permutations of
Q has seven �ocks. Below we present these �ocks and their stem-permutations.

Z1 : 5 = 5 σ = (12345.)
Z2 : 5 = 1 + 4 σ = (1.2345.)
Z3 : 5 = 2 + 3 σ = (12.345.)
Z4 : 5 = 1 + 2 + 2 σ = (1.23.45.)
Z5 : 5 = 1 + 1 + 3 σ = (1.2.345.)
Z6 : 5 = 1 + 1 + 1 + 2 σ = (1.2.3.45.)
Z7 : 5 = 1 + 1 + 1 + 1 = 1 σ = (1.2.3.4.5.) = ε. �
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Let's consider an arbitrary �ock Fi ⊂ Sn and its stem-permutation σ. For
an arbitrary permutation ϕ0 ∈ Fi we de�ne the sequence of permutations
ϕ0, ϕ1, ϕ2, . . . by putting

ϕk+1 = ϕkσϕ
−1
k . (5)

Obviously all ϕk are in Fi. The set Fi is �nite, so ϕp = ϕs for some p and s.

b
ϕ0

- b
ϕ1

- b
ϕ2

- q q q - b
ϕp

ϕs���
b

@@I b
- b

� b
QQs

��+
qqq

Fig. 1. The graph connected with the sequence (5).

The sequence ϕ1, ϕ2, ϕ3, . . . can be initiated by various ϕ0 because for �xed
ϕ1 and σ the equation ϕ1 = ϕσϕ−1 has many solutions.

Let's denote by Φk the set of all possible solutions of the equation (5),
where ϕk+1 and σ are �xed. Let

Φk = {ϕ ∈ Φk : Z(ϕ) = Z(σ)}.

In the case when Φk has only one element the permutation ϕk+1 is called
simple. If Φk is the empty set, then ϕk+1 is called a telomere and is denoted
by ϕ̂k+1. In the corresponding oriented graph a telomere is a vertex which is
not preceded by another vertex.

The following theorem is obvious.

Theorem 2. Let σ be a stem-permutation of a �ock Fi. If ϕ ∈ Fi is a telomere,

then also ψ = σϕσ−1 is a telomere. �

Two permutations ϕ,ψ ∈ Fi ⊂ Sn have the same con�gurationK if ϕp = ψq

for some natural p and q, where
ϕp = ϕp−1σϕ

−1
p−1 , . . . , ϕ1 = ϕσϕ−1,

ψq = ψq−1σψ
−1
q−1 , . . . , ψ1 = ψσψ−1

and σ is a stem-permutation from Fi.

4. A simple algorithm for determining con�gurations

1. In a given �ock Fi we select a stem-permutation σ and one permutation
ϕ0 6= σ. Using these two permutations and (5) we construct the sequence



Con�gurations of conjugate permutations 21

ϕ0, ϕ1, . . . , ϕl, where ϕl 6= ϕs for all 0 6 s < l and ϕl+1 = ϕt for some
0 6 t < l. In this way we obtain the graph

b
ϕ0

- b
ϕ1

- b
ϕ2

- q q q - b -
ϕj

q q q - b
ϕl

2. For each ϕj from the above sequence, from all solutions of the equation

ρσρ−1 = ϕj

we select these solutions ρ 6= ϕj−1 which are in Fi and attach them to the
previous solutions as immediately preceding ϕj . In this way we obtain the
con�guration K = {ϕ0, ϕ1, . . . , ϕl, ρ1, ρ2, . . .} and the graph

b
ϕ0

- b
ϕ1

- b
ϕ2

- q q q - b -
ϕj

q q q - b
ϕl

b
HHj

ρ1

b
B
BN

ρ2

Next, for all new ρk attached to K we solve the equation ρσρ−1 = ρk and
attach to K these solutions ρ ′ 6= ρk which are in Fi. For this new ρ′ we solve
the equation ρσρ−1 = ρ′ and so on. Since Fi is �nite after some steps we
obtain a telomere which completes this procedure.

5. Examples

Now we give some examples. We will consider the set Q = {1, 2, 3, 4, 5, 6} and
its permutations. For simplicity we consider the �ock F1 containing all cyclic
permutations of Q and select σ = (123456.) as a stem-permutation of F1.

Example 2. If we choose ϕ0 = (125634.), then, according to (5), we obtain

ϕ1 = ϕ0σϕ
−1
0 = (163254.),

ϕ2 = ϕ1σϕ
−1
1 = (143625.),

ϕ3 = ϕ2σϕ
−1
2 = (163254.) = ϕ1 .

Thus, the �rst step of our algorithm gives the con�guration K = {ϕ0, ϕ1, ϕ2}.
Now, for each ϕi ∈ K we solve the equation ρσρ−1 = ϕi and add to K all

solutions belonging to F1.
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The equation ρσρ−1 = ϕ0 is satis�ed by the permutation ρ0 = (1.2.34.56.).
So, according to (3), other solutions of this equation have the form

ϕ01 = ρ0σ = (1.2.34.56.)(123456.) = (125436.),
ϕ02 = ρ0σ

2 = (1.2.34.56.)(135.246.) = (15.26.3.4.),
ϕ03 = ρ0σ

3 = (1.2.34.56.)(14.25.36.) = (165234.),
ϕ04 = ρ0σ

4 = (1.2.34.56.)(153.264.) = (13.24.5.6.),
ϕ05 = ρ0σ

5 = (1.2.34.56.)(165432.) = (145632.).

From these solutions only ϕ01, ϕ03, ϕ05 are in F1. We attach these solutions
to K as the immediately preceding ϕ0.

Next, we consider the equation ρσρ−1 = ϕ1. This equation has only one
solution belonging to F1. Since this solution coincides with ρ, we do not obtain
permutations which should be added to K.

The equation ρσρ−1 = ϕ2 has only one solution ρ = (145236.) 6= ϕ1

belonging to F1. We denote it by ϕ4 and add to K as the solution immediately
preceding ϕ2. At this instant we have the con�guration (uncomplete)

K = {ϕ0, ϕ1, ϕ2, ϕ01, ϕ03, ϕ05, ϕ4}

and the graph

cϕ01
�

���

cϕ03
-

cϕ05

@
@@R c

ϕ0

- c?
ϕ1

ϕ3
�c
ϕ2

� �
� 6 cϕ4

Further we will work with the permutations ϕ01, ϕ03, ϕ05, ϕ4. Equations
ρσρ−1 = ϕ0i, i = 1, 3, 5, do not have solutions belonging to Fi. So, ϕ01, ϕ03,
ϕ05 are telomeres. We denote them by ϕ̂01, ϕ̂03, ϕ̂05.

The equation ρσρ−1 = ϕ4 has three solutions belonging to F1. Namely,

ϕ41 = ρ′σ = (1.6.24.35.)(123456.) = (143256.),
ϕ43 = ρ′σ3 = (1.6.24.35.)(14.25.36.) = (123654.),
ϕ45 = ρ′σ5 = (1.6.24.35.)(165432.) = (163452.).

Since equations ρσρ−1 = ϕ4j , j = 1, 3, 5, do not have solutions belonging
to F1, ϕ41, ϕ43, ϕ45 are telomeres.
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Summarizing the above we obtain the con�guration

K = {ϕ0, ϕ1, ϕ2, ϕ̂01, ϕ̂03, ϕ̂05, ϕ4, ϕ̂41, ϕ̂43, ϕ̂45}

and the graph

cϕ̂01
�

���

cϕ̂03
-

cϕ̂05

@
@@R c

ϕ0

- c?
ϕ1

ϕ3
�c
ϕ2

� �
� 6 c

ϕ4 c ϕ̂41

@
@@I

c ϕ̂43
�

c ϕ̂45

�
��	

Example 3. Using the same �ock F1 and the same σ but selecting another ϕ0

we can obtain another con�guration. For example by selecting ϕ0 = (162435.)
we obtain the con�guration K2 presented by the following graph:

(162435.)

?
(126453.)

�
�

��3 Q
QQs

(156423.) (153426.)

�
��3

Q
QQk

(135462.) (132465.)

Remark. The �ock F1 has six con�gurations:
• K1 and K2 are described in the above examples,
• K3 induced by ϕ0 = (125643.) contains 18 permutations,
• K4 induced by ϕ0 = (135624.) contains 42 permutations,
• K5 induced by ϕ0 = (136245.) contains 42 permutations,
• K6 has only two permutations: σ and σ−1.

Flocks K4 and K5 are isomorphic as graphs.

The set S6 is divided into 11 �ocks.

The author does'nt know a general method that would allow to determine
the number of con�gurations in each �ock. Neither does he know how to
quickly �nd a telomere using stem-permutations. It is also unknown how to
check if two telomeres belong to the same con�guration.



24 I. I. Deriyenko

6. Conclusions

The results shown were inspired by some research in genetics. Some termino-
logy (stem-permutation, telomere) was also drawn from genetics. The author
thinks that the described method of con�guration can be e�ectively used in
chemistry in researching growth of crystals.
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Free topological acts over a topological monoid

Behnam Khosravi

Abstract. First we present the free topological S-acts on sets, on topological spaces, and
as well as on S-acts. Then, we give more concrete description of these free objects in some
cases.

1. Introduction
The action of topological semigroups and their representations have a very wide
usage in di�erent branches of Mathematics like geometry, analysis, Lie groups
or dynamical systems, and they are studied by many authors, see for example
[4, 7, 20, 23, 24]. Furthermore, some notions are in fact topological S-acts with
some extra properties, e.g., in analysis, S-�ow is a compact topological S-act
(see [5, 19]), or the representation of a discrete group G is in fact a topological
G-act (see [2, 13, 17]). Also in geometry, �ow is a smooth topological S-act,
where S is (R,+) with its usual topology (see [7]). These kinds of topological S-
acts are studied more and there are some works about their universal structures
(for example see [15]). We note that, a space which a topological semigroup acts
on it, sometimes has di�erent names in di�erent branches of Mathematics, e.g.
in some text, it is called G-space where G is a topological group (e.g. see [12]),
while in some others, it is called topological S-act (see for example [22]). In
this note we use the latter terminology since we use theorems and terminology
of [18]. Because of the importance of the universal structures and specially
free structures, in this paper we study the notion of freeness which is a fruitful
subject in the study of di�erent categories (see for example [3, 8, 9, 16]). We
present the free topological S-acts on sets, on topological spaces, and as well
as on S-acts.

Let (S, ·, τS) be a topological monoid. In this note, we want to study di�er-
ent free topological S-acts. Note that since there are three forgetful functors
from the category of topological S-acts to the category of topological spaces,

2000 Mathematics Subject Classi�cation: 20M30, 54H10, 22A30, 08B20
Keywords: S-act, free topological S-act, topological semigroup
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the category of S-acts and the category of sets, we can de�ne free topological
S-acts on a topological space, on an S-act and on a set. In Section 2, we brie�y
study topological S-acts, semitopological S-acts and compare them. In Section
3, �rst, we introduce the free topological S-acts on a topological space, then
we describe the topology of free topological S-acts more concretely and study
some of its properties, like its behavior with separation axioms. Also we give
a coarser and �ner topology than the topology of the free topological S-act
on a topological space (X, τX) according to the topology of topological space
(X, τX) and the topology of the topological monoid (S, ·, τS). Finally in Sec-
tion 3, we introduce the free topological S-acts on a set. In Section 4, we study
the free topological S-act on an S-act and present it. Then by using the notion
of free topological S-acts on S-acts, we present some method for studying uni-
versal objects in the category of topological S-acts, using the known universal
structures in the category of S-acts. To illustrate this method, we apply it
to characterize projective topological S-acts by using the characterization of
projective S-acts.

Now we brie�y recall some de�nitions about S-acts needed in the sequel.
For more information see [11, 18].

Recall that, for a semigroup S, a set A is a left S-act (or S-set) if there is, so
called, an action µ : S×A → A such that, denoting µ(s, a) := sa, (st)a = s(ta)
and, if S is a monoid with 1, 1a = a. Right S-acts are de�ned similarly. An
S-act A is called cyclic, if there exists an a ∈ A such that A = Sa.

Each semigroup S can be considered as an S-act with the action given by
its multiplication.

The de�nitions of a subact A of B, written as A ≤ B, and a homomorphism
between S-acts are clear. In fact S-homomorphisms, or S-maps, are action-
preserving maps: f : A → B with f(sa) = sf(a), for s ∈ S, a ∈ A. We denote
the category of S-acts with S-maps, by S-Act.

A topological space (X, τX) has Alexandro� topology, if the intersection
of an arbitrary family of open sets in (X, τX) is open. An space with an
Alexandro� topology is called an Alexandro� space.

The algebraic structure of the free topological S-act on a topological space can be char-
acterized concretely, however, like free topological groups, the topology of free topological
S-acts can not be described as concretely as its algebraic structure.
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2. Topological S-acts
In this section, we brie�y state the notions we need about topological S-acts.
First recall the following

De�nition 2.1. Let S be a semigroup and a topological space with topology
τS . S with this topology is called a topological semigroup if multiplication
(s, t) 7→ st : S × S → S is (jointly) continuous ([5, 10, 14]). We use Kelley's
notation in [14], and denote a topological semigroup by (S, ·, τS)

Despite the above convention, for simplicity, we denote a topological (S, ·, τS)-
act by topological S-act.

De�nition 2.2. For a topological semigroup (S, ·, τS), a (left) topological S-
act or a topological S-act is a left S-act A with a topology τA such that the
action S×A → A is (jointly) continuous. Similar to topological semigroup, we
denote a topological S-act by (A, τA). We denote the category of all topological
S-acts with continuous S-maps by S-Top.

De�nition 2.3. We say that a topological semigroup (S, ·, τS) has a left ideal
topology, if each of its open sets, including the empty one, is a left ideal (sub
S-act) of S. Also, a topological S-act (A, τA) is said to have a subact topology
if all of its open sets, including the empty one, are subacts of A.

We use the above de�nition of a left ideal topology which is more general
than the de�nition in [22].

De�nition 2.4. By weak topology on a set Z, with respect to a family of
functions on Z, we mean the coarsest topology on Z which makes those func-
tions continuous. In other words, given a set Z and an indexed family (Yi)i∈I

of topological spaces with functions fi : Z → Yi, the weak topology on Z is
generated by the sets of the form f−1

i (U), where U is an open set in Yi.

notation. For any two arbitrary topological spaces (X1, τX1) and (X2, τX2),
by τX1×X2 we mean the product topology on X1 × X2. For any set Z, we
denote Z with discrete topology by (Z, τdis). For any S-act A, by |A| we mean
the underlying set of A.

Remark 2.5. Recall that for a semigroup S and an S-act A, the functions λs

and ρa are de�ned for any s ∈ S and a ∈ A as follows

λs : A → A, y 7→ sy and ρa : S → A, t 7→ ta.
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In the special case A = S, we use the notation λ
(S)
s : S → S, to prevent

misunderstanding.
Now if S has a topology τS for which its multiplication S × S → S is

(separately) continuous, that is, λ
(S)
s and ρs are continuous for all s ∈ S, then

S with topology τS is called a semitopological semigroup.
Similarly, one can de�ne a semitopological S-act by taking λs : A → A and

ρa : S → A to be continuous for each s ∈ S and a ∈ A.
Clearly any topological S-act is a semitopological S-act, because every

jointly continuous function is separately continuous. But, as the following
example shows, for a topological semigroup (S, ·, τS), a semitopological S-act
need not be a topological S-act. Note that clearly if S with a topology τS

is a semitopological semigroup which is not a topological semigroup, then S
with τS is a semitopological S-act which is not a topological S-act. However
the following example shows that for a topological semigroup S, the joint
continuity of the action of S-acts is independent from the joint continuity of
the multiplication of S.
Example 2.6. Suppose that S = [0, 1] and τS is the usual topology on [0, 1]
which is inherited from R by subspace topology. De�ne for each s and t in
S, s · t = 0. It is obvious that (S, ·, τS) is a topological semigroup. Again,
consider [0, 1] with topology which is inherited from R. For any s, t ∈ S, de�ne
the action of S on [0, 1] by

µ(s, t) =
∞∑

n=1

(
1
2
)nfn(s, t),

where
fn(s, t) =

{
0 if s 6 sn or t 6 tn

|(s−sn)(t−tn)|
(s−sn)2+(t−tn)2

otherwise

and {(sn, tn)|n = 1, 2, . . .} is any (non-void) subset of the product [12 , 1]×[12 , 1].
If we take T = [0, 1

2 ], then by an straightforward checking, we can see that µ
has the following properties:

1. µ((T × [0, 1]) ∪ (S × T )) = {0},
2. µ(S, [0, 1]) ⊆ T = [0, 1

2 ].
(For more details about the properties of the function µ, see [23, Example
5.14.]) So we have for all s, s′ and t in S

µ(st, s′) = µ(0, s′) ∈ µ(T × [0, 1]) = {0},
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µ(s, µ(t, s′)) ∈ µ(S × T ) = {0}.
Therefore, [0, 1] is an S-act with the action µ. Again, by direct checking, one
can see that µ, the action of (S, ·, τS) on [0, 1], is not continuous but all the
functions λs(−) = µ(s,−) and ρa(−) = µ(−, a), for each s and a in S, are
continuous. Hence [0, 1] is not a topological S-act but it is a semitopological
S-act.

Now we recall the de�nition of di�erent free topological S-acts in the follow-
ing de�nition. Since these de�nitions are very similar, we state them together.

De�nition 2.7. A topological S-act (F, τF ) with one-one S-map ν : B → F ,
(the embedding ν : (X, τX) → (F, τF )), (one-one function ν : Z → F ) is the
free topological S-act over the S-act B (over the topological space X) (over
the set Z), if for every topological S-act (A, τA) and an S-map f : B → A,
(a continuous function f : (X, τX) → (A, τA)), (a function f : Z → A), there
exists a unique continuous S-map f̃ : (F, τF ) → (A, τA) such that f̃ ◦ν = f (for
the general de�nition of the free objects in an arbitrary category, see [1, 6]).

The free topological space over a set Z is the set Z together with the
discrete topology. The free S-act, for a monoid S, on a set Z is de�ned as
follow. Consider the set S × Z with the action de�ned by t(s, z) = (ts, z) for
any t, s ∈ S and z ∈ Z, and de�ne ν : Z → S×Z as follows ν(z) = (1, z). It is
a known fact that S×Z with this action is an S-act. From now on, for any set
Z, by F (Z) we mean this S-act which is de�ned on S × Z. Furthermore, it is
a known fact that F (Z) is the free S-act over the set Z (it means that for any
S-act A and a function f : Z → A, there exists a unique S-map f̃ : F (Z) → A
such that f̃ ◦ ν = f (for more details see, [11, 18])).

3. Free topological S-act on a topological space
In this section, we present the free topological S-act over a topological space
and then describe it more concretely in some special instances, e.g, when τS is
Alexandro�. First note the following remark.

Remark 3.1. Let {(A, τi)}i∈I be a family of topological S-acts. Let τA be the
topology generated by the subbasis ∪i∈Iτi on A. Then we show that (A, τA)
is a topological S-act. Let s ∈ S, a ∈ A, and U ∈ τA such that sa ∈ U and
U ∈ τA. As we have in section 2.18 of [21], we can and will suppose that U
is an element of the subbasis ∪i∈Iτi. So there is some i ∈ I such that U ∈ τi.
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Since (A, τi) is a topological S-act, there exist open sets W ∈ τi and V ∈ τS

which contain a and s, respectively such that V · W ⊆ U . Since τi ⊆ τA,
(A, τA) is a topological S-act.

Proposition 3.2. For any topological monoid (S, ·, τS), the free topological
S-act on a topological space (X, τX) is F (X) with the topology τ∗X which is
generated by the union of all topologies τi on |F (X)| = S × X which makes
F (X) to a topological S-act and furthermore ν : (X, τX) −→ (S ×X, τi) is a
topological embedding.

Proof. Let (X, τX) be a topological space. We �rst show that if τ∗X is the
topology generated by the union of all topologies τi on |F (X)| = S×X where
(F (X), τi) satis�es the following conditions

(a) the map ν : X → (F (X), τi) de�ned by ν(x) = (1, x) is a topological
embedding.

(b) (F (X), τi) is a topological S-act.

Then (F (X), τ∗X) satis�es conditions (a) and (b).
De�ne

Γ(X,τX) := {τ |τ is a topology on |F (X)| = S ×X satisfying (a) and (b)}.
We show that τ∗X belongs to Γ(X,τX) and (F (X), τ∗X) is the desired free topo-
logical S-act. (One can easily check that τS×X ∈ Γ(X,τX) and so Γ(X,τX) 6= ∅.)

Since τ∗X is �ner than each τi ∈ Γ(X,τX), so ν−1 is continuous and since τ∗X is
generated by all τi ∈ Γ(X,τX), so ν is continuous, therefore τ∗X satis�es condition
(a). By Remark 3.1, τ∗X satis�es condition (b), too. Thus, τ∗X ∈ Γ(X,τX).
Therefore (F (X), τ∗X) is a topological S-act.

Finally, to prove that (F (X), τ∗X) is actually the free topological S-act on
X, let g : (X, τX) → (A, τA) be a continuous function into a topological S-act
(A, τA). We claim that the function g̃ : F (X) → A, de�ned by g̃((s, x)) :=
sg(x), is the unique continuous S-map with g̃ν = g. Clearly, g̃ is an S-map.
Since τS×X ⊆ τ∗X , (idS , g) : (S × X, τ∗X) → (S × A, τS×A) is continuous and
since the action S ×A → A is also continuous, g̃ is continuous.

For the uniqueness of g̃, let g̃ ◦ ν = h ◦ ν. Therefore h((1, x)) = g̃((1, x)),
and so g̃ = h. Hence, the S-act F (X) with τ∗X is the free topological S-act on
the topological space (X, τX).

Before we begin to describe the topology τ∗X more concretely, we need some
de�nitions and results which are presented in the following



Free topological acts 31

Remark 3.3. Suppose that we are given a topological space (X, τX) and a
topological monoid (S, ·, τS). We de�ne τ(S, X) as follows: O ∈ τ(S, X) if
there exist open sets Y ∈ τX and T ∈ τS such that π1(O) = T and π2(O) = Y
and for any (s, x) ∈ O, there exist an open set V (O, x) ∈ τS and an open set
W (O, s) ∈ τX which contain s and x, respectively such that

π1(O ∩ (S × {x})) = V (O, x) and π2(O ∩ ({s} ×X)) = W (O, s).

One can obviously see that

V (O, x) = {s ∈ S|(s, x) ∈ O} and W (O, s) = {x ∈ X|(s, x) ∈ O}. (I)

(where π1 and π2 are the usual projections of O onto its �rst and second
factors, respectively). Note that for each O ∈ τ(S, X) and the corresponding
open sets {V (O, x)}x∈Y ⊆ τS and {W (O, s)}s∈T ⊆ τX which are obtained by
the de�nition of τ(S, X), we have

O =
⋃

x∈Y

(V (O, x)× {x}) and O =
⋃

s∈T

({s} ×W (O, s)). (II)

Therefore if we de�ne for an open set Y ∈ τX and an open set T ∈ τS ,

τ1(T, Y ) := {O ⊆ T × Y |∀(s, x) ∈ O,∃V (O, x) ∈ τS : s ∈ V (O, x) and
π1(O ∩ (S × {x})) = V (O, x)}

τ2(T, Y ) := {O ⊆ T × Y |∀(s, x) ∈ O, ∃W (O, s) ∈ τX : x ∈ W (O, s) and
π2(O ∩ ({s} ×X)) = W (O, s)}

and

τ1(S,X) :=
⋃

T∈τS , Y ∈τX

τ1(T, Y ) and τ2(S, X) :=
⋃

T∈τS , Y ∈τX

τ2(T, Y ),

then by the de�nition of τ(S, X), one can easily see that

τ(S, X) = τ1(S,X) ∩ τ2(S, X).

By an easy check, one can see that τ1(S,X) and τ2(S, X) are two topologies
on |F (X)| = S×X (Note that each element of τ1(S, X) satis�es the right side
of Relation (II) and each element of τ2(S,X) satis�es the left side of Relation
(II)), so τ(S,X) is a topology on F (X), too. (Since the intersection of any two
topologies on a space is a topology on it.)
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Lemma 3.4. Let (S, ·, τS) be a topological semigroup and (X, τX) be a topo-
logical space. Then (F (X), τ(S,X)) is a semitopological S-act.

Proof. We prove that for any s ∈ S and (t, x) ∈ F (X), the functions λs :
F (X) → F (X) and ρ(t,x) : S → F (X) are continuous. First, we show that the
function λs is continuous. Suppose that we are given U ∈ τ(S, X). We show
that λ−1

s (U) is an open set in F (X). By the de�nition of τ(S,X) there exist
open sets T ∈ τS and Y ∈ τX such that U ⊆ T × Y and for any t′ ∈ T and
x′ ∈ Y such that (t′, x′) ∈ U , there exist open sets V (U, x′) and W (U, t′) which
contain t′ and x′, respectively, such that

π1(U ∩ (S × {x′})) = V (U, x′) and π2(U ∩ ({t′} ×X)) = W (U, t′).

Note that since (S, ·, τS) is a topological monoid, the function λ
(S)
s : S → S is

continuous. Now by the de�nition of the action of F (X), we have

λ−1
s (U) =

⋃

y∈Y

[(λ(S)
s )−1(V (U, y))× {y}].

To prove λ−1
s (U) is in τ(S, X), we show that it is equal to an open set which

belongs to τ(S, X). De�ne V1 := (λ(S)
s )−1(T ) and U ′ := ∪t′∈V1({t′}×W (U, st′))

where W (U, st′) is the open set which is found for the element (st′, y) ∈ U for
some y ∈ X, by the assumption U ∈ τ(S, X). (Note that since we have
π2(U ∩ ({st′} ×X)) = W (U, st′), W (U, st′) does not depend on the choice of
y ∈ X.) We show that λ−1

s (U) equals U ′, and U ′ belongs to τ1(S, X), since it
is easy to see that U ′ ∈ τ2(V1, Y ) ⊆ τ2(S, X). (Note that U ∈ τ2(S,X) and
recall Relation (I).) By the de�nition of the action of F (X), we have obviously
λs(U ′) ⊆ U . Suppose that (t1, y) ∈ λ−1

s (U) for some t1 ∈ S and y ∈ X, so
we have (st1, y) ∈ U . Therefore we have {st1} ×W (U, st1) ⊆ U which by the
de�nition of the action F (X), implies that (t1, y) ∈ {t1} × W (U, st1). But
{t1} ×W (U, st1) is a subset of U ′, hence (t1, y) ∈ U ′. Therefore U ′ = λ−1

s (U)
which implies that λ−1

s (U) ∈ τ(S, X).
Now, we show the continuity of ρ(t,x). Consider U like the above and

suppose that we are given s′ ∈ S such that s′ ∈ ρ−1
(t,x)(U). Again note that

since (S, ·, τS) is a topological monoid, the function ρt : S → S is continuous.
Since U ∈ τ(S, X), there exists open set V (U, x) in τS which contains s′t and
V (U, x) × {x} ⊆ U . Therefore s′ ∈ ρ−1

t (V (U, x)) ∈ τS . We have ρ(t,x)(s′) ∈
ρ(t,x)(ρ

−1
t (V (U, x))) ⊆ V (U, x)×{x} ⊆ U . So ρ−1

t (V (U, x)) ⊆ ρ−1
(t,x)(U). Hence

ρ−1
(t,x)(U) ∈ τS .
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The following result shows a characterization of τ(S,X).

Proposition 3.5. Let (X, τX) be a topological space and (S, ·, τS) be a topo-
logical monoid. Then τ(S,X) is the �nest topology on F (X) such that F (X)
is a semitopological S-act and ν : (X, τX) → (F (X), τ(S, X)), x Ã (1, x), is
continuous.

Proof. By the above proposition and the de�nition of τ(S,X), τ(S, X) has the
above properties. Let τ be a topology on |F (X)| = S × X with the above
properties. First note that if s(1, x) = (s, x) ∈ U and U ∈ τ , then by the
continuity of ρ(1,x), λs and ν we can conclude that

s ∈ ρ−1
(1,x)(U) and x ∈ ν−1(λ−1

s (U)),

where ρ−1
(1,x)(U) ∈ τS and ν−1(λ−1

s (U)) ∈ τX . Furthermore we have obviously

π1(U ∩ (S × {x})) = ρ−1
(1,x)(U) ∈ τS

and also
π2(U ∩ ({s} ×X)) = ν−1(λ−1

s (U)) ∈ τX

Hence, U ∈ τ(S, X) = τ1(S, X) ∩ τ2(S, X). Therefore τ ⊆ τ(S, X)

By the above proposition, we can explain the topology τ∗X in another way
and we can present a coarser and �ner topology than it, according to the
topologies τS and τX (note that any topological S-act is a semitopological
S-act and note that τ∗X satis�es condition (b) in the proof of Proposition 3.2).

Corollary 3.6. Let (S, ·, τS) be a topological monoid and (X, τX) be a topo-
logical space. Then, τS×X ⊆ τ∗X ⊆ τ(S, X) and τ∗X is the �nest topology which
is coarser than τ(S, X) and it makes F (X) a topological S-act. ¤

Proposition 3.7. For any Alexandro� topological monoid (S, ·, τS) and any
topological space (X, τX), the topology τ∗X is the product topology on |F (X)| =
S ×X. In fact we have τ∗X = τS×X = τ(S,X).

Proof. We �rst show that, in this case, τ∗X equals to τ(S, X) and then we
show that τ(S, X) equals to the product topology τS×X . Note that by Corol-
lary 3.6, we have τ∗X ⊆ τ(S,X). On the other hand, since τ(S,X) ob-
viously satis�es condition (a) by Relation (I) in Remark 3.3, to complete
our proof, it is enough to prove that (F (X), τ(S,X)) is a topological S-
act. Suppose t(s, x) = (ts, x) ∈ U and U ∈ τ(S,X). Hence there exists
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open set W (U, ts) ∈ τX with x ∈ W (U, ts) such that {ts} × W (U, ts) ⊆ U .
But for any y ∈ W (U, ts), since again U ∈ τ(S, X), there exists open set
V (U, y) ∈ τS such that V (U, y) × {y} ⊆ U and ts ∈ V (U, y). Now de�ne
V := ∩y∈V (U,y)V (U, y) ∈ τS , because τS is Alexandro�, V contains ts and we
have:

V ×W (U, ts) ⊆
⋃

y∈W (U,ts)

(V (U, y)× {y}) ⊆ U. (*)

Now since (S, ·, τS) is a topological monoid, there exist open sets Vs and Vt

which contain s and t, respectively and satisfy the relation Vt · Vs ⊆ V . By
Corollary 3.6, if we de�ne W := Vs × W (U, ts), then W ∈ τS×X ⊆ τ(S, X)
which contains (s, x) such that

t(s, x) ∈ Vt ·W = (Vt · Vs)×W (U, ts) ⊆ V ×W (U, ts) ⊆ U.

So (F (X), τ(S,X)) is a topological S-act. Now suppose that U ∈ τ(S,X). If
U is a non-empty open subset of |F (X)| = S ×X, then consider an arbitrary
element (t, x) in U . We have clearly t(1, x) ∈ U , so by the above discussion,
there exists an open set V ∈ τS which contains t such that (t, x) = t(1, x) ∈
V ×W (U, t) ⊆ U . (Recall Relation (*) with s = 1.) Since V ×W (U, t) belongs
to the product topology on |F (X)| = S × X, τS×X is �ner than τ(S, X).
Therefore by Corollary 3.6 we have τ∗X = τ(S, X) = τS×X .

Proposition 3.8. Suppose that (S, ·, τS) is a topological monoid. For each
Alexandro� topological space (X, τX), the topology τ∗X is the product topology
on S ×X and more precisely τ∗X = τS×X = τ(S, X).

Proof. τ∗X satis�es conditions (a) and (b) in Proposition 3.2 so τS×X ⊆ τ(S, X).
Suppose that we are given (ts, x) ∈ U for some t, s ∈ S, x ∈ X and an open
set U ∈ τ(S,X). Since U ∈ τ(S,X), we can choose for (ts, x) ∈ U , the
open set V (U, x) such that V (U, x) × {x} ⊆ U and ts ∈ V (U, x). Choose for
any s′ ∈ V (U, x), an open set W (U, s′) such that {s′} × W (U, s′) ⊆ U and
x ∈ W (U, s′). De�ne W := ∩s′∈V (U,x)W (U, s′). Now, by a similar argument as
in the proof of Proposition 3.7, we can get the result.

Since every discrete topological space is Alexandro�, as an immediate con-
sequence of the above proposition and Proposition 3.5, we have

Proposition 3.9. (Free topological S-act on a set) Let (S, ·, τS) be a topolog-
ical monoid and Z be a set. Then the free topological S-act on the set Z is
F (Z) with the topology τS×Z where τZ in the de�nition of τS×Z is the discrete
topology.
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Now we discuss the properties of the free topological S-act on a topological
space which satis�es some of the separation axiom, (for more details about the
separation axioms, see [21].)

Proposition 3.10. Let (S, ·, τS) be a topological monoid with left ideal topol-
ogy. Suppose that (X, τX) satis�es one of the separation axioms Ti for i =
0, 1, 2, 3, 31

2 . Then, the free topological S-act on (X, τX) satis�es that separa-
tion axiom if and only if S = {1}.
Proof. For the non-trivial part, let (X, τX) be a Ti space for some i. Then,
by assumption, the free topological S-act on (X, τX) is a Ti space. Note that
if a topological S-act (A, τA) which has subact topology, satis�es Ti, then
for any a ∈ A, Sa = {a}. For, if there exist s ∈ S and a ∈ A such that
sa 6= a, then any open set in the subact topology τA containing a, also contains
sa. Thus, we have S(s, x) = {(s, x)} for each (s, x) ∈ F (X). In particular,
S(1, x) = {(1, x)}. Therefore S = S1 = {1}.

Although Proposition 3.10 shows that for any non-trivial topological monoid
(S, ·, τS) with left ideal topology, the free topological S-act on a Ti space does
not satisfy any of the separation axioms Ti, but the following proposition shows
that if (S, ·, τS) itself satis�es any Ti, i = 0, 1, 2 then the free topological S-act
on a topological space which satis�es that Ti, satis�es that separation axiom,
too.

First, note that if (X1, τX1) and (X2, τX2) are two topological spaces which
satisfy Ti for some i = 0, 1, 2, then their product space satis�es that Ti, too
(for more details, see [10] or [21]).

Proposition 3.11. Let (S, ·, τS) be a topological monoid which satis�es Ti for
some 0 ≤ i < 3. Then, the free topological S-act on a topological space which
satis�es that Ti, satis�es that separation axiom, too.

Proof. suppose that the topological space (X, τX) satis�es Ti. Clearly S ×X
with product topology also satis�es Ti, too and since for any topological space
(X, τX), we have τS×X ⊆ τ∗X , then (F (X), τ∗X) satis�es Ti.

Remark 3.12. About the preservation of T3 1
2
, �rst, we prove that if we de�ne

Γ′(X,τX) as follows,

{τ |τ is a completely regular topology on |F (X)| satis�ng (a) and (b)}
and let τ ′X be de�ned to be the generated topology by ∪τi∈Γ(X,τX )

τi, then
(F (X), τ ′X) is a completely regular topological S-act. Then we give a condition
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such that the completely regularity is preserved. For our assertion, we just need
to show the completely regularity of (F (X), τ ′X), since it is straightforward to
see that τ ′X satis�es conditions (a) and (b). For this purpose, we show that
the generated topology by a family of topologies (τi)i∈I on a set C such that
each τi is completely regular for any i ∈ I, is a completely regular topology
on C. Let (τi)i∈I be a family of completely regular topologies on a set C.
Let τ be the generated topology by ∪i∈Iτi. Let K be a closed set in C with
the topology τ and c ∈ C \ K. Since O = C \ K belongs to τ , there exists
a family of open sets {Oj}j∈J ⊆ ∪i∈Iτi such that O is equal to a union of
their �nite intersections of Oi's. Therefore we can assume that there exists
O1∩ . . .∩On such that K = C \O ⊆ C \ (O1∩ . . .∩On) and c ∈ O1∩ . . .∩On.
Since for any i, Oi is open in τni and since τni is completely regular, for closed
set C \ Oi and c, there exists a continuous real valued function fi : C → R
such that fi(C \ Oi) = 1 and fi(c) = 0. Since τ is the generated topology
by τi, all the functions fi are continuous real valued function from C with the
topology τ to R such that fi(C \ Oi) = 1 and fi(c) = 0. Let f be de�ned
by f(x) := max{f1(x), . . . , fn(x)}, for any x ∈ C. Therefore τ is completely
regular, since f is a continuous function from C with topology τ to R such
that f is continuous and f(K) = 1 and f(c) = 0. Therefore, since τ ′X is
the generated topology by ∪τi∈Γ′

(X,τX )
τi, and since for each τi ∈ Γ′(X,τX), τi is

completely regular, τ ′X is completely regular. Hence (F (X), τ ′X) is a completely
regular topological S-act.

Now if for a topological semigroup (S, ·, τS) and a topological space (X, τX),
we have τ ′X = τ∗X or more specially, if Γ′(X,τX) = Γ(X,τX), then the separation
axiom T3 1

2
is preserved. For an example of a topological semigroup (S, ·, τS) and

a topological space (X, τX) with this property, let (S, ·, τdis) be a topological
monoid. Then for any completely regular space (X, τX), clearly, by Proposition
3.7, τ∗X = τS×X = τ ′X . Therefore for a topological semigroup which has discrete
topology, the separation axiom T3 1

2
is preserved.

4. The free topological S-act on an S-act
The category S-Act is a very well-known category and its universal struc-
tures are studied comprehensively by many authors. In this section we want
to present a very useful and e�ective tool which enables us to study S-Top
by using the studies in S-Act. First, in this section, we present the free topo-
logical S-act on an S-act, then to illustrate the application of this result, we
characterize the projective topological S-acts. In fact, we show that the pro-
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jective topological S-acts are exactly the free topological S-acts on projective
S-acts.

Now we discuss the free topological S-act on an S-act. One might naturally
expect that an S-act A with discrete topology to be the free topological S-
act on A, but, as Proposition 4.1 shows, A with this topology may not be a
topological S-act and if it happens to be so, then it is indeed the free topological
S-act on A.

Since by the de�nition of topological S-acts, the proof of the following
result is straightforward, we state it without proof.

Proposition 4.1. An S-act A with the discrete topology is a topological S-act
if and only if for any a ∈ A and s ∈ S, (sa : a) := {t ∈ S|ta = sa} ∈ τS. ¤

Proposition 4.2. If (S, ·, τS) is a topological semigroup with a right identity,
then the following statements are equivalent

(1) All the S-acts with discrete topology are topological S-acts.

(2) τS is the discrete topology.

(3) If we de�ne G from category S-Act to category S-Top as follows, A 7→
(A, τdis), then G is the free functor.

Proof. Since (1) and (3) are equivalent, for the non-trivial part of the proof,
by Proposition 4.1, we just need to show (1) ⇒(2). Since S with the discrete
topology is a topological S-act, if e is the right identity of S, then the function
idS = ρe : (S, τS) → (S, τdis) is continuous and hence τS = τdis.

Now, we discuss about the free topological S-act on an S-act in general.

Proposition 4.3. For any topological semigroup (S, ·, τS), the free topological
S-act on an S-act A is de�ned as follows

(A, τ∗A), (A ∈ S−Act)

in which τ∗A is the topology generated on A by the union of all τi on A, where
(A, τi) is a topological S-act.

Proof. Let A be an arbitrary S-act and de�ne

ΣA := {τ | (A, τ) is a topological S-act}.
(Note that every S-act is a topological S-act with trivial topology, so ΣA is
not empty.)
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Similar to the proof of Proposition 3.2, we can show that τ∗A which is the
topology generated by the union of all τi where τi ∈ ΣA, makes A a topological
S-act.

To prove that (A, τ∗A) with idA : A → (A, τ∗A) is the free topological S-act
on A, let f : A → (B, τB) be an S-map into a topological S-act (B, τB). Then,
the same function f : (A, τ∗A) → (B, τB) is claimed to be a continuous S-map.

Let τf := {f−1(U)}U∈τB
. To prove the claim, �rst we show that (A, τf ) is

a topological S-act. Let U ∈ τB, sa ∈ f−1(U) for some a ∈ A and s ∈ S. Since
f(sa) = sf(a) ∈ U and (B, τB) is a topological S-act, there exists Vs ∈ τS and
Wf(a) ∈ τB such that s ∈ Vs and f(a) ∈ Wf(a) and

sf(a) ∈ Vs ·Wf(a) ⊆ U.

Thus, sa ∈ Vs · f−1(Wf(a)) ⊆ f−1(U), and so (A, τf ) is a topological S-act.
Now, since {f−1(U)}U∈τB

belongs to ΣA, by the de�nition of τ∗A, we have
τf = {f−1(U)}U∈τB

⊆ τ∗A.

So f : (A, τ∗A) → (B, τB) is continuous.
The rest of the proof is trivial.

Now using the concept of weak topology and the above proposition and its
proof, we can explain τ∗A in these ways.
Proposition 4.4.

(i) τ∗A is the weak topology which is induced on |A| with respect to the family
of S-homomorphisms id : A → (A, τi) where (A, τi) is a topological S-act.

(ii) τ∗A is the weak topology on |A| with respect to the family of all S-
homomorphisms from A to other topological S-acts. ¤

Note that, for a topological space (X, τX) and any topological monoid
(S, ·, τS), since (F (X), τ∗X) is a topological S-act, it is obvious that τ∗X on
|F (X)| = S × X is coarser than τ∗F (X). (See the de�nitions of Γ(X,τX) and
ΣF (X) in the proof of Propositions 3.2 and 4.3.)

But, the following example shows that τ∗X can be a proper subset of τ∗F (X).
Example 4.5. Let (S, ·, τdis) be a topological monoid and let (X, τX) be a
non-discrete topological space. Then τ∗X ( τ∗F (X). Because, by Proposition
4.2, τ∗F (X) is discrete. On the contrary, suppose that τ∗F (X) equals to τ∗X .
Since ν is an embedding, and since {1} × X with the subspace topology is
the discrete topology (because τ∗F (X) is discrete), (X, τX) is a discrete space,
which is impossible. So we have the result.
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For all universal objects in category S-Top, we can use the free topological
S-acts on S-acts to change any given diagrams in S-Act to a given diagram in
S-Top. Therefore, we can study the algebraic structure of universal structures
by using the known universal objects in S-Act. To illustrate this method,
we apply it in the next proposition to characterize the projective topological
S-acts.

Proposition 4.6. Let (S, ·, τS) be a topological monoid. Then the projective
topological S-acts are the free topological S-acts on the S-acts ti∈ISei, where
ei's are idempotents in S, I is a set and ti∈ISei denote the coproduct of Sei's.

Proof. Let (P, τP ) be a projective S-act. First, we show that (P, τP ) is the
free topological S-act on S-act P . For this purpose, we show that topology
τP is the �nest topology which makes P a topological S-act. Let (P, τ) be a
topological S-act. We show that τ is coarser than τP . Consider the generated
topology by the union of τ and τP , and denote it by τ ′. Consider the identity
maps idP : (P, τP ) → (P, τP ) and idP : (P, τ ′) → (P, τP ). Since (P, τP ) is
a projective topological S-act, the identity map idP : (P, τP ) → (P, τ ′) is
continuous. Therefore τ ′ is coarser than τP and therefore τ ⊆ τP . Now, to
complete the proof, we show that P is a projective S-act and then we use [18,
Theorem 1.5.10], to characterize the algebraic structure of (P, τP ). Suppose
that f : A → B be a surjective S-map, where A and B are S-acts and let
g : P → B be an S-map. Since the epimorphisms in category S-Act are exactly
onto S-maps (see [18]), it is straightforward to see that f : (A, τ∗A) → (B, τ∗B)
is an epimorphism in S-Top and g : (P, τP ) → (B, τ∗B) is continuous (note
that if C is an S-act, (D, τD) is a topological S-act and h : C → (D, τD) is an
S-map, then τ1 = {V ⊆ C|V = f−1(U), where U is an open set in (D, τD)}
is a topology on C such that (C, τ1) is a topological S-act). Since (P, τP ) is
a projective topological S-act, there exists a continuous S-map h : (P, τP ) →
(A, τ∗A) such that f ◦ h = g. Since h is an S-map, P is a projective S-act.
Therefore by [18, Theorem 1.5.10], there exists a family {ei}i∈I of idempotents
in S such that P is algebraically isomorphic to ti∈ISei, where t denotes the
coproduct of Sei's in S-Act. Therefore, P is the projective S-act which is a
coproduct of cyclic S-acts in S-Act and (P, τP ) is the free topological S-act
on S-act P .

Finally in this paper we show that the free topological S-act on the set

For a non-empty family of S-acts, like {Ai}i∈I , the coproduct of Ai's in S-Act is the
disjoint union of Ai's with its natural action (see [18]).
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Z is the free topological S-act on the S-act F (Z). (So if we de�ne the free
topological S-act on a set Z in this way, then the result will be the same.)

Proposition 4.7. let (S, ·, τS) be a topological monoid. The free topological
S-act on the set Z equals to the free topological S-act on the S-act F (Z).

Proof. Since a discrete topological space (Z, τdis) is Alexandro�, by Proposition
3.8 we have τ∗Z = τS×Z . We show that the topology τ∗ on F (Z) equals to τ∗Z .
For this purpose, we show that ΣF (Z) = Γ(Z,τdis). Since obviously, τ∗Z ∈ ΣF (Z),
it is enough to show that τ∗F (Z) belongs to Γ(Z,τdis). Clearly, τ∗F (Z) on F (Z)
satis�es condition (a). Since τS×Z = τ∗Z ⊆ τ∗F (Z) and Z is a discrete space,
then {U ∩ ({1} × Z)|U ∈ τ∗F (Z)} is the discrete topology on {1} × Z. Since
ν : Z → {1} × Z is a one to one, onto function from a discrete topological
space to another discrete topological space, it is an embedding. Therefore
τ∗F (Z) satis�es conditions (a) and (b) in Proposition 3.2 and hence τ∗F (Z) ∈
Γ(Z,τdis).

In fact, the proof of the above proposition shows that:

Corollary 4.8. Let (S, ·, τS) be a topological monoid. Then for each set Z, we
have τ∗F (Z) is the product topology τS×Z on S × Z, where τZ in the de�nition
of τS×Z is the discrete topology on Z. ¤
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Transversals in loops. 1.
Elementary properties

Eugene Kuznetsov

Devoted to the memory of Valentin D. Belousov (1925-1988)

Abstract. A new notion of a transversal in a loop to its subloop is introduced and
studied. This notion generalized a well-known notion of a transversal in a group to its
subgroup and can be correctly de�ned only in the case, when some speci�c condition (con-
dition A) for a loop and its subloop is ful�lled. Elementary properties of the transversals
in a loop to its subloop are investigated and proved. With the help of the notion of
transversal in a loop to its subloop a new notion of permutational representation of a
loop by left (right) cosets to its subloop is introduced and studied.

1. Introduction
In group theory, in group representation theory and in quasigroup theory
the following notion is well-known � the notion of a left (right) transversal
in a group to its subgroup [1, 5, 6, 10].

De�nition 1.1. Let G be a group and H be a subgroup in G. A complete
system T = {ti}i∈E of representatives of the left (right) cosets of H in G
(e = t1 ∈ H) is called a left (right) transversal in G to H.

In the present work a variant of natural generalization of the notion of
transversal at the class of loops is proposed and studied. As the elements of
a left (right) transversal in a group to its subgroup are the representatives
of every left (right) coset to the subgroup, then a notion of a left (right)
transversal in a loop to its subloop can be correctly de�ned only in a case
when this loop admits a left (right) coset decomposition by its subloop (see
[11] and the Condition A below).

2000 Mathematics Subject Classi�cation: 20N05
Keywords: quasigroup, loop, transversal, coset, representation.
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In the part 2 of this article we start studying a class of loops which
admits a left (right) coset decomposition by its subloop (admits the left
(right) condition A). Elementary properties of those loops are proved. One
of these properties (for �nite loops) is an analogue of Lagrange theorem for
groups.

In the part 3 of this article at the investigated class of loops we introduce
the notion of left (right) transversals to its subloops. Some elementary
properties of the transversals are investigated and proved.

In the part 4 of this article at this class of loops we introduce and study
a notion of a permutational representation of loop by the left (right) cosets
to its subloop. Elementary properties of this new notion are proved. Also
we will prove an equivalence of this notion and a notion of permutation loop
from [3].

Further we shall use the following notations:
〈L, ·, e〉 is an initial loop with the unit e;
〈R, ·, e〉 is its proper subloop;
E is a set of indexes (1 ∈ E) of the left (right) cosets Ri in L to R

(assume R1 = R).

2. Preliminaries
De�nition 2.1. The system 〈E, ·〉 is called [2] a right (left) quasigroup if for
arbitrary a, b ∈ E the equation x · a = b (a · y = b) has a unique solution in
E. If 〈E, ·〉 is both a right and left quasigroup, then it is called a quasigroup.
If in a right (left) quasigroup 〈E, ·〉 there exists an element e ∈ E such that

x · e = e · x = x

for every x ∈ E, then 〈E, ·〉 is called a right (left) loop (the element e is
called a unit or an identity element). If 〈E, ·〉 is both a right and left loop,
then it is called a loop.

De�nition 2.2. Let 〈L, ·〉 be a loop and 〈R, ·〉 be its proper subloop.
Then a left coset of R is a set of the form

xR = {xr | r ∈ R},
and a right coset has the form

Rx = {rx | r ∈ R}.
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The cosets in a loop to its subloop do not necessarily form a partition
of the loop. This leads us to the following de�nition.

De�nition 2.3. A loop L has a left (right) coset decomposition by its proper
subloop R, if the left (right) cosets form a partition of the loop L, is equal
for some set of indexes E

1.
⋃

i∈E

(aiR) = L;

2. for every i, j ∈ E, i 6= j (aiR) ∩ (ajR) = ∅.

In order to de�ne correctly a notion of a left (right) transversal in a
loop to its proper subloop, it is necessary that the following condition be
ful�lled.

De�nition 2.4 (see [9]). (Left Condition A) Let R be a subloop of a loop
L. For all a, b ∈ L there exists c ∈ L such that

a(bR) = cR. (1)

The right condition A is de�ned analogously.
In [11] the following theorem was proved.

Lemma 2.5. The following conditions are equivalent:
1. A loop L has a left cosets decomposition by its proper subloop R.
2. The following condition takes place (it can be named the weak left

condition A): for every a ∈ L

(aR)R = aR. (2)

Proof. See in [11], Theorem I.2.12.

Below we shall prove all statements only for a case of the left cosets (if
the left condition A take place); in a case of the right cosets all proofs are
similar.

Lemma 2.6. Let the left condition A in a loop L to its subloop R be satis�ed.
Then

(a ·R) ·R = a ·R (3)
for all a ∈ L.
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Proof. By the left condition A for all a, b ∈ L there exists an element
c = c (a, b) ∈ L such that a · (b ·R) = c · R. In the loop L always it is
possible to �nd an element d = d (a, b) such that c = a · d. Then

a · (b ·R) = (a · d) ·R. (4)

So, for some r1 ∈ R we have a · (b · r1) = (a · d) · e = a · d. Thus, b · r1 = d,
i.e., d ∈ b ·R. Therefore, b ∈ R implies d ∈ R. Hence, for b ∈ R from (4) it
follows a ·R = (a ·R) ·R. The Lemma is proved.

Lemma 2.7. The following conditions are equivalent:
1. The left condition A is ful�lled in the loop L to its subloop R.
2. For every a, b ∈ L

a · (b ·R) = (a · b) ·R. (5)

Proof. 1 ⇒ 2. Let the left condition A holds. Then for all a, b ∈ L and all
r ∈ R there exist c = c (a, b) ∈ L and r1 ∈ R such that a · (b · r) = c · r1. If
r = e, then a · b = c · r′1 ∈ c ·R. Hence, according to Lemma 2.6,

(a · b) ·R = (c ·R) ·R = c ·R,

which proves 2.
2 ⇒ 1. It is evident.

Let us de�ne (see [12]) for all a, b ∈ L the left inner mapping

la,b (x) = (a · b) \ (a · (b · x)) , x ∈ L, (6)

where ”\” is a left division in the loop 〈L, ·, e〉, and the right inner mapping

ra,b (x) = ((x · b) · a) / (b · a) , x ∈ L, (7)
where ”/” is a right division in the loop 〈L, ·, e〉.
Lemma 2.8. Let the left condition A in a loop L to its subloop R be satis�ed.
Then la,b (R) = R for all a, b ∈ L.

Proof. The proof is an evident corollary of Lemma 2.7.

Lemma 2.9. Let the right condition A in a loop L to its subloop R be
satis�ed. Then ra,b (R) = R for all a, b ∈ L.
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Proof. The proof is similar to the proof of a Lemma 2.8.

Remark 2.10. It is known (see [12]) that the mappings la,b generate the left
inner mappings group LI (〈L, ·, e〉) of a loop L, and the mapings ra,b gener-
ate the right inner mappings group RI (〈L, ·, e〉) of a loop L. Therefore, if
the left (right) condition A in a loop L to its subloop R is ful�lled, then the
investigated class of loops satis�es a condition of an invariance of a subloop
R relating to an action of the group LI (〈L, ·, e〉) (group RI (〈L, ·, e〉), re-
spectively). So we can say that the subloop R is a left (right) invariant
subloop of the loop L.

Remark 2.11. The condition (5) is called in [4] a strong left coset decom-
position of the loop L by its proper subloop R.

Lemma 2.12. Let the left condition A for a loop L and its subloop R is
ful�lled. Then the following conditions hold:

1. Left cosets Ri form a left coset decomposition of the loop L;
2. If a loop L is �nite, then the "Lagrange property" takes place:

an order of the subloop R divides an order of the loop L.

Proof. (see also [11]) 1. Let Ri = aR, Rj = bR. Assume that these cosets
have a common element c ∈ L, i.e.,

c ∈ Ri ∩Rj = (aR) ∩ (bR).

Then c = a · r1 = b · r2 for some r1, r2 ∈ R. So, (a · r1) · r = (b · r2) · r for
every r ∈ R. Let us show there exists an element r0 ∈ R such that

(a · r1) · r0 = a.

Indeed, if the left condition A for the loop L and its subloop R is ful�lled,
then a subloop R is a left invariant subloop in the loop L. Hence ∀a, b ∈ L:
la,b (R) = R. Let us take r0 = la,r1 (r1\e). Then

r0 = (a · r1)\(a · (r1 · (r1\e))) = (a · r1)\(a · e) = (a · r1)\a,

i.e., (a · r1) · r0 = a. So, by Lemma 2.6, we obtain

a = (a · r1) · r0 = (b · r2) · r0 = b · r′2 ∈ b ·R.

Thus a ·R = (b ·R) ·R = b ·R. So, if a ·R 6= b ·R, then (a ·R)∩ (b ·R) = ∅.
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Since c ∈ (c ·R), for any element c ∈ L, we have
⋃

c∈L

(c ·R) = L. So, left
cosets Ri form a left coset decomposition of the loop L.

2. Let L be �nite. Let us show that the number of elements in any left
coset Ri is equal to the number of elements in R. Because L is a loop then

r1 6= r2 ⇔ a · r1 6= a · r2 ∀r1, r2 ∈ R.

So, the left translation La(r) = a · r is an injection. Since L is �nite, then
the translation La is a surjection, i.e., it is a bijection. So, R and a ·R have
the same order for any a ∈ R.

Then, by 1, we have L =
⋃

c∈L

(c ·R), and consequently

|L| =
∑

ci∈L

|ci ·R| = m · |R|.

The Lemma is completely proved.

Now we give two examples of loops and its proper subloops, where the
left condition A is ful�lled.

Example 2.13. A loop L and its normal subloop R.

It is well known (see [2]), that if a subloop R is normal in a loop L,
then an action of the left and right inner permutations la,b and ra,b is an
invariant relation ∀a, b ∈ L. Therefore both left and right conditions A are
ful�lled in this case.

Example 2.14. A loop of pairs L = 〈E ×E\{∆}, ∗, 〈0, 1〉〉 of an arbitrary
DK-ternar 〈E, (x, t, y) , 0, 1〉 and its subloop R = {〈0, x〉 |x ∈ E\{0}}.

As it is known (see [7]), in a loop of pairs L = 〈E × E\{∆}, ∗, 〈0, 1〉〉
the operation ”∗” is de�ned through the ternary operation (x, t, y) of the
DK-ternar 〈E, (x, t, y) , 0, 1〉 by the following way:

〈x, y〉 ∗ 〈u, v〉 def
= 〈(x, u, y) , (x, v, y) 〉.

The elements 〈0, x〉 (where x ∈ E\{0}) form a subloop R with the operation
” ∗ ”. Then for a = 〈x, y〉 ∈ L, b = 〈u, v〉 ∈ L and r = 〈0, z〉 ∈ R we have:

a ∗ (b ∗ r) = 〈x, y〉 ∗ (〈u, v〉 ∗ 〈0,z〉) = 〈x, y〉 ∗ 〈u, (u, z, v)〉
= 〈(x, u, y) , (x, (u, z, v) , y)〉 = 〈αx,y (u) ,αx,yαu,v (z)〉 .



Transversals in loops. 1. 49

On the other hand, for r1 = 〈0, z1〉, we have:

(a ∗ b) ∗ r1 = (〈x, y〉 ∗ 〈u, v〉) ∗ 〈0, z1〉 = 〈(x, u, y) , (x, v, y)〉 ∗ 〈0, z1〉
= 〈(x, u, y) , ((x, u, y) ,z1, (x, v, y))〉
=

〈
αx,y (u) , ααx,y(u),αx,y(v) (z1)

〉
.

If elements x, y, u, v ∈ E are given, then for every z ∈ E\{0} there exists
z1 ∈ E\{0} such that

αx,yαu,v (z) = ααx,y(u),αx,y(v) (z1) ,

namely,
z1 = α−1

αx,y(u),αx,y(v)αx,yαu,v (z) .

Thus a ∗ (b ∗R) = (a ∗ b) ∗R. Hence the left condition A is ful�lled.

3. A transversal in a loop to its subloop.
De�nition 3.1 (see [9]). Let 〈R, ·, e〉 be a subloop of the loop 〈L, ·, e〉
and let the left (right) condition A be satis�ed. If {Rx}x∈E is the set of all
left (right) cosets on L determined by R, then the set T = {tx}x∈E ⊂ L is
called the left (right) transversal in L if for every x ∈ E there exists a unique
element tx ∈ T such that tx ∈ Rx. If T = {tx}x∈E is both left and right
transversal in L simultaneously, then it is called the two-sided transversal.
Remark 3.2. Analogously as in groups we assume that t1 = e. If this as-
sumption is not ful�lled then we have the so-called non-reducible left (right)
transversals.

On E we de�ne the following transversal operations:

x
(T )· y = z

def⇔ tx · ty = tz · r, (8)

where tx, ty, tz ∈ T are left transversals L to R and r ∈ R,

x
(T )◦ y = z

def⇔ tx · ty = r · tz, (9)

where tx, ty, tz ∈ T are right transversals L to R.
Also we can de�ne the operation on the set of left transversal by putting

tx
(T )· ty = tz

def⇔ tx · ty = tz · r (10)

for tx, ty, tz ∈ T and r ∈ R. Similarly for the right transversal.
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Lemma 3.3. 〈E,
(T )· , 1〉 is isomorphic to 〈T,

(T )· , t1〉.
Proof. The proof follows easily from (8) and (10). The isomorphism has
the form ϕ : E → T , ϕ(x) = tx.

Lemma 3.4. 〈E,
(T )· , 1〉 is a left loop with the two-sided unit 1.

Proof. Since t1 = e ∈ R, for ever x ∈ E we have

x
(T )· 1 = u ⇔ tx · e = tu · r ⇔ tx = tu · r1 ⇔ tx ∈ tu ·R ⇔ u = x.

Hence x
(T )· 1 = x. On the other sided

1
(T )· x = v ⇔ e · tx = tv · r ⇔ tx = tv · r1 ⇔ tx ∈ tv ·R ⇔ v = x.

Thus 1
(T )· x = x. So, 1 ∈ E is a two-sided unit in 〈E,

(T )· , 1〉.
Let a

(T )· x = b for some a, b ∈ E. Then ta · tx = tb · r. Hence
tx = ta\ (tb · r) = tc · r′ for some c ∈ E ⇔ x = c.

So, there exists an element c ∈ E such that a
(T )· c = b. This means that

the equation a
(T )· x = b has a solution. If this solution is not uniquely

determined, then a
(T )· x1 = b = a

(T )· x2 for some x1, x2 ∈ E, x1 6= x2. Then{
ta · tx1 = tb · r1,
ta · tx2 = tb · r2.

Hence, by Lemmas 2.6 and 2.7 we obtain
ta · (tx1R) = (ta · tx1) ·R = (tb · r1) ·R = tbR,

ta · (tx2R) = (ta · tx2) ·R = (tb · r2) ·R = tbR.

So, for every r′ ∈ R there exists r′′ ∈ R such that
ta ·

(
tx1 · r′

)
= tb · r∗ = ta ·

(
tx2 · r′′

)
.

This implies tx1 · r′ = tx2 · r′′, and consequently x1 = x2, which is a contra-
diction. So, 〈E,

(T )· , 1〉 is a left loop.

In the same way we can prove

Lemma 3.5. 〈E,
(T )◦ , 1〉 is a right loop with the two-sided unit 1. ¤

If 〈E,
(T )· , 1〉 (resp. 〈E,

(T )◦ , 1〉) is a loop, then the transversal T is called
a left (right) loop transversal in L to R.



Transversals in loops. 1. 51

4. Representation of loops by cosets
Let 〈R, ·, e〉 be a subloop of the loop 〈L, ·, e〉 and let the left condition A
be satis�ed in 〈L, ·, e〉. Using the left transversal L to R we de�ne the left
action of L on E as the map f : L× E → E, (g, x) → y = ĝ (x) such that

ĝ (x) = y
def⇔ g · (tx ·R) = ty ·R. (11)

Lemma 4.1. ĝ is a permutation on E.

Proof. Let g be an arbitrary element of L. Then for every y ∈ E, every
r′ ∈ R and some x ∈ E we have

g\ (
ty · r′

)
= g′ ∈ tx ·R.

So, g · (tx ·R) = ty ·R, i.e., ĝ (x) = y. Hence ĝ is a surjective map.
Now, if ĝ (x1) = y = ĝ (x2) for some x1, x2 ∈ E, then, according to (11),

we have:
g · (tx1 ·R) = g · (tx2 ·R) .

Hence, for every r1 ∈ R there exists r2 ∈ R such that

g · (tx1 · r1) = g · (tx2 · r2) .

Thus, tx1 · r1 = tx2 · r2, which implies tx1 · R = tx2 · R, and consequently
x1 = x2. Therefore ĝ is a permutation on E.

In this way we obtain a permutation representation of a loop 〈L, ·, e〉 by
ϕ : L → L̂ ⊂ SE , where ϕ : g → ĝ. The multiplication of permutations
from L̂ is de�ned by

ĝ1 ∗ ĝ2 = ĝ3
def⇔ g1 · g2 = g3 in a loop 〈L, ·, e〉.

Since ϕ(g1)∗ϕ(g2) = ĝ1∗ĝ2 = ĝ3 = ĝ1 · g2 = ϕ(g1 ·g2), ϕ is a homomorphism
from 〈L, ·, e〉 to

〈
L̂, ∗,id

〉
.

Lemma 4.2. The kernel of the homomorphism ϕ is a subloop R∗ of a loop
L such that R∗ ⊆ R and

R∗ =
⋂

u∈L

R−1
u Lu(R).
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Proof. The kernel of this homomorphism is the set

R∗ = {g ∈ L| ĝ(x) = x ∀x ∈ E}.
By Lemmas 2.6 and 2.7 for every x ∈ E we have

ĝ(x) = x ⇔ g · (tx ·R) = tx ·R ⇔ g · ((tx · r) ·R) = (tx · r) ·R.

Thus

ĝ(x) = x ∀x ∈ E ⇔ g · (u ·R) = u ·R ∀u ∈ L ⇔ (g ·u) ·R = u ·R ∀u ∈ L.

The last is equivalent to the fact that g ∈ (u · R)/u ∀u ∈ L, i.e., g ∈
R−1

u Lu(R) ∀u ∈ L. Hence R∗ =
⋂

u∈L

R−1
u Lu(R).

For u = e we have g ∈ R. Thus R∗ ⊆ R.

Obviously, R∗ is a normal subloop of L and has the form

R∗ = {r ∈ R |L−1
u Ru(r) ∈ R ∀u ∈ L}.

Further R∗ will be denoted as CoreL(R) and will be called the core of
R in L.

Lemma 4.3. The following statements are true:
1) CoreL(R) is a maximal subloop among the all normal subloops of L

contained in R.
2) Let L′ = L/CoreL(R). If T = {tx}x∈E is a left transversal in L to

R and ψ : L → L′ is a natural homomorphism, then:
a) The set T ′ = {ψ(tx)|x ∈ E} is a left transversal in L′ to R′ =

ψ(R) = R/CoreL(R);

b) 〈E,
(T ′)· , 1〉 ≡ 〈E,

(T )· , 1〉.
3) CoreL′(R′) = {e}.

Proof. 1) Let N be any normal subloop of L contained in R. Since N is
normal, it is invariant by any middle inner permutation of the loop L, i.e.,
L−1

u Ru(N) = N for all u ∈ L. Then R−1
u Lu(N) = N for every u ∈ L.

Since N ⊆ R, for all u ∈ L we have N = R−1
u Lu(N) ⊆ R−1

u Lu(R), and
consequently

N =
⋂

u∈L

N =
⋂

u∈L

R−1
u Lu(N) ⊆ R−1

u Lu(R) = R∗.
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2) Let T = {tx}x∈E be a left transversal in L to R and

ψ : L → L′ = L\CoreL(R)

be a natural homomorphism. Let us denote:

R′ = ψ(R), t′x = ψ(tx) ∀x ∈ E.

a) Let us show that T ′ = {ψ(tx)|x ∈ E} is a left transversal in a loop L′

to its subloop R′. Firstly, because a · (b ·R) = (a · b) ·R for all a, b ∈ L, then
ψ(a · (b ·R)) = ψ((a · b) ·R), i.e., ψ(a) · (ψ(b) ·ψ(R)) = (ψ(a) ·ψ(b)) ·ψ(R).
Thus a′ · (b′ · R′) = (a′ · b′) · R′ for all a′, b′ ∈ L′, which shows that the left
condition A is ful�lled for a loop L′ and its subloop R′.

Secondly, for every g′ ∈ L′ there exists g ∈ L such that g′ = ψ(g). Since
for any g ∈ L we have a representation g = tu · r, tu ∈ T, r ∈ R, we obtain

g′ = ψ(g) = ψ(tu · r) = ψ(tu) ∗ ψ(r) = t′u ∗ r′,

where t′u ∈ T ′, r′ ∈ R′. This means that each g′ ∈ L′ may be represented
in the form g′ = t′u · r′, where t′u ∈ T ′, r′ ∈ R′.

Finally, let t′y = t′x ∗ r′1 for some x, y ∈ E and r′1 ∈ R′. Then, for
r′1 = ψ(r1) we have ψ(ty) = ψ(tx) ∗ ψ(r1) = ψ(tx · r1). From this we obtain
ty · CoreL(R) = (tx · r1) · CoreL(R).

Since R∗ = CoreL(R) ⊆ R, then ty · r∗1 = (tx · r1) · r∗2, where r∗1, r
∗
2 are

in R∗ ⊆ R. Thus

ty ·R = (ty · r∗1) ·R = ((tx · r1) · r∗2) ·R = (tx · r1) ·R = tx ·R.

So x = y, since T is a left transversal in L to R. Therefore T ′ is a left
transversal in L′ on R′.

b) We have

x
(T )· y = z ⇔ tx · ty = tz · r (where tx, ty, tz ∈ T, r ∈ R) ⇔
ψ(tx · ty) = ψ(tz · r) ⇔ ψ(tx) ∗ ψ(ty) = ψ(tz) ∗ ψ(r) ⇔

t′x · t′y = t′z · r′ (where t′x, t′y, t
′
z ∈ T ′, r′ ∈ R′) ⇔ x

(T ′)· y = z.

Thus x
(T )· y = z = x

(T ′)· y. So, 〈E,
(T )◦ , 1〉 and 〈E,

(T ′)◦ , 1〉 are isomorphic.
3) Let CoreL′(R′) = M0 6= {e}. Since M0 is a normal subloop of L′,

the preimage
M1 = ψ−1(M0) = {g ∈ L |ψ(g) ∈ M0}
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is a subloop in L. Further,

e ∈ M0 ⇒ CoreL(R) = Ker ψ = ψ−1(e) ⊂ ψ−1(M0) = M1,

M0 ⊆ R′ ⇒ M1 = ψ−1(M0) ⊆ ψ−1(R′) = R.

Since a homomorphism ψ transforms any inner permutation from L to an
inner permutation from L′, then M1 should be a normal subloop in L. So,
M1 ⊂ R and CoreL(R) ⊂ M1. This contradicts to the previous condition
of this Lemma.

Remark 4.4. According to the above lemma, the study of left transversals
in loops may be reduced to the case, when CoreL(H) = {e}. In this case
〈E, ∗, id〉 ≡ L̂ ∼= L = 〈E, ·, e〉 .

In the case when 〈R, ·, e〉 is as subloop of 〈L, ·, e〉 and the right condition
A is satis�ed we obtain analogical results. Namely, if T = {tx}x∈E is a right
transversal in L to R, then f : L × E → E, f : (g, x) → y = ǧ (x) de�ned
by

ǧ (x) = y
def⇔ (R · tx) · g = R · ty.

is a right action of L on E. Consequently, the following lemmas are true.

Lemma 4.5. ǧ is a permutation on E. ¤

So, ϕ′ : L → L̆ ⊂ SE , ϕ′ : g → ǧ is another permutation representation
of a loop L.

Lemma 4.6. The kernel R~ of the homomorphism ϕ′ is a subloop L such
that R~ ⊆ R and R~ =

⋂
u∈L

L−1
u Ru(R). ¤

Lemma 4.7. The following statements are true:
1) R~ is a maximal subloop among the all normal subloops of the loop

L contained in R.
2) Let L′′ = L/R~. If T = {tx}x∈E is a right transversal in L to R and

ψ : L → L′′ is a natural homomorphism, then:
a) T ′′ = {ψ(tx)|x ∈ E} is a right transversal in L′′ to R′′ = ψ(R) =

R/R~;
b) 〈E,

(T ′′)· , 1〉 ≡ 〈E,
(T )· , 1〉.

3)
⋂

u∈L′′
L−1

u Ru(R′′) = {e}. ¤
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Remark 4.8. According to the last Lemma a research of right transversals
in loops may be reduced to a case when

⋂
u∈L′′

L−1
u Ru(R′′) = {e}. In this case

〈L̆, ∗, id〉 ≡ L̂ ∼= L = 〈L, ·, e〉 .
Lemma 4.9. If T = {tx}x∈E is a two-sided transversal in a loop L to its
subloop R and two-sided conditions A is satis�ed, then

R~ =
⋂

u∈L

L−1
u Ru(R) = R∗ =

⋂

u∈L

R−1
u Lu(R) = CoreL(R).

Proof. It is a consequence of Lemmas 4.3 and 4.7.

De�nition 4.10. [3] A loop 〈L, ·, e〉 is called a permutation loop on a set E,
if there exists a map f : L×E → E, f (g, x) = ĝ (x) satisfying the following
conditions:

(1) ê (x) = x for all x ∈ E, where e is a unit of the loop L,
(2) if b ∈ N (〈L, ·, e〉), where N is a kernel of L, then

(â · b) (x) = â(b̂(x))

for every a ∈ L and x ∈ E,
(3) there exists an element x0 ∈ E such that

Rx0

def
= {g ∈ L| ĝ (x0) = x0}

is a subloop of L and the following conditions are ful�lled:
(a) (b̂ · a)(x0) = b̂(â(x0)) for b ∈ Rx0 and a ∈ L,
(b) (ĝ2 · g1)(x0) 6= ĝ2(x0) for g1, g2 ∈ L and ĝ1(x0) 6= x0,
(c) (ĝ2 · g1)(x0) 6= ĝ1(x0) for g2 /∈ Rĝ1(x0).

Let us show that a permutational representation L̂ de�ned by (11) sat-
is�es all conditions of De�nition 4.10.

Lemma 4.11. Let the left condition A for a loop 〈L, ·, e〉 to its subloop
〈R, ·, e〉 be satis�ed. If a permutation representation

〈
L̂, ·, ê

〉
of the loop L

is de�ned by (11), then
〈
L̂, ·, ê

〉
is a loop of permutations in the sense of

De�nition 4.10.



56 E. Kuznetsov

Proof. If a representation is de�ned by (11), then

ê (x) = u ⇔ e · (tx ·R) = tu ·R ⇔ tx ·R = tu ·R ⇔ u = x,

which shows that in this case ê (x) = x for all x ∈ E. This veri�es the �rst
condition of De�nition 4.10.

Now, if b ∈ N (〈L, ·, e〉), then for u, v ∈ L we have (b · u) · v = b · (u · v) .
Thus (u · v)·b = u·(v · b), and consequently (u · b)·v = u·(b · v). This means
that for every a ∈ L and every x ∈ E we have (â · b) (x) = y. Therefore
(a · b) · (tx ·R) = ty ·R, which means that (a · b) · tx = ty · r′ for some r′ ∈ R.
But a · (b · tx) = ty · r′, b · tx = tz · r′′ and a · (tz · r′′) = ty · r′ imply b̂(x) = z

and â(z) = y. Hence â(b̂(x)) = y. Consequently (â · b) (x) = â(b̂(x)). This
veri�es the second condition of De�nition 4.10.

Now we prove that the third condition of De�nition 4.10 is satis�ed for
x0 = 1. First we prove that for all g1, g2 ∈ L we have

(ĝ1 · g2)(1) = ĝ1(ĝ2(1)). (12)

Indeed, by Lemma 2.7, (ĝ1 · g2)(1) = u, i.e., (g1 · g2)(e · R) = tu · R. Thus
(g1·g2)·R = tu·R. But g1·(g2·R) = tu·R, g2·R = tz ·R and g1·(tz ·R) = tu·R
imply ĝ2(1) = z and ĝ1(z) = u. Hence ĝ1(ĝ2(1)) = u. This completes the
proof of (12). From (12) the condition (a) follows automatically.

Further, let g1, g2 ∈ L and ĝ1(1) = u0 6= 1. Then by (12) we have

(ĝ2 · g1)(1) = ĝ2 · (ĝ1(1)) = ĝ2(u0) 6= ĝ2(1),

since ĝ2 is a permutation. This proves (b).
Finally, let

g2 /∈ Rĝ1(1) = {g ∈ L| ĝ(ĝ1(1)) = ĝ1(1)} .

Then, by (12), we obtain (ĝ2 · g1)(1) = ĝ2 ·(ĝ1(1)) 6= ĝ1(1), since g2 /∈ Rĝ1(1).
This proves (c).

Lemma 4.12. For an arbitrary left transversal T = {tx}x∈E in a loop
L = 〈L, ·, e〉 to its subloop R = 〈R, ·, e〉 the following statements are true:

1) r̂(1) = 1 for all r ∈ R,

2) t̂x(y) = x
(T )· y, t̂−1

x (y) = x\y for all x, y ∈ E,
where t̂−1

x is an inverse permutation to a permutation t̂x in SE, and
”\” is a left division in a left loop 〈E,

(T )· , 1〉. Moreover,
t̂x(1) = x, t̂1(x) = x, t̂−1

x (1) = x\1, t̂−1
x (x) = 1.
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Proof. 1) Let r̂(1) = u. Then r · (e · R) = tu · R, i.e., R = tu · R. Thus
tu = e = t1. Consequently, u = 1. This proves r̂(1) = 1.

2) Let t̂x(y) = u. Then tx · (ty ·R) = tu ·R, and consequently

tu ·R = (tx · ty) ·R = (tx·y · r′) ·R = tx·y ·R.

Thus u = x · y and t̂x(y) = x · y.
Further,

t̂−1
x (y) = z ⇔ y = t̂x(z) = x · z ⇔ z = x\y,

so, t̂−1
x (y) = x\y. The rest follows from just proved identities.

Lemma 4.13. The following conditions are equivalent:
1) T = {tx}x∈E is a left loop transversal in a loop L to its subloop R;
2) T̂ = {t̂x}x∈E is a sharply transitive set of permutations in SE.

Proof. The proof is based on the following sequence of the equivalent state-
ments:

• T = {tx}x∈E is a left loop transversal in a loop L to its subloop R,

• 〈E,
(T )· , 1〉 is a loop with the unit 1,

• x
(T )· a = b has a unique solution in E for every a, b ∈ E,

• t̂x(a) = b has a unique solution in E for every a, b ∈ E,
• T̂ = {t̂x}x∈E is a sharply transitive set of permutations in SE .

The proof of the following two lemmas about is analogous to the proof
of Lemmas 4.12 and 4.13.

Lemma 4.14. For an arbitrary right transversal T = {tx}x∈E in a loop
L = 〈L, ·, e〉 to its subloop R = 〈R, ·, e〉 the following statements are true:

1) ř(1) = 1 for all r ∈ R,

2) ťx(y) = y
(T )◦ x, ť−1

x (y) = x/y for all x, y ∈ E,
where ť−1

x is an inverse permutation to a permutation ťx in SE, and
”/” is a right division in a right loop 〈E,

(T )◦ , 1〉. Moreover,
ťx(1) = x, ť1(x) = x, ť−1

x (1) = x/1, ť−1
x (x) = 1.

Lemma 4.15. The following conditions are equivalent:
1) T = {tx}x∈E is a right loop transversal in a loop L to its subloop R;
2) Ť = {ťx}x∈E is a sharply transitive set of permutations in SE.
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Polynomial functions on the units of Z2n

Smile Markovski, Zoran �uni¢ and Danilo Gligoroski

Devoted to the memory of Valentin D. Belousov (1925-1988)

Abstract. Polynomial functions on the group of units Qn of the ring Z2n are con-
sidered. A �nite set of reduced polynomials RPn in Z[x] that induces the polynomial
functions on Qn is determined. Each polynomial function on Qn is induced by a unique
reduced polynomial - the reduction being made using a suitable ideal in Z[x]. The set
of reduced polynomials forms a multiplicative 2-group. The obtained results are used
to e�ciently construct families of exponential cardinality of, so called, huge k-ary quasi-
groups, which are useful in the design of various types of cryptographic primitives. Along
the way we provide a new (and simpler) proof of a result of Rivest characterizing the
permutational polynomials on Z2n .

1. Introduction
The need for new kinds of computational methods and devices is growing
as a result of the possibility of their application in the new developing
�elds in mathematics and computer science, in particular cryptography and
coding theory. Finite �elds and integer quotient rings are traditionally used
for such computational needs. The integer quotient rings are somewhat
disadvantaged due to the fact that their nonzero multiplicative structure
does not form a group (except when they happen to be �elds). The structure
of the ring of polynomials over rings, and especially over integer quotient
rings, has been under investigation for almost a century. Let us mention
here chronologically some of the authors: Kempner (1921) [9], Nöbauer
(1965) [13], Keller and Olson (1968) [7], Mullen and Stevens (1984) [12],

2000 Mathematics Subject Classi�cation: 13F20, 20N05, 20D99
Keywords: group, ring, polynomial, polynomial function, quasigroup.
The visit of the �rst and the third author to the �Special semester on Gröbner bases
� Gröbner Bases in Cryptography, Coding Theory, and Algebraic Combinatorics�,
April 30 - May 06, 2006 in Linz, Austria, organized by RISC and RICAM, was very
helpful and stimulated some of the ideas that are presented in this paper.
The second author was partially supported by NSF grant DMS-0805932.
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Rivest (2001) [15], Bandini (2002) [1], Zhang (2004) [18]. We emphasize
that the paper of Rivest [15] is closest to our work and his results can be
inferred from ours (see Section 5).

We consider its group of units Qn in Z2n and de�ne a �nite set RPn

of reduced polynomials over Z that induce the set PFn of all polynomial
functions that keep Qn invariant. The set RPn is a �nite 2-group under
polynomial multiplication modulo functional equivalence. Exactly half of
the reduced polynomials induce permutations on Qn.

The reduced polynomials are obtained by using an ideal In in Z[x] such
that every polynomial in In induces the 0 constant function on Qn and
two polynomials are functionally equivalent over Qn if and only if they are
equivalent with respect to the ideal In.

By using our reduction algorithms we are able to give e�cient answers to
several problems. We show that there are e�cient algorithms (polynomial
complexity with respect to the input parameters) for the following problems:

(i) given a polynomial inducing a polynomial function on Qn, determine
the reduced polynomial inducing the same polynomial function,

(ii) given a polynomial inducing a permutation on Qn, determine the
reduced polynomial inducing the inverse permutation.

(iii) given a polynomial inducing a polynomial function on Qn, determine
the reduced polynomial for the multiplicative inverse.

In the last part of the paper we use the obtained results to construct
families of quasigroups of large cardinality. We de�ne the concept of huge
quasigroups as quasigroups of large order that can be handled e�ectively, in
the sense that the multiplication in the quasigroup, as well as in its adjoint
operations, can be e�ectively realized (polynomial complexity with respect
of log n, where n is the order of the quasigroup). The need for permu-
tations and quasigroups of large (huge) orders such as 216, 232, 264, 2128,
that can be easily handled is associated with the development of the mod-
ern massively produced 32-bit and 64-bit processors. Strong links between
modern cryptography and quasigroups (equivalently, Latin squares) have
been observed by Shannon [17] more than 50 years ago. Subsequently, the
cryptographic potential of quasigroups in the design of di�erent types of
cryptographic primitives has been addressed in numerous works. Authenti-
cation schemas have been proposed by Dènes and Keedwell (1992) [5], secret
sharing schemes by Cooper, Donovan and Seberry (1994) [4], a version of
popular DES block cipher by using Latin squares by Carter, Dawson, and
Nielsen (1995) [3], di�erent proposals for use in the design of cryptographic
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hash functions by several authors [16], a hardware stream cipher by Glig-
oroski, Markovski, Kocarev and Gusev (2005) [6]. One application of the
quasigroups as de�ned here can be found in the paper [11], where a new
public key cryptsystem is de�ned.

We want to emphasize that the results in this work concerning e�ective
constructions of large quasigroups, besides in cryptography, can also be of
interest in other areas (such as coding theory, design theory, ...).

1.1. Organization of the content
Well known background on the structure of the group Qn and on Hensel
lifting (useful to extract inverses in Qn) is presented in Section 2. Full
description of the polynomials in Z[x] that induce transformations on Qn

(and the �nite set of reduced polynmials that represent them) is provided
in Section 3, while the polynomials in Z[x] that induce permutations on Qn

are characterized in Section 4. Section 5 is a brief interlude in which we use
our results to present a new proof or a result of Rivest [15] providing a char-
acterization of polynomials in Z[x] that induce permutations on Z2n . The
group of reduced polynomials under multiplication is brie�y considered in
Section 6. Section 7 provides polynomial algorithms that handle construc-
tion of reduced polynomials related to interpolation, functional inversion,
and multiplicative inversion. Finally, applications to e�ective constructions
of large k-ary quasigroups are provided in Section 8.

2. The group (Qn, ·)
The integer quotient ring (Zk, +, ·), where k is a positive integer, is a well
known mathematical structure, where the addition and multiplication are
interpreted modulo k. This ring is associative and commutative ring with
a unit element 1. Here we are concerned solely with the case k = 2n. The
set Qn = {1, 3, . . . , 2n − 1} is a subgroup of the multiplicative semigroup
(Z2n , ·). Indeed, Qn is precisely the group of units of Z2n . Note that if
n = 1, then Qn is trivial, and if n = 2, Q2 = Z2 = 〈−1〉. The structure of
the abelian group Qn, for n > 3, is given by the following result.
Proposition 1. Let n > 3. Then (Qn, ·) ∼= Z2 × Z2n−2. Moreover, Qn is
generated by −1 and 5, the order of −1 is 2, and the order of 5 is 2n−2.
Proof. The subset Fn ⊆ Qn of numbers of the form 4k+1 forms a subgroup
of index 2 in Qn. Since 5 ∈ Fn, we have 52n−2

= 1 in Qn. On the other
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hand,

52n−3
= (4 + 1)2

n−3
=

2n−3∑

i=0

(
2n−3

i

)
22i.

The highest power of 2 dividing i! is bi/2c+bi/4c+ · · · < i/2+ i/4+ · · · = i.
Thus each of the terms

(
2n−3

i

)
22i is divisible by 2n−3+2i−(i−1) = 2n−2+i and

we have
52n−3 ≡ 1 + 2n−3 · 22 ≡ 2n−1 + 1 (mod 2n). (1)

Therefore 52n−3 6= 1 in Qn, the order of 5 is 2n−2, and Fn is a cyclic group
generated by 5.

The order of −1 is clearly 2. Since −1 is not in Fn (it has the form
4k + 3) we have that Qn = 〈−1〉 × 〈5〉 = Z2 × Z2n−2 .

Corollary 1. Let n > 3. The multiplicative order of every a ∈ Qn divides
2n−2. ¤

Given a large value of n and a ∈ Qn, can we e�ectively �nd the inverse
a−1? Note that if we express a as a = (−1)i · 5j , for some i ∈ {0, 1},
j ∈ {0, 1, . . . , 2n−2 − 1}, then its inverse in Qn is given by

a−1 = (−1)i · 52n−2−j .

However, this requires representing a in the form a = (−1)i · 5j , for some
i ∈ {0, 1}. It is fairly easy to decide if i = 0 or i = 1. Indeed, i = 0 when
a is of the form 4k + 1 and i = 1 otherwise. However, to determine j we
need to solve a discrete logarithm problem of the type 5x = a (mod 2n).
This apparent di�culty can be sidestepped by calculating the inverse by
applying Hensel lifting [14] (also known as Newton-Hensel lifting [8]).

The basic idea is to use binary representation of the integers modulo 2n.
Given r ∈ Z2n , its binary representation is rn−1rn−2 . . . r1r0, where rj ∈
{0, 1} is the (j +1)−th bit of r. In the same way, the binary representation
of a variable x is given by xn−1xn−2 . . . x1x0, where xj are bit variables.
Now, let r be a root of the polynomial P (x). Then P (x) = (x− r)S(x) for
some polynomial S(x). The equality P (x) = (x − r)S(x) in the ring Z2k ,
where k < n, is given by

P (xk−1 . . . x1x0) = (xk−1 . . . x1x0 − rk−1 . . . r1r0)S(xk−1 . . . x1x0).

The last equality shows that if we want to �nd the k least signi�cant bits
of a root r of P (x), we need to consider the equation P (x) = 0 in the ring
Z2k .
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One variant of the Hensel lifting algorithm for �nding a root of P (x) is
the following:

Step 1: Determine a bit r0 such that P (r0) = 0 in Z2.
This can be accomplished simply by checking if P (0) = 0 or P (1) = 0

(or both!) in Z2.
Let the bits r0, . . . , rk−1 be already chosen in Step 1 � Step k.
Step k +1: Determine a bit rk such that P (rkrk−1 . . . r0) = 0 in Z2k+1.
Since the bits r0, . . . , rk−1 are known, this can be accomplished by check-

ing if P (0rk−1 . . . r0) = 0 or P (1rk−1 . . . r0) = 0 (or both) in Z2k+1 .
The algorithm stops after Step n.
In order to �nd all roots of a polynomial one has to follow all the branch-

ing points of the algorithm (whenever both 0 and 1 are good choices one
has to follow both choices, and whenever neither 0 nor 1 are good choices
one discards that particular branch of the search).

Given a ∈ Q, the root of the polynomial ax − 1 is the inverse of a. In
this case, the above algorithm has polynomial complexity in n, since there
is only one root and the above algorithm will produce the unique correct
bit of a−1 at each step (there is no branching).

3. Polynomial functions on Qn

Every polynomial P (x) from the polynomial ring Z[x] induces a polynomial
function p : Z2n → Z2n by the evaluation map (taken modulo 2n). We are
interested here in polynomial functions on Qn, i.e., polynomial functions
p : Qn → Qn induced by polynomials P (x) in Z[x] such that p(Qn) ⊆ Qn.
Denote by Pn the set of polynomials in Z[x] that induce polynomial function
on Qn and denote by PFn the set of corresponding polynomial functions
on Qn. We implicitly assume that n > 2 (as was already mentioned, Q1 is
trivial).

We �rst determine precisely the polynomials over Z that induce poly-
nomial functions on Qn, i.e., we determine Pn.

Proposition 2. Let P (x) = a0 + a1x + · · ·+ adx
d be a polynomial in Z[x].

Then P (x) is in Pn (i.e., P (x) induces a polynomial function on Qn) if and
only if the sum of the coe�cients a0 + a1 + · · ·+ ad is odd, which, in turn,
is equivalent to the condition that p(1) is odd.
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Proof. For every odd number a, all the powers ai, i = 0, . . . , d are also odd.
Thus the parity of p(a) = a0 + a1a + · · · + ada

d is equal to the parity of
a0 + · · ·+ ad.

The �nite set PFn of polynomial functions on Qn is induced by the in�-
nite set of polynomials in Pn. We will determine a �nite set of polynomials,
that induce all polynomial functions in PFn. In order to de�ne this set, we
need some preliminary de�nitions.

For an integer i, de�ne ti = bi/2c + bi/4c + bi/8c + . . . , i.e., ti is the
largest integer ` such that 2` divides i!. Let dn be the largest integer i such
that n− i− ti is positive.
De�nition 1. A polynomial P (x) = a0 + a1x + · · · + adx

d in Pn is called
reduced if

(i) the degree of P (x) is no higher than dn,
(ii) 0 6 ai 6 2n−i−ti − 1, for i = 0, . . . , dn.
Denote the set of reduced polynomials in Pn by RPn.

Proposition 3. The number of reduced polynomials in RPn is

|RPn| = 2(2n−dn)(dn+1)/2−1−Pdn
i=0 ti .

Proof. The number of polynomial of degree at most dn with restrictions on
the coe�cients given by (ii) is

2
Pdn

i=0 n−i−ti = 2n(dn+1)−dn(dn+1)/2−Pdn
i=0 ti .

Exactly half of such polynomials also satis�es the condition required by
Proposition 2 on the parity of the sum of the coe�cients. Indeed, we can
match up any polynomial P (x) = a0 + a1x + · · ·+ adx

d in that satis�es the
conditions (i) and (ii) with the polynomial P (x) + 1 if a0 is even and with
P (x)− 1 if a0 is odd. In both cases, the obtained polynomial also satis�es
the conditions (i) and (ii). In such a matching exactly one polynomial in
each pair has odd sum of coe�cients.

Two polynomials P (x) and T (x) in Pn are said to be functionally equiv-
alent over Qn if they induce the same polynomial function on Qn. In that
case we write P (x) ≈ T (x). Clearly, ≈ is an equivalence relation on Pn.

The polynomials P (x) and T (x) are functionally equivalent over Qn if
and only if the di�erence P (x) − T (x) induces the constant 0 function on
Qn. With this in mind, we de�ne now a �nite set of polynomials over Z
that induce the 0 constant function on Qn.
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De�nition 2. For i = 0, . . . , dn, de�ne the polynomial

Pn,i(x) = 2n−i−ti(x + 1)(x + 3) . . . (x + 2i− 1)

of degree i. When i = 0 the understanding is that Pn,0 = 2n. De�ne also
the polynomial

Pn,dn+1(x) = (x + 1)(x + 3) . . . (x + 2dn + 1)

of degree dn + 1.

Denote the ideal generated by Pn,i(x), i = 0, . . . , dn + 1, in Z[x] by In.
Thus

In =

{
dn+1∑

i=0

Si(x)Pn,i(x) | Si(x) ∈ Z[x], i = 0, . . . , dn + 1

}
.

Proposition 4. Every polynomial in In induces the 0 constant function on
Qn.

Proof. What we need to prove is that, for every x ∈ Qn

pn,i(x) ≡ 0 (mod 2n).

This is clear since, for any x ∈ Qn the product (x+1)(x+3) . . . (x+2i−1)
is a product of i consecutive even numbers and it is therefore divisible by
2ii!, implying that it is divisible by 2i+ti . For i = 0, . . . , dn we then have
that pn,i(x) is divisible by 2n−i−ti · 2i+ti = 2n. For i = dn + 1, we have that
n 6 i + ti, and therefore 2n divides pn,i(x) in this case as well.

We state now the two main results of this section.

Theorem 1. Two polynomials P (x) and T (x) in Pn are functionally equiv-
alent over Qn if and only if P (x)− T (x) is a member of In.

Theorem 2. Every polynomial function in PFn is induced by a unique
reduced polynomial in RPn.

We will prove the Theorem 1 and Theorem 2 through a series of lemmas
and propositions. Along the way we provide some additional information
(for instance Proposition 6 establishes a linear upper bound on the degree of
a reduced polynomial). While some other approaches are certainly possible,
we chose to follow a simple constructive route, since we are interested in
algorithmic/complexity issues (see Section 7).
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Proof of Theorem 1, su�ciency. If P (x) − T (x) is in In then, by Proposi-
tion 4, P (x) − T (x) induces the constant 0 function on Qn, implying that
P (x) and Q(x) are functionally equivalent over Qn.

Proposition 5. Every polynomial function in PFn is induced by a reduced
polynomial in RPn. Moreover, for every polynomial P (x) in Z[x] there
exists a polynomial SP (x) in In such that P (x) − SP (x) is reduced and
functionally equivalent to P (x) over Qn.
Proof. Let p(x) be a polynomial function in PFn induced by the polynomial
P (x).

If the degree d of P (x) is higher than dn we may replace P (x) by
P (x) − adx

d−dn−1Pn,dn+1, where ad is the coe�cient of xd in P (x). The
polynomial P (x)−adx

d−dn−1Pn,dn+1 has degree smaller than d and is func-
tionally equivalent to P (x). We may continue this until we obtain a polyno-
mial that is functionally equivalent to P (x) and has degree no higher than
dn.

We assume now that P (x) has degree no higher than dn. If P (x) is
reduced we are done. Otherwise, let i be the highest degree of a coe�cient
ai of xi that does not satisfy the requirement 0 6 ai 6 2n−i−ti − 1. If
q is the quotient obtained by dividing ai by 2n−i−ti then P (x) ≈ P (x) −
qPn,i, and the coe�cient at degree i in P (x)− qPn,i is in the correct range
0, . . . , 2n−i−ti − 1.

We repeat this procedure with the next highest degree that has a coe�-
cient out of range until we reach a reduced polynomial that is functionally
equivalent to P (x).

Example 1. Let n = 5. We have 0 + t0 = 0, 1 + t1 = 1, 2 + t2 = 3,
3 + t3 = 4 and 4 + t4 = 7. Therefore d5 = 3, and every reduced polynomial
has the form

R(x) = a0 + a1x + a2x
2 + a3x

3,

where 0 6 a0 6 31, 0 6 a1 6 15, 0 6 a2 6 3 and 0 6 a3 6 1. The
polynomials P5,i(x), i = 0, 1, 2, 3, 4 are given by

P5,0(x) = 25 = 32,

P5,1(x) = 24(x + 1) = 16 + 16x,

P5,2(x) = 22(x + 1)(x + 3) = 12 + 16x + 4x2,

P5,3(x) = 2(x + 1)(x + 3)(x + 5) = 30 + 14x + 18x2 + 2x3,

P5,4(x) = (x + 1)(x + 3)(x + 5)(x + 7) = 9 + 16x + 22x2 + 16x3 + x4.
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Then, for the polynomial P (x) = 3x5 + 1, we have

P (x) = 1 + 3x5 ≈ (1 + 3x5)− 3xP5,4(x) ≈ 1 + 5x + 16x2 + 30x3 + 16x4

≈ (1 + 5x + 16x2 + 30x3 + 16x4)− 16P5,4(x)

≈ 17 + 5x + 16x2 + 30x3 ≈ (17 + 5x + 16x2 + 30x3)− 15P5,3(x)

≈ 15 + 19x + 2x2 ≈ (15 + 19x + 2x2)− P5,1(x)

≈ 31 + 3x + 2x2.

The calculations are done modulo 32 all the time. This is equivalent to
using P5,0 = 32 to make reductions. ¤
Proposition 6. Every polynomial function in PFn is induced by a polyno-
mial of degree smaller than (n + 1 + blog2 nc)/2.
Proof. We need to prove that dn < (n + 1 + blog2 nc)/2.

First note that i − 1 − blog2 ic 6 ti. Indeed ti = bi/2c + bi/4c + . . . .
Only the �rst blog2 ic terms of the series are possibly positive. Thus

ti =
∑blog2 ic

k=1 bi/2kc >
∑blog2 ic

k=1 (i/2k − 1) = i
(
1− 1

2blog2 ic

)
− blog2 ic >

i
(
1− 1

2log2 i−1

)
− blog2 ic = i− 2− blog2 ic.

Assume that n > i > n+1+blog2 nc
2 . Then

i + ti > 2i− 1− blog2 ic ≥ 2
n + 1 + blog2 nc

2
− 1− blog2 nc = n.

Since dn is the largest integer i such that n− i− ti is positive, we must have
dn < n+1+blog2 nc

2 .

Lemma 1. Let Mm be the (m + 1)× (m + 1) Vandermonde matrix

Mm =




1 1 1 . . . 1
1 3 32 . . . 3m

... ... ... . . . ...
1 (2m + 1) (2m + 1)2 . . . (2m + 1)m


 ,

in which the rows and columns are indexed by 0, . . . ,m. The matrix Mm is
row equivalent over Z to a matrix of the form

Rm =




1 ∗ . . . ∗
0 2 . . . ∗
... ... . . . ...
0 0 . . . 2mm!


 ,
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where the ∗'s represent integers (whose values are irrelevant for our purposes),
and the only type of row reduction used is the one in which an integer mul-
tiple of a row is added to another row.

Proof. We will prove, by induction on m, that
(i) every vector ri,m = (1, 2i + 1, . . . , (2i + 1)m), i > m + 1, is a linear

combination of the rows 0, . . . , m in Mm,
(ii) the matrix Rm can be obtained by row reduction of the indicated

type from Mm.
(iii) assuming ri,m = α0r0,m + · · ·+ αmrm,m in (i),

ri,m+1 − (α0r0,m+1 + · · ·+ αmrm,m+1) = (0, 0, . . . , 0, si),

where sm+1 = 2m+1(m+1)! and si is divisible by 2m+1(m+1)! if i > m+2.
The claims (i),(ii),(iii) are clear for m = 0 and assume they are valid for

some m > 0. We proceed to the inductive step.
(i) Consider the vector ri,m+1 = (1, 2i + 1, . . . , (2i + 1)m+1), i > m + 2.

From the inductive assumption (iii),
ri,m+1 − (α0r0,m+1 + · · ·+ αmrm,m+1) = (0, 0, . . . , 0, si)

and
rm+1,m+1 − (α′0r0,m+1 + · · ·+ α′mrm,m+1) = (0, 0, . . . , 0, 2m+1(m + 1)!).

Since 2m+1(m + 1)! divides si we see that ri,m+1 can be indeed written
as a linear combination of the rows 0, . . . , m + 1 in Mm+1.

(ii) Since, from inductive assumption (iii),

rm+1,m+1 − (α′0r0,m+1 + · · ·+ α′m,mrm,m+1) = (0, 0, . . . , 0, 2m+1(m + 1)!).

we see that Mm+1 is row equivalent to a matrix R′
m+1 in which the bottom

row is (0, 0, . . . , 0, 2m+1(m + 1)!) and the upper left block of size (m + 1)×
(m + 1) is Mm. The inductive assumption (ii) shows that R′

m+1 is row
equivalent to Rm+1.

(iii) Consider the matrix Mm+2(i) obtained from Mm+1 by extending
it by the column vector (1, 3m+2, . . . , (2m + 3)m+2) on the right and then
by the row vector ri,m+2, i > m + 2, at the bottom. The new matrix is
the (m + 3) × (m + 3) Vandermonde matrix corresponding to the values
1, 3, 5, . . . , 2m + 3 and 2i + 1. From parts (i) and (ii) of the inductive step
that we just proved, we know that Mm+2(i) is row equivalent to a matrix
Rm+2(i) in which the bottom row is (0, 0, . . . , si), for some integer si, and
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the upper left block of size (m + 2)× (m + 2) is Rm+1. The determinant of
the Vandermonde matrix Mm+2(i) is equal to

det(Mm+2(i)) =(3− 1) · (5− 3)(5− 1) · . . . · ((2m + 3)− (2m + 1)) . . .

. . . ((2m + 3)− 1) · ((2i + 1)− (2m + 3)) . . . ((2i + 1)− 1)
= det(Mm+1) · ((2i + 1)− (2m + 3)) . . . ((2i + 1)− 1).

On the other hand, the row equivalence of Mm+2(i) and Rm+2(i) shows
that

det(Mm+2(i)) = det(Rm+2(i)) = det(Rm+1) · si = det(Mm+1) · si.

Since det(Mm+1) 6= 0 we obtain that

si = ((2i + 1)− (2m + 3)) . . . ((2i + 1)− 1).

In case i = m + 2, sm+2 = 2 · 4 · · · · · (2(m + 2)) = 2m+2(m + 2)!.
If i > m + 3, then si is a product of m + 2 consecutive even numbers

and is therefore divisible by 2m+2(m + 2)!. The inductive claim (iii) now
easily follows.

Proof of Theorem 2, uniqueness. Let p be a polynomial function in PFn.
All reduced polynomials inducing p are given by

P (x) = a0 + a1x + · · ·+ adx
d,

where d = dn, and the coe�cients a0, . . . , ad satisfy the linear system

Md(a0, a1, . . . , ad)T = (p(1), p(3), . . . , p(2d + 1))T ,

where (.)T stands for transposition. By Lemma 1, this system is equivalent
in Z2n to the upper triangular system

Rd(a0, a1, . . . , ad)T = (b0, b1, . . . , bd)T ,

where bi are some elements in Z2n . Since odd numbers are units in Z2n this
system is equivalent to a triangular system

R′
d(a0, a1, . . . , ad)T = (b′0, b

′
1, . . . , b

′
d),

where

R′
d =




20+t0 ∗ . . . ∗
0 21+t1 . . . ∗
... ... . . . ...
0 0 . . . 2d+td


 . (2)
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The last equation of this system now reads 2d+tdad = b′d. Since 0 6
ad 6 2n−d−td − 1 this equation can only have one solution in Z2n . We can
substitute this solution in the second to last equation to obtain an equation
2d−1+td−1ad−1 = b′′d−1, which will also have a unique solution in Z2n since
0 6 ad−1 6 2n−d−1−td−1 − 1.

Continuing with the backward substitution in the triangular system with
matrix R′

d we obtain a unique solution for all the coe�cients ad, ad−1, . . . , a0

of P (x).

Proposition 7. The number of polynomial functions in PFn is equal to
the number of reduced polynomials in RPn.

Example 2. Let n = 4. In this case d = d4 = 2. Let p be a polynomial
function in PF4 for which p(1) = 9, p(3) = 5 and p(5) = 9. We are trying
to determine the unique reduced polynomial P (x) = a0+a1x+a2x

2 in RP4

that induces p. Note that the coe�cients must satisfy the range conditions
0 6 a0 6 15, 0 6 a1 6 7, and 0 6 a2 6 1. The known values of p give the
system 


1 1 1 | 9
1 3 9 | 5
1 5 9 | 9


 ,

which is row equivalent to



1 1 1 | 9
0 2 8 | 12
0 0 8 | 8


 .

The last equation 8a2 = 8, together with the condition 0 6 a2 6 1, gives
a2 = 1. The second equation 2a1 + 8a2 = 12, together with the conditions
a2 = 1 and 0 6 a1 6 7, gives a1 = 2. Finally, the �rst equation a0+a1+a2 =
9, together with the conditions a2 = 1, a1 = 2 and 0 6 a0 6 15, gives a0 = 6.
Thus the unique reduced polynomial inducing p is P (x) = 6 + 2x + x2. ¤

Example 3. It is clear that one can uniquely determine the reduced poly-
nomial R(x) that is functionally equivalent to P (x) from the value of p at
any dn + 1 consecutive values of x.

On the other hand, not any dn + 1 values are su�cient. Indeed, let
n = 4 and p be a polynomial function in PF4 for which p(1) = 9, p(5) = 9
and p(9) = 9. We are trying to determine a reduced polynomial R(x) =
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a0 + a1x + a2x
2 in RP4 that induces p. The known values of p give the

system 


1 1 1 | 9
1 5 9 | 9
1 9 1 | 9


 ,

which, together with the range conditions 0 6 a0 6 15, 0 6 a1 6 7, and
0 6 a2 6 1, gives the following 4 solutions: R(x) = 9, R(x) = 6 + 2x + x2,
R(x) = 5 + 4x, R(x) = 2 + 6x + x2. Note than one of these is the solution
obtained in Example 2. ¤

Proof of Theorem 1, necessity. Let P (x) and T (x) be two functionally equiv-
alent polynomials. By Proposition 5, there exists polynomials SP (x) and
ST (x) in In such that P (x)− SP (x) and T (x)− ST (x) are reduced polyno-
mials which are functionally equivalent to P (x) and T (x). Theorem 2 then
shows that P (x) − SP (x) = T (x) − ST (x), implying that P (x) − T (x) =
SP (x)− ST (x) ∈ In.

Proposition 8. The set of polynomials in Z2n [x] that induce the 0 constant
function on Qn is precisely the ideal In.

Proof. We already know from Proposition 4 that the polynomials in In

induce the constant 0 function on Qn. Conversely, let P (x) induce the
constant 0 function on Qn. By Proposition 5 there exists a polynomial
SP (x) in In such that P (x)−SP (x) is reduced and functionally equivalent to
P (x). Since the zero polynomial is reduced, we must have P (x)−SP (x) = 0,
by Theorem 2. Therefore P (x) = SP (x) ∈ In.

4. Permutational polynomial functions on Qn

Some polynomial function on Qn are permutations on Qn. Denote the
set of such (permutational) polynomial functions by PPFn and the set of
polynomials over Z inducing such functions by PPn.

Proposition 9. Let P (x) = a0 + a1x + · · · + adx
d be a polynomial in

Pn. Then P (x) is in PPn (i.e. P (x) induces a permutational polynomial
function on Qn) if and only if the sum of the odd indexed coe�cients a1 +
a3 + a5 + · · · is an odd number.

Proof. Let a, b ∈ Qn. We have
p(a)− p(b) = a1(a− b) + a2(a2 − b2) + · · ·+ ad(ad − bd) =
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= (a− b)(a1A1 + a2A2 + · · ·+ adAd),

where A1 = 1 and Ai = ai−1 + ai−2b + · · · + abi−2 + bi−1, for i > 2. The
number Ai is even if and only if i is even. Consequently, a1A1 + a2A2 +
· · ·+ adAd is odd if and only if a1 + a3 + a5 + · · · is odd number.

If a1 + a3 + a5 + · · · is even then (a− b)(a1A1 + a2A2 + · · ·+ adAd) ≡ 0
(mod 2n), for a = 2n−1 +1, b = 1. Thus, for this choice of a and b, we have
p(a) = p(b) and, therefore, p is not a permutation on Qn.

If a1 + a3 + a5 + · · · is odd then (a− b)(a1A1 + a2A2 + · · ·+ adAd) ≡ 0
(mod 2n) if and only if a − b ≡ 0 (mod 2n), i.e., a = b in Qn. Thus p is a
permutation in this case.

Since we have a bijective correspondence between reduced polynomials
and polynomial functions, it is clear that we also have a bijective corre-
spondence between the reduced polynomials in RPn with odd sum of odd
indexed coe�cients and the permutational polynomial functions in PPFn.

Proposition 10. The number of permutational polynomial functions in
PPFn is equal to

|PPFn| = 2(2n−dn)(dn+1)/2−2−Pdn
i=0 ti

Example 4. Reduced polynomials in RPn of degree at most 3 that induce
permutational polynomial functions in PPFn have the form a0 + a1x +
a2x

2 + a3x
3, where a1 + a3 is odd, a0 + a2 is even, 0 6 a0 6 2n − 1,

0 6 a1 6 2n−1 − 1, 0 6 a2 6 2n−3 − 1, and 0 6 a3 6 2n−4 − 1. ¤

Proposition 11. The inverse of a permutational polynomial function p ∈
PPFn is also a polynomial function.

Proof. If p ∈ PFn is a permutation on Qn, then p ∈ σ(Qn), where σ(Qn)
denotes the full permutation group of Qn. Let r be the order of p in σ(Qn).
Then p−1 = pr−1 and therefore, if p is induced by the polynomial P (x),
then p−1 is induced by the polynomial P (P (. . . P (︸ ︷︷ ︸

r−1

x))).

Example 5. A linear permutational polynomial function p has a linear
permutational polynomial function as its inverse. Indeed, if p is induced by
b + ax, then a must be odd, a−1 exists in Z2n and p−1 is induced by the
polynomial −a−1b + a−1x. ¤
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We can use the permutational polynomial functions on Qn to de�ne
permutations on Z2n (this will be useful in our last section). Denote by Q′

n

the set Z2n \Qn (consisting of 0 and all zero divisors in Z2n). We can easily
conjugate the action of a polynomial function on Qn to an action on Q′

n.
Namely, given a polynomial function h : Qn → Qn, de�ne h′ : Q′

n → Q′
n by

h′(x) = h(x + 1)− 1.
Given a permutation p ∈ PFn, we can de�ne a permutation p̂ on Z2n

by

p̂(x) =

{
p(x), x ∈ Qn

p′(x), x ∈ Q′
n

. (3)

More generally, given permutations p, h ∈ PFn, a permutation fp,h on Z2n

can be de�ned by

fp,h =

{
p(x), x ∈ Qn

h′(x), x ∈ Q′
n

. (4)

5. On a result of Rivest
The main result of Rivest in [15] provides a criterion for a polynomial over Z
to induce a permutation on Z2n . We infer now this result from our results.
Note that our proof only relies on Proposition 2 and Proposition 9, both of
which have short and rather elementary proofs.

Theorem 3 (Rivest [15]). A polynomial P (x) = a0 + a1x + · · · + adx
d

of degree d > 1 over Z induces a permutation on Z2n if and only if the
following conditions are satis�ed:

(a) the sum a2 + a4 + a6 + . . . is even,
(b) the sum a3 + a5 + a7 + . . . is even,
(c) a1 is odd.

Proof. If P (x) is a polynomial that permutes Z2n then all elements in Q′
n =

Z2n \ Qn are mapped to elements of Q′
n or all of them are mapped to

elements in Qn depending on the parity of a0. Let us �rst characterize those
polynomials over Z that permute both Qn and Q′

n. They are precisely the
polynomials for which

(i) a0 is even,
(ii) the sum of all coe�cients a0 + a1 + · · ·+ ad is odd,
(iii) the sum of the odd index coe�cients a1 + a3 + . . . is odd,
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(iv) the sum of the odd index coe�cients in P (x + 1)− 1 is odd.
The �rst condition ensures that Q′

n is invariant, the second that Qn is
invariant (Proposition 2), the third that P (x) induces a permutation on Qn

(Proposition 9) and the last that P (x) induces a permutation on Q′
n (by

conjugating the action from Q′
n to Qn we can again use Proposition 9). Let

S(x) = P (x+1)−1. The sum of odd index coe�cients of S(x) is odd exactly
when (S(1)−S(−1))/2 is odd. But (S(1)−S(−1))/2 = (P (2)−P (0))/2 =
a1 + 2a2 + 22a3 + · · ·+ 2d−1ad, and therefore this condition is equivalent to
a1 being odd. Therefore the conditions (i)-(iv) are equivalent to

(i') a0 is even,
(ii') the sum a2 + a4 + a6 + . . . is even,
(iii') the sum a3 + a5 + a7 + . . . is even,
(iv') a1 is odd.
Thus, in order to characterize all polynomials that induce a permutation

on Z2n we just need to drop the condition that a0 is even (which allows Qn

and Q′
n to be mapped to each other, when a0 is odd).

In fact, we may establish a precise connection between the (permuta-
tional) polynomial functions on Qn and those on Z2n .

Proposition 12. Let n > 2. For every pair of polynomials functions p, h ∈
PFn, there exists a polynomial function g on Z2n , such that

g(x) = fp,h(x),

for x in Z2n .

Proof. Consider the polynomial

V0(x) =





x2n−2
, n > 4

x4, n = 3,

x2, n = 2.

We claim that, for the associated polynomial function v0(x) on Z2n ,

v0(x) =

{
1, x ∈ Qn,

0, x ∈ Q′
n.

The claim can be easily veri�ed directly for n = 2, 3. Assume n > 4. From
Proposition 1, it follows that v0(x) = 1, for x ∈ Qn. On the other hand,
2n−2 > n, for n > 4, which then implies that v0(x) = x2n−2

= 0, for x ∈ Q′
n.
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Let V1(x) = 1−V0(x). For the associated polynomial function v1(x) we
clearly have

v1(x) =

{
0, x ∈ Qn,

1, x ∈ Q′
n.

Therefore, if P (x) and H(x) are polynomial representing the polynomial
functions p(x) and h(x) then the polynomial

G(x) = P (x)V1(x) + H ′(x)V0(x),

where H ′(x) = H(x + 1) − 1, induces the function fp,h, showing that this
function is a polynomial function on Z2n .

Corollary 2. Let n > 2. The number of permutational polynomial func-
tions on Z2n is

2(2n−dn)(dn+1)−3−2
Pdn

i=0 ti , (5)
where ti is the largest integer ` such that 2` divides i!, and dn is the largest
integer i such that n− i− ti is positive.

Proof. Note that the correspondence that associates to each pair of permu-
tational polynomial functions (p, h) on Qn the element fp,h in the set of
permutational polynomial functions on Z2n that keep both Qn and Q′

n in-
variant is a bijection. Thus, the number of such permutational polynomial
functions on Z2n is |PPFn|2. The number of permutational polynomial
functions on Z2n is twice larger than this number since we need to take into
account the polynomial functions that permute Qn and Q′

n. Thus, the total
number is

2|PPFn|2 = 2(2n−dn)(dn+1)−3−2
Pdn

i=0 ti .

It is interesting to compare the last corollary to earlier results counting
permutational polynomial functions on Z2n . For instance, the following
formula is proved in [7]. For n > 2, the number of permutational polynomial
functions on Z2n is equal to

23+
Pn

j=3 βj , (6)

where βj is the smallest integer s such that 2j divides s!. Combining this
with our result yields the identity

2
dn∑

i=0

ti +
n∑

j=3

βj = (2n− dn)(dn + 1)− 6,
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for n > 2. We note that the number of permutational polynomials given by
our formula (5) in Corollary 2 seems easier to evaluate than by using (6),
since the summation goes to a smaller bound (dn rather than n) and the
summands are easier to compute.

6. Multiplication operation on reduced polynomials
Here we consider the multiplication operation on the set RPn of reduced
polynomials.

We recall that RPn is the set of representatives of the congruences
classes of Pn modulo the functional equivalence relation ≈. In that sense,
given P (x), S(x) ∈ RPn, we denote by P (x) · S(x) the corresponding re-
duced polynomial inducing the same polynomial function as the product
P (x)S(x) of the polynomials P (x) and S(x). The set Pn forms a monoid
under polynomial multiplication. Indeed, if the sum of the coe�cient of
both P (x) and S(x) is odd, then p(1) and s(1) are odd and therefore so is
p(1)s(1), implying that the sum of the coe�cients of P (x)S(x) is also odd.
Theorem 4. The equivalence ≈ is a congruence on Pn. The factor (RPn, ·)
= Pn/ ≈ is a �nite 2-group.
Proof. Let Pi(x) ≈ Si(x), for i = 1, 2, TP (x) = P1(x)P2(x), and TS(x) =
S1(x)S2(x). Then tP (x) = p1(x)p2(x) = s1(x)s2(x) = tS(x). Thus we have
P1(x)P2(x) ≈ S1(x)S2(x) and ≈ is a congruence on P.

For every a ∈ Qn, we have a2n−2
= 1 in Qn. Therefore, for any polyno-

mial P (x) in Pn, the polynomial P (x)2
n−2 is functionally equivalent to 1.

Thus each reduced polynomial has a multiplicative inverse.

In order to avoid confusion we denote inverses of polynomial functions
under composition by (.)−1, and the inverse of a reduced polynomial P (x)
under multiplication by 1

P (x) .
The subset PRPn ofRPn consisting of reduced polynomials that induce

permutations on Qn is not closed under multiplication. Indeed, P (x) = 2+x
induces a permutation on Qn, while P (x)2 = 4 + 4x + x2 does not.
Proposition 13. The set of reduced permutational polynomials PRPn is
closed under multiplicative inversion, i.e., P (x) ∈ PRPn implies 1

P (x) ∈
PRPn.
Proof. This directly follows from the fact that di�erent elements in Qn have
di�erent multiplicative inverses.
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Example 6. We have 1
2+x = 2 + x in RP3, 1

4+3x = 3 + 3x + x2 in RP4,
and 1

31+2x+2x2+x3+x4 = 4 + 7x + 2x2 in RP5. ¤

We note that �nding the inverse polynomial by using the equality 1
P (x) =

P (x)2
n−2−1 is not e�ective. We provide an e�ective method in the next

section.

7. Algorithmic aspects
We brie�y address the complexity issues related to interpolation of polyno-
mial functions, inversion of permutational polynomial functions and multi-
plicative inversion of polynomials.

Theorem 5. There exists an algorithm of polynomial complexity in n that,
given the values p(1), p(3), . . . , p(2dn+1) of a polynomial function p in PFn,
produces the unique reduced polynomial R(x) that induces p.

Proof. Note that dn has a linear upper bound in n by Proposition 6. Run-
ning the row reduction on the (dn +1)× (dn +1) linear system as suggested
in the uniqueness part of the proof of Theorem 2 takes polynomially many
steps in terms of n.

Theorem 6. There exists an algorithm of polynomial complexity in n + m
that, given a polynomial P (x) ∈ Pn of degree m (with coe�cients reduced
modulo 2n, i.e., coe�cients in the range between 0 and 2n − 1 inclusive),
produces the unique reduced polynomial R(x) that is functionally equivalent
to P (x).

Proof. By Theorem 5 it is su�cient to calculate p(1), p(3), . . . , p(2dn + 1)
in polynomially many steps in terms of n + m. This is possible since the
degree of P (x) is m and the calculations are done modulo 2n.

Another approach would be to use the reduction algorithm suggested in
the proof of Proposition 5 and implemented in Example 1.

Theorem 7. There exists an algorithm of polynomial complexity in n + m
that, given a polynomial P (x) in PPn of degree m (with coe�cients reduced
modulo 2n), produces the unique reduced polynomial inducing the inverse
polynomial function p−1.



78 S. Markovski, Z. �uni¢ and D. Gligoroski

Proof. First calculate p(1), p(3), . . . , p(2dn + 1). Set up a system of linear
equations to determine the coe�cients of the reduced polynomial R(x) =
a0 + a1x + · · ·+ adx

d that is functionally equivalent to p−1, where d = dn.
The system has the form




1 p(1) p(1)2 . . . p(1)d

1 p(3) p(3)2 . . . p(3)d

... ... ... . . . ...
1 p(2d + 1) p(2d + 1)2 . . . p(2d + 1)d







a0

a1
...

ad


 =




1
3
...

2d + 1


 .

We apply row reduction to this system. The crucial observation is that
since, for every a, b ∈ Qn,

P (a)− P (b) = (a− b)ka,b,

where ka,b is an odd number (see the proof of Proposition 9) and odd num-
bers are units in Z2n the row reduction will eventually lead to a system in
which the matrix of the system has the form (2). This system has unique
solution that can be found by back substitution.

Example 7. Let n = 4 and P (x) = 5 + x + x2. The polynomial P (x)
induces a permutation p on Q4. We will �nd the unique reduced polynomial
R(x) = a0 + a1x + a2x

2, with 0 6 a0 6 15, 0 6 a1 6 7, and 0 6 a2 6 1,
that induces the inverse permutation p−1 on Qn.

We calculate p(1) = 7, p(3) = 1 and p(5) = 3. We then perform row
reduction (over Z16) on the system



1 7 1 | 1
1 1 1 | 3
1 3 9 | 5


 ∼




1 7 1 | 1
0 10 0 | 2
0 12 8 | 4


 ∼




1 7 1 | 1
0 2 0 | 10
0 4 8 | 12


 ∼




1 7 1 | 1
0 2 0 | 10
0 0 8 | 8


 ,

where the third matrix is obtained from the second by re-scaling the second
row by 13 = 5−1 and the third row by 11 = 3−1. The last system is
triangular and has unique solution a2 = 1 a1 = 5 and a0 = 13. Thus
R(x) = 13 + 5x + x2 induces the inverse polynomial function p−1. ¤
Theorem 8. There exists an algorithm of polynomial complexity in n + m
that, given a polynomial P (x) ∈ Pn of degree m (with coe�cients reduced
modulo 2n), produces the multiplicative inverse 1

P (x) in reduced form.

Proof. To calculate the reduced polynomial S(x) = 1
P (x) it su�ces to calcu-

late p(x) for x = 1, 3, . . . , 2dn +1, then calculate the multiplicative inverses
s(x) = 1

p(x) , for x = 1, 3, . . . , 2dn + 1, and �nally use Theorem 5 to �nd the
coe�cients of S(x).
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8. Huge quasigroups de�ned by polynomial functions
A k-groupoid (k > 2) is an algebra (Q, f) on a nonempty set Q as its
universe and with one k-ary operation f : Qk → Q.

De�nition 3. A k-groupoid (Q, f) is said to be a k-quasigroup if any k out
of any k + 1 elements a1, a2, . . . , ak+1 ∈ Q satisfying the equality

f(a1, a2, . . . , ak) = ak+1

uniquely determine the remaining one.
A k-groupoid is said to be a cancellative k-groupoid if it satis�es the

cancellation law

f(a1, . . . , ai−1, x, ai+1, . . . , ak) = f(a1, . . . , ai−1, y, ai+1, . . . , ak) ⇒ x = y,

for each i = 1, . . . , k and all x, y, a1, . . . , ai−1, ai+1, . . . , ak in Q.

For k = 2 we obtain the standard notion of a quasigroup.
The de�nition of a k-quasigroup immediately implies the following. Let

(Q, f) be a �nite k-quasigroup and let the map ϕ : Q → Q be de�ned by
ϕ(x) = f(a1, . . . , ai−1, x, ai+1, . . . , ak), for some �xed a1, . . . , ai−1, ai+1, . . .
. . . , ak in Q. Then ϕ is a permutation on Q.

Here we consider only �nite k-quasigroups (Q, f), i.e., Q is a �nite set,
and in this case we have the following property ([10]).

Proposition 14. The following statements are equivalent for a �nite k-
groupoid (Q, f):

(a) (Q, f) is a k-quasigroup,
(b) (Q, f) is a cancellative k-groupoid. ¤

Given a k-quasigroup (Q, f) we can de�ne k new k-ary operations fi, i =
1, 2, . . . , k, by

fi(a1, . . . , ak) = b ⇐⇒ f(a1, . . . , ai−1, b, ai+1, . . . , ak) = ai.

These operations are called adjoint operations of f . Then (Q, fi) are k-
quasigroups as well ([2]).

De�nition 4. A huge k-quasigroup is said to be a k-quasigroup (Q, f) such
that all of the operations f, f1, f2, . . . , fk can be computed with complexity
O((log |Q|)α) for some constant α.
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The problem of e�ective constructions of quasigroups of any order can
be solved, for example, by using P. Hall's algorithm for choosing di�erent
representatives for a family of sets. The algorithm is of complexity O(n3),
where n is the order of the quasigroup, and is not applicable for, let say,
n = 216. We will show here how the permutational polynomial functions
from PFn can be used in order to construct families of huge quasigroups
on the sets Qn and Z2n .

Theorem 9. Let p1, p2, . . . , pk be permutations in PPFn. De�ne a k-ary
operation f on Qn by

f(a1, a2, . . . , ak) = p1(a1)p2(a2) · · · pk(ak) (mod 2n). (7)

Then the k-groupoid (Qn, f) is a huge quasigroup.

Proof. Let r = 2n. The permutations in PPFn are de�ned by polynomials
P (x) of degree smaller than (log2 r+1+blog2(log2 r)c)/2 (by Proposition 6).
Then the evaluation of P (x) modulo 2n can be computed in polynomial
complexity with respect to log2 r. Consequently, the function f de�ned by
(7) can be computed in polynomial complexity with respect to log2 r.

Consider now the adjoint operations fi of f . We have, for any a1, a2, . . .
. . . , ak, b ∈ Qn:

fi(a1, a2, . . . , ak) = b ⇐⇒
⇐⇒ f(a1, . . . , ai−1, b, ai+1, . . . , ak) = ai

⇐⇒ p1(a1) · · · pi−1(ai−1)pi(b)pi+1ai+1 · · · pk(ak) = ai

⇐⇒ pi(b) = (pi−1(ai−1))−1 · · · (p1(a1))−1ai(pkak)−1 · · · (pi+1(ai+1))−1

⇐⇒ b = p−1
i ((pi−1(ai−1))−1 · · · (p1(a1))−1ai(pkak)−1 · · · (pi+1(ai+1))−1)

By using the Hensel lifting technique the inverse elements (pj(aj))−1 can
be computed in polynomial complexity with respect to log2 r (see Section
2), and the same is true for the inverse permutation p−1

i by Theorem 7.

Theorem 10. Let p1, p2, . . . , pk be permutations in PPFn. De�ne a k-ary
operation f on Z2n by

f(a1, a2, . . . , ak) = p̂1(a1) + p̂2(a2) + · · ·+ p̂k(ak) (mod 2n), (8)

where p̂i are de�ned by (3). Then the k-groupoid (Qn, f) is a huge quasi-
group.
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Proof. The proof is similar to the proof of Theorem 9. We only need to
note that the inverse permutation

p̂i
−1 =

{
p−1

i (a), a ∈ Qn

p−1
i (a + 1)− 1, a ∈ Q′

n

can be computed in polynomially complexity with respect to log2 r.

Theorem 11. Let p1, . . . , pk and h1, . . . , hk be permutations in PPFn. De-
�ne a k-ary operation f on Z2n by

f(a1, a2, . . . , ak) = fp1,h1(a1) + fp2,h2(a2) + · · ·+ fpk,hk
(ak) (mod 2n),

where fpi,hi are de�ned by (4). Then the k-groupoid (Qn, f) is a huge quasi-
group. ¤

We note that Rivest [15] gives a simple necessary and su�cient condition
for a bivariate polynomial P (x, y) modulo 2n to represent a quasigroup
on Z2n , namely P (x, 0), P (x, 1), P (0, y) and P (1, y) should be univariate
permutational polynomials on Z2n . This result is based on his main result
in [15] (see Theorem 3 in Section 5).
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Fast signatures based on non-cyclic �nite groups

Nikolay A. Moldovyan

Devoted to the memory of Valentin D. Belousov (1925-1988)

Abstract. Finite rings of the m-dimension vectors over the ground �eld are de�ned
with the vector multiplication operations of di�erent types. Non-cyclic multiplicative
groups of the rings in particular cases possess structure described in terms of the multi-
dimension cyclicity. The vector �nite groups relating to such cases are applied to design
fast digital signature algorithms.

1. Introduction
The cyclic �nite groups of di�erent types are widely used as primitives of
the digital signature (DS) algorithms [7, 9]. A group is called cyclic, if
there exists a group element G (called generator) such that all elements of
the group can be generated as di�erent powers of G. Usually in the DS
schemes based on di�culty of the discrete logarithm problem (DLP) the
public key is computed as a group element Y = Gx, where G is the ω(G)
order group element, and x is the secret key (x < ω(G)). Security of the DS
scheme is provided by the necessary requirement that the value ω contains
a large prime factor q such that q > 2160 [2] and by some other require-
ments depending on type of the used group, the �rst requirement being a
common one for all cyclic groups used as primitive of the DS algorithms.
The upper security boundary is limited by the di�culty of the DLP. There
are known the general-purpose methods for solving the DLP, which work
in any type cyclic group [2]. Such methods have exponential complexity
W = O(

√
q) group operations, where O(·) is the order notation, and q is

the largest prime divisor of the group order. If q > 2160, then solving the
DLP with the general-purpose methods are computationally infeasible. For
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some �nite groups there are known specialized methods having subexponen-
tial di�culty. Such groups are also used in some DS schemes, however they
do not provide su�ciently high performance of the signature generation and
veri�cation procedures.

At present �nite groups of the elliptic curve (EC) points represent the
most e�cient primitive of the DS algorithms. In the DS schemes there are
used properly de�ned ECs for which the most e�cient methods for solving
the DLP are the general-purpose ones. Therefore it is su�cient to use the
EC de�ned over �nite �elds (FFs) having the order size 160 to 320 bits [1].
Due to su�ciently small size of the FF order the DS algorithms based on
ECs [3] provide the high performance.

Unfortunately the performance of the EC-based DS algorithms is lim-
ited by the inversion operation in the underlying FF, which is included in
the procedure implementing the operation of adding the EC points. To
overcome this limitation the �nite groups of vectors over the ground FFs
have been proposed as primitives of the DS algorithms [5]. For detailed
justi�cation of this proposal it is required to consider the structure of the
vector �nite groups (VFGs) that in general case are not cyclic. Only in
some particular cases the multiplicative VFGs have cyclic structure. Such
cases relates to formation of the vector �nite �elds (VFFs) [4] that have
been proposed to de�ne ECs providing higher performance of the EC-based
DS algorithms. Essentially higher performance is expected from the DS
based on non-cyclic VFGs.

Present paper presents the results on investigation of the structure of the
non-cyclic VFGs and describes peculiarities of designing the DS algorithm
based on computations in the VFGs. Section 2 provides description of the
�nite rings of the m-dimension vectors and de�nes a class of the vector
multiplication operations. Section 3 provides general description of the
structure of the vector �nite rings in terms of the multi-dimension cyclicity
(MDC). The proposed formulas describing the group structure have been
con�rmed by computational experiments. Section 4 explains the features
of designing the DS algorithms based on VFGs possessing the MDC and
presents new DS schemes and a rough performance comparison with the
well known DS algorithms. Section 5 concludes the paper.
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2. Finite rings of the m-dimension vectors
Finite rings of m-dimension vectors are de�ned over the ground �eld GF (p),
where p is a prime. Suppose e, i, . . . , w be some m formal basis vectors
and a, b, z ∈ GF (p), where p > 3, are coordinates. The set of vectors

ae + bi + · · ·+ zw

is a �nite m-dimension vector space. A vector can be also represented as
a set of its coordinates (a, b, . . . , z). The terms τv, where τ ∈ GF (pd)
and v ∈ {e, i, . . . ,w}, are called components of the vector. The addition
and multiplication operations over the vectors are de�ned as follows. The
addition of two vectors (a, b, . . . , z) and (a′, b′, . . . , z′) is de�ned via addition
of the coordinates corresponding to the same basis vector accordingly to the
following formula

(a, b, . . . , z) + (a′, b′, . . . , z′) = (a + a′, b + b′, . . . , z + z′).

The multiplication of two vectors ae+bi+· · ·+zw and a′e+b′i+· · ·+z′w
is de�ned as pair-wise multiplication of all components of the vectors in
correspondence with the following formula
(ae+bi+· · ·+zw)◦(a′e+b′i+· · ·+z′w) = aa′e◦e+ba′i◦e+· · ·+za′w◦e+

+ab′e ◦ i + bb′i ◦ i + · · ·+ cb′w ◦ i + . . .
· · ·+ az′e ◦w + bz′i ◦w + · · ·+ zz′w ◦w,

where ◦ denotes the vector multiplication operation. In the �nal expression
each product of two basis vectors is to be replaced by some basis vector v
or by a vector τv (τ ∈ GF (p)) in accordance with some given table called
basis-vector multiplication table (BVMT). There are possible di�erent types
of the BVMTs, but in this paper there is used the BVMT of some general
type proposed in [6] (see Table 1). For arbitrary values m and τ Table 1
de�nes the vector multiplication that is a commutative and associative op-
eration. Di�erent values τ de�ne di�erent types of the vector multiplication
operation that de�nes the structure of the multiplicative group of the vector
�nite ring (VFR).

◦ −→e −→ı −→
j

−→
k −→u . . . −→w−→e e i j k u . . . w−→ı i εj εk εu ε . . . εw εe−→

j j εk εu ε . . . εw εe i−→
k k εu ε . . . εw εe i j−→u u ε . . . εw εe i j k

. . . . . . εw εe i j k u−→w w εe i j k u . . .
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Table 1. The basis-vector multiplication table of the general type [6].

3. Cyclicity of the multiplicative group of VFR
The �xed vector addition operation is used in the VFR described in Section 2.
On the contrary, for the given values m and p di�erent types of the multiplication
operation are speci�ed with di�erent values of the "expansion" coe�cient τ . In this
section the structure of the multiplicative group is considered. There are possible
a variety of di�erent structures of the VFGs depending on selection of the value
τ . The simplest example is provided by the example of the VFFs that are formed
in the cases m|p− 1, while usingle values τ such that the equation xm = τ has no
solution in the �eld GF (p). In such cases the VFGs have the cyclic structure and
the VFG order is equal to Ω = pm − 1. Majority of other cases (for some values
m there are possible speci�c conditions of the VFFs formation) the VFGs possess
non-cyclic structure. The known example are VFGs formed in the case m|p − 1,
while using value τ such that the equation xm = τ has a solution in the �eld
GF (p). In the last case for m = 2 and m = 3 the order of the VFGs is expressed
by the following formula derived theoretically [6] Ω = (p− 1)m. However the last
formula does not explain the VFG structure. In the case of non-cyclic VFGs the
computational experiments appear to be required to reveal the structure. The
computational experiments have shown that the last formula is correct for all
values m and the structure of such non-cyclic groups can be described in terms
of MDC. The experiment have also shown in all cases the multiplicative VFGs
possess structure described in terms of the MDC, except the case of the VFFs
while the VFGs possess one-dimension cyclicity.

3.1. Multi-dimension cyclicity of the VFG structure
Let us consider a hypothetic group Γµ of the order Ω(Γµ) = qµ, where q is a prime,
in which there exist µ elements G1, G2, . . . , Gµ possessing the same order q, such
that any group element G ∈ Γµ can be represented as product

∏µ
i=1 Gsi

i for some
set of powers (s1, s2, . . . , sµ) and none of these elements, for example, Gj can be
expressed as product

∏ µ
i=1;i 6=j Gsi

i .
Non-cyclic groups produced by the generator system in which all generators

have the same order value are called in this paper groups possessing the structure
with multi-dimension cyclicity (MDC). The value µ is called dimension of the MDC
of the group structure. The term MDC is used to describe the VFG structures
since it corresponds well to the fact that the elements of the considered groups are
vectors, besides the term re�ects the fact that in all cases the multiplicative groups
of the VFRs can be described from a single position. Indeed, the cyclic structure
of the multiplicative groups of the VFFs can be considered as a particular case of
MDC, i.e., as one-dimension cyclicity.

Since the element order divides the group order, the minimum order of elements
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Gi is value ω(Gi) = q. It is easy to show that the basis {G1, G2, . . . , Gµ} generates
ω(G1)ω(G2) . . . ω(Gµ) > qµ di�erent elements of the group Γµ. It is evident that
Ω(Γµ) > ω(G1)ω(G2) . . . ω(Gµ). The number of di�erent elements in the group
Γµ is equal to Ω(Γµ) = qµ, therefore the last inequality holds, only if all elements
of the basis have the minimum possible order q. The last means that all elements
of the group, except the unity element, have the same order q.

Suppose the group Γµ contains NΩ′=q di�erent cyclic subgroups. Each of such
subgroups contains q− 1 non-unity elements, therefore NΩ′=q(q− 1) = qµ− 1 and

NΩ′=q =
qµ − 1
q − 1

. (1)

There exist few real examples of such groups. Among vector �nite groups we
have the example relating to selection of the parameters m = 2, p = 3, and τ = 1
that de�ne the fourth order group containing three elements (0,1), (2,0), and (0,2)
of the second order and the unity elements (1,0). Other example are provided by
some subgroups in the groups considered below. It is a typical case that VFGs
contains subgroups like Γµ. (Among the VFRs de�ned over the �nite polynomial
�elds GF (pd), where d > 2, we have some more examples of the VFGs possessing
the MDC structure and containing only elements having the same prime order.)

Note that in some group of the order qd, where q is a prime, the dimension µ
of the MDC satis�es the condition µ 6 d. Let us consider a hypothetic group Γtµ

of the order Ω = qd, where d = tµ. Suppose the group Γtµ contains µ independent
elements of the order ω = qt, composing a basis {G1, G2, . . . , Gµ}, then we have
the following facts.

1. The group Γtµ contains µ exponentially independent elements of the order
ω = qj for each of the values j = 1, 2, . . . t.

2. For all values j = 1, 2, . . . t the group Γt contains Nω=qj elements G of the
order ω(G) = qj , which is equal to the value

Nω=qj = qµ(j−1)(qµ − 1). (2)

3. For each of the values j = 1, 2, . . . t the group Γt contains NΩ′=qj di�erent
cyclic subgroups of the order Ω′ = qj , which is equal to the value

NΩ′=qj = q(µ−1)(j−1) q
µ − 1
q − 1

. (3)

The VFGs provide su�cient number of real examples of groups of the Γtµ type,
which relates to the cases m = 2, 4, . . . 2d (d = 1, 2, 3 . . . ) and primes p having the
structure p = 2k + 1 (k = 4, 8, 16). Table 2 presents experimental results.
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m = 2; p = 257; τ = 169 m = 4; p = 257; τ = 81 m = 8; p = 17; τ = 1
ω Nω ω Nω ω Nω

2 3 2 15 2 255
4 12 4 240 4 65280
8 48 8 3840 8 16711680

16 192 16 61440 16 4278190080
32 768 32 983040 - -
64 3072 64 15728640 - -
128 12288 128 251658240 - -
256 49152 256 4026531840 - -

Table 2. Some particular variants of the vector �nite groups of order (p− 1)m.

3.2. Vector groups having multi-dimension cyclicity structure
Let us consider a hypothetic group Γ of the order Ω =

(∏z
i=1 qti

i

)µ, where qi is a
prime for all i ∈ {1, 2, . . . z}. Suppose for all i = 1, 2, . . . z the group Γ contains µ
exponentially independent elements of the order ω = qti

i , which compose the basis
{G(i)

1 , G
(i)
2 , . . . , G

(i)
µ }. Such assumption leads to the following facts.

1. The group Γ contains µ exponentially independent elements of the order
ω =

∏z
i=1 qti

i , that generate all of the group elements.
2. The group Γ contains µ exponentially independent elements of the order

ω = D, where D is a divisor of the group order.
3. For each divisor D of the group order such that D = q

t′i
i , where i ∈

{1, 2, . . . z} and 0 6 t′i 6 ti, the group Γ contains the number of elements N
ω=q

t′
i

i

of the order D, which is equal to

N
ω=q

t′
i

i

= q
µ(t′i−1)
i (qµ

i − 1). (4)

4. For each divisor D of the group order such that D =
∏z′

i=1 q
t′i
i , where

i = 1, 2, . . . z and 1 6 t′i 6 ti, the group Γ contains the number of elements Nω=D

of the order D, which is equal to

Nω=D =
z′∏

i=1

q
µ(t′i−1)
i (qµ

i − 1). (5)

5. For each divisor D|Ω of the group order such that D =
∏z′

i=1 q
t′i
i , where

i = 1, 2, . . . z and 1 6 t′i 6 ti, the group Γ contains the number NΩ′=D of cyclic
subgroups of the order Ω′ = D, which equals to

NΩ′=D =
z′∏

i=1

q
(µ−1)(t′i−1)
i

qµ
i − 1
qi − 1

. (6)
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Among di�erent types of the multiplicative groups of VFRs the VFGs possess-
ing the MDC structure are more attractive as primitive of the DS algorithms, some
other particular types of the non-cyclic VFGs also represent interest for public key
cryptography though. In the VFGs possessing the MDC for each prime divisor
qi of the group order Ω there exist subgroups of the orders Ω′ =

(
q

t′i
i

)µ

, where
t′i = 1, 2, . . . ti, which possess the MDC structure with the same dimension value
µ. In particular for some large prime q there exists the qµ-order subgroup all ele-
ments of which have the same order q, except the unity element. Such subgroups
play important role in the DS algorithms proposed below. Examples con�rming
the facts and formulas presented above are given in the next section.

4. Experimental con�rmation
For values m = 2 and m = 3 in the case m|p−1 it has been theoretically derived [6]
the following formula

Ω = (p− 1)m. (7)
In all our experiments relating to the case p > m and m|p− 1 the group order is
described with formula (7), if the coe�cient τ is the mth power of some element
x ∈ GF (p). To determine the real structure of the VFGs we have computed the
order of all elements in the VFGs involved in experiments (multiplying the group
elements G many times, the order ω(G) has been calculated). Experimental results
are presented in Table 3. The results are completely described by formulas (4) and
(5).

m = 10; p = 11; τ = 1 m = 7; p = 29; τ = 28 m = 6; p = 19; τ = 1
ω Nω ω Nω ω Nω

2 1023 2 127 2 63
5 9765624 4 16256 3 728
10 9990233352 7 823542 6 45864
- - 14 104589834 9 530712
- - 28 13387498752 18 33434856

Table 3. Structure of the VFGs possessing the order Ω = (p− 1)µ,
where µ = m (Nω is the number of the group elements having the order ω).

Thus, performing many di�erent computational experiments in all cases, when
τ can be represented as the mth degree of some element of the ground �eld GF (p)
and m|p−1, we have get the vector group structure that is described in terms of the
MDC with µ = m. The experiments have also revealed di�erent other conditions
under which there are formed the VFG possessing the MDC structure described
by formula (5). From the results for the case m|p−1 the following formula for the
VFG order have been derived

Ω = (pν − 1)µ, (8)
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where µ is the dimension of MDC, µ|m, ν = m/µ, which describes the VFG
structure when the parameter τ is such that the equation τ = xµ has solutions in
GF (p), and the equation τ = xµδ has no solutions in GF (p) for each divisor δ|ν,
δ > 1. Examples of the VFGs relating to such cases are presented in Table 4. In
the next section formula (8) is used to de�ne the VFGs suitable to implementation
of the DS algorithms. In Table 4 the formulas describing the group order Ω for
cases m 6 8 have been obtained from experiments on �nding the order ω for each
group element, like experiments used to obtain results of Table 3. For cases m > 8
the formulas have been preliminary composed and then experimentally proved.

The cases µ = 1 relates to VFRs that are extension FFs GF (p), when the
VFGs are cyclic. Such VFFs are very attractive for application in EC-based DS
algorithms [4] due to su�ciently fast multiplication operation and possibility of the
e�cient parallelization of the vector multiplication. In this paper only non-cyclic
VFGs (µ > 2) are discussed as primitives of the DS algorithms.

m, p, τ Ω µ m, p, τ Ω µ

10, 11, 4
(
p5 − 1

)µ 2 24, 1201, 729 (p− 1)µ 24
10, 11, 10

(
p2 − 1

)µ 5 24, 1201, 49
(
p2 − 1

)µ 12
9, 13, 1

(
p3 − 1

)µ 3 24, 1201, 16
(
p3 − 1

)µ 8
9, 19, 1 (p− 1)µ 9 24, 1201, 19

(
p4 − 1

)µ 6
8, 17, 4

(
p2 − 1

)µ 4 24, 1201, 61
(
p6 − 1

)µ 4
8, 5, 4

(
p4 − 1

)µ 2 24, 1201, 23
(
p8 − 1

)µ 3
6, 19, 8

(
p2 − 1

)µ 3 24, 1201, 289
(
p12 − 1

)µ 2
6, 19, 16

(
p3 − 1

)µ 2 24, 1201, 101
(
p24 − 1

)µ 1
42, 421, 67 (p− 1)µ 42 42, 421, 29

(
p2 − 1

)µ 21
42, 421, 277

(
p3 − 1

)µ 14 42, 421, 73
(
p6 − 1

)µ 7
42, 421, 7

(
p7 − 1

)µ 6 42, 421, 19
(
p14 − 1

)µ 3
42, 421, 79

(
p21 − 1

)µ 2 42, 421, 2
(
p42 − 1

)µ 1
Table 4. Analytic description of the experimental results on investigation of the VFG

structure (cases µ 6 m).

5. Designing the DS algorithms based on the VFGs
In the standard case of the DS algorithm design based on cyclic groups the group
order Ω should contain a large prime divisor q|Ω such that g > 2160 [2, 7]. However
taking into account the MDC of the VFG structure it can be shown that for
VFGs the standard cryptographic requirement is essentially excessive. If the prime
divisor q of the VFG order relates to the MDC subgroup of the order qµ, then
the general security requirement can be speci�ed as q > 2160/µ, where µ is the
dimension of the cyclicity of the group structure. However to make use of this
essential correction some changes in the design of the DS algorithms should be
introduced.
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First, the public key is to be generated as µ vectors Y1, Y2, ..., Yµ in accordance
with the following formula

Yi = Gx1i
1 ◦Gx2i

2 · · · ◦Gxµi
µ =

µ∏

j=1

G
xji

j ,

where ω(Gi) = q ∀i ∈ {1, 2, . . . , µ}, G1, G2, . . . Gµ is the generator system of
the subgroup having the order qµ, and the set {xji} is the secret key (i, j ∈
{1, 2, . . . , µ}). Computation of the secret key de�nes a problem of �nding multi-
dimension logarithm at the basis G1, G2, . . . Gµ. This problem can be solved using
some modi�cations of the general-purpose methods for �nding discrete logarithms
in cyclic groups [2]. The di�culty of such modi�ed methods is O(

√
qµ) exponenti-

ation operations in the used VFG, therefore the minimum security (corresponding
to di�culty of breaking the DS algorithm, which is equal to 280 exponentiation
operations) can be provided with the condition |p| ≈ |q| > 160/µ bits.

Second, the DS scheme should be modi�ed in accordance with the modi�ed
public key. All parts of the public key (Y1, Y2, . . . , Yµ) should be used in the DS
veri�cation procedure. The following DS schemes takes into account the mentioned
modi�cations.

Generation of the DS corresponding to the message M is performed as follows:
1. Select µ random values k1, k2, . . . , kµ such that for all i = 1, 2, . . . , µ it

holds ki < q.
2. Calculate vector R = (r1, r2, . . . , rm) = Gk1

1 ◦Gk2
2 · · · ◦G

kµ
µ .

3. Using some speci�ed hash function Fh (di�erent examples see in [2]) cal-
culate the hash value h from the message to which the vector R is concatenated:
h = Fh(M‖r1‖r2‖ . . . ‖rm).

4. Represent the value h as some concatenation of µ elements: h = h1‖h2‖...‖hµ

and compute the second element of the DS as the set of µ values {s1, s2, . . . sµ}:

sj = tj +
i=µ∑

i=1

xjihi mod q,

where j = 1, 2, . . . µ.
Veri�cation of the DS corresponding to the message M is performed as follows:
1. Compute the vector R′ = Y −h1

1 ◦ Y −h2
2 · · · ◦ Y

−hµ
µ ◦Gs1

1 ◦Gs2
2 · · · ◦G

sµ
m .

2. Compute the value h′ = Fh(M‖r′1‖r′2‖ . . . ‖r′m).
3. Compare the values h′ and h. If h′ = h, then the DS is valid.
There are possible di�erent variants of the values m and µ that provide fast

generation and veri�cation of the DS, the values µ = 2 (for m = 2, 6, 10, 14 and
22) and µ = 3 (for m = 3, 9, 15, and 21) are the most interesting for practical
applications though. Values µ > 3 lead to comparatively large size of the public
key. The values m corresponding to µ = 2 and µ = 3, which are indicated in
brackets, provides possibility to select the values p providing faster procedures for
DS generation and veri�cation.
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Let us consider some particular variants of the DS scheme described above.
Example 1. m = 6, p = 3112656501667, and τ = 3229543499124319810093519.
These parameters de�ne formation of the VFG having the order Ω =

(
p5 − 1

)µ

and dimension of the cyclicity µ = 2. The largest prime divisor of Ω is q =
3229543499124319810093519. The subgroup of the order qµ is generated by the
following pair of the q-order vectors
G1 =

(2461700031734, 482034324490, 156834270570, 1324447431161, 2740416991343, 1220868764310),
G2 =

(2538171306005, 283399862632, 192519072375, 891592729264, 760409728893, 2653262071023).

Example 2. m = 10, p = 14152871, and τ = 9. These parameters de�ne forma-
tion of the VFG having the order Ω =

(
p5 − 1

)µ and dimension of the cyclicity
µ = 2. The largest prime divisor of Ω is q = 8024319624114910583796004541. The
subgroup of the order qµ is generated by the following pair of the q-order vectors
G1 =

(6283401, 4259768, 6598451, 3709261, 8444571, 82053, 6685050, 10303674, 9996976, 10471343),
G2 =

(1523659, 5587678, 3962704, 8694664, 3478222, 2379965, 4305324, 860257, 4524271, 8938870).

Example 3. m = 14, p = 8093, and τ = 9. These parameters de�ne formation
of the VFG having the order Ω =

(
p7 − 1

)µ and dimension of the cyclicity µ = 2.
The largest prime divisor of Ω is q = 40143281293465596069349. The subgroup of
the order qµ is generated by the following pair of the q-order vectors

G1 = (6324, 3153, 1575, 5913, 3701, 5665, 3268, 5171, 4816, 1661, 1926, 4203, 678, 4187),

G2 = (5992, 4360, 4442, 2341, 6950, 2525, 921, 1565, 2120, 3592, 6668, 248, 399, 6214).

Example 4. m = 2, p = 6917891042381689626702539, and τ = 232 = 4294967296.
These parameters de�ne formation of the VFG having the order Ω = (p− 1)µ and
dimension of the cyclicity µ = 2.

The largest prime divisor of Ω is q = 3458945521190844813351269. The sub-
group of the order qµ is generated by the following pair of the q-order vectors

G1 = (3, 0), G2 = (1, 5).

Example 5. m = 3, p = 275352871102525507, and τ = 224 = 16777216.
These parameters de�ne formation of the VFG having the order Ω = (p− 1)µ

and dimension of the cyclicity µ = 3. The largest prime divisor of Ω is q =
45892145183754251. The subgroup of the order qµ is generated by the following
three of the q-order vectors

G1 = (21, 0, 0),
G2 = (217941963753891151, 239089986535147009, 109899378481277797),

G3 = (158846680700738144, 28761476487049241, 144620654759850124).

Example 6. m = 4, p = 11780627332037, and τ = 224 = 16777216. These param-
eters de�ne formation of the VFG having the order Ω = (p− 1)µ and dimension
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of the cyclicity µ = 2. The largest prime divisor of Ω is q = 2945156833009. The
subgroup of the order qµ is generated by the following four of the q-order vectors

G1 = (17, 0, 0, 0),
G2 = (872502753155, 6114625095567, 4745624761713, 4690788873292),
G3 = (11269823703275, 5374465446130, 6550130852697, 7523825764505),
G4 = (9996654190922, 7883587942021, 9910063088313, 272051995111).

The computational di�culty of the DS generation and veri�cation procedures
is approximately equal to di�culty of three modulo exponentiation operations
like gs mod n, where |s| = µ|q| and |n| = m|p|. As it has been shown above in
the case m = µ the characteristic of the �eld GF (p) can be selected such that
|p| ≈ |q| > 160/µ bits. This provides high performance of the proposed algorithm.
Comparison with the performance (in arbitrary unites) of some widely used DS
algorithms is presented in Table 6, where the performance is estimated for the size
of the DS parameters providing supposed security of 280 group operations.

DS scheme DL problem |p|, Public key DS size, Rate,
in . . . bits size, bits bits arb. un.

GOST 1994 [10] GF (p) 1024 1024 1024 1
DSA [11] GF (p) 1024 1024 320 3
Shnorr [8] GF (p) 1024 1024 320 3
GOST 2001 [10] EC 256 512 512 6
ECDSA [11] EC 160 320 320 10
Proposed (m = 6; µ = 2) VFG 42 512 320 70
Proposed (m = 10; µ = 2) VFG 21 420 320 80
Proposed (m = µ = 2) VFG 82 328 320 100
Proposed (m = µ = 3) VFG 56 504 320 100
Proposed (m = µ = 4) VFG 43 688 320 100

Table 5. Rough performance comparison of di�erent DS schemes based on di�culty of
the DL problem (EC denotes elliptic curve de�ned over GF (p)).

6. Conclusion
Using specially introduced BVNTs to de�ne the vector multiplication operation in
the �nite vector spaces over the �nite ground �elds leads to formation of the VFRs
containing the multiplicative group possessing the MDC structure. The MDC is
a common feature for such VFGs. The dimension of the structure cyclicity µ is
equal to some divisor of the vector dimension m. Using di�erent values of the
expansion coe�cient τ that is the �exible parameter of the used BVMT di�erent
values µ are assigned. The particular case of the VFFs formation corresponds to
value µ = 1.

The VFGs relating to cases µ = 2 and µ = 3 are very attractive as primitives
for fast DS algorithms. It has been proposed a DS scheme in which some design
features have been applied taking into account the MDC structure of the VFGs.
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Several concrete VFGs suitable to application in the frame of the proposed DS
scheme have been described. An algorithm for �nding two-dimension algorithms
has been described and used to estimate the security of the DS algorithms based
on computations in FVGs possessing the structure with two-dimension cyclicity.
Performance comparison with the known fast DS schemes shows the proposed ones
provides signi�cantly higher rate. Besides, the vector multiplication operation
suite well to parallelization therefore the propose DS scheme is signi�cantly more
e�cient in parallelized hardware implementation than other known DS algorithms,
especially when the VFGs with su�ciently large value m are applied.
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Topological LA-groups and LA-rings

Tariq Shah and Kamran Yousaf

Abstract. We introduce the notion of topological LA-groups and topological LA-rings
which are some generalizations of topological groups and topological rings respectively.
We extend some characterizations of topological groups and rings to topological LA-
groups and topological LA-rings.

1. Introduction
Kazim and Naseerudin [4] have introduced the concept of LA-semigroups,
i.e., groupoids whose elements satisfy the left invertive law: (ab)c = (cb)a.
Such groupoids also are known as Abel-Grassmann's groupoids or AG-
groupoids (see [2]). Many interesting results on LA-semigroups one can
�nd in [5], [6] and [7]. Some authors studied also left almost groups (LA-
groups), i.e., LA-semigroups in which for every a ∈ G there exists e ∈ G
such that ea = a and a−1 ∈ G such that a−1a = e. LA-rings are studied by
T. Shah and I. Rehman (cf. [9]).

In this paper we introduced the notion of topological LA-groups and
topological LA-rings. Furthermore we established some of properties re-
garding products, quotient and subgroups of a topological LA-group. In
case of topological LA-ring we prove that the product of any family of
topological LA-rings is again a topological LA-ring and an LA-subring of a
topological LA-ring is again a topological LA-ring.

2. Preliminaries
A topological group is a group (G, ∗) with a topology τ such that the group
operations G×G → G : (x, y) → x∗y and G → G : x → x−1 are continuous

2000 Mathematics Subject Classi�cation: 20M02, 22A05, 22A30
Keywords: LA-group, LA-ring, topological group, topological ring, topological LA-
group, topological LA-ring.
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or the map G × G → G : (x, y) → x ∗ y−1 is continuous. For topological
group one may consult [3] and [8].

De�nition 2.1. A non empty set G is called a topological LA-group if
(a) (G, ∗) is an LA-group,
(b) (G, τ) is a topological space,
(c) LA-group operation ∗ : G×G → G and the inversion function

i : G → G de�ned by i(x) = x−1 are continuous.

The condition (c) can be replaced by
(c)′ The mapping (x, y) → x ∗ y−1 of G×G onto G is continuous.

Example 2.2. Let G be an LA-group. It is easy to verify that the con-
dition (a) is true in the discrete (respectively indiscrete) topology on G.
Consequently G is an LA-topological group. In this manner any LA-group
may be considered as a topological LA-group in the discrete (respectively
indiscrete) topology. ¤

The following theorem is a generalization of Proposition 3.2 from [3].

Theorem 2.3. Let G be a topological LA-group. Then
(1) the right translation ra : x → xa is homeomorphism,
(2) the left translation la : x → ax is homeomorphism and
(3) the inversion mapping i : x → x−1 is homeomorphism.

Proof. (1) Let x = y. This implies xa = ya which shows that ra(x) = ra(y),
which shows that ra is well-de�ned.

Let ra(x) = ra(y). This implies xa = ya. Since G is cancellative, so
x = y, so ra is one-to-one.

For each x ∈ G there exist xa−1 ∈ G such that ra(xa−1) = (xa−1)a =
(aa−1)x = ex = x implies that ra is onto. Thus ra is bijective.

Let U be any neighbourhood of ra(x) = xa. Since G is a topological
LA-group, so the mapping ∗ : G×G → G is continuous and for any neigh-
bourhood U of ra(x) = xa there exists neighbourhoods V and W of x and
a (respectively) such that V ∗W ⊆ U.

Now ra(V ) = V ∗ a ⊆ V ∗W. So, ra(V ) ⊆ V ∗W ⊆ U. Thus ra(V ) ⊆ U.
Since x is an arbitrary element of G, the mapping ra is continuous.

Let U be any neighbourhood of r−1
a (x) = xa−1. Since G is a topological

LA-group, the mapping ∗ : G × G → G is continuous. Hence for any
neighbourhood U of r−1

a (x) = xa−1 there exists neighbourhoods V and W
of x and a−1 respectively such that V ∗W ⊆ U.
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Now as r−1
a (V ) = V ∗ a−1 ⊆ V ∗ W, we have r−1

a (V ) ⊆ V ∗ W ⊆ U.
Thus r−1

a (V ) ⊆ U. As x is an arbitrary element of G, the mapping r−1
a is

continuous. Hence ra is a homeomorphism.
(2) The proof is analogous to (1).
(3) Let i(x) = i(y). Then x−1 = y−1. Now e = yy−1 = yx−1, which

implies ex = (yx−1)x and therefore by left invertive law we have x =
(xx−1)y = ey = y and hence i is one-to-one.

For each x ∈ G there exist x−1 ∈ G such that i(x−1) = (x−1)−1 = x, so
i is onto.

Since G is a topological LA-group, i is continuous. Also i−1(x) = x−1

is continuous because i is one-to-one.

Remark 2.4. The mappings x 7→ a(xa−1), x 7→ a−1(xa), x 7→ (ax)a−1,
x 7→ (a−1x)a are homeomorphisms as composition of two homeomorphisms
x 7→ xa(xa−1) and x 7→ ax(a−1x).

Remark 2.5. In topological groups we obtain only one homeomorphism
axa−1, but in the case of topological LA-groups we obtain distinct homeo-
morphisms a(xa−1), a−1(xa), (ax)a−1 etc.

Corollary 2.6. Let E be open and F be closed in a topological LA-group
G and A be any subset of G. Then for a ∈ G

(1) aE, Ea, E−1 are open,
(2) aF , Fa, F−1 are closed and AE, EA are open.

Proof. The mappings in Theorem2.3 are homeomorphisms, so (1) is obvious.
Since AE = ∪a∈AaE, EA = ∪a∈AEa, and the union of open sets is

open, therefore (2) is established.

3. Topological LA-groups
In this section we de�ne topological LA-groups and give some characteriza-
tions of such LA-groups.

3.1. Construction of a new topological LA-group from old
We can always construct a new topological LA-group from old ones. A
product of topological LA-groups permits us the construction of a new topo-
logical LA-group from the given ones and also permits the reduction of the
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study of relatively complicated topological LA-groups to the investigation
of their simple constituents.

The following theorem is a generalization of Proposition 3.12 from [3].

Theorem 3.1. Let A be an index set. For each α ∈ A, let Gα be a topo-
logical LA-group. Then G =

∏
α∈A

Gα endow with product topology, is also a
topological LA-group.

Proof. To prove that G is a topological LA-group, we have to show that the
onto mapping ∗ : G×G → G ; (x, y) 7→ xy−1 is continuous.

Let W be a neighbourhood of xy−1 in G, then there exists an open
set U such that xy−1 ∈ U ⊆ W , where U =

∏
α∈A Uα with Uα is an

open neighbourhood of xαy−1
α in Gα. Since (xα, yα) 7→ xαy−1

α is continuous
for each α ∈ A, so there exists neighbourhoods Vαi , V ′−1

αi
of xαi and yαi

respectively such that VαiV
′−1
αi

⊆ Uαifor each 1 6 i 6 n. Now let V =∏
α∈A

Vα and V ′ =
∏

α∈A

V ′
α, then V and V ′ are neighbourhoods of x and y

respectively. This means V V ′−1 =
∏

(VαiV
′−1
αi

) ⊆ ∏
Uα = U ⊆ W. This

proves the theorem.

Now we give the following de�nition.

De�nition 3.2. Let G be a topological LA-group and H be an LA-subgroup
of G. Then H endow with relative topology, is a topological LA-group called
topological LA-subgroup of G.

Theorem 3.3. An LA-subgroup H of a topological LA-group G is a topo-
logical LA-subgroup.

Proof. Let G be a topological LA-group and H be an LA-subgroup of G.
Then H is endowed with relative topology induced from G. Since the map-
ping (x, y) 7→ xy−1 of G × G onto G is continuous, so its restriction from
H × H onto H is also continuous. Let a, b be two elements of H and
let ab−1 = c. Every neighbourhood W ′ of the element c in H can be ob-
tained as the intersection with H of some neighbourhood W of c in G, i.e.,
W ′ = H ∩ W . Since G is a topological LA-group, so there exists neigh-
bourhoods U and V of a, b such that UV −1 ⊆ W . Now U ′ = H ∩ U and
V ′ = H ∩ V are the relative neighbourhoods of a and b in H. Thus we
have U ′V ′−1 ⊆ W and also U ′V ′−1 ⊆ H. Hence U ′V ′−1 ⊆ W ′ and H is a
topological LA-subgroup.
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3.2. Topological factor LA-groups
Let G be a topological LA-group and H is an LA-subgroup of G. Then G/H
denotes the set of all cosets Ha, a ∈ G. Let ϕ be a canonical mapping of G
onto G/H. With the help of ϕ we can de�ne a topology on G/H as follows:
A subset A′ of G/H is open if and only if ϕ−1(A′) is an open subset of G.
This topology in G/H is called the quotient topology and G/H, endowed
with quotient topology, is called the quotient space.

The following theorem is a generalization of Proposition 3.8 from [3].

Theorem 3.4. Let G be a topological LA-group and H be an LA-subgroup
of G. Let G/H be the quotient space endowed with the quotient topology and
ϕ be the canonical mapping of G onto G/H, then

(1) ϕ is homomorphism,
(2) ϕ is continuous,
(3) ϕ is open.

Proof. (1) Let x, y ∈ G, then ϕ(xy) = H(xy) = (HH)(xy) = (Hx)(Hy) =
ϕ(x)ϕ(y).

(2) ϕ is continuous by the de�nition of quotient topology.
(3) Let U be open in G. We have to prove that ϕ(U) is open in G/H.

That is, ϕ−1(ϕ(U)) is open in G. But ϕ−1(ϕ(U)) = {g : g ∈ uH for some
u ∈ U} = UH, which is open. Hence ϕ is open.

The following theorem is a generalization of Proposition 3.10(ii) from
[3].

Theorem 3.5. Let G be a topological LA-group and H be an LA-subgroup
of G. Then G/H endowed with the quotient topology, is a topological LA-
group.

Proof. To prove that G/H is a topological LA-group we have to show that
the mapping ∗ : (x′, y′) → x′y′−1 of G/H ×G/H onto G/H is continuous.

Let W be an open neighbourhood of x′y′−1, where x′ = xH and y′ = yH
and x, y ∈ G. Clearly ϕ−1(W ) is open in G and x′y′−1 ∈ ϕ−1(W ).

Since G is a topological LA-group, so there exists open sets U and V such
that x ∈ U, y−1 ∈ V −1 and xy−1 ∈ UV −1 ⊆ ϕ−1(W ). Since by Theorem
3.4 ϕ is continuous and open homomorphism so x′y′−1 ∈ ϕ(U)(ϕ(V ))−1 ⊂
ϕ(ϕ−1(W )), which implies x′y′−1 ∈ ϕ(U)(ϕ(V ))−1 ⊂ W.

As by theorem 3.4 ϕ is open, so ϕ(U) and ϕ((V ))−1 = ϕ(V −1) are open
because U and V are open. Thus G/H is a topological LA-group.
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De�nition 3.6. A topological LA-group G is said to be homogeneous if for
all x, y ∈ G, there exists a homeomorphism f : G → G such that f(x) = y.

The following theorem is a generalization of Proposition 3.14 from [3].

Theorem 3.7. Let G be a topological LA group and H be a subgroup of G.
Then the topological LA-group G/H is a homogeneous space.

Proof. Let x′ = Hx, y′ = Hy and g ∈ G be such that g = yx−1. De�ne the
mapping fg : x′ = Hx 7→ H(gx) for all x′ ∈ G/H.

Let Hx = Hy, then g(Hx) = g(Hy) implies H(gx) = H(gy) and hence
fg(Hx) = fg(Hy). Thus the mapping is well-de�ned.

Let fg(Hx) = fg(Hy). Then H(gx) = H(gy) and g(Hx) = g(Hy).
Hence Hx = Hy and so fg is one-to-one.

For each x′ = Hx ∈ G/H there exists H{(g−1e)x} ∈ G/H such that

fg(H{(g−1e)x}) = H{g((g−1e)x)} = H{g((xe)g−1)}
= H{(xe)gg−1} = H{(xe)e} = H{(ee)x} = Hx,

which shows that fg is onto.
Let U be any neighbourhood of fg(Hx) = H(gx). Since G/H is a

topological LA-group, so the mapping ∗ : G/H×G/H → G/H is continuous
and thus for any neighbourhood U of fg(x) = H(gx) = Hg∗Hx there exists
neighbourhoods V and W of Hg and Hx respectively such that V ∗W ⊆ U.

Now fg(V ) = fg(HS) = H(gS), so fg(V ) = Hg ∗HS implies fg(V ) ⊆
W ∗V ⊆ U. As x is an arbitrary element of G, we see that fg is continuous.

Now let U be any neighbourhood of f−1
g (Hx) = H(g−1e)x = H(g−1e)∗

Hx. Since G/H is a topological LA-group, so for any neighbourhood U
of f−1

g (Hx) there exists neighbourhoods V and W of H(g−1e) and Hx
respectively such that V ∗W ⊆ U.

Now f−1
g (W ) = f−1

g (HS) so f−1
g (W ) = H{(g−1e)S} implies f−1

g (W ) =
H(g−1e) ∗HS and this means f−1

g (W ) ⊆ V ∗W ⇒ f−1
g (W ) ⊆ V ∗W ⊆ U.

Hence f−1
g (W ) ⊆ U and therefore f−1

g is continuous. Thus we concluded
that f−1

g is a homeomorphism.
Clearly
fg(x′) = fg(Hx) = H(gx) = H((yx−1)x) = H((xx−1)y) = Hy = y′,

which shows that G/H is a homogeneous space.

The following theorem is a generalization of Proposition 3.4 from [3].
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Theorem 3.8. For a topological LA-group G, the following statements are
equivalent:

(1) G is a T0−space,
(2) G is a T1−space,
(3) G is a T2−space,
(4) ∩U = {e},where U is a fundamental system of neighbourhood of the

identity e.

Proof. (1) ⇒ (2) Let x, y ∈ G, x 6= y. (1) implies that for at least one
of x and y, there exists an open neighbourhood P of x such that y /∈ P.
Since x ∈ P, so xx−1 ∈ Px−1, i.e., e ∈ Px−1 and Px−1 = V is an open
neighbourhood of e.

Now V ∩ V −1 = Q is an open symmetric neighbourhood of e, so e ∈ Q,
which implies ey ∈ Qy. Hence y ∈ Qy. Now x /∈ Qy because if x ∈ Qy
then x−1 ∈ y−1Q (Q = Q−1) and x−1 ∈ y−1Q ⊂ y−1V x−1 ⊂ y−1(Px−1) =
P (y−1x−1) but this implies that

e = x−1x ∈ (P (y−1x−1))x = (y−1x−1)(Px).

Thus, by medial law,

e ∈ (y−1P )(x−1x) = (y−1P )e = (eP )y−1 = Py−1.

Hence,
y = ey ∈ (Py−1)y = (yy−1)P = eP = P,

which is a contradiction.
(2) ⇒ (3) Let x, y ∈ G, x 6= y. By (2) G is a T1−space, so {x} is a

closed set and therefore P = G\{x} is an open neighbourhood of y, thus
y ∈ P, which implies y−1y ∈ y−1P, this means e ∈ y−1P and hence y−1P
is an open neighbourhood of e by Theorem 2.3.

Let V be an open neighbourhood of e such that V V −1 ⊂ y−1P. Then
V y is an open neighbourhood of y. Let Q = G\V y, an open set and x ∈ Q.

Otherwise x ∈ V y and hence by the de�nition of closure V y ∩ V x 6= ∅.
But this shows that x ∈ (ye)(V V −1) ⊂ (ye)(y−1P ), which implies that

x ∈ (yy−1)(eP ) = eP and hence x ∈ P, a contradiction. Clearly Q∩V y = ∅
gives y ∈ V y and so x ∈ Q. This proves (3).

(3) ⇒ (4) Let x ∈ U for each U in {U} and assume x 6= e. Then (3)
shows that there exists a neighbourhood P of e such that x /∈ P. But then
there exists a U in {U} such that U ⊂ P. We have a contradiction that
x ∈ U ⊂ P and x /∈ P. Hence x = e and (4) is satis�ed.
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(4) ⇒ (1) Let x 6= y. Then xy−1 6= e and hence by (4) there exists a
U in {U} such that xy−1 /∈ U. Thus Uy being a neighbourhood of y and
x /∈ Uy. This proves (1).

4. Topological LA-rings
The following de�nition of a topological ring is taken from [1].
De�nition 4.1. A topological ring is a ring R with a topology τ such that
the additive group of the ring R is topological group in topology τ and the
one of the following equivalent conditions is satis�ed:

(a) the maps R×R → R : (x, y) → xy is continuous, (multiplication
condition (MC)),

(b) for any two elements x, y ∈ R and arbitrary neighborhood U of the
element xy there exist neighborhoods V and W of elements x and
y respectively such that V W ⊂ U.

De�nition 4.2. An LA-ring (R, +, · is called a topological LA-ring if
(a) (R, +) is an LA-group,
(b) (R, τ) is a topological space,
(c) the algebraic operations de�ned in R are continuous in topological

space R, i.e., the mappings (a, b) → a−b and (a, b) → a ·b of the topological
space R × R to the topological space R are continuous. In greater detail:
for arbitrary elements a, b ∈ R and for arbitrary neighbourhoods W and
W ′ of the elements a− b and ab respectively, there exist neighbourhoods U
and V of a and b such that U − V ⊂ W and UV ⊂ W ′.

Example 4.3. By the virtue of above de�nition the additive LA-group of
any topological LA-ring is a topological LA-group. Conversely, if R is a
topological LA-group, then R could be transformed into the LA-ring by the
de�nition of zero multiplication on R, i.e., setting a.b = 0 for any a, b ∈ R.
In doing so, the condition (MC) is ful�lled, and hence R is transformed into
a topological LA-ring. In this manner every LA-group may be considered
as a topological LA-ring with zero multiplication.
Theorem 4.4. Let R be a topological LA-ring, then for each r ∈ R, the
functions φr : x → rx and ψr : x → xr are continuous from R to R.

Proof. Let U be any neighbourhood of ϕr(x) = xr. Since R is a topological
LA-ring so the mapping ∗ : R×R → R is continuous so for any neighbour-
hood U of ϕr(x) = xr there exists neighbourhoods V and W of x and r
respectively such that V ∗W ⊆ U
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Now
ϕr(V ) = V ∗ r ⊆ V ∗W ⊆ U.

As x is an arbitrary element of R, so ϕr is continuous.
Similarly we can prove theorem for ψr.

Theorem 4.5. Let A be an index set. For each α ∈ A, let Rα be a topo-
logical LA-ring. Then R =

∏
α∈A

Rα endow with the product topology, is also
a topological LA-ring.

Proof. As R is a LA-ring so (R, +) is a topological group, so ∗ : (x, y) →
x− y is continuous. We have to check the continuity of : (x, y) → xy only.

Let W be a neighbourhood of xy in R, then there exists an open set
U such that xy ∈ U ⊆ W, where U =

∏
α∈A Uα and Uα is an open neigh-

bourhood of xαyα in Rα. Since (xα, yα) → xαyα is continuous for each
α ∈ A, so there exists neighbourhoods Vαi,V

′−1
αi

of xαi and yαi respectively
such that VαiV

′−1
αi

⊆ Uαi for each i = 1, 2, . . . , n. Now let V =
∏

α∈A

Vα

and V ′ =
∏

α∈A

V ′
α, then V and V ′ are neighbourhoods of x, y respectively.

This implies V V ′−1 =
∏

(VαiV
′−1
αi

) ⊆ ∏
Uα = U ⊆ W. This proves the

theorem.

We �nish our work by the following

Theorem 4.6. An LA-subring S of a topological LA-ring R is a topological
LA-subring.

Proof. Let R be a topological LA-ring and S be an algebraic LA-subring
of R. Then S is endowed with relative topology induced from R. Since the
mappings : (x, y) → x− y and (x, y) → xy of R×R are continuous so their
restriction from S × S into S is also continuous.

Let a, b be two elements of S and let ab−1 = c. Every neighbourhood W ′

of the element c in H can be obtained as the intersection with S of some
neighbourhood W of c in G. i.e., W ′ = H∩W . Since R is a topological LA-
ring so there exists neighbourhoods U and V of a, b such that UV −1 ⊆ W .
Now U ′ = S∩U and V ′ = S∩V are the relative neighbourhoods of a and b
in S. Thus we have U ′V ′−1 ⊆ W and also U ′V ′−1 ⊆ H. Hence U ′V ′−1 ⊆ W ′.
Hence S is a topological LA-subring.
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