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m-polar fuzzy Lie ideals of Lie algebras

Muhammad Akram and Adeel Farooq

Abstract. We introduce the notion of an m-polar fuzzy Lie ideal of a Lie algebra and inves-
tigate some properties of nilpotency of m-polar fuzzy Lie ideals. We introduce the concept of
m-polar fuzzy adjoint representation of Lie algebras and discuss the relationship between this
representation and nilpotent m-polar fuzzy Lie ideals. We also define Killing form in the m-polar

fuzzy case and study some of its properties.

1. Introduction

The concept of Lie groups was first introduced by Sophus Lie in nineteenth century
through his studies in geometry and integration methods for differential equations.
The importance of Lie algebras in mathematics and physics have become increas-
ingly evident in recent years. In applied mathematics, Lie theory remains a pow-
erful tool for studying differential equations, special functions and perturbation
theory. It is noted that Lie theory has applications not only in mathematics and
physics but also in diverse fields such as continuum mechanics, cosmology and life
sciences. A Lie algebra has nowadays even been applied by electrical engineers in
solving problems in mobile robot control [8].

In 1965, Zadeh [15] introduced the concept of fuzzy subset of a set. A fuzzy
set on a given set X is a mapping A : X — [0,1]. In 1994, Zhang [16] extended
the idea of a fuzzy set and defined the notion of bipolar fuzzy set on a given
set X as a mapping A : X — [—1,1], where the membership degree 0 of an
element x means that the element x is irrelevant to the corresponding property,
the membership degree in (0, 1] of an element z indicates that the element satisfies
the property, and the membership degree in [—1,0) of an element x indicates that
the element somewhat satisfies the implicit counter-property. In 2014, Chen et al.
[7] introduced the notion of m-polar fuzzy sets as a generalization of bipolar fuzzy
set and showed that bipolar fuzzy sets and 2-polar fuzzy sets are cryptomorphic
mathematical notions and that we can obtain concisely one from the corresponding
one in [7]. The idea behind this is that “multipolar information" (not just bipolar
information which correspond to two-valued logic) exists because data for a real
world problems are sometimes from n agents (n > 2). For example, the exact
degree of telecommunication safety of mankind is a point in [0,1]"(n ~ 7 x 109)
because different person has been monitored different times. There are many
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examples such as truth degrees of a logic formula which are based on n logic
implication operators (n > 2), similarity degrees of two logic formula which are
based on n logic implication operators (n > 2), ordering results of a magazine,
ordering results of a university and inclusion degrees (accuracy measures, rough
measures, approximation qualities, fuzziness measures, and decision preformation
evaluations) of a rough set.

The notions of fuzzy ideals and fuzzy subalgebras of Lie algebras over a field
were considered first in [13] by Yehia. Since then, the concepts and results of
Lie algebras have been broadened to the fuzzy setting frames [1-6, 10, 13]. In
this paper, we introduce the notion of an m-polar fuzzy Lie ideal of a Lie algebra
and investigate some properties of nilpotency of m-polar fuzzy Lie ideals. We
introduce the concept of m-polar fuzzy adjoint representation of Lie algebras and
discuss the relationship between this representation and nilpotent m-polar fuzzy
Lie ideals. We also define Killing form in the m-polar fuzzy case and study some
of its properties. The definitions and terminologies that we used in this paper
are standard. For other notations, terminologies and applications, the readers are
refereed to [8-12, 17].

2. Preliminaries

In this section, we first review some elementary aspects that are necessary for this
paper. A Lie algebra is a vector space . over a field F (equal to R or C) on which
¥ x ¥ — £ denoted by (z,y) — [z,y] is defined satisfying the following axioms:

(L1) [z,y] is bilinear,
(L2) [z,z]=0foralze.Z,
(L3) [[z,yl, 2] + [, 2], z] + [[z, z],y] = 0 for all z,y,z € £ (Jacobi identity).

Throughout this paper, .Z is a Lie algebra and F is a field. We note that the
multiplication in a Lie algebra is not associative, i.e., it is not true in general that
[[z,y], 2] = [z, [y, 2]]- But it is anticommutative, i.e., [z,y] = —[y,z]. A subspace
H of £ closed under [, -] will be called a Lie subalgebra.

A fuzzy set u: £ — [0,1] is called a fuzzy Lie ideal [1] of £ if

(a) p(z+y) > min{u(x), u(y)},
(b) plazx) = p(x),
(c) u(lz,y]) = p(x)

hold for all z,y € . and a € F. The addition and the commutator [ , ] of .Z
are extended by Zadeh’s extension principle [15], to two operations on I in the
following way:

(n @ A)(2) = sup{min{u(y), \(2)} |y, 2 € £, y + 2z = x},
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L p, A > (1‘) = Sup{min{#(?/): A(Z)} | Y,z € 2, [yv Z] = :C}v

where i, \ are fuzzy sets on I< and z € . The scalar multiplication oz for
a € Fand z € . is extended to an action of the field F on I¥ denoted by ® as
follows for all p € I*, « € F and z € .Z:

wla=tz) if a#0,
(a0up)(z)=< 1 ifa=0, =0,
0 ifa=0, x#0.

The two operations of the field F can be extended to two operations on IF in the
same way. The operations are denoted by @ and o as well [15]. The zeros of ¥
and F are denoted by the same symbol 0. Obviously 0 ® p = 1, for every pu € I%
and every p € I¥, where 1, is the fuzzy subset taking 1 at « and 0 elsewhere.

Definition 2.1. [7] An m-polar fuzzy set ( or a [0,1]™-set) on X is a mapping
A: % —[0,1]™. The set of all m-polar fuzzy sets on . is denoted by m(%).

Note that [0, 1] (m-power of |0, 1]) is considered a poset with the point-wise
order <, where m is an arbitrary ordinal number (we make an appointment that
m = {n|n < m} when m > 0), < is defined by = < y < p;(x) < pi(y) for each
i€m (x,y € [0,1]™), and p; : [0,1]™ — [0,1] is the i-th projection mapping
(i € m). 0=(0,0,...,0) is the smallest element in [0,1]™ and 1 = (1,1,...,1) is
the largest element in [0, 1]™.

Definition 2.2. Let C be an m-polar fuzzy set on a set .£. An m-polar fuzzy
relation on C is an m-polar fuzzy set D of £ x .Z such that for all x,y € X and
i=1,2,3,...,m we have p; o D(zy) < inf(p; o C(z),p; o C(y)).

3. m~polar fuzzy Lie ideals

Definition 3.1. An m-polar fuzzy set C on .Z is called an m-polar fuzzy Lie ideal
if the following conditions are satisfied:

(1) Cz+y) 2 nf(C(x),C(y)),

(2) Clax) 2 C(x),

(3) C([z,y]) = C(x) for all 2,y € £ and a € F.
That is,

(1) pioC(z +y) > inf(p; o C(z),p; 0 C(y)),

(2) pioClax) = p; o C(x),

(3) pioC([z,y]) = pio C(x)
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forall z,y € Zand v € F,i=1,2,3,...,m.

Example 3.2. Let R3 = {(z,y,2)|x,y,2 € R} be the set of all 3-dimensional
real vectors. Then R? with the bracket [-,-] defined as the usual cross product,

ie., [z,y] =z x y, forms a real Lie algebra. We also define an m-polar fuzzy set
C:R3—[0,1]™ by

(0.8,0.8,...,0.8) ifz=y=2=0,

C(x7y’z):{ (0.1,0.1,...,0.1) otherwise.

By routine computations, we can verify that the above m-polar fuzzy set C' is an
m-polar fuzzy Lie ideal of the Lie algebra R3.

Example 3.3. A subalgbera sl3(C) of all 2 x 2 matrices with trace 0 is an ideal
. 0 1 0 0 1 0
of gl2(C). The basis of slz(C) are: h = (O 0>, f= <1 0> and e = (0 _1).
The commutators are [e, f] = h, [h, f] = —2f and [h,e] = 2e.
We define an m-polar fuzzy set C : gla(C) — [0,1]™ by

Clg) = {(1,1,...,1), g € sl,(C)

(0,0,...,0), otherwise.

By routine computations, we see that C' is an m-polar fuzzy ideal.
We sate the following theorem without its proof.

Theorem 3.4. Let C be an m-polar fuzzy Lie ideal in a Lie algebra .. Then C
is an m-polar fuzzy Lie ideal of . if and only if the non-empty upper s-level cut
Cl) = {z € Z|C(x) > s} is Lie ideal of £, for all s = (51,5 —2,...,5,) € [0,1]™.

Example 3.5. Consider the group algebra C[S3], where S3 is the Symmetric
group. Then C[S3] assumes the structure of a Lie algebra via the bracket (com-
mutator) operation.

Clearly, the linear span of the elements § = g— g~ for g € Ss is the subalgebra
of C[S3], which is also known as Plesken Lie algebra and denoted by £(S5)c. It
is easy to see that .Z(S3)c = Spanc{(1,2,3)} and (1,2,3) = (1,2,3) — (1,3,2).

We define an m-polar fuzzy set C : £ (Ss5)c — [0,1]™ by

C( ) _ (tlat2a"'7tm)? g:V(172a3)_7(173a2)7 Where’YECaQGC[Sﬂ
g (s1,82,---,8m), otherwise, where s; < t;

By routine calculations, we have {g € C[S3] : C(g) > (s1,82,---,5m)} = Z(S3)c.
Then we see that £(S3)c can be realized Cly) as an upper s;-level cut and C is
an m-polar fuzzy Lie ideal of £(S5)c.
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Definition 3.6. Let C' € I, an m-polar fuzzy subspace of . generated by C
will be denoted by [C]. It is the intersection of all m-polar fuzzy subspaces of £
containing C. For all x € .Z, we define:

[C](z) = sup{inf C(z;) |z = ZOMC“ o;F x; € £}

Definition 3.7. Let f: % — % be a homomorphism of Lie algebras which has
an extension f : I%* — 2 defined by:

F(O)(y) =sup{C(x),z € f ()}
for all C € I21, y € %. Then f(C) is called the homomorphic image of C.

Proposition 3.8. Let f : £ — % be a homomorphism of Lie algebras and let
C be an m-polar fuzzy Lie ideal of £. Then

(i) f(C) is an m-polar fuzzy Lie ideal of %,

(i) f([C]) 2 [F(C)].

Proposition 3.9. If C' and D are m-polar fuzzy Lie ideals in £, then [C, D] is
an m-polar fuzzy Lie ideal of £ .

Theorem 3.10. Let C1, Cy, D1, Dy be m-polar fuzzy Lie ideals in £ such that
Cl Q CQ and D1 Q DQ, then [Cl,Dl] Q [CQ,DQ].

Proof. Indeed,
< C1,D1 > (x) = sup{inf(C1(a), D1(b)) | a,b € A ,[a,b] = x}

> sup{inf(Cy(a), D2(b)) | a,b € A ,[a,b] = z}
=< Oy, Dy > ().

Hence [C1, D;] C [Cy, Ds). O

Let C be an m-polar fuzzy Lie ideal in .Z. Putting
c'=0, Ct=[C,Cy), C* =[C,C], ..., C" =[C,C™]
we obtain a descending series of an m-polar fuzzy Lie ideals
c’>2C'oC?*2...2C" 2.,
and a series of m-polar fuzzy sets D™ = sup{C"(x) |0 # = € ZL}.

Definition 3.11. An m-polar fuzzy Lie ideal C is called nilpotent if there exists
a positive integer n such that D™ = 0.

Theorem 3.12. A homomorphic image of a nilpotent m-polar fuzzy Lie ideal is
a nilpotent m-polar fuzzy Lie ideal.
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Proof. Let f : 4 — % be a homomorphism of Lie algebras and let C be a
nilpotent m-polar fuzzy Lie ideal in %;. Assume that f(C) = D. We prove by
induction that f(C™) D D™ for every natural n. First we claim that f([C,C]) D
[f(C), f(C)] = [D, D]. Let y € %, then

[(€C,C>)(y) =sup{< C,C>)(x) | f(z) =y}
C(a),C(d)) | a,b € LA, la,b] ==, f(z) =y}}

= sup{sup{inf(
= sup{inf(C(a),C(b)) | a,b € £, [a,b] =z, f(2) = y}
= sup{inf(C(a),C(b)) | a,b € A, [f(a), f ( )] =y}
= sup{inf(C(a),C(b)) | a,b € £, f(a) = u, f(b)] = v, [u,v] = y}
> sup{inf( sup C(a), sup C(b)) [u v] =y}
a€f=1(u) bef=t(v)

sup{inf(f(C)(u), F(C)(v)) | [u,v] =y} =< f(C), F(C) > (y),

Thus
f([C,C)) 2 f(< C,C>) 2K f(O), f(C) >= [f(C), f(C)].

For n > 1, we get
femy = f(e.cvl) 2 [f(0), f(e" ) 2 [D, D" = D™
Let m be a positive integer such that C" = 0. Then for 0 # y € Lo we have
D™ (y) < f(uén)(y) = f(0)(y) = sup{0(a) | f(a) = y} = 0.
This completes the proof. O
Let C be an m-polar fuzzy Lie ideal in .. Putting
cO=c, ¢V =1c® cO), c®=1cW cW],. . . c"=[crb ch1)

we obtain series
cCOceWce®c...comc...

of m-polar fuzzy Lie ideals and a series of m-polar fuzzy sets D™ such that
D" =sup{C"(x) |0 # x € L}.

Definition 3.13. An m-polar fuzzy Lie ideal C is called solvable if there exists a
positive integer n such that D™ = 0.

Theorem 3.14. A nilpotent m-polar fuzzy Lie ideal is solvable.

Proof. Tt is enough to prove that C"™) C C™ for all positive integers n. We prove
it by induction on n and by the use of Theorem 3.10:

cW=[c,cl=c', Cc®=[cW cWcc,cV]=c2
cm = (¢ oD c [c,c" Y] C [c,cY] = ¢,
This completes the proof. O
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Definition 3.15. Let C' and D be two m-polar fuzzy Lie ideals of a Lie algebra
Z. The sum C @ D is called a direct sum if C N D = 0.

Theorem 3.16. The direct sum of two nilpotent m-polar fuzzy Lie ideals is also
a nilpotent m-polar fuzzy Lie ideal.

Proof. Suppose that C' and D are two m-polar fuzzy Lie ideals such that CND = 0.
We claim that [C, D] = 0. Let z(# 0) € %, then

< C,D > (z) = sup{inf(C(a), D(b)) | [a,b] = 2} < inf(C(z), D(z)) = 0.

This proves our claim. Thus we obtain [C™, D"] = 0 for all positive integers m,
n. Now we again claim that (C'@® D)™ C C™ @ D" for positive integer n. We prove
this claim by induction on n. For n =1,

(CeD)}!=[CeD,CeD]C[C,Cl®[C,D®[D,Cle[D,D]=C"® D
Now for n > 1,

(CeD)"=[CeD,(CeD)"'|C[CeD,C" oD
clc,cr e [C,DY o [D,C" @ [D,D" Y =C" @ D".

Since there are two positive integers p and g such that C? = D? = 0, we have
(C @ D)PT4 C CPTa @ DPTY = 0. O

In a similar way we can prove the following theorem.

Theorem 3.17. The direct sum of two solvable m-polar fuzzy Lie ideals is a
solvable m-polar fuzzy Lie ideal.

Definition 3.18. For any x € % we define the function adzx : £ — £ putting
adz(y) = [x,y]. Tt is clear that this function is a linear homomorphism with respect
to y. The set H(Z) of all linear homomorphisms from .Z into itself is made into
a Lie algebra by defining a commutator on it by [f, g] = fog— go f. The function
ad : £ — H(YZ) defined by ad(z) = adz is a Lie homomorphism which is called
the adjoint representation of £ .

The adjoint representation adz : £ — £ is extended to adz : [Z — IZ by
putting B
adz(y)(y) = sup{7(a) : [v,a] = y}
for all v € I and y € .Z.

Theorem 3.19. Let C' be an m-polar fuzzy Lie ideal in a Lie algebra £. Then
C™ C [Cy] for any n > 0, where an m-polar fuzzy subset [Cy,] is defined by

[Cpl(x) = sup{C(a) | [z1, [x2, [ - -, [Zn,a] ... ]]| = 2, 21,...,25 € L}.
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Proof. It is enough to prove that < C,C"~! > C [C,]. We prove it by induction
on n. For n=1 and x € £, we have
< C,C > (z) = sup{inf(C(a),C(D)) | [a,b] = x}
> sup{C(b) |[a,b] = x,a € L} = [C1](z).
For n > 1,
< €00 3 (2) = sup{inf(C(a), C™ V(b)) | [, ] = 2}
(Cla), [C(b),C"2)(B)]) | [a, b] = «}
> sup{inf(C(a),sup{< C,C"=2) > (b;) | b= a;b;}) | [a,b] = =}
> Sup{lnf(c(a),sup{[ ~1(be) [ b =" aibi}) | [a, b] = x}
> (C(a), [Crn-a](0:) | X2 cila, bi] = x}
= sup{inf(C(a), sup{Crn_1(c:) [ b; = >_ Bici}) | 0 cufa, bi] = x}
> Sup{lnf(C(a), n—1(ci)) | 2o vila, ci] = x}
> (Cla),sup{C(di)) | [z1, [z2, [ .. [wn-1,di] ... ]]| = e} | Do vila, ei] = =}
> (Cla), C(di) | Xovila, [xr, [wa, [ [wn—1,di] ... ]]]] = =}
= sup{Cn(di) | 2o vila, [z1, [22, [, [wn-1,di] ... ]]]| = 2} > [Cn](2).

This complete the proof. O

sup{inf(C(a

Theorem 3.20. If for an m-polar fuzzy Lie ideal C there exists a positive integer
n such that B B B
(adzy o adzgo...o0adx,)(C)=0.

forall x1,...,x, € £, then C is nilpotent.
Proof. For x1,...,2, € £ and z(# 0) € £, we have

(adzy o -+ 0adw,)(C)(z) = sup{C(a) | [z1, [z2,]. .., [Tn,a]...]]] = 2} = 0.

Thus [C),] = 0. From Theorem 3.19, it follows that C™ = 0. Hence C is a
nilpotent m-polar fuzzy Lie ideal. O

The mapping K : ¥ x £ — F defined by K(z,y) = Tr(adx o ady), where
Tr is the trace of a linear homomorphism, is a symmetric bilinear form which
is called the Killing form. It is not difficult to see that this form satisfies the
identity K([z,y],z) = K(z,y,z]). The form K can be naturally extended to
K : IZ*% — IF defined by putting

K(C)(8) = sup{C(z,y) | Tr((adx o ady)) = B}.
The Cartesian product of two m-polar fuzzy sets C and D is defined as
(C x D)(z,y) = inf(C(x), D(y)).
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Similarly we define
K(C x D)(8) = sup{inf(C(x), D(y)) | Tr((adz o ady)) = B}.

Theorem 3.21. Let C' be an m-polar fuzzy Lie ideal of Lie algebra . Then
K(C x 1(ag) =a® K(C x 1;) forallx € Z, ofF.

Proof. If a = 0, then for § = 0 we have
K(C x 10)(0) = sup{inf(C(z), 1o(y)) | Tr(adx o ady) = 0}
> inf(C(0),10(0)) = 0.
For f #0 Tr((adx o ady) = B means that z # 0 and y # 0. So,
K(C x 10)(8) = sup{inf(C (), 1o(y)) | Tr((adz o ady) = #} = 0.
If o # 0, then for arbitrary S we obtain
K(C % 102) (8) = sup{inf(C(y), 1as(2)) | Tr((ady o adz) = 5}

= sup{inf(C(y),a ® 1,(2)) | Tr((ady o adz) = B}
= sup{inf(C(y), 1.(a"12)) | aTr((ady o ad(a~1z2)) = B}
= sup{inf(C(y), 1.(a"12)) | Tr((ady o ad(a~12)) = a~ 15}

=K(C x 1) (a"18)=a0 K(C x 1,)(B).
This completes the proof. O

Theorem 3.22. Let C be an m-polar fuzzy Lie ideal of a Lie algebra . Then
K(CX l(m_’_y)) = K(CX LJ@K(CX 1y) and K(CXO(QH_y)) = K(CXOw)@K(CXOy)
forall x,y € Z.

Proof. Indeed,
K(C % 1(344))(8) = sup{inf(C(2), 1p4y(u)) | Tr((adz o adu) = B}
= sup{C(z) | Tr(adz o ad(x + y)) = 5}
= sup{C(z) | Tr(adz o adzx) + Tr(adz o ady) = S}
= sup{inf(C(2), inf(1,(v), 1y(w))) | Tr(adz o adv) + Tr(adz o adw) = 8}
= sup{inf(sup{inf(C(2), 1, (v)) | Tr(adz o adv) = p1},
sup{int(C(2), 1,(w)) | Tr(adz o adw) = B2} | fr + bz = B)}
= sup{inf (K (C x 1;)(B1), K(C x 1,)(B2)) |1 + B> = B}
=K(Cx 1)@ K(C x1,)(B).
This completes the proof. O

~— —

We conclude that:

Corollary 3.23. For each m-polar fuzzy Lie ideal C and all x,y € £, o, € F
we have o o o
K(C X L(azqpy) =a© K(C x1;) @ B0 K(C x 1,).
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On locally maximal product-free sets

in 2-groups of coclass 1

Chimere S. Anabanti

Abstract. This paper is in two parts: first, we classify the 2-groups of coclass 1 that contain
locally maximal product-free sets of size 4, then give a classification of the filled 2-groups of

coclass 1.

1. Introduction

Let S be a product-free set in a finite group G. Then S is locally mazimal in G if
S is not properly contained in any other product-free set in G, and S is said to fill
Gif G* C SUSS, where G* = G\ {1}. We call G a filled group if every locally
maximal product-free set in G fills G.

Street and Whitehead [6] classified the abelian filled groups as one of Cs, C5 or
an elementary abelian 2-group. Recently, Anabanti and Hart [2] classified the filled
groups of odd order as well as gave a characterisation of the filled nilpotent groups.
In the latter direction, they proved that if G is a filled nilpotent group, then G is
one of C3, C5 or a 2-group. One of the goals of this paper is the classification of
filled 2-groups of coclass 1.

By a 2-group of coclass 1, we mean a group of order 2" and nilpotency class
n — 1 for n > 3, and is one of the following:

(i) Dgn = (z,y|2?" =42 =1,2y = y2~ '), n > 3 (Dihedral);
(ii) Qan =(z,y]| 2= 1, x2n_2:y2, xy = yr~ 1) for n>3 (Generalised quaternion);
(i) QDo = (z,y | 22" " =y2 = 1,2y = y2¥" ~~1), n > 4 (Quasi-dihedral).

In 2006, Giudici and Hart [5] began the classification of groups containing
locally maximal product-free sets (LMPFS for short) of small sizes. They classified
all finite groups containing LMPFS of sizes 1 and 2, and some of size 3. The
classification problem for size 3 was concluded in [1]. Dihedral groups containing
LMPFS of size 4 were classified in [2]. Another goal of this paper is to classify
groups of forms (ii) and (iii) that contain locally maximal product-free sets of size
4, continuing work in [1] and [5].

2010 Mathematics Subject Classification: 20D60, 20P05, 05E15
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2. Preliminaries
Here, we gather together some useful results.

Lemma 2.1. [5, Lemma 3.1] Suppose S is a product-free set in a finite group
G. Then S is locally mazimal if and only if G = T(S) U+'S, where T(S) =
SUSSUSS~tUS~1S and /S ={x € G: 2% e S}.

Proposition 2.2. [2, Proposition 1.3] Each product-free set of size @ in a finite
group G is the non-trivial coset of a subgroup of index 2. Furthermore such sets
are locally mazximal and fill G.

Lemma 2.3. [6, Lemma 1] Let N be a normal subgroup of a finite group G. If G
is filled, then G/N is filled.

Theorem 2.4. [2, Propositions 2.8 and 4.8]
(a) The only filled dihedral 2-groups are Dy and Dg.
(b) No generalised quaternion group is filled.

3. Main results

For a subset S of a 2-group of coclass 1, we write A(S) for SN (z), and B(S) for
SN {(zx)y. Given a € N, we write [0, a] for {0,1,...,a}.

Proposition 3.25. Let S be a LMPFS of size m > 2 in a generalised quaternion
group G. If 2"~ ¢ S, then |G| < 2(|B(S)| + 4|A(S)||B(S)|).

Proof. Let A= A(S) and B = B(S). By Lemma 2.1, |G| = 2|B(T(5)Uv/S)[; so to
bound |G|, we count only the possible elements of B(SUSSUS~1SUSS~tUVS),
and double the result. As 22"~ ¢ 5, we have B(v/S) = . But B(SS) = ABUBA,
B(SS™')=BA 'UAB™! and B(S71S) = B"!AU A~ B. By the relations in a
generalised quaternion group, AB = BA™! and BA = A~'B.

Hence, |B(T(S) U+/S)| < |B| + 4|A||B|, and the result follows. O

A little modification to the proof of Proposition 3.1 gives the following:

Lemma 3.2. If S is a LMPFS of s2ize m > 2 in a generalised quaternion group G
such that A(S) = A(S)™" and 2*" " ¢ S, then |G| < 2(|B(S)| + 2|A(S)||B(S)|).

The next result is a complement of Proposition 3.1. We omit the proof since
it is a consequence of the definition of the group in question.

Lemma 3.3. Let G be a generalised quaternion group. If S is a LMPFS in G and
contains the unique involution in A(G), then S C A(G) and S is locally mazimal
product-free in A(G).
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In the light of Lemma 3.3, we need to study A(G) more carefully. All cyclic
groups containing LMPFS of sizes 1, 2 and 3 are known by the classification results
in [1] and [5]. However, we cannot lay our hands on any literature that classified
cyclic groups containing LMPFS of a given size m > 1; so we proceed in that
direction. Our result (Corollary 3.5) addresses the question of Babai and Sos [3,
p. 111] as well as Street and Whitehead [6, p. 226] on the minimal sizes of LMPFS
in finite groups for the cyclic group case.

Proposition 3.4. Let S be a LMPFS of size m > 1 in C,. Then:
, (m+1)
(1) 1SS] < =5,

(i6) |SSTH <m? —m+1,

(i33) if n is odd, then |v/S| = m,

(iv) if n is even, then [/S| < 2m.

Proof. Suppose S ={x1,22,...,zm}. For (i), observe that SSC{x121,..., 212}
U{z2z2,. .., Z2Zm} U - U{Zm—1Tm—1, Tm—-1Tm } U{TmZm }. Hence, |SS| < m +
(m—1)+ - 4241 = W Case (ii) follows from SS~'C {1, z1x5 L, ... zyz,t
vz YU et 1, et e Y U U ey Y ey e, 1)
For (iii) and (iv), define a homomorphism 6 : C,, — C,, by 0(x) = 2* Vx € C,,. If
n is odd, then Ker(8)= {1}, and if n is even, then Ker(§)= {1,u}, where u is the
unique involution in C,. By the first isomorphism theorem, the latter case implies
that each element of S has at most two square roots while the former case shows
that every element of S has exactly one square root. O

Corollary 3.5. If S is a LMPFS of size m in a cyclic group G, then |G| <
3m?+3m+2 3m?+5m+2
2 2

or according as |G| being odd or even.

Proof. As G is abelian, S~'S = SS~!; hence by Lemma 2.1, |G| < |S| + |SS| +
|SS~1| 4 |v/S|. The rest follows from Proposition 3.4. O

The bound in Corollary 3.5 is fairly tight. For instance, it says that the size
of a cyclic group that can contain a LMPFS of size 1 is at most 4. Indeed, the
singleton consisting of the unique involution in C} is an example.

Definition 3.6. Two LMPFS S and T in a group G are said to be equivalent if
there is an automorphism ofG that takes one into the other.

For a finite group G, we write M}, for the set consisting of all locally maximal
product-free sets of size k > 1 in G, S for the representatives of each equivalence
class of My under the action of the automorphism groups of G, and Ny for the
respective number of LMPFS in each orbit. Using GAP [4], we present our results
in the Table below.
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G |M4| S N4

Cs |1 {z, 23, 25,27} 1

Cio | 2 {z, 2%, 2%, 2%} 2

Ci1| 5 {z,23, 28 210} 5

Cia | 9 {z, a:4 z8 x”} {x,2*, 27,210}, {22, 23, 28,2}, 4,2,2,1
22,78, 49 10
{ ,5 }

Cy3 | 21 {z, 23, 2% 22}, {x, 23, 210 212}, {x, 25 28, 212} | 12,6,3

Cia | 27 {z, 23,28, 20} {x, 23,2 ,.7313}, {z,z*, 25,2}, | 6,6,6,6,3

OT\IOO

3

4
Cis | 16 {x,x?’ 25,27} {x, 23,27, 212} 8,8
Cie | 37 {x,x3 xlo 212} {w 2t 20 2%}, {x, 2%, 25, 21}, | 8,4,8,4,4,
{fﬂ }

H

c,a

Ci7 | 48 {z,23, 28 :1713} {z,23, 28 21} {z, 23, 2t 213} 16,16, 16

Cis | 54 {z, 23, 2% 22}, {z, 23, 2 ,xl4},{x,m o9, 2y, 6,6,6,0,6,
{z, 23,212 2} {2, 2% 2° 210} {2, 2%, 20,217}, | 6,6,6,6
(2,25, 28,22}, {z,2°, 2%, 2'7Y, {z, 2, 2, 216}

Cig | 36 {z, 23, 2% 23}, {x, 2%, 25, 2°} 18,18

Cyo | 36 {z, 23,210 216} {x, x?’ o4 216} {z, 2t 2 218) )| 8,8,4,8,4,4

x, 20 1.1 18} {LC .T 1'8 1.11} {(L’ (E5 xlu 16}

Cor | 34 | {z,23, x5 1715} {x,2* zl 217} {z, 24, 2, 210}, | 12,12,4,6
(z, 28,212, 218}

Coz | 10 | {z, 2% 210 217} 10

Coy | 4 {z, 25,217 221} 4

Table: LMPFS of size 4 in cyclic group G for 8 < |G| < 34

In the light of Corollary 3.5 therefore, if a cyclic group G contains a LMPFS S
of size 4, then both G and S are contained in Table. Proposition 2.2 clearly tells
us that the LMPFS of size 4 in Qg are the non-trivial cosets of the subgroups of
index 2. So we shall eliminate this from our investigation.

Proposition 3.7. Let G = Qan. If |G| > 8 and G contains a LMPFS of size
4, then G = Q16. Moreover, up to automorphisms of Q16, the only such set is

{Jj7 x67y7 x4y}'
Proof. Let S be a LMPES of size 4 in G. We conclude from Lemma 3.3 and

deductions from Corollary 3.5 that no such S exist if 22" e &. So, suppose
22" ¢ S. In Proposition 3.1, if |[B(S)| = 0 or 4, then |G| < 16, contrary
to our assumption that |G| > 8. If |B(S)| = 1 or 3, we get |G| < 32; so
|G| = 16, and by direct computation, no such S exists. Finally, if |B(S)| = 2,
then |G| < 64. It can easily be seen using dynamics of Lemma 2.1 that S cannot

be contained in ()32, and hence the only possibility is that S C Q6. Also elements



On locally maximal product-free sets 155

of A(S) cannot have same order, and that if B(S) = {2y, 27y}, then i and j must
have same parity. Thus, the only possibilities for S are S; := {x,25 y, 2%y},
Sy = {x,2% 2y, 2%y}, Sz = {x, 25, 23y, 2Ty}, Sy = {x,25 2%y, 2%y}, S5 =
{2227, y, %y}, Sg :={a2, 27, xy, 2%y}, Sy :={2% 27, 23y, 27y}, Sg :={a?, 27, 2%y,
2y}, So = {2223, y,xty}, Sio = {228, y,2ty}, S11 = {22 23, 2y, 2Py},
S = {$2,$37I3y,1‘7y}, S13 1= {I2,1'3,$2y,$6y}, S14 = {1‘5,.73‘6,233/,3351/},

S5 = {a%, 25, 23y, 27Ty} and Sy := {2°, 25, 2%y, 2%}. The result follows from
the fact that the automorphism ¢; takes S; into S; for 1 < i < 16, where
LT T, Yy, G2 T T, Y TY, P31 T = T, Y — Y, da T = 2,y — T2,
G5 i x = x Yy Yy T XYy = ay, o7 X Ly = 2y, g T
2y = 2y, ot x = 2Py =y, b1t x = 2Py =y, O a2ty = ay,
b1t x = 2y = 2Py, diz x> 2ty = 2Py, o o= 2y & oay,
15 x = 22,y — 3y and @iz — 2,y — 23y, O

Pr0p925ition 3.8. Let S be a LMPFS of size m > 4 in a quasi-dihedral group G.
Ifz*" " ¢S, then |G| < 2(|B(S)| + 6] A(S)||B(S5))).

Proof. Similar to the proof of Proposition 3.1. O

Lemma 3.9. No LMPFS of size 4 in a quasi-dihedral group G contains the unique
involution in A(G).

Proof. Let S be a LMPFS of size 4 in a quasi-dihedral group G such that 22" es.
First observe that S must contain elements from both A(G) and B(G); so we have
the following three cases: (I) |A(S)| = 1 and |B(S)| = 3; (II) |A(S)| = 2 and
|B(S)| = 2; (IIT) |A(S)| = 3 and |B(S)| = 1. As S is product-free in G, it cannot
contain elements of the form {z2*1y, | > 0}; otherwise (z2+1y)2 = 22"~ € S. For
Casel,let S := {a®" ", 2%y, a¥y, 2%y} for 0 < i, j,k < 2"~2—1. Then A(T(S)) =
ASUSSUSTISUSST) = A(SUSS). But A(SUSS) cannot yield an element
of the form x?'*!; so we can only rely on A(v/S) for such element. Observe that
Valiy = /a2y = \/22ky = (), and from Proposition 3.4(iv), |A(Vx2"?)| < 2.
In particular, A(V22" ) = {22, 232" ")}, Hence, there is no element of the
form x2+1 in A(T(S)UVS); a fallacy! as the number of such element in A(QDan)
is 272, Thus, no such S exist. For Case II, let § := {22" ", a", 2%y, a2*y}. If
r is even, then the number of elements of the form z2*! in A(v/S), A(SS) and
A(SS™1) are at most 2, 0 and 0 respectively; so no such S exist. If r is odd, then
the number of elements of the form %! in A(v/S), A(SS) and A(SS™!) are at
most 0, 1 and 1 respectively; again, no such S exist. Case III is similar. O

The proof of the next result is similar to that of Proposition 3.7 using Propo-
sition 3.8 and Lemma 3.9.

Proposition 3.10. Up to automorphisms of QD1g, the LMPFES of size 4 in QD1
are {x, 25 y, 2y} and {x, 25, 23y, 27y}, Furthermore, there is no LMPFS of size
4 in QDan for n > 4.
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We are now in the position to address the second aim of this paper: classifica-
tion of filled 2-groups of coclass 1.

Theorem 3.11. The only filled 2-group of coclass 1 is Dg.

Proof. By Theorem 2.4, we only show that no quasi-dihedral group is filled. Let
G = QDyn, n > 4. Then N := (28) is a normal subgroup of G whose quotient is
of size 16. Suppose |G| > 16. Given a; € [0,7], z* N = zt8%2 N for 1 < ag <
|N|—1. Similarly, given by € [0,7], 2"y N = xb1+8%2y N for 1 < by < |N|—1. Thus,
G/N = XUY, where X = {z'N|0<i <7} and Y = {2'yN| 0 < i < 7}. Clearly,
X 2 Cs = A(D16). On the other hand, each element of Y has order 2 since for 4
even, (z'yN)(z'yN) = NN = N, and for i odd, (z'yN)(z'yN) = 2> NN = N.
Hence, G/N = Djg. By Theorem 2.4(a) and Lemma 2.3 therefore, G is not a
filled group. Now let |G| = 16. By Proposition 3.10, S = {z, 2%, y, z*y} is locally
maximal in @QDys. However, S does not fill QD¢ since |A(QDjg)| =7 > 6 =
|A(S U SS)|; so @D is not filled. O

We conclude this discussion with the following question:

Question 3.12. Are there infinitely many non-abelian filled groups?
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Structure of the finite groups

with 4p elements of maximal order

Bahareh Asadian and Neda Ahanjideh

Abstract. Let G be a finite group and p > 3 be a prime number. We determine the structure
of the finite group G with 4p elements of maximal order. In particular, we show that if G is
a finite group with 20 elements of maximal order, then G is a non-abelian 2-group of order 32
with exp(G) = 4, G = Cs x S3 or G = S5, where S,, denotes the symmetric group of degree n,
G =2 Cyq % (Cy x (1), where u|10 and 1|2, G =2 Ca5 x C; or G = C59 x Oy, where [|4.

1. Introduction

Throughout this paper, we use the following notations: For a finite group G, we
denote by 7(G) the set of prime divisors of |G| and by 7.(G) the set of element
orders of G. By m;(G), we denote the number of elements of order i, where
i € Te(G). Set nse(G) := {m;(G) : i € m.(G)}.

One of the interesting topics in the group theory is to determine the solvability
of a group with the given particular properties. For example, one of the problems
which is proposed by Thompson is:

Thompson’s Problem. Let T(G) = {(n,m,) : n € m.(G) and m, € nse(G)},
where my, is the number of elements of order n in G. Suppose that T(G) = T(S5).
If S is a solvable group, is it true that G is also necessarily solvable?

Up to now, nobody can solve this problem and it remains as an open problem.
In order to approach to this problem, some authors have examined the solvability
of a group with a given number of elements of maximal order. For instance, in
[2, 9, 10], the authors have examined the structure of the groups which have a given
number of the elements of maximal order. Also, in [4], some groups with exactly
4p elements of maximal order have been studied. The purpose of this paper is to
study the structure of a group containing exactly 4p elements of maximal order.
Then as an example, we find the structure of finite groups with exactly 20 elements
of maximal order.

From now on, we use Syl,(G) for the set of the p-Sylow subgroups of G, where
p € 7(G). Also, G, denotes a p-Sylow subgroup of G and n,(G) = [Syl,(G)|. We
denote by ¢ the Euler’s totient function. For every x € G, o(z) denotes the order

2010 Mathematics Subject Classification: 20D05, 20D60
Keywords: group, maximal order,Thompson’s problem.
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of z and (x) denotes the generated subgroup by z in G. Cg({x)) and Ng({(x))
are used as centralizer and normalizer of (z) in G, respectively. Let A and N be
finite groups. The action of A on N is Frobenius if and only if Cy(a) = 1, for all
nonidentity elements a € A. We use a|n when a is a divisor of n and use |n|, = a®,
when a®||n, i.e., a®|n but a®Tttn. By C,, we denote a cyclic group of order n.
Throughout this paper, k denotes the maximal order of elements in G, M(G) is
the number of elements of order k¥ and n,l € N. Also, Z(G) denotes the center of
group G. We apply symbol (x) instead of assumption M(G) = 4p, where p is a
prime number. All unexplained notations are standard and can be found in [7].
In this paper, we will prove that:

Main Theorem. Suppose that G is a finite group with M (G) = 4p, where p > 3
is a prime number. Then G is one of the following groups:

(1) If k =4, then G is a non-abelian 2-group with |G| < 16p and exp(G) = 4;

(2) if k=05, exp(G) =5 and p = (5" — 1) /4, then either G is a 5-group of order
5% or G = G5 x Cyt, where t €{1,2} and Gs denotes 5-Sylow subgroup of G;

(3) if k = 6, then either G = S5, where S5 denotes the symmetric group of degree
5 or G is a {2,3}-group;

(4) if k =10, then G is a {2,5}-group;

(5) if k =12, then G is a {2,3}-group;

(6) if dp+1 is a prime number and k = 4p+1, then G = Cypy1xCy, where [|4p;
(7)

if 2p+1 is a prime number and k = 4(2p+1), then G = Cyap41) X (Cu x ),
where u|2p and 1]2;

(8) if 4p + 1 is a prime number and k = 2(4p + 1), then G = Cy(ypy1) X Cy,
where u|4dp;

(9) if k=25, then G = Cy5 x Cy, where [|4;
(10) if k = 50, then then G = Cso x C), where 1]4.

As a consequent of the main theorem, we will prove that:

Corollary. Suppose that G is a finite group with M (G) = 20. Then G is one of
the following groups:

(1) If k =4, then G is a non-abelian 2-group of order 32;
(2) if k =6, then either G =S5 or G = Cg X S3;

(3) if k=25, then G = Cy5 x Cy, where 1|4;

(4) if k = 44, then G = Cyy x (C, x Cy), where u|10 and 1]2;
(5)

5) if k =50, then G = Csq x Cj, where l]4.
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2. Preliminary results

Throughout this paper, we assume that p > 3 is a prime number. In the following
lemmas, we bring some facts which will be used during the proof of the main
theorem:

Lemma 2.1. [3, Lemma 2.2] Suppose that G has ezxactly n cyclic subgroups of
order 1, then m;(G) = n - ¢(l). In particular, if n denotes the number of cyclic
subgroups of G of order k, then M(G) =n - ¢(k).

The following lemma is concluded from Lemma 2.1:

Lemma 2.2. If M(G) = 4p, then the possible values of k and ¢(k) are given in
the following table:

o(k) k Condition

1 2 -

2 3,4, 6 -

4 5,10, 12 -

P null -

2p 2p+1,2(2p+1) 2p + 1 is prime
4p 25, 50 p=>5

4p 4(2p + 1) 2p + 1 is prime
4p dp+1, 2(4p+1) 4p 4 1 is prime

Lemma 2.3. |2, Lemma 6] If k is a prime number, then k|M(G) + 1.

Corollary 2.4. Let M(G) = 4p. Then k # 2 and k # 5 except when p =5t + 1,
where t € N. Also, if 2p + 1 is prime, then k # 2p + 1.

Proof. 1t follows from Lemma 2.3. O

Lemma 2.5. [2, Lemma 7| If there exists a prime divisor p of k with p(p — 1) >
M(G), then G contains a unique normal p-Sylow subgroup G, and |G,| = p.

Lemma 2.6. Let G be a finite group such that [Ca(x) : (x)] is a prime power
number. Then Cg(x) is direct product of its sylow subgroups.

Proof. The proof is straightforward. O

Lemma 2.7. |2, Lemma 8] There exists a positive integer « such that |G| divides
M(G)k>.

Lemma 2.8. For every element x € G of order k, [G : Ng((z))]-¢(o(x)) < M(G).
Proof. The proof is straightforward. O

Lemma 2.9. For every element © € G of order k, if m.(Cq(z)) = me((x)), then
[Ca(z) : (x)] - ¢lo(x)) < M(G).
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Proof. Fix 1 < i < tand 1 < j < o(z), where t = [Cg(z) : (z)]. Suppose that
A= {yi(z) : y; € Ca(x)} is the distinct left coset of (z) in Cg(z). It is easily seen
that if y;(x) # (z) and o(2?) = k, then o(y;27) = o(27). Also, for every element
yi(z) € A, there exist exactly ¢(x) elements y;27 of order k. So, we have:

[Ca(x) : ()] - ¢(o(x)) = {yix’ : o(a?) = k}|.
It is evident that |[{y;27 : o(z?) = k}| < {g € G : 0o(g9) = k}| = M(G). Hence, the
lemma follows. O

Lemma 2.10. [9, Lemma 2.5] Let P be a p-group of order p*, where t is a positive
integer. Suppose that b € Z(P), where for u € N, o(b) = p* = k. Then P has at
least (p — 1)pt~"! elements of order k.

Lemma 2.11. [10, Lemma 4] Let G be a non-abelian finite group with exp(G) = 4.

If x € G\ Z(G) is an element of order 2, then G has at least M =
\Cc(m)l-([G;Cc(m)]—l)

elements of order 4.

Lemma 2.12. [5] Let p € w(G) be odd. Let G, € Syl (G) and n = p*m with
ged(p,m) = 1. If G, is not cyclic and s > 1, then the number of elements of order
n is always a multiple of p®.

Lemma 2.13. [13, Theorem 3] Let G be a finite group. Then the number of
elements whose orders are multiples of n is either zero, or a multiple of the greatest
divisor of |G| that is prime to n.

Lemma 2.14. [1] Let L = U, (q), where n > 3, ¢ = p*, and let d = (n,q + 1).
Then (L) consists of all divisors of m, where m = pvw, where v, ny > 0

satisfying p* ™1 +1+n, =n.

Lemma 2.15. [5] Let t be a positive integer dividing |G|. If My(G) = {g € Glg* =
1}, then t||M(G)|.

Corollary 2.16. For a finite group G:
(1) if d € me(G), then d| 3 g ms;

(4i) if P € Syl,(G) is a cyclic group of prime order p and r € ©(G) — {p}, then
Mep = Np(G)(p — 1)(r — 1)t, where t is the number of cyclic subgroups of
order v in Cg(P).

Proof. (i) follows from Lemma 2.15. For proving (ii), let P € Syl (G). Since
my(P) = p — 1 and every element of order rp is in Cg(PY), for some g € G, we
deduce that m,,(G) = mp(GQ) - np(G) - My (Ca(P)) = (p— 1) - np(G) - (Pp(r) - t) =
ny(G) - (p—1) - (r —1)-t, where t is the number of the cyclic subgroups of order
rin CG(P) O

Lemma 2.17. If p is a prime number, then 4p 4+ 1 # 3t.
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Proof. Suppose on the contrary that 4p + 1 = 3. Then 4|3" — 1 and hence, ¢ is a
even number. Thus 3% — 1|3! — 1 = 4p, which is a contradiction. O

Lemma 2.18. [12] Let G be a non-solvable group. Then G has a normal series
1< H<CK <G such that % is a direct product of isomorphic non-abelian simple
groups and | Z|[|Out(£)].

Lemma 2.19. Let H <G and let r € n(H). Ifp € n($%), p & n(H) and pr ¢
7e(G), then p||H|, — 1.

Proof. By Frattini’s argument, G = HNg(R), where R € Syl.(H). Thus we can
see that G, < Ng(R) for some g € G. But pr ¢ m.(G) and hence, the action of
Gp? on R is Frobenius. Therefore, |G|,||H|, — 1 and the result follows. O

A finite group G is called a simple K, -group, if G is a simple group with
|7(G)| = n. So, a simple Ks-group is a simple group with |7(G)| = 3. In the
following lemma, the simple K3-groups and their orders are recognized:

Lemma 2.20. [8] Let G be a simple Ks-group. Then G is isomorphic to one of
following simple groups: As(2%-3-5), Ag(23-32.5), La(7)(23-3-7), L2(8)(23-32.7),
Lo(17)(2% - 32 -17), L3(3)(2* - 33 - 13), U3(3)(2° - 33 - 7), Us(2)(26 - 3* - 5).

Theorem 2.21. If G is a non-solvable group with M (G) = 4p, where p is a prime
number, then p=>5 and G = S;.

Proof. Since G is a non-solvable group, Lemma 2.18 shows that there exists a chief
series 1 < H < K < G such that % is a direct product of isomorphic non-abelian
simple groups and |£|[|Out(%)|. Lemmas 2.2 and 2.7 show that |7(G)| < 3 and
every finite group such that its order is divisible by exactly two prime numbers
is solvable. Thus |r(%)| = 3 and p||£|. Therefore, £ is a simple K3-group and
pE w(%) Also, by virtu of Lemma 2.20, we can see that for every simple K3-
group S, 3 € 7(.5). Since our assumption forces p > 3, k # 3. Therefore, Lemmas
2.2 and 2.7 imply that the non-solvability of G can be occurred when k € {6, 12}.

We continue the proof in the following cases:
1. If k = 6, then Lemma 2.7 and the above statements show that |K/H| = 2%3%p,
where a, 5 > 0. Then % is a simple K3-group and hence, Lemma 2.20 shows that
one of the following subcases holds:

(i). If £ =~ A5 or Ag, then p = 5. Let z be an element of G with o(z) =
6. By Lemma 2.9, we have [Cq(z) : ()] < 10. Since k = 6, 51 |Ca(2)]. If
[Ca(z) : (z)] € {8,9}, then Lemma 2.6 implies that Cg(z) is direct product of
its sylow subgroups. Hence, it is easy to see that mg(Ca(z)) > 20. So, we get a
contradiction with M(G) = 20. Therefore, [Ca(z2) : (2)] € {1,2,3,4,6}. We have,

|Gl = 6-[Ca(2) : (2)] - [Na((2) : Ca(2)] - [G : No((2))]-

By virtue of Lemma 2.8, we can see that [G : Ng((z))] < 2p = 10.
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Since [Ng((z)) : Ca((z)]]|Aut({z))] = 2, we deduce that 5|[G : Ng({z}))].
Hence, |G|[2°-32 -5 and 2% -3 - 5[| & |. Therefore, |H|[23-3. But 2-5,3-5 & 1.(G).
So, Lemma 2.19 shows that 53" — 1 or 5]2% — 1, where ¢t < 2 and u < 3. Thus,
t = u =0 and hence, |H| = 1. Thus K = A; or Ag. Since |£|[|Out(K)|, we
deduce that G = S5 or Sg. But M (S5) = 20 and M (Sg) = 240. Thus G = Ss.

(ii). If £ = Ly(7), L2(8), L2(17), L3(3), U3(3), then there exists p € m(G) such
that p > 6, which is a contradiction.

(ili). If & = Uy4(2), then Lemma 2.14 implies that 12 € m. (%) and hence, we

arrive at a contradiction.
2. Let &k = 12. Then applying Lemma 2.7 shows that 7(G) = {2,3,p}. Since
every finite group such that its order is divisible by exactly two prime numbers
is solvable and |7(G)| = 3, we deduce that |r(%)| = 3 and p||%£|. Since k = 12,
we deduce that p < 11 and for every x € G with o(z) = 12, Ce((z)) is a {2,3}-
group. Since % is a simple K3-group, Lemma 2.20 shows that one of the following
subcases holds:

(i). If £ =~ A5 or Ag, then p = 5. In the following, we show that this case
is impossible with our assumption. It is easy to see that |Cg((z))] = 2% - 3
such that 2 < v < 4 and 1 < v < 2. Applying Lemma 2.8 to this case shows
that [G : Ng({z))] € {1,2,3,4,5}. Note that for every x € G with o(x) = 12,
[Na((z)) : Ca((z))]]|Aut((z))] = 4. But 5||G| and

G| =[G : Na((x))] - [Na((z)) : Ca({x))] - |Cal())]. (1)

Thus [G : Ng({z))] = 5 and |G|[2° - 32 - 5. Since |Aut({z))| = 4, we conclude that
Gs < Ce({(x)). Set C = Cg((x)). We examine two possibilities for v:

(a). Let v = 2. Applying Lemma 2.9 shows that |Ce((x))| = 22 - 32. Since
(x) < Z(C), 12||Z(C)|. Thus C is abelian and hence,

C = 04 X (03 X 03) (2)

Therefore, mi2(C) = 16. If there exists y € G of order 12 such that 9 1 |Ca(y)],
then obviously y ¢ C and (1) leads us to see that 3|[G : Ng({y))] = 5, which is a
contradiction. This shows that for every y € G of order 12, |Cx(y)|s = 9, so for
some g € G,

Gl < Caly). 3)

Also, (2) shows that C' < Cg(Gs). So, Ce(G3) contains at least 16 elements of
order 12. Thus for every g € G with C(G3) # Ca(GY), Ca(G3)NCq(GY) contains
at least 12 elements of order 12. Let y be an element of order 12 in Cg(Gs) N
Cc(GY), then Gs, G < Cq(y). Thus Gs = Gf and hence G3 < G. Therefore, (3)
shows that for every y € G of order 12, y € Cq(G3) = Gg x G2(Cg(Gs)). Hence
20 = m12(G) = m12(Ce(Gs)) = m3(Gs) -ma(G2(Ca(Gs))) = 8-mu(G2(Ca(Gs))),
which is a contradiction.

(b). Let v=1. Then K/H > A5 and |Cg({z))|=2“-3. Since [Ng({(z)) : Ca({x))]
divides 4 and [G : Ng({z))] = 5, |G|s = 3. Also, Lemma 2.9 forces v < 4. Thus
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|G||26 - 3 - 5 and hence, n3(G) = 2% - 57, where 3 € {0,1}. On the other hand,
ns(K/H) = 10|n3(G). But Corollary 2.16(ii) shows that m12(G) = n3(G)-¢(3)-t =
20, where t = my(Cg(Gs)) = 2, which is impossible.

(ii). If & = Ly(3) or Ly(17), then there exists p € (%) such that p > 11,
which is contradiction.

(iii). If % = Uy(2) or Us(3), then p = 5 or 7, respectively. Applying Lemma
2.14 and GAP program [6] imply that 12 € m(£). Since mi2(Us(3)) = 1008 and
mi2(Us(2)) = 4320, we arrive at a contradiction;

(iv). If & = L,(7) or Ly(8), then p =7 and |G| = 7-2%-3", where 1 <u <7
and 1 < v < 2. If v = 2, then we can see at once that either K/H = L5(8) or
|H|s = 3. If |H|3 = 3, then since 21 ¢ 7.(G), Lemma 2.19 shows that 7|3 — 1,
which is a contradiction. Thus let K/H = L9(8). Then since for every y €
G of order 12, y is central in Cg(y), we deduce that y € Cg(Gs). Thus we
can see at once that Co(Ggs) contains at least 16 elements of order 12. So, for
every g € G with Cg(Gs) # Ca(GY), Ca(Gs) N Ci(GY) contains at least 12
elements of order 12. Let y be an element of order 12 in Cg(Gs) N Ca(GY).
Then G3,GJ < Cg(y). On the other hand, applying the argument in Subcase
(i) shows that |C(y)| < 32 -23. Thus Gs x (y%), GY x (y®) < Cq(y) and hence,
Gs,GJ 4 Cq(y). Thus G = G which is a contradiction. Therefore, Cx(G3) <G
and hence, G3 < G. Thus the same argument as that of used in (2) shows that
for every y € G of order 12, y € Ce(Gs) = G3 x G2(Ce(Gs)) and hence, 28 =
mi2(G) = m3(Gs) - ma(G2(Cq(Gs))) = 8- my(Ga(Ci(Gs))), which is impossible.
Thus v = 1 and hence, K/H =2 Ly(7) and m12(G) = 2 - n3(G) - t = 28, where
t =my(Cq(Gs)) > 2. But n3(La(7)) = 28|n3(G), which is impossible. O

3. Proof of the main theorem

In this section, we prove the main theorem by considering the eight values for k
obtained in Lemma 2.2:

1) k£ = 3. By virtue of Lemma 2.7, we have |G||4 - 3% - p, where a > 0. But
k = 3 and according to our assumption p > 3. Thus |G||2? - 3%. Since k = 3, two
possibilities can be occurred for |G|:

(). If |G| = 3%, where u € N, then since k = 3, exp(G) = 3 and hence,
|G| — 1= M(G). Thus 3* — 1 = 4p, which is a contradiction with Lemma 2.17.

(ii). If 2 € 7(G), then |G| = 2 - 3?2 such that 0 < a3 < 2 and ap > 0. Thus
@ is solvable. Let N be a normal minimal subgroup of G. Then N is t-elementary
abelian, where t € {2,3}. Since 6 € 7.(G), we deduce that for v € {2,3} — {t}, the
action of G, on N is Frobenius. Thus if ¢ = 2, then Gg is cyclic and since k = 3,
we deduce that by Corollary 2.16(ii), 2-n3(G) = 4p. This forces n3(G) = 2p||G|s,
which is a contradiction. Now let ¢ = 3. Then Gy is a cyclic group or a quaternion
group. But 4 ¢ 7.(G) and hence, |Gz| = 2. This guarantees that Gg < G. Thus
ms3(G) = m3(Gs) and hence, applying the previous argument leads us to get a
contradiction.
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2) k = 4. Applying Lemma 2.7 shows that either p = 3 and 7(G) = {2,3} or
G is a 2-group. According to our assumption, p > 3 and hence, G is a 2-group.
Let |G| = 2%, where a € N. Then by (), we can see |G| > 4p+ 1. If G is
an abelian group such that |G| = 2%, then {x € G : o(x)|2} < G and hence,
1+mo(G) = 2% and 1+ma(G)+mq(G) = |G| gives that 2* +4p = 2%*. This forces
2%(2%7% — 1) = 4p and hence, u = 2. Thus my(G) = 3 and hence, G = Cy x Cy
or Cy x C4. So, my(G) < 12, which is a contradiction. If G is a non-abelian
2-group, then we claim that there exists an element y in G such that y € Z(G)
and o(y) = 2. If not, then Z(G) contains all elements of order 2 in G. If 273 < p,
then since our assumption shows that |Z(G)| > |G| — 4p, we have |G/Z(G)| < 2.
Thus G is abelian, which is a contradiction. If 23 > p, then Lemma 2.10 shows
that there is no element of order 4 in Z(G), so |G| = |Z(G)| + M(G) and hence,
2% = 2™ 4+ M(G), where |Z(G)| =2™. Thusm =2and p=22"2—-1> 23 > p,
which is a contradiction. So, there exists y € G\ Z(G) with o(y) = 2. Therefore,
Lemma 2.11 and (*) show that % < MSG(I)' < 4p and hence, we can conclude
that |G| < 16p.

3) k =5 and p = 5t+ 1. Then by virtue of Lemma 2.7, |G||2% - p- 5%, where o > 0.
Since p = 5t + 1 is a prime number which is greater than 5, p € 7(G). If G is a
5-group, then exp(G) =5, s0 4p = |G| — 1 = 5* — 1 and hence, p = (5* — 1)/4. If
G is a {2,5}-group, then G is solvable. Let N be a normal minimal subgroup of
G. In the following, we examine two possibilities for order of N:

(i). If IN|=2%, where t €N, then the action of Gson N is Frobenius. Hence Gj is
cyclic. Since 25 ¢ 7.(G), |Gs| = 5. Corollary 2.16(ii) shows that ms(G) = ns(G)-4
= 4p which follows that p = n5(G)||G|. Hence, we arrive at a contradiction.

(ii). If |N| = 5%, then |Gz| € {2,4}. Thus G5 < G and hence, G = G5 x Cy,
where t € {1,2}. Therefore, 5 —1=|Gs|—1 = 4p and hence, p = (5*—1)/4, as
claimed.

4) k = 6. By virtue of Lemma 2.7, we deduce that |G||2%! - 3%2 . p, where for
i€ {1,2}, oy > 0. If 7(G) = {2,3,p}, then since k = 6, p < 5. But p # 3
and hence, p = 5, thus by Lemma 2.8, there is no element such as z in G with
o(z) = 6 such that [G : Ng((z))] € {15,20}. We claim that there exists z’ in G
such that o(z') = 6 and 5|[G : Ng({z'))]. If not, then since |Aut({z'))| = 2, it
is concluded that 5||Cs({z’))]. So, G contains an element of order 30, which is
contradiction with & = 6. Thus 5|[G : Ng(({z'))] and hence, Lemma 2.8 shows that
[G : Ng({(z"))] € {5,10}. Since [G : Ng((z'})]|10 and [Ng((z")) : Ca({(z'))]|2, we
deduce that Gz < Cg((z')). By our assumption, we can conclude exp(Gs3) = 3 and
hence, |Cq((2'))]3 < 20. So, we have |G3| € {3,9}. First let G be a solvable group
and let H be a {3,5}-Hall subgroup of G. Therefore, ng(H) = 3s+ 1|5 and hence,
s =0. So, 5||Ng(Gs)| and hence, 5/|Ng(Gs)|- But, [Ng(Gs) : Ca(G3)]||Aut(Gs)|
and Aut(Gs) = Cy or GLy(3). Therefore, 5||Cq(Gs)| and hence, G contains an
element of order 15, which is a contradiction with k¥ = 6. Hence, G is a {2,3}-
group. Also, if G is a non-solvable group, then Theorem 2.21 shows that G 22 S;.

5) k = 10. In this case, Lemma 2.7 shows that 10||G| and |G]||2* - 592 - p©3,
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where for i € {1,2}, a; > 0 and a3 € {0,1}. If p # 5 and n(G) = {2,5,p},
then since k¥ = 10, p < 10. Since 3 < p, p = 7. Hence, Lemma 2.8 forces
[G : Ng({(2))] < 7, where z is an element in G with o(z) = 10. We claim that
7 divides [G : Ng((z))]. If not, then since [Ng((z)) : Cq({2))]|4, (1) shows that
7||Cc((z))|, which is a contradiction with & = 10. Hence, [G : Ng({z))] =7, so (1)
implies that G5 < Cg((z)). Thus exp(Gs) = 5 and hence, |Ca((z))|s < 28. Thus
|Gs| € {5,25}. By virtue of Theorem 2.21, G is solvable. Let H be a {5,7}-Hall
subgroup of G. Therefore, ns(H) = 5v + 1|7 and hence, v = 0. So, 7||Ng(Gs)]
and hence, 7||Ng(Gs)|- But [Ng(Gs) : Ca(Gs)]||Aut(Gs)|. Since Aut(Gs) =2 Cy
or GLy(5), 7||Cc(Gs)l, by (1). Hence, G contains an element of order 35, which
is a contradiction with k& = 10. Therefore, G is a {2, 5}-group.

6) k = 12. Then applying Lemma 2.7 shows that |G||2** - 3%2 . .p®s| where for
i € {1,2}, a; > 0 and a3 € {0,1}. By our assumption, we have p # 3. If
m(G) = {2,3,p}, then since k = 12, we deduce that p < 11. If p = 5, then
repeating the argument given in the proof of Case (2-i) of Theorem 2.21 shows
that |G|3 = 3 and n3(G) € {1,5,10,40,160}. But Corollary 2.16(ii) shows that
mi12(G) = n3(G) - ¢(3) - t = 20, where t = mu(Cq(Gs)) > 2 and also, n3(G) =
3s+1 # 5. Thus n3(G) € {5,10,40,160} and hence, n3(G) = 1. Also, 15 & 7.(G).
So, the action of G5 on Gs is Frobenius and hence, |Gs| = 5|3 — 1, which is a
contradiction. If p = 7, then repeating the argument given in the proof of Case
(2-iv) of Theorem 2.21 shows that |G|3 = 3 and |G|7 = 7. Let N be a normal
minimal subgroup of G. If |[N| = 7, then since 14 & 7.(G), the action of Gz on
N is Frobenius and hence, |Gs||7 — 1. Thus |Gz| = 2, which is a contradiction.
Also, since 21 ¢ 7.(G) and 7 1 3 — 1, we can see that 3 { |[N|. Thus n3(G) #
1. But 28 = m12(G) = 2 - n3(G) - my(Ce(Gs)). Therefore, nz(G) = 7 and
m4(Cq(G3)) = 2. Also, this allows us to assume that Gy < Ng(G3). If [N| =
2¢, then since 14 ¢ 7.(G), the action of G; on N is Frobenius and hence, Gg
is abelian and 7|2 — 1. Also, applying Lemmas 2.10 and 2.11 guarantee that
4 < |G2(Cs(G3))| < 8. On the other hand, |Ng(G3)|/|Ca(Gs)|||Aut(C3)| = 2
and G < Ng(Gs). So, 8 < |Gz| < 16. Therefore, t = 3 and hence, we can see at
once that N is a 2-elementary abelian group of order 8 and Cg(IN) = N. Thus
|Gz2| = 16, because, 4 € m.(G). On the other hand, 12 € 7. (G) and hence, we
can see that Cs < Ng(N)/Cq(N) = GL3(2), which is a contradiction, because
6 & m.(GL3(2)). If p = 11, then Lemma 2.8 forces [G : Ng((z))] < 11, where z
is an element in G with o(z) = 12. We claim that 11|[G : Ng({z))]. If not, then
since [Ng((2)) : Ca((2))]|4, (1) shows that 11||Cs({z))|, which is a contradiction
with k& = 12. Hence, [G : Ng((z))] = 11 and so, (1) implies that Gs < Cg((z)).
Thus exp(Gs) = 3 and hence, |Cg((z))|s x 2 < 44. Therefore, |G3| € {3,9}. By
virtue of Theorem 2.21, G is solvable. Let H be a {3,11}-Hall subgroup of G.
Therefore, ns(H) = 3v + 1|11 and hence, v = 0. So, 11||Ng(Gs)| and hence,
11||Ng(G3)‘ But [Ng(Gg) : Cg(Gg)]||Aut(G3)| and Aut(Gg,) = 02 or GL2(3),
thus 11]|Cc(Gs)|, by (1). Hence, G contains an element of order 33, which is a
contradiction with k& = 12. Therefore, G is a {2, 3}-group.

7) Let 2p + 1 be a prime number and k € {2(2p + 1),4(2p+ 1)} or let 4p + 1 be
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a prime number and k € {4p + 1,2(4p + 1)}. In the following, we examine the
structure of G for every value of k:

(i). If K = 4p+1, then since (4p+1)4p > 4p, Lemma 2.5 implies that ng,41 = 1
and |Gap11| = 4p+1 and hence, Gyp41 is a cyclic normal subgroup of G. Since by
Lemma 2.9, |Cq(Gupy1)| = 4p + 1, we have G/Cq(Gapy1) — Aut(Gaps1) = Cyp
and hence, G = Cypy1 % C, where [|[4p.

(ii). If K = 2(2p + 1), then by virtue of Lemma 2.7, we deduce that |G|[|2** -
p- (2p + 1)*2, where for i € {1,2}, a; > 0. Since (2p + 1)2p > 4p, Lemma 2.5
implies that Gopt1 <G and |Gopy1| = 2p + 1. Hence, Gopy1 is a cyclic subgroup
of G. Thus Corollary 2.16(ii) shows that mo(ap11)(G) = n2pi1(G) - 2p - t, where
t = m(Cq(Gapy1)) and hence, mo(ap41)(G) = 2p -t = 4p which shows that t = 2.
It is a contradiction with Corollary 2.16(7).

(iii). If k= 4(2p + 1) and x is an element G of order k, then by Lemmas 2.8
and 2.9, we can see that Cg(z) = (x) and [G : Ng((z))] = 1. Thus (z) < G and
G/(xz) — Aut((z)) = Cyp x Cy. Therefore, G = Cy(zpi1) % (Cy x Cp), where u|2p
and 2.

(iv). If K = 2(4p+ 1) and z is an element G of order k, then by Lemmas 2.8
and 2.9, we can see that Cg(z) = (x) and [G : Ng((z))] = 1. Thus (z) <G and
G/(xz) — Aut((z)) = Cyp. Therefore, G = Cy4p41) % Cy, where I]4p.

8) Let k = 25 and let x be an element of order 25 in G. According to Lemma
2.2, in this case p = 5. Hence, Lemma 2.7 shows that |G||22 - 5%, where o > 0.
It follows by Lemmas 2.8 and 2.9 that Cg(x) = (x) and () is a normal subgroup
of G. Therefore, G/(z) < Aut(Cos) = Cyo. If 53||G/, then since 25 € m.(G) and
G5 4G, we deduce that maos(G) = mas(Gs). Since there is not any group of order
125 with the unique cyclic subgroup of order 25, we deduce that |Gs| = 25. Thus
%@) < C4 and hence, G = Cy5 x Oy, where [[4.

9) k = 50. Let = € G such that o(z) = 50. By virtue of Lemma 2.2, p = 5. Similar
to the previous argument, we have (z) = Cg(x). Since k = 50, 5%||G| and hence,
we conclude that 52 < |G|5. We claim that |G|s = 5%. If not, then |G5| = 5%,
where s > 3. Then it is evident that G5 can not be a cyclic group and hence,
Lemma 2.12 shows that 5%|M(G) = 20, which is impossible. So, we deduce that
|G5| = 52 and hence, %@) < Cy4. Thus G = Csg x Cy, where [ 4. O

In the following, as a consequent of the main theorem, we examine the structure
of finite group G with M(G) = 20:

Corollary 3.1. Let G be a finite group with M(G) = 20. Then G is one of the
following groups:

(1) If k = 4, then G is a non-abelian 2-group of order 32;

(2) if k = 6, then either G = S5 or G = Cs X Ss;

(3) if k = 25, then G = Co5 x Cj, where 1]4;

(4) if k = 44, then G = Cyy % (Cy, x C}), where u|10 and 1]2;

(5) if k =50, then G = Cs9 x C), where l|4.
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Proof. In Lemma 2.1 and Lemma 2.2, the possible values for k, are recognized.
On the other hand, according to Lemma 2.3, k # 2,5,11. Also, Theorem 2.21
implies that k # 3.

In the following, the other values of k are examined:

(1). Let k = 4. According to case (2) of the proof of the main theorem, G is
a non-abelian 2-group with |G| < 16 - 5 = 80. According to the classification of
non-abelian groups of order 64, there is no group of order 64 with exp(G) = 4 and
M(G) = 20. So, G is a non-abelian 2-group of order 32.

(2). If k = 6 and G is a non-solvable group, then G = S;, by Theorem
2.21. In the following, we examine the structure of G, when G is a solvable
group and k£ = 6. According to our main theorem, G is a {2,3}-group. We have
|Ca(z)| = 2*-3Y, where u,v < 2 and x € G such that o(z) = 6. Since M(G) = 20,
then Lemma 2.8 shows that [G : Ng({x))] € {1,2,3,4,6,8,9}. If there exists
an element y of order 6 in G such that [G : Ng({y))] € {3,6,8,9}, then our
assumption, M (G) = 20, guarantees the existence of another element z of order 6
in G such that [G : Ng((2))] € {1,2,4}. In fact, without loss of generality, we can
assume that G always has an element z such that [G : Ng((z))] € {1,2,4}. Also,
[Na({x)) : Co({x))]||Aut({z))| = 2. So, (1) forces |G||2° - 3.

Since [G : Ng({(z))]|4 and [Ng((z)) : Ca({x))]|2, we deduce that G3 < Cx({x)).
Applying the third Sylow’s theorem implies that n3(G) € {1,4,16}. In the follow-
ing, we examine two possibilities for v:

(i). If v = 1, then |G|3 = 3. Therefore, Corollary 2.16(i¢) forces mg(G) =
n3(G) - 2t, where t = ma(Cg(Gs)). Thus me(G) € {2t,8¢,32t}. If me(G) = 2t,
then ¢ = 10, which is a contradiction with Corollary 2.16(i). If mg(G) € {8t, 32t},
then we get a contradiction with M (G) = 20.

(ii). If v = 2, then |Gs| = 9. So, Gs is a 3-elementary abelian group. Set C :=
Ce((z)). If C is abelian, then we can see that C' = C3 x C3 x Cy x Cs and hence,
me(C) = 8 -3 = 24, which is a contradiction with (x). Thus C is not abelian and
hence, C' = Cg x S3, where S3 denotes the symmetric group of degree 3. Therefore,
me(C) = me(Cs) - [Sg| + ms3(Cs) - ma(S3) + ma(Cs) - ms(S3) = 20 and hence, C is
normal in G. This forces (x) = Z(C) to be normal in G. Thus [G : Ng({(z))] =1
and hence, (1) guarantees |G||72. If |G| = 72, then 7.(G) C {1,2,3,4,6}. Thus
by Lemma 2.13, 9|msa + myg + mg = ma + my + 20 and 8|ms + mg = ms + 20.
So, there exist the natural numbers s,t such that s,t > 3, mo + myg + 20 = 9t
and mg + 20 = 8s. Therefore, 1 + mo + m3 + m4 + mg = 72 forces 8s + 9t = 91.
Thus considering the different values of s and ¢ shows that s = 8 and ¢t = 3. So,
ms = 64 — 20 = 44. But n3(G) = 3u + 1|8 and hence n3(G) < 4. This shows
that 44 = m3(G) < n3(G).(|Gs| — 1) < 4 -8 = 32, which is a contradiction. Thus
|G| = 36 and hence, G = C = (g X S3.

(3). If k = 10, then Lemma 2.7 shows that |G||2%* - 5%2, where for i € {1, 2},
a; > 0. Let « € G such that o(x) = 10. Then |Ce({z))| = 2*-5Y. According to (x),
we can see that u < 2 and v = 1. Since [G : Ng((z))]||G|, Lemma 2.8 shows that
[G : Ng({x))] € {1,2,4,5}. Note that if [G : Ng({x))] € {4,5}, then there exists
y € G such that [G : Ng((y))] € {1,2}. So, without loss of generality, we can
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assume that [G : Ng((x))]|2 and hence, (1) shows that |G||2°-52. Since [Ng((z)) :
Ce((2))]]2, we deduce that G5 < Cg((x)). If Gs £ G, then |G : Ng(Gs)| = 6.
Thus Corollary 2.16(ii) shows that mio(G) = ns(G) - ¢(10) -t > 6 -4 -t = 24t,
where t = ma(Cg(Gs)). Obviously, this is a contradiction with (x). If G5 < G,
then Corollary 2.16(i7) shows that m1o(G) = 4t = 20, where t = my(C(Gs)) = 5.
Since C(Gs) = G5 x G2(Ca(Gs)), we deduce that |G2(Ce(Gs))| —1 =1t = 5,
which is impossible.

(4). If k = 12, then by applying the argument in Case (2), Subcase (i) of the
proof of Theorem 2.21, we get a contradiction.

(5). If k = 22, then the main theorem leads us to get a contradiction and if
k=44, then the main theorem shows that G=Cyyx(C,, x C}), where u|10 and |2.

(6). If k € {25,50}, then the main theorem completes the proof. O
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Some results on multigroups

Johnson Aderemi Awolola and Adeku Musa Ibrahim

Abstract. The theory of multisets is an extension of the set theory. In this paper, we have
studied some new results on multigroups following [11].

1. Introduction

A mathematical structure known as multiset (mset, for short) is obtained if the
restriction of distinctness on the nature of the objects forming a set is relaxed.
Unlike classical set theory which assumes that mathematical objects occur with-
out repetition. However, the situation in science and in ordinary life is not like
that. It is observed that there is enormous repetition in the physical world. For
example, consideration of repeated roots of polynomial equation, repeated obser-
vations in statistical sample, repeated hydrogen atoms in a water molecule H5O,
etc., do play a significant role. The challenging task of formulating sufficiently rich
mathematics of multiset started receiving serious attention from beginning of the
1970s. An updated exposition on both historical and mathematical perspective of
the development of theory of multisets can be found in [3, 4, 5, 8, 9, 10, 13, 14, 15].

The theory of groups is an important algebraic structure in modern mathemat-
ics. Several authors have studied the algebraic structure of set theories dealing
with uncertainties such as the concept of group in fuzzy sets [12], soft sets [1],
smooth sets [6], rough sets [2] etc.

2. Preliminaries

In this section, we present fundamental definitions of multisets that will be used
in the subsequent sections of this paper.

Definition 2.1. Let X be a set. A multiset (mset) A drawn from X is represented
by a count function C4 defined as C4 : X — D = {0,1,2,...}. For each z € X,
Ca(z) denotes the number of occurrences of the element x in the mset A. The

representation of the mset A drawn from X = {z1,22,...,2,} will be as A =
(1,22, s Znlp, my....m, Such that x; appears m; times, i = 1,2,...,n in the
mset A.

2010 Mathematics Subject Classification: 20E10, 94D05
Keywords: Multiset, multigroup, multigroup homomorphism.
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Definition 2.2. A domain X is defined as a set of elements from which msets are
constructed. For any positive integer n, the mset space [X]" is the set of all msets
whose elements are in X such that no element in the mset occurs more than n
times. The set [X]° is the set of all msets over a domain X such that there is no
limit on the number of times an element in an mset occurs.

Definition 2.3. Let A, Ay, A; € [X]", i€ 1. Then
(i) A1 C Ay & Cy,(z) < COy,(x), Ve X.
(il) A1 = Ay & Ca,(z) = Cy,(z), ¥V € X.
(iii) M;er Ai = Nics Ca, (), ¥V x € X (where A is the minimum operation).
(iv) Ujer 4i = Vier Ca,(x), V o € X (where \/ is the maximum operation).
(v) A5 =n—Cy,(z),Vz e X, neEZ™.

Definition 2.4. Let X and Y be two nonempty sets and f : X — Y be a map-
ping. Then the image f(A) of an mset A € [X]" is defined as

{ Vs(@)=y Cal), ) #0,
0, fHy) =0.

Definition 2.5. Let X and Y be two nonempty sets and f : X — Y be a
mapping. Then the inverse image f~'(B) of an mset B € [Y]" is defined as

Cf—lB(fU) = Cp (f(2)).

Cra(y) =

3. Multigroup

In this section, we briefly give the definition of multigroup, some remarks and
present some existing results given by [11], and MS(X) is denoted as the set all
msets over X (which is assumed to be an initial universal set unless it is stated
otherwise).

Definition 3.1. Let X be a group. A multiset A over X is called a multigroup
over X if the count function A or Cy4 satisfies the following conditions:

(i) Calzy) = [Calz) ACaly)], ¥V 2,y € X,
(ii) Ca(z™!) = Ca(z),Vz e X.
We denote the set of all multigroups over X by MG(X).
Example 3.2. Let the subset X = {1, —1,4, —i} of complex numbers be a group

and A = [1,-1,4,—i]; 5 5 , be a multiset over X. Then, as it is not difficult to
verify, A is a multigroup over X.
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Definition 3.3. Let A, B € MG(X), we have the following definitions:

(i) Caop(r) = V{Caly) NCp(2) 1y, 2 € X,yz =}
=max [min{Ca(y),Cp(2)} : ¥,z € X,yz = z],

(ZZ) CA—l(,T) = CA(,Z‘_I).
We call A o B the product of A and B, and A~! the inverse of A.

Definition 3.4. (cf. [11]) Let A € MG(X). Then A is called an abelian multi-
group over X if Cy(xy) = Ca(yx), V 2,y € X. The set of all abelian multigroups
is denoted by AMG(X).

Definition 3.5. (cf. [11]) Let A, B € MG(X). Then A is said to be a submulti-
group of B if AC B.

Definition 3.6. (cf. [11]) Let H € MG(X). For any « € X, *H and Hx defined
by Cor(y) = Cr(x~ty) and Cr.(y) = Cr(yx~1), Vy € X are respectively called
the left and right mcosets of H in X.

The following results have been given by [11] as related to this paper except
for Remark 3.25 and 3.25.

Proposition 3.7. Let A€ MG(X). Then
(i) Ca(z") =2 Ca(z), Vr € X,
(it) Ca(z™1) = Ca(z),Vz € X,
(7it) Cal(e) = Ca(z), Yz e X.
Proposition 3.8. Let A, B,C, A; € MG(X), then the following hold:

(4) CAoB(ac):\/yGX [CA(y)/\CB(y_l )] :vyEX [CA (:Uy_l)/\CB(y)], Vre X,

(iv) ACB=A"'CB™!,

(0) (Uier4) " =User (A7),

() (Mier4)™ =Nier (A7),
(vii) (AoB) ' =B loA™ 1,
(viii) (AoB)oC =Ao(BoC).

Proposition 3.9. Let A,B € AMG(X). Then Ao B = BoA.
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Proposition 3.10. If A, B € MG(X), then Caop(z™!) = Caop(x).

Proposition 3.11. Let A € [X]". Then A € MG(X) if and only if Ao A< A
and A~! = A.

Proposition 3.12. Let A € [X]". Then A € MG(X) if and only if Ca (zy~') >
[Ca(z) NCaly)] , ¥V x,y € X,

Proposition 3.13. Let A,B € MG(X). Then ANB € MG(X).

Remark 3.14. If {A;},_; is a family of multigroups over X, then their intersection
N;cs Ai is a multigroup over X.

Remark 3.15. If {A;}, ., is a family of multigroups over X, then their union
U,er Ai need not be a multigroup over X.

Proposition 3.16. Let A € MG(X). Then the non-empty sets of the form
A, ={x e X :Ca(z) 2n, neN}
are subgroups of X.

Proposition 3.17. Let A € MG(X). Then the non-empty sets defined as
A*={r € X : Cy(x) >0} and A, = {z € X : Ca(z) = Cale)}
are subgroups of X.

Proposition 3.18. Let A € MS(X). Then the following assertions are equiva-
lent:

(a) Cal(zy) =Calyx), ¥V z,y € X,

(0) Ca(zyz™") =Caly), ¥V =,y € X,
(¢) Ca(zyz™') > Ca(y),Va,yeX,
(d) Ca(zyz™') <Caly),V z,y € X.

Proposition 3.19. Let A € AMG(X). Then A., A* and A,, n € N are normal
subgroups of X.

Proposition 3.20. Let H € MG(X), then xH = yH if and only if 'y € H..
Remark 3.21. If H € AMG(X), then H = Hx,V z € X.

Proposition 3.22. Let X and Y be two groups and f : X — Y be a homomor-
phism. If A€ MG(X), then f(A) € MG(Y).

Remark 3.23. Let X and Y be two groups and f : X — Y be a homomorphism.
If A, € MG(X), i € I, then f (N;erA;) € MG(Y).

Proposition 3.24. Let X and Y be two groups and f : X — Y be a homomor-
phism. If B€ MG(Y), then f~1(B) € MG(X).



Some results on multigroups 173

Remark 3.25. Let X and Y be two groups and f : X — Y be a homomorphism.
If B, € MG(Y),i €I, then f~! (ﬂiel B;) € MG(X).

We now present some results to broaden the theoretical aspect of multigroup
theory.

Proposition 3.26. Let A € MG(X). Then
(i) Ca(zy)™" = Ca(x) ACaly), ¥V z,y € X,
(i) Ca(zy)" = Ca(wy), ¥V 2,y € X.
Proof. The proofs are straightforward. O

Proposition 3.27. Let A€ MG(X). If Ca(xz) < Ca(y) for some x,y € X, then
Ca(zy) = Ca(x) = Calyz).

Proof. Given that Cs(x) < Ca(y) for some z,y € X. Since A € MG(X), then
Calzy) = Ca(x) A Ca(y) = Calz). Now, Ca(x) = Ca (zyy™") > Calzy) A
Ca(y) = Ca(zy), since Ca(z) < Ca(y), Ca(zy) < Ca(y). Therefore, Cy(zy) =

Ca(z). Similarly, Cx(yx) = Ca(z). O
Proposition 3.28. Let A € MG(X). Then Cx(xy=t) = Ca(e) implies Ca(x) =
Cal(y).

Proof. Given A € MG(X) and Cx(xy~!) = Ca(e) ¥V x,y € X. Then
Ca(@)=Ca(z(y™'y))=Cal(zy™")y) = Caley " )ACa(y)=Ca(e) ACa(y) =Caly),
ie., Ca(z) = Ca(y).

Also, Ca(y) = Ca(y™t) = Caley™) = Ca((zta)y™) = Ca(x=)AC4(zy™1)
= Ca(x) NCyle) = Cy(x), ie., Ca(y) = Ca(x). Hence, Ca(x) = Cal(y). O

Proposition 3.29. Let A,B,C,D € MG(X). If AC B and C C D, then
AoC C BoD.

Proof. Since A C B and C' C D, it follows that C4(z) > Cp(z), V 2 € X and
Co(z) < Cp(z), ¥V x € X. So,

Craccy(@) = \/ {Caly) A Col(2) 1y, 2 € X, yz =z}
\/{C’B NCp(z):y,z € X,yz = 2} = C(pop)(x).
Hence, Ao C C Bo D. O

Proposition 3.30. Let A, B € MG(X) and AC B or BC A. Then
AUB e MG(X).

Proof. The proof is straightforward. O
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Remark 3.31. Let A € MG(X), then A° need not be a multigroup over X.
Indeed, if X = (V4,+) = {0,a,b,c} is the Klein’s 4-group, then for A = [O,a]l1
we have A° = [0,a], ; # MG(X) because 3 Ca(a) > C4(0).

Proposition 3.32. If A € MG(X), then A° € MG(X) if and only if Ca(z) =
Cale),VzeX.

Proposition 3.33. Let A € MG(X) and x € X. Then Cys(zy) =Ca(y) Vye X
if and only if Ca(x) = Cale).

Proof. Let Ca(zy) = Ca(y), Yy € X. Then Cs(z) = Ca(xe) = Ca(e).
Conversely, let Ca(z) = Ca(e). Since Cyu(e) > Ca(y) Yy € X, we have
Ca(z) = Ca(y). Thus, Ca(zy) = Ca(x) ANCa(y) = Cale) ANCa(y) = Caly), ie.,
Ca(zy) = Caly), Yy € X.
But Ca(y) = Ca(ztoy) = Ca(x) A Ca(zy) and Ca(z) > Ca(zy), Vy € X,
imply Ca(z) ACa(zy) = Ca(zy) < Caly), Yy € X. So, Caly) = Ca(zy), Vy € X.
Hence, Ca(zy) = Ca(y) Vy € X. O

Proposition 3.34. If A€ MG(X) and H < X, then Alg € MG(H).
Proof. Let w,y € H. Then 2y~! € H. Since A € MG(X), then Cy(zy~?) >

Ca(x)NCa(y) Yo,y € X. Moreover,Cy), (zy~") = Cajg (@) NCaju(y) Yo,y € X.
Hence, A|g € MG(H). O

4. Multigroup homomorphism

Proposition 4.1. Let f : X — Y be an epimorphism and B € MS(Y). If
f~YB) € MG(X), then B € MG(Y).

Proof. Let z,y € Y then 3 a,b € X such that f(a) = z and f(b) = y. It follows
that

Cp(ry) = Cp(f(a)f (b)) = Cp(f(ab)) = Cy-1(p)(ab) = Cy-1(p)(a) A Cr-1(p)(b)
= Cp(f(a)) ACB(f(b)) = Cp(x) A Cp(Yy).

Again,

= Cp(f(a)) = Cp(2).
Therefore, B € MG(Y). O

Proposition 4.2. Let X be a group and f : X — X is an automorphism. If
A€ MG(X), then f(A) = A if and only if f~1(A) = A.
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Proof. Let x € X. Then f(x) = z. Now, C(y-1ay(x) = Ca(f(x)) = Ca(x)
implies f~1(A) = A.
Conversely, let f~1(A) = A. Since f is an automorphism, then

Cyay(x \/{CA )2 e X, f(2) = f(z) =z}
= Ca(f(@)) = C(j-1(a)(z) = Calz).

Hence, the proof. O

Proposition 4.3. Let f : X — Y be a homomorphism of groups, A € MG(X)
and B € MG(Y). If A is a constant on Kerf, then f~1(f(A)) = A.

Proof. Let f(x) =y. Then
Cr1(p(an(@) = Cpay f(x) = Cpay(y) = \/{Cal(e) 1w € X, f(z) =y}

Since f(z712) = f(a V) f(2) = (f(x))"1f(2) = y~ly = ¢, V2 € X such that
f(2) = y, which implies 712 € Kerf. Also, since A is constant on Kerf, then
Ca(z712) = Ca(e). Therefore, Ca(x) = Ca(z) V z € X such that f(z) =y by
Proposition 3.28 . Hence, the proof. O

Proposition 4.4. Let H € AMG(X). Then the map f: X — X/H defined by
f(z) = xH is a homomorphism Kerf = {x € X : Cy(x) = Cu(e)}, where e is the
identity of X.

Proof. Let z,y € X. Then f(xy) = (zy)H = aHyH = f(x)f(y). Hence, f is a
homomorphism. Further,

Kerf={zeX:f(z)=eH}={re X :xH =eH}
={z€X:Cula~"y) =Culy) Yy € X}
={2€X:Cu(a")=Cule)} ={r € X :Cu(z) =Cule)} = H,,

which completes the proof. O
Remark 4.5. By Propositions 4.4 and 3.19, Ker f is a normal subgroup of X.

Proposition 4.6. (First Isomorphism Theorem) Let f : X — Y be an epimor-
phism of groups and H € AMG(X), then X/H, =Y, where H, = Kerf.

Proof. Define © : X/H, — Y by 0(zH,) = f(x) Vz € X. Let zH = yH such that
Cr(z~ty) = Cy(e). Since 27y € H,, then f(x7ly) = f(e) = f(z) = f(y).
Hence, O is well-defined. Obviously it is an epimorphism. Moreover, f(x) = f(y)
implies f(z)~'f(y) = f(e). So, f(z™)f(y) = fa™'y) = f(e), ie, 27y € H,
and consequantly, Cg(z~'y) = Cg(e). Thus, xH = yH, which shows O is an
isomorphism. O
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Proposition 4.7. (Second Isomorphism Theorem) If H, N € AMG(X) such that
Cy(e) =Cn(e), then H.N,/N 2 H,/HNN.

Proof. Clearly, for any © € H,N,, © = hn where h € H, and n € N,. Define
p:H.N./N— H,/HNN by o(xN) = h(HNN).
If tN = yN, where y = hiny, hy € H, and ny € N,, then

Cn(z7'y) = Cn((hn)"thiny) = Cxy(n 'h™ hyng) = Cx (R hin ™ ny) = Cn(e).
Hence, Cn(h™thy) = Cx(n~'ny) = Cn(e). Thus,
Crnn(h™'hy) = Cu (b~ ha) ACNn(h™"hy) = Cr(e) A Cn(e) = Cunn(e),

ie,, h(HNN)=hi(HNN). Hence, ¢ is well-defined.

If «N,yN € H.N, N, then zy = hnhin;. Since H € AMG(X), then
Ch(nhiny) = Cy(hy) gives nhin; € H,. Hence,

p(@xNyN) = p(zyN) = h(nhanl)(H N N) = h(H N N)nhiny(H N N) and

CHQN(hfl(nhlnl)) > CH(hflnhlnl) A CN(hflnhlnl)
= CH(hfl(nhlnl)) A CN(n(hflhlnl))
= Cy(e) NCn(e)
= Cunn(e).

Hence, nhini(H N N) = hy(H N N), ie., p(eNyN) = h(HN N)h(HNN) =
p(zN)p(yN), which shows that ¢ is a homomorphism.

 is also an epimorphism, since for h(H N N) € H,/HN N and n € N,, we
have x = hn € H,N, and p(zN) = h(H N N).

Moreover, if z,y € H,N,, where x = hn and y = hini, h,hy € H, and
n,ny € N, and h(HN N) = hy(H N N), then Cyrn(h™th1) = Crnn(e), ie.,
CH(hilhl)/\CN(hflhl) = CH(G)/\CN(G). But OH(B) = C’N(e) and OH(hflhl) =
Cu(e), so Cx(h™1hy) = Cn(e). Therefore,

Cn(z7'y) = Cn((hn) "t hing)
(n"*h " hiny) = On(h ™ hin~'ny)
(b~ h1) A Cn(n"tny) = Cn(e) A Cn(e) = Cy(e).

Cn
Cn

WV

Thus, Cy(z71y) = Cn(e), and consequently, N = yN.
Hence, H.N./N 2 H,/HNN. O

Proposition 4.8. (Third Isomorphism Theorem) Let H, N € AMG(X) with
H C N and Cyx(e) =Cn(e). Then X/N = (X/H)/(N./H).

Proof. Define f : X/H — X/N by f(xH) = N Vz € X such that Cy(z~1y) =
Cu(e) = Oy(e) VzH = yH. Because H C N, we have Cn(z71y) > Cy(z~ty) =
Cn(e) and so Cny(z~'y) = Cn(e), i.e.,, tN = yN, which means that f is well-
defined. Obviously f is an epimorphism.
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Moreover,
Kerf={xzH € X/H : f(xH) =eN}
={zH € X/Hz: N =eN}
={zH € X/H : Cn(z) = Cn(e)}
—{¢H e X/H:z € N,} = N,/H.
Thus, Kerf = N,/H and X/N = (X/H)/(N./H). O
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On quasi n-absorbing elements

of multiplicative lattices

Ece Yetkin Celikel

Abstract. A proper element ¢ of a lattice L is said to be a quasi n-absorbing element if
whenever a™b < ¢ implies that either a™ < q or a®~1b < q. We investigate properties of this new
type of elements and obtain some relations among prime, 2-absorbing, n-absorbing elements in
multiplicative lattices.

1. Introduction

In this paper we define and study quasi n-absorbing elements in multiplicative
lattices. A multiplicative lattice is a complete lattice L with the least element 0
and compact greatest element 1, on which there is defined a commutative, associa-
tive, completely join distributive product for which 1 is a multiplicative identity.
Notice that L(R) the set of all ideals of a commutative ring R is a special example
for multiplicative lattices which is principally generated, compactly generated and
modular. However, there are several examples of non-modular multiplicative lat-
tices (see [1]). Weakly prime ideals [3] were generalized to multiplicative lattices
by introducing weakly prime elements [7]. While 2-absorbing, weakly 2-absorbing
and n-absorbing ideals in commutative rings were introduced in [5], [6], and [4], 2-
absorbing and weakly 2-absorbing elements in multiplicative lattices were studied
in [10].

We begin by recalling some background material which will be needed. An
element a of L is said to be compact if whenever a < \/ael aq implies a < \/OAE[0 Qg
for some finite subset Iy of I. By a C-lattice we mean a (not necessarily modular)
multiplicative lattice which is generated under joins by a multiplicatively closed
subset C' of compact elements of L. We note that in a C-lattice, a finite product
of compact elements is again compact. Throughout this paper L and L, denotes a
multiplicative lattice and the set of compact elements of the lattice L, respectively.
An element a of L is said to be properif a < 1. A proper element p of L is said to
be prime (resp. weakly prime) if ab < p (resp. 0 # ab < p) implies either a < p or
b < p. If 0 is prime, then L is said to be a domain. A proper element m of L is said
to be mazimal if m < x < 1 implies x = 1. The Jacobson radical of a lattice L is
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defined as J(L) = A{m|m is a maximal element of L}. L is said to be quasi-local
if it contains a unique maximal element. If L = {0,1}, then L is called a field.
For a € L, we define a radical of a as v/a = A\{p € L|p is prime and a < p}. Note
that in a C-lattice L,

va=N{p€ L|pisprime and a < p} = \/{z € L, | 2" < a for some n € Z*}

by (Theorem 3.6 of [12]). Elements of the set Nil(L) = /0 are called nilpotent. For
any prime element p € L by L, we denote the localization F' = {z € C | = £ p}.
For details on C-lattices and their localizations see [9] and [11]. An element e € L
is said to be principal |8], if it satisfies the identities (i) a A be = ((a : e) A b)e and
(#4) (ae VD) : e = (b:e)Va. Elements satisfying the identity (i) are called meet
principal, elements satisfying (i) are called join principal. Note that any finite
product of meet (join) principal elements of L is again meet (join) principal [8,
Lemma 3.3 and Lemma 3.4]. If every element of L is principal, then L is called a
principal element lattice [2].

Recall from [10] that a proper element q of L is called 2-absorbing (resp. weakly
2-absorbing) if whenever a,b,c € L with abc < g (resp. 0 # abe < ¢), then either
ab < gorac < gorbe < q. Wesay that (a,b,c) is a triple zero element of q if abc =
0, ab £ q, ac £ q and bc £ q. Observe that if ¢ is a weakly 2-absorbing element
which is not a 2-absorbing, then there exist a triple zero of q. A proper element
q € L is n-absorbing (resp. weakly n-absorbing) if ajas - an+1 < ¢q (resp. 0 #
aiag - Apy1 < q) for some ajag - ay11 € Ly then ajas -+ ag_1ak41 - apy1 < g
forsome k=1,...,n+ 1.

2. Quasi n-absorbing elements

Let L be a multiplicative lattice and n be a positive integer.

Definition 2.1. A proper element g of L is called:

e quasi n-absorbing if a"b < g for some a,b € L, implies a™ < g or a"~'b < g,

e weakly quasi n-absorbing if 0 # a™b < ¢ for some a,b € L, implies a™ < ¢ or
a™1bh < q.

Theorem 2.2. Let q be a proper element of L and n > 1. Then:
(1) q is a prime element if and only if it is quasi 1-absorbing,
(2) q is a weakly prime element if and only if it is weakly quasi 1-absorbing,
(3) if q is n-absorbing, then it is quasi n-absorbing,
(4) if q is quasi n-absorbing, then it is weakly quasi n-absorbing,
(5) if q is quasi n-absorbing, then it is quasi m-absorbing for all m > n,
(6) if q is weakly quasi n-absorbing, then it is weakly quasi m-absorbing for all
m = n.

Proof. (1), (2), (3) and (4) are obvious. To prove (5) suppose that ¢ is a quasi
n-absorbing element of L, and a,b € L, with a™b < ¢ for some m > n. Hence
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a™(a™~"b) < ¢. Since ¢ is a quasi n-absorbing element, we have either a” < ¢ or
a™ Y(a™ "b) < q. So, either a™ < q or a™ b < q. This shows that ¢ is a quasi
m-absorbing element of L.

(6) can be proved analogously. O

Corollary 2.3. Let g be a proper element of L.
(1) If q is prime, then it is quasi n-absorbing for alln > 1.
(2) If q is weakly prime, then it is weakly quasi n-absorbing all n > 1.
(3) If q is 2-absorbing, then it is a quasi n-absorbing for all n > 2.
(4) If q is weakly 2-absorbing, then it is weakly quasi n-absorbing for all n > 2.

The converses of these relations are not true in general.

Example 2.4. Consider the lattice of ideals of the ring of integers L = L(Z). Note
that the element 307Z of L is a quasi 2-absorbing element, and so quasi n-absorbing
element for all n > 2 by Corollary 2.3, but it is not a 2-absorbing element of L by
Theorem 2.6 in [7].

Proposition 2.5. For a proper element q of L the following statements are equiv-
alent.

(1) q is a quasi n-absorbing element of L.

(2) (g:a™) =(g:a"') where a € Ly, a™ £ q.

In paticular, 0 is a quasi n-absorbing element of L if and only if for each a € L,
we have a™ = 0 or ann(a™) = ann(a™1).

Proof. It follows directly from Definition 2.1. O

Notice that if ¢ is a weakly quasi n-absorbing element which is not quasi n-
absorbing, then there are some elements a, b € L, such that a"b =0, a™ & ¢ and
a"'b £ g. We call the pair of elements (a,b) with this property — a quasi n-zero
element of q. Notice that a zero divisor element of L is a quasi 1-zero element of
0r, and (a,a,b) is a triple zero element of ¢ if and only if (a,b) is a quasi 2-zero
element of q.

Theorem 2.6. Let g be a weakly quasi n-absorbing element of L. If (a,b) is a
quasi n-zero element of q for some a,b € L, then a™ € ann(q) and b"™ € ann(q).

Proof. Suppose that a™ ¢ ann(q). Hence a™q; # 0 for some ¢; € L, where ¢1 < g.
It follows 0 # a"(bV ¢1) < ¢. Since a™ £ ¢, and ¢ is weakly quasi n-absorbing, we
conclude that a”1(bV q1) < ¢. So a”'b < ¢, a contradiction. Thus aq = 0, and
so a™ € ann(q). Similarly we conclude that b € ann(q). O

Theorem 2.7. If {px}aca is a family of (weakly) prime elements of L, then N px
AEA
is a (weakly) quasi m-absorbing element for all m > 2.
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Proof. Let {px}xea be a family of prime elements of L. By Corollary 2.3 (3) it is
sufficient to prove that A p, is a quasi 2-absorbing element of L.

A€EA
Let a,b € L, with a®?b < ) px. Since a?b < p; for all prime elements p;, we
AEA
have a < p; or b < p;. Thus ab < p; for all i = 1,...,n and so ab < A px, which
AEA

completes the proof for prime elements.
For weakly prime elements the proof is similar. O

Corollary 2.8. Let q be a proper element of L. Then \/q, Nil(L) and J(L) are
quast n-absorbing elements of L for all n > 2.

Proof. 1t is clear from Theorem 2.7. O

Theorem 2.9. If {gx}xrea is a family of (weakly) quasi m-absorbing elements of a

totally ordered lattice L, then for each positive integer m N\ qx is a (weakly) quasi
AEA
m-absorbing element of L.

Proof. Assume that {gx}rca is an ascending chain of quasi m-absorbing elements

and a™ £ A qr and a™ b £ A gr. We show that a™b £ A g¢x. Hence a™ £ ¢;
AeA AeA AeA

and a™~1b &£ g, for some j k=1,...,n.
Put ¢ = min{j,k}. Then a™ £ ¢; and a™ 'b £ ¢. Since ¢; is a quasi m-

absorbing element, it follows a”b £ ¢;. Thus a™b £ A q», we are done.
AEA

For weakly prime elements the proof is similar. O

Theorem 2.10. Let for all i = 1,2,...,n, elements q1,...,q, € L are (weakly)

n
quasi m;-absorbing, respectively. Then A ¢; is a (weakly) quasi m-absorbing ele-
i=1
ment of L for m = max{my,...,my} + 1.
Proof. Suppose that ¢, ...,q, are quasi m;-absorbing, respectively. Let a,b € L,
n

be such that a™b < A ¢;. Hence a™ < ¢; or a™i~'b < ¢; for all i = 1,..,n. Now

i=1

n
assume that ™ £ A ¢;. Without loss generality we can suppose that a™ < ¢; for

i=1
all 1 <4< 7, and a™ £ ¢; for all j +1 <3 < n. Hence we have a™~1b < ¢; for
all j +1 < < n. Then we get clearly a™'b < ¢; for m = max{my,...,m,} + 1
n
and for all 1 <i < n. Thus a™1b < N\ ¢i, so we are done.

i=1
For weakly prime elements the proof is similar. O

If v+ € L, the interval [z,1] is denoted be L/x. The elemets of @ and L/x is
again a multiplicative lattice with @ob=abV z for all @,b € L/x.
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Theorem 2.11. Let x and q be proper elements of L with x < q. If q is a (weakly)
quasi n-absorbing element of L, then q is a (weakly) quasi n-absorbing element of
L/x.

Proof. Suppose that @ = aV z, b = bV x € L with @"b < @, where ¢ is a quasi
n-absorbing element of L. Then a"bV x < ¢, and so a™b < ¢. Since ¢ is quasi
2-absorbing, we get either a” < q or a"~'b < ¢q. Thus @ = (a V 2)" < q or
@ b= (aVa)" " (bVa) <7, as needed.

For weakly prime elements the proof is similar. O

Recall that any C-lattice can be localized at a multiplicatively closed set. Let
L be a C-lattice and S a multiplicatively closed subset of L,. Then for a € L,
as = V{z € L.|zs < a for some s € S} and Lg = {as|a € L}. Lg is again a
multiplicative lattice under the same order as L with the product asobs = (asbs)s
where the right hand side is evaluated in L.

If pe L is prime and S = {z € L, |z & p}, then Lg is denoted by L,,. [9]

Theorem 2.12. Let m be a mazximal element of L and q be a proper element of
L. If q is a (weakly) quasi n-absorbing element of L, then g, is a (weakly) quasi
n-absorbing element of L,y,.

Proof. Let a,b € L, such that a’ b, < ¢. Hence ua™b < ¢ for some u £ m.
It implies that a" < q or a" *(ub) < gq. Since uy, = 1, we get a”, < g, or
ap by, < g, we are done. -

Theorem 2.13. Let L be a principal element lattice. Then the following state-
ments are equivalent.
(1) Every proper element of L is a quasi n-absorbing element of L.
(2) For every a, b € L,, a™ = ca™b or a" 1b = da"b for some ¢, d € L.
(3) For all ay,a2,...,an41 € Ly, (a1 Aaz A... Nap)" < carag -+ - Gpy1 OT
(ag Nag A ... ANap)" tayy1 < dajas - anyq for some e, d € L.

Proof. (1) < (2). Suppose that every proper element of L is a quasi n-absorbing
element of L. Hence a"b < (a™b) implies that a™ < (a”b) or a"~b < (a™b). Since
L is a principal element lattice, there is some element ¢ € L with a™ = ca™b or
there is some element d € L with a”~'b = da™b. The converse is clear.

(2) = (3). Put a =a1 Aas A ... ANa, and b = a,+1. Hence the result follows
from (2).

(3) = (2). For all a,b € L,, we can write a™ = (e AaA...Na) < ca™b or

n times

a" ‘b= (aNaAn...Na)b < da™b. O
—_———
n—1 times
Theorem 2.14. Let L = Ly x Ly where L1 and Lo are C-lattices. Then:

(1) ¢1 is a quasi n-absorbing element of Ly if and only if (q1,1L,) is a quasi
n-absorbing element of L,
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(2) g2 is a quasi n-absorbing element of Lo if and only if (11,,q2) is a quasi
n-absorbing element of L.

Proof. (1). Suppose that ¢; is a quasi n-absorbing element of L;.

Let (al,ag)"(bl,b2) < (ql, lLQ) for some ai, b, € Ll* and as, by € LQ*. Then
alby < ¢ implies that either a} < ¢q or a’f_lbl < q1. It follows either (a1, a2)™ <
(q1,1z1,) or (a1,a2)" 1 (b1,bs) < (q1,11,). Thus (q1,1z,) is a quasi n-absorbing
element of L. Conversely suppose that (g1, 11,) is a quasi n-absorbing element of L
and a"b < ¢y for some a,b € Ly,. Hence (a,11,)"(b,11,) < (g1, 11,) which implies
that either (a,17,)" < (q1,1r,) or (a,1.,)" 1 (b,11,) < (q1,11,). So a} < ¢q1 or
a?_lbl < q1, as needed.

(2). It can be verified similar to (1). O
Theorem 2.15. Let L = Ly x --- x Ly where all L, are C-lattices. If q; is a
quasi n;-absorbing element of L; for alli = 1,... k, then (qi1,...,qk) is a quasi
m-absorbing element of L where m = max{ny,...,ni} + L.

Proof. Suppose that (ai,...,a5)™(b1,...,bx) < (q1,-..,qx) for some (ai,...,ax),
(b1,...,bg) € Ly and m = max{ni,...,ng} + 1. Hence a["b; = a}"(a;" "'b;) < ¢;
for all i = 1,...,k. Since each ¢; is a quasi n;-absorbing element, we have either
al < gor al by = a N (al M) < g for all i = 1,.., k. If @ < g; for all
i=1,...,k, then (a1,...,ax)™ < (q1,...,qx). Without loss generality, suppose
that a/* < ¢; for all 1 < i < j and a" " 'b; < ¢; for all j +1 < i < k, for some

j=1,...,k Thus (ai,...,a)™ *(by,...,bx) < (qi,...,qr), so we are done. []

Definition 2.16. A proper element ¢ of L is said to be a strongly quasi n-absorbing
element of L if whenever a,b € L (not necessarily compact) with a™b < ¢ implies
that either a™ < ¢ or a”'b < gq.

It is clearly seen that every strongly quasi n-absorbing element of L is quasi
n-absorbing.

Theorem 2.17. Let L be a principal element lattice. The following statements
are equivalent.
(1) Every proper element of L is a strongly quasi n-absorbing element of L.
(2) For all a,b € L, a™ = a™b or a" b= a™b.
(3) (a1 Nag N ... N\ an)" < ajag--Qpy1 OT (a1 Nag N\ ... N\ an)”*lam_l <
a1Qg -+ Apy for all ay,ag, ... apny1 € L.

Proof. This can be easily shown using the similar argument in Theorem 2.13. [

Theorem 2.18. Let g be a proper element of L. Then:
(1) If a™b < ¢ < aA\b, where a,b € L, implies that a™ < q or a"1b < q, then q
is a strongly quasi n-absorbing element of L.
(2) Ifa1a2 st Op41 g q < ayNag \.. ./\an+1, where aA1,a2y...,0n41 € L, zmp—
lies that a1 -+ a;—10;41 - Gpy1 < q, for some 1 <i<n+1, then q is a
strongly quasi n-absorbing element of L.
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Proof. (1). Let z,y € L with 2™y < q. We show that 2™ < q or 2" 'y < ¢. Now
put a =2V qand b=y V q. Hence we conclude a"b < ¢ < aAb, and so a” < q or
a" b < g by (1). It follows 2 < g or 2" 1y < q.

(2). It can be easily verified similar to (1). O
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A note on left loops with WA-property

Natalia N. Didurik and Ivan A. Florja

Abstract. We study properties of WA-quasigroups with a left identity element, i.e., quasi-

groups satisfying two identities: zz - yz = zy - xz and zy - zz = zz - y=z.

1. Introduction

We start from some definitions and examples. Other basic facts about quasigroups
and loops can be found in [2] and [13].

Definition 1.1. (cf. [5, 8]) A groupoid (Q,-) is called a guasigroup if, on the set
Q, there exist operations "\" and "/" such that in the algebra (Q,-,\, /) identities

z-(2\y) =y, (1)
(y/z) -z =y, (2)
\(z-y) =v, (3)
(y-z)/x =y, (4)
are fulfilled.
Definition 1.2. (cf. [11, 12]) A quasigroup (Q, -) with the identities
zr-yz=xy-xrz and TY-2z2=21x2 Yz (5)

is called a WA-quasigroup or a semi-medial quasigroup (shortly: SM -quasigroup)
(cf. [14, 15]).

Identities (5) are not equivalent.

Example 1.3. This quasigroup satisfies only the first of these identities.

*|10 1 2 3 4 5
0|0 1 2 3 4 5
111 0 3 2 5 4
2|12 4 0 5 1 3
314 2 5 0 3 1
413 5 1 4 0 2
515 3 4 1 2 0

2010 Mathematics Subject Classification: 20N05
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Lemma 1.4. In any WA-quasigroup (Q,-) the following identities are true:

2*\(y2) = (z\y)(z\2), (6)
(y2)/2* = (y/z)(z/x), (7)
z(y\2) = (zy)\(2?2), (8)
(y/2)x = (ya?)/(22), (9)

where zy =z < ax\z =y < z/y = x.

Proof. (6). It is clear that there exists an element 2’ such that 22\yz’ = (z\y)(z\z2).
We must prove that 2’ = z. From the definition of the operation \ we have

y? = 22((2\y)(2\2) D a(a\y) - w(2\2) L yz.

Therefore, 2’ = z.
(7). It is clear that there exists an element z’ such that y2'/2% = (y/z)(z/z).
We must prove that 2’ = z. From the definition of the operation / we have

v = (y/2)(z/2) -2 2 (y/2)e - (z/z)e D ye.

Therefore, 2z’ = z.
(8). It is clear that there exists an element 2’ such that z(y\z) = (zy)\(2?2’).
We must prove that 2’ = 2. We have

22 = (2y) - 2(y\2) 2 2% y(y\2) L a2

Therefore, 2’ = z.
(9). It is clear that there exists an element y’ such that (y/z)z = (y'2?)/(zx).
We must prove that 3’ = y. As in previous cases

y'a® = (y/2)a - (z0) 2 (y/2)z-2® 2 ya?.

Therefore, y’' = y. O

Definition 1.5. (cf. [2]) Let A and p be two maps @ — Q. A quasigroup (@, -)
is called an LIP-quasigroup if it satisfies the identity

Az - (z-y) =y,
and an RIP-quasigroup if it satisfies the identity
(z-y) py=um.

A quasigroup which is simultaneously an LIP- and RIP-quasigroup is called an
IP-quasigroup.
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Definition 1.6. (cf. [9]) A quasigroup (Q,-) is called a left Bol quasigroup, if it
satisfies the identity
z(y-xz) = R Mz - yx) - 2.

It is called a right Bol quasigroup, if it satisfies the identity
(yx - 2)x = yL;wl(xz - x),
where ze, = x = f,x.
Definition 1.7. (cf. [2]) A quasigroup (Q, ) is called a Moufang quasigroup, if in
(Q,-) the following identities are true

(zy - 2)y = z(y(eyz - y)), (10)

y(x-yz) = ((y-2fy)y)z (11)
where ye, =y = f,v.
In his PhD thesis (see also [4]) I.A. Florja proved that in quasigroups the
identities (10) and (11) are equivalent, so Moufang quasigroups can be defined as
quasigroups satisfying one of these identities.

We will need the following two lemmas. The first was proved by I.A. Florja in
his PhD thesis, the second is proved in the Belousov’s book [2].

Lemma 1.8. A left and right Bol quasigroup is a Moufang quasigroup.
Lemma 1.9. A loop isotopic to a Moufang quasigroup is an IP-loop.

Definition 1.10. A commutative loop (Q, ) with the identity xz - yz = zy - zz is
called a commutative Moufang loop.

From Definitions 1.2 and 1.10 it follows that any commutative Moufang loop
is a WA-quasigroup.

Theorem 1.11. (cf. [7, 12, 15]) Each loop isotopic to a WA-quasigroup is a
commutative Moufang loop.

2. Properties of left WA-loops

Lemma 2.1. Any WA-quasigroup with a left identity element is a left Bol quasi-
group.

Proof. If f is a left identity element of a quasigroup (Q,-), then ff = f, Lyz ==
for all z € Q and Ly = ¢. From Theorem 1.11 it follows that an isotope of the
form

moy:RJ?lx-Lfly:Rflx-y (12)
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of a quasigroup (@, -) is a commutative Moufang loop. Any commutative Moufang
loop (@, o) is an IP-loop, i.e., there exists a permutation I such that

Izo(zoy)=(yox)olz=y (13)

for all z,y € Q.
Going in the equation (13) to the operation - we have R;lfsc . (R;lm “y) =y,
R;lfRfa: (z-y) =y. Hence, L1z - (z-y) =y for

I = R;'IRy. (14)

Thus (@Q, ) is an LIP-quasigroup. This, by results of [9], shows that (@, -) is a left
Bol quasigroup. O

Corollary 2.2. If f is a left identity element of a WA-quasigroup (Q,-), then
the translation Ry is an automorphism of (Q,-), and an automorphism of the
commutative Moufang loop (Q, o) defined by (12).

Proof. The fact that Ry € Aut(Q,-) follows from (5) and the equality ff = f.
Further, using the formula (12), we have: Ry(zoy) = Ryx o Ryy, Rf(R;lx cy) =
R;lfo -Rypy, - Ryy = © - Ryy. Therefore RyI = IRy, and (14) takes the form
I, =1 O

Lemma 2.3. Any WA-quasigroup with a right identity element is a right Bol
quasigroup.

Proof. Consider the isotope (Q, o) of a WA-quasigroup (Q, -) given by:
roy=ux-L 1y,

where e is a right identity of (Q,-). By Theorem 1.11, (Q,o) is a commutative
Moufang loop. Let 1 be the identity element of (Q, o) and I be a permutation of
Q@ such that z o Iz = 1 for all z € Q. Since (yox)o Iz =y for all x,y € Q, we
have y = (yox)olx = (y- L z)- L7 Ix. Therefore, (y-x)- L7 IL.x =y, hence
(y-x) pr=yfor p=L;'IL.. So, (Q,-) is an RIP-quasigroup. This, by results
of [9] means that (Q, ) is a right Bol quasigroup. O

Lemma 2.4. Any WA-quasigroup (Q,-) with the left (right) inverse property is a
left (right) Bol quasigroup.

Proof. Since a WA-quasigroup with the left inverse property is an LIP-quasigroup,
the proof of this lemma is very similar to the proof of Lemma 2.1.
For WA-quasigroups with the right inverse property the proof is analogous. [

Corollary 2.5. Any WA-quasigroup that is an IP-quasigroup, is a Moufang quasi-
group.

Proof. The proof follows from Lemma 2.4 and Lemma 1.8. O
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Definition 2.6. (cf. [2]) The isotope of the form
roy =L, (Lax-y) (15)

is called a right derivative operation of (Q,-) generated by a.
The isotope of the form

zoy= R, (7 Ruy) (16)
is called a left derivative operation of (Q,-) generated by a.

Theorem 2.7. Let (Q,-) be a WA-quasigroup. Then
(i) the right derivative operation (Q,-) is a left Bol quasigroup,
(ii) the left derivative operation of (Q,-) is a right Bol quasigroup.

Proof. (i). From (15) it follows that a quasigroup (@, o) has a left identity element,
namely, f = e,, where ae, = a. Indeed, e, oy = L, (Laeq-y) = L Loy = y. In
particular fo f = f.

We consider the following isotope of a quasigroup (Q,o):

z+y=(R})zoy, (17)

where R}z =z o f. Then (Q,+) is a loop with the identity element f.

Indeed, f+y = (R}) ™' foy = foy =y, since, if (R}) " f = z, then f = (R})z,
f = zo f. But, as was mentioned, f o f = f, therefore, z = f. Further we have
x+ f=(R}) 'wo f=R}R}) 'v=u

Using (15) we can re-write (17) as follows:

v+y =Ly (La(R}) "z y).

Thus the loop (@, +) is an isotope of a WA-quasigroup (Q,-). By Theorem 1.11
among loop isotopes of a WA-quasigroup (Q,-) there exists a commutative Mo-
ufang loop. We recall that any loop isotopic to a Moufang loop is a Mofang loop
(cf. [2]). Therefore (@, +) is a Moufang loop.

Our proof will be complete, if we prove that a quasigroup (Q,o) is an LIP-
quasigroup.

From 2~ + (z +y) = y, using (17), we obtain (R}) ™'z~ o ((R}) 'zoy) = y.
Now, denoting (R})~'z~" by az and (R}) ™'z by Bz, we obtain two permutations
a, B of the set @, and the possibility to rewrite the last equation in more useful
form axr o (Bx oy) = y, which is equivalent to a3 'z o (zoy) =y.

The last means that (@, o) is an LIP-quasigroup. This completes the proof of

(4)-
(#4). From (16) it follows that a quasigroup (@, o) has a right identity element
e = f,, where f,a = a. Indeed, zo f, = R; (2 Rofa) = R (- a) = =
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We consider the following isotope of the quasigroup (right loop) (@, o):
z+y=xo(Ly) (18)

where Loz = e o x. Then (Q,+) is a loop with the identity element e. The proof
is similar to the proof in the case (i) and we omit it.
From (18), using (16), we have

v+y =R (z Ra(L)™'y).

Analogously as in (i) we can prove that (Q,+) is a Moufang loop. Next, from
(y+2) + 271 =y, using (18), we deduce (y o (LS)~'x) o (L2)~'z~! = y. This
shows that (Q, o) is an RIP-quasigroup. O

3. Automorphisms of left WA-loops

We start with the following lemma which is a quasigroup folklore.

Lemma 3.1. In a quasigroup autotopy any two components uniquely define the
third.

Elements of the group I;,(Q, ) = {a € M(Q, )| ah = h}, where M(Q,-) is the
group generated by all left and right translations of a quasigroup (@, -), are called
inner mappings of (Q,-) relative to the element h € @ (cf. [2]). Belousov proved
(ctf. [2]) that the group I1(Q,-) is generated by all permutations of the form:

Ly, = L] L,L,, where (x o y)h =2 - yh,

Toy
Ry y = Ryd,RyR,, where h(zey)=hz-y,
T,=L;'R,, where o = R; 'Ly,

Lemma 3.2. In a WA-quasigroup (Q,-) with the left identity element f inner
permutations L, Ry, and T, relative to the element f are automorphisms of

(Q7 )

Proof. In our case L, , = L:;OlyLILy7 where x oy = R;l(:v “Rypy) = RJ?I:E -y, by
Corollary 2.2. Therefore
Ly, = L;;_lx_nyLy. (19)
Moreover, -y = fx -y = f(x o y) = x e y implies
Ryy =R, RyR,. (20)

Since oz = R;lLfac = R;lx, we also have T, = L;LzRI. Thus
£

Lz,yf = Rx,yf = Tzf = f (21)
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From (5) it follows that for any fixed a € @ the following triplets (L, Lq, Ly2)
and (R,, Rq, R42), their inverse and various component-vise products are auto-
topies of (@, ). Therefore

(Ll_gi—lm.yvl’]_:g;lm.yvL(_éflx,y)z)(vaLzaLaﬁ)(LyaLy’Ly2) =
(Lays La.y, L(_lejlz.prxQLyz). (22)
This means that
Loyf Loyz = L(—le,lm_y)zLIQLyz(f - 2), (23)
whence, applying (21), we obtain
Lyyz=1L"} Ly2Ly22 (24)

(R} 'ay)?

for all z,y,z € Q. This, together with (22), shows that L, , is an automorphism
of the quasigroup (@, -).
Similarly from

(Rz_glﬁ R;1y7 R(;ly)z ) (Ry7 Ry7 Ryz)(Rxa R:I:7 sz) = (Ra:,y7 Rx,yv R(;ly)z Ry2 Rm2)
(25)
and
-1 —1 ~1 _ -1
(LRJ:ILE’ LR;117 L(Rfflw)Q)(R$7 Rf? RJCQ) - (T~T7 TE) L(R;1$)2R$2) (26)
it follows that R, , and T, are automorphisms of (@, -). O

Corollary 3.3. In any WA-quasigroup with a left identity element we have
Lyy =1Ly ,2, Rpy=Rg,pe, Tp,=T,:.
Proof. Putting y = z in (5), we obtain
(zy)* = a® -4 (27)

From (19) and (24) it follows that the identity L., = L,2,2 will be proved,
if we prove that (Ry'z - y)? = Ry'z? - y> This follows from (27) and the fact
that Ry (and its inverse) are automorphisms of (@), -) (see Corollary 2.2). Indeed,
(R;'z)? = R;'w- R;'w = Ry (v - 2) = R;'a%. Since R, = R@%y)gRyszz, by
(25), from (20) and (27) we obtain R, , = R,2 ,».

The third identity can be proved in a similar way. O

Definition 3.4. (cf. [10, 13]) Let (Q,-) be a groupoid. The element a € @ is
called a left nuclear element in (Q,-) if Ly, = LoL, for all z € Q. The set of all
left nuclear elements in (Q, -) is called the left nucleus of (@, -) and is denoted by
N;.
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It is well known (cf. [2, 3]) that in a quasigroup the set N; forms a subgroup.

Theorem 3.5. In a WA-quasigroup (Q,-) with the left identity element f the
inner permutations Ly, Ry, and T, relative to a € @ are automorphisms of
(Q,-) if and only if a € N; and the following identity xy - a = xf - ya is satisfied.

Proof. In this case L,, = L;} L,L,, where z oy = R;'(z - Ryy), Ryy =

R.d,RyR,, where ax -y = a(x e 5) and T, = L, !R,, where ox = R, 'L;a.

In a similar way as in the proof of Lemma 3.2 (identities (22), (23), and
(24)), we can prove that L, ,, R, ,, and T, are automorphisms of (Q,-). Then
L;olyLwLyf = f,ie, LyLyf = Lgoyf. S0, - yf = Lyoyf = Rgl(x “Ray)f,
which gives R;'(z - yf) = Ry (2 - Ray). Since R} is an automorphism of (Q, -)
(Corollary 2.2), from the last identity we obtain R;lx -y = Rz - Ryy), and
consequently, xy = Ry (Ryx - Ryy). Thus, 2y -a=xf -ya for all z,y € Q.

Moreover, RyJ RyR,f = [ implies RyR,f = Rye,f. Hence zy = x ey and
ax -y = a(zxey) =a-xy for all x,y € Q. Therefore a € N;.

The converse statement is obvious. O

Lemma 3.6. The permutation L,R, is an automorphism of a W A-quasigroup
(Q,-) with the left identity element element f if and only if a® = f.

Proof. Since
(Las La, La2)(Ra, Ra, Ra2) = (LaRa, LaRa, La2 Ro2) (28)
is an autotopy of (@, ), we have
LoRof - LaRay = La2Rg2y (29)

for all y € Q. This autotopy is an automorphism if and only if L,2R,2 = L R,.
The last equality holds if and only if L,R,f = f, i.e., if and only if a? = f. O

Corollary 3.7. Let (Q, ) be a W A-quasigroup with the left identity element f. If
a? = f, then LyR, = Lyp>Ry> = Ry.

Proof. From (28) and the fact that L,R, is an automorphism of (Q,-) it follows
LoRy = Ly2Rg2. From (29), L,R,f = f and a® = f we obtain L,R, = Ry. O

Lemma 3.8. The permutation L,2R, is an automorphism of a W A-quasigroup
(Q,-) with the left identity element f if and only if a®> -a = f.

Proof. 1t is clear that
Loz, Loz, Lig2y2)(Re, Ry, Ra2) = (L2 Ry, Lo2 Ry, Lig2y2 Ry2
(a?) (a?)

is an autotopy of (Q,-). Therefore Lo2Rof - Loz Ray = La2)2 Rq2y is true for all
y € Q. This autotopy is an automorphism if and only if L(42)2Rs2 = L,2 Ry, i.e.,
if and only if L,2R.f = f. The last condition is equivalent to a? - a = f. O



Left loops with WA-property 195

4. Pseudoautomorphisms and subloops

A bijection 6 of a set @ is called a right pseudoautomorphism of a quasigroup (Q, -)
if there exists at least one element ¢ € @ such that (c-0z) -0y = c-0(x - y) for all
x,y € Q, ie., if (L.0,0,L.0) is an autotopy of a quasigroup (Q,-). The element ¢
is called a companion of 6 (cf. [2]).

A quasigroup with a right pseudoautomorphism has also a left identity element
(cf. [13]).

Lemma 4.1. In a WA-quasigroup with a left identity element f the translation
R, is a right pseudoautmorphism if and only if the translation L, is a right pseu-
doautmorphism and a® = f.

Proof. Suppose that R, is a right pseudoautomorphism with the companion k,
i.e., a quasigroup (@, -) has an autotopy (Li R4, Ra, Ly R,). By Lemma 3.6 , L, R,
where a? = f, is an automorphism of (Q,-).

Therefore

(LiRa, Ra, L Ro)(LaRa, LaRa, LaRy) ™' = (Lp Ly ' Ly L Ly Y)

also is an autotopy of (Q,-). The last means that L, ! is a right pseudoautomor-
phism of (@,-). Since the set of all right pseudoatomorphisms of (@Q,-) forms a
group (cf. [2]), also L, is a right pseudoautomorphism of (Q, ).

The converse statement is obvious. O

Lemma 4.2. Let (H,:) be a subquasigroup of a WA-quasigroup (Q,-). Then
2

(aH,-) is a subquasigroup of (Q,-) for any a = a*.
Proof. By (5), we have ahy - ahy = a® - hihy = a - hihs € aH. Thus the set aH is
closed with respect to the quasigroup operation.

The equation ahy - * = ahg, where hi, ho € H, has a unique solution = € Q.
Obviously, z = ax’ for some 2’ € Q. Thus, ahy - ax’ = a - hiz’ = ahy. Hence
hi1z' = ho, and consequently, 2’ € H. Therefore z = ax’ € aH.

Analogously we prove that the equation y-ah; = ahs has a solution in aH. O

Lemma 4.3. Let (Q,-) be a WA-quasigroup with the left identity element f and
(Q,0) be a loop defined by (12). If (Q,-) satisfies the inverse property, then:

(1) Rfc = ¢, where ¢ is the identity permutation,

() Iy =1, I, =IRy for iz -zy=y, zy-Ly=2x, Izo(rxoy) =y,
(#31) I and I, are automorphisms of a quasigroup (Q,-) and a loop (Q,0),
(w) LI, =Ry, LI, =11,

Proof. (i). Indeed, I, f = I,f = f. Thus zf - f = z for any = € Q. So, R} =¢.

(#4). Since z oy (12 R;lx -y = Rz -y, by (4), Ry is an automorphism of

(Q,-) and the corresponding commutative Moufang loop (@,0) (Theorem 1.11
and Corollary 2.2).
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Going now in the equation I;z(x - y) = y to the loop operation o we obtain
Rz o (Rfxoy) =y. Thus RfIlRf:E o(xzoy)=1y. Consequently, I = RfIlR]Tl
and [; = R;lfRf = I, since in (Q, o) automorphisms R; and I commute.

Similarly, going in the equation (x-y)I,y = x to the loop operation o we obtain
Ry(Rjxoy)ol,y = x. Thus, (zoRsy)ol,y = x and (a:oy)oITRlily = z. Therefore,
I =I.R;" and I, = IR;.

(7i7). It is a consequence of (iz) and (7).

(tv). Since I = I; and I, = IRy, we have I;I, = I2Rf = Ry. Analogously,
I.I;, =IRsI = Ry. O
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On entropicity in n-ary semigroups
Sonia Dog

Abstract. We investigate entropicity and the generalized entropic property in n-ary semigroups
derived from binary semigroups satisfying for some fixed k > 2 the identity z* = x.

1. We say that an n-ary semigroup (S, f), where n > 2, has the entropic property
or is entropic (medial in other terminology), if it satisfies the identity

f(f(l'llv~"7m1n);f(x21a“'7x2n)~'~af(xn1;~"axnn)) -

f(f(x117 e axnl)vf(m127 e 7'7;77,2) LI} f(xlna e ;xnn))
If in (S, f) there exist n-ary terms ti,ts,...,t, such that (5, f) satisfies the
identity
f(f(xllﬂ et 7‘:6171)7 f(l'gl, e 7$27l) R af(xnla s axnn)) =
f(tl(l‘n, e ,l‘nl),tg(l‘lg, e ,xng) e ,tn(ljn, . ,J,‘»,m)),

then we say that (S, f) has the generalized entropic property. These two properties,
studied by many authors with various names, are not equivalent in general. The
entropicity of n-ary semigroups is a generalization of mediality:

TY - 2U = TZ - YU,
and semimediality:

TY 2T = X2 YT
of binary algebras (cf. for example [17] or [22]).

The entropicity and the generalized entropicity in idempotent n-ary semigroups
were studied in [15]. Below we give very simple (almost trivial) proofs of results
given in this paper. We also present some generalizations of these results.

2. We start with some comments on entropic n-ary groups (n > 2).
In [11] it is proved that an n-ary group (S, f) is entropic if and only if it is
semiabelian, i.e., if

f<x1a$2;-~-7xn71;mn) = f(xnax%'-'awnfhxl)

for all x1,xo,...,2, € S.

2010 Mathematics Subject Classification: 20M15, 08B26
Keywords: n-ary semigroup, n-ary group, generalized entropic property, medial law.
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From [5] (Corollary 15) it follows that an n-ary group (S, f) is entropic if and
only if for some a € S and all z,y € S we have

f(m,a,...,a,y) :f(y,a,...,a,m).

Thus, by Gluskin-Hosszi theorem (cf. [12, 13]) any entropic n-ary group (S, f)
can be presented in the form

flxy,@a, ... 2,) =21 0@(22) 0 @*(x3) 0+ 0" 2(Tp_1) 0Ty 0D,

where (S,0) is an abelian group, ¢ its automorphism such that ¢"~! = id and
p(b) = b for some fixed element b € S (cf. [7]). Moreove, as it is proved in [24]
(see also [10]), (A, 0), ¢ and b are uniquely determined.

3. Mal’cev n-semigroups, i.e., n-ary semigroups (5, f) satisfying the identities

fle,y,...;y) =2 and f(y,...,y,x) =z, (1)

studied in [15], are in fact n-ary groups. This follows from Proposition 3.1 in [8].
It also can be deduced from results proved in [25]. Hence, Mal’cev n-semigroups
(as n-ary groups) are cancellative, i.e.,

f(xl,...,a:i,17a,xi+1,...,xn) = f(.’L‘l,...,l’i,17b,l’i+1,...7$n) =a=5b (2)

foralli=1,...,nand a,b,x1,...,2, € S.

On the other hand, an n-ary semigroup is cancellative if and only if it satisfies
(2) for some i = 2,3,...,n — 1 or, equivalently, for ¢ = 1 and ¢ = n (Lemma 2 in
[6]). Hence, in an idempotent i-cancellative n-ary semigroup (S, f) we have

f(x’y""’y):f(1.7y7"'7y3f(y7""y)):f(f(m7y7"'7y)’y""’y)7

which implies the first identity of (1). Analogously we obtain the second identity.
(It is Lemma 3.2 in [15]). Thus an idempotent n-ary semigroup i-cancellative for
some i = 2,...,n—1or for i = 1 and ¢ = n is an n-ary group satisfying (1).
Hence, Proposition 3.3 in [15] is trivial.

As a simple consequence, we obtain Theorem 3.5 from [15]: @ Mal’cev n-semi-
group is entropic if and only if it is semiabelian.

4. By Gluskin-Hosszu theorem, for any ternary Mal’cev semigroup (S, f), as for
a ternary group, there exists a group (5, ), its automorphism ¢ and an element
b € S such that ¢(b) = b and

f(x,y,2) =z 9(y) - ©°(2) - b.

Since a ternary Mal’cev semigroup is idempotent, ¢(x) - p?(z) - b = e. Hence,
p@)=2"t-b"tand b=! = ¢(b~!) = e. Therefore, b = e and ¢(z) = ~!. Thus,
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for any ternary Mal’cev semigroup (S, f) there is an abelian group (A, +) such
that

fl@,y,2) =z —y+2z

From this, as a simple consequence, we obtain all results proved in Section 4
in [15]. Theorem 4.5 in [15] is a special case of Artamonov’s Proposition 6 (cf.
[2]). Tt also can be deduced from the description of free n-ary groups presented by
Shchuchkin [14, 18, 19] and Sioson [23].

5. We say that an n-ary semigroup (S, f) is derived from a semigroup (S,-) if
flz1,z9,...,2p) = 21 29+ ... x, for all z1,...,z, € S. Obviously, an n-ary
semigroup derived from an entropic semigroup is entropic, too. For a surjective
semigroup, i.e., a semigroup (S, -) with the property S? = S, we have a stronger
result.

Proposition 1. An n-ary semigroup (S, f) derived from a surjective semigroup
(S,-) is entropic if and only if (S,-) is entropic.

Proof. An entropic n-ary semigroup (S, f) derived from a surjective semigroup
(S,-) is semiabelian and each its element can be presented as a multiplication of
n — 1 elements of S. Thus, for any x,y,a,b € S, we have

xza - by = x(agas - - ay) - (babs -+ by)y = x(agas - - apb)bs - bpy
= x(bsas - - 4pa2)bs - - - by = xba(azay - - - anasbs)by - - - bpy
= xbg(b3a4 s anagag)b4 e bny = $b2b3(a4 e ana2a3b4)b5 e bny
=...=x(babsg---by) - (agas---a,)y = xb- ay,
which completes the proof. O

We say that a semigroup (S,-) is k-idempotent (k > 1), if for all z € S we
have ¢ = 2. An n-ary semigroup derived from an n-idempotent semigroup is
obviously idempotent, but a (k + 1)-ary semigroup derived from a k-idempotent
semigroup is not idempotent. So, results proved for n-ary semigroups derived from
k-idempotent semigroups are a significant generalization of results proved in [15].

Lemma 2. Any k-idempotent semigroup has at least one idempotent.

Proof. In a 2-idempotent semigroup each element is idempotent. It is clear. For
k > 2, we have a1 = aFaF=2 = ¢*~1¢*~1, which means that in a k-idempotent

semigroup each element a*~! is idempotent. O

Proposition 3. A k-idempotent semigroup is entropic if and only if it is semi-
medial.

Proof. An entropic semigroup is obviously semimedial. To prove the converse
statement observe that in a semimedial semigroup
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(ay2u)? = (wy(zu)z)yzu = (x(zu)yz)yzu = o(=(uya)yz)u = o(zy(uya) =)u

= wzy(uy(wz)u) = way(u(ez)yu) = (v2yu)?
and
(z2yu) (zyzu) = z2y(u(zy)zu) = z2((yu)zz(yu)) = (v2yu)(z2yu) = (z2yu)?.

Thus, in a k-idempotent semigroup

ryzu = (vyzu)f = (vyzu)?(zyzu)*—2 = (vzyu)?(zyzu)—2 = ... = (vzyu)*
= zzyu, if k is even.
For k = 2t + 1 we have
ryzu = (zyzu)? Tt = (zyzu)?(eyzu)? ! = ... = (zzyu)? (zyzu)
= (zzyu)*~H(wzyu) (vyzu) = (vzyu)®~Hazyu)? = (zzyu)® !
= z2yu,
which completes our proof. O

As a consequence, we obtain

Corollary 4. [15, Lemma 6.3] An n-idempotent semigroup is entropic if and only
if it is semimedial.

Proposition 5. An n-ary semigroup derived from a k-idempotent semigroup is
semiabelian if and only if it is commutative.

Proof. Let (S, f) be a semiabelian n-ary semigroup derived from a k-idempotent
semigroup (5,-). Then for all z,y € S we have

k—1 k—lxk—l

Ty =TT Yy =xx y=...:xmk_l...xk_ly:f(x,xk_l,...,x y)

= fly, 21, . 2k le) =yl b e = g,
which means that (.59, -) is a commutative semigroup. Consequently, (S, f) is com-
mutative, too.
The converse statement is obvious. O

Corollary 6. [15, Corollary 6.6] For an n-ary semigroup (S, f) derived from an
n-idempotent semigroup (S,-) the following statements are equivalent:

(a) (S, f) is semiabelian,
(b) (S,-) is commutative,

(¢) (S,f) is commutative.

6. Below we present simple proofs of some other results presented in [15]. For this
we will use the concept of the covering semigroup.

As is well known (cf. for example [3] or [4]) each n-ary semigroup (S, f) can
be isomorphically embedded into some semigroup (S*,-), called the covering or
enveloping semigroup, in this way that f(x1,z9,...,2,) =21 - 22 ...z, for all
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Z1,-..,T, € S C 5% The construction of such semigroup is very similar to the
construction of the covering group for an n-ary group (cf. [16]). Unfortunately,
as it was observed in [9], two non-isomorphic n-ary semigroups (groups) may have
the same covering semigroup (group).

Proposition 7. [15, Proposition 5.1] An associative and idempotent n-ary ope-
ration f satisfying the identities

flz,...,z,y) = fly,z, ..., 2) = f(z,y,2,... )

or

18 commutative.

Proof. Let (S, f) be an idempotent n-ary semigroup satisfying the above identities.
Then in its covering semigroup (S*,-), for every x,y € S, we have 2" = z and

2"y = ya" ! = zya"2. So,

-1

zy=a"y=x-2" ly=x-y2" " =ayz"? x =ya" "t x = ya" =y

for every z,y € S. Hence f is a commutative operation. O

An n-ary semigroup (S, f) is called a left zero n-semigroup if it satisfies the
identity f(x1,...,x,) = x1. If it satisfies the identity f(z1,...,z,) = x,, then it
is called a right zero n-semigroup.

Proposition 8. [15, Proposition 5.3] Let (S, f) be an n-ary semigroup. If (S, f)
satisfies the identity f(x,...,x,y) = x, then it is a left zero semigroup. If (S, f)
satisfies the identity f(y,x,...,x) = x, then it is a right zero semigroup.

Proof. In the covering semigroup of (S, f) for all x,y € S we have z" 'y = z and
2" = z. Thus 2y = 2™y = x - "'y = zz, and consequently,

flxi,xa, ... xy) = (T1@2)T324 - - Ty = (X121) X324 - - Ty, = T1(T123) T4 -+ Ty
=TTy Ty = ... =21 21 (T12p) = 31
for all z1,...,2, € S. Hence (S5, f) is a left zero semigroup.
The second sentence can be proved analogously. O

7. In the case of an n-ary semigroup (S, f) derived from a binary semigroup (S, -),
the generalized entropic property has the form

($11'...'.’L‘ln)'(z‘gl'...'l‘gn)'...'(Inl'...'Jinn): (3)

ti(zit, . ) - ta(@12, - Tn2) ot (Tan, - Tin)s

where t1,t,...,t, are some n-ary terms of (S, f).
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We start with the following two lemmas which are a generalization of results
proved in [15] for idempotent n-ary semigroups derived from binary semigroup
containing an idempotent element. We do not assume that considered semigroups
are idempotent.

Lemma 9. If an n-ary semigroup (S, f) derived from a binary semigroup (S, )
with an idempotent e satisfies the generalized entropic property (3), then for every
a € S we have

ti(e,a,e,...,e)-e=eae =e-ty(a,e,- e).

Proof. The proof is the same as the proof of Lemma 6.4 in [15]. O

Lemma 10. If an n-ary semigroup (S, f) derived from a binary semigroup (S, )
with an idempotent e satisfies the generalized entropic property (3), then

eabe = ebeae
for all a,b € S.

Proof. The proof is the same as the proof of Lemma 6.5 in [15]. O

Theorem 11. If an n-ary semgroup (S, f) derived from a k-idempotent semigroup
(S,-) has the generalized entropic property, then (S,-) is entropic.

Proof. For any a € S consider the set
Sy = {a"1sa*1: s € S}.

It is not difficult to see that (S,,-) is a semigroup and e = a*~! is its neutral

element. So, (S, f) is an n-ary subsemigroup of (5, f). Moreover, from the

generalized entropic property (3), for all z4,...,z, € S, we have
X1 Ty =(x1-€...-e) - (xa-e-...c€) ... (Tp-e ... €)
=t1(x1,22,...,2,) - ta(e,e,...,€) ... - tule,e, ... €)
:tl(xl,mg,...,xn).
Thus t1(z1, za, ..., T,) = T1:T2-. . .-Ty,. Analogously we obtain t(z1, z2,...,2,) =
T1-To- ... T, for other terms to, ..., t,.
So, in this case, (3) has the form
(1‘111‘1”)(3321332”)(J?nlxnn):
(1‘11~...-l‘nl)-(xlg-...-xng)-...~(.'1,‘1n'...-xnn),

which, for 1, # e, 2,1 # e and z;; = e in other cases, gives the commutativity of
(Hg, ). Therefore, for all a,b,c € S we have

A 1b e cab 1 = aF1paF 1 b leab Yt = aFleaF . aF bl = oF e baF— 1

So, a*~1b - ca*~! = aF~lc . ba*~!. This implies ab - ca = ac-ba. Thus (9,) is
semimedial. Proposition 3 completes the proof. O
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Corollary 12. [15, Theorem 6.7] Let (S, f) be an idempotent n-ary semigroup
derived from an n-idempotent semigroup (S,:) and assume that (S, f) has the
generalized entropic property. Then (S,-) is entropic.

Theorem 13. A k-idempotent semigroup has the generalized entropic property if
and only if it is entropic.

Proof. Let (S,-) be a k-idempotent semigroup satisfying the generalized entropic
property. Then there are terms ¢; and ¢5 such that

Ty - zu =1 (1’7 Z)tQ(yv ’LL)

for all z,y,z,u € S. By Lemma 2, the set Eg of all idempotents of a semigroup
(S,-) is non-empty. Since ef -ef = ti(e,e)ta(f, f) = ef for all e, f € Eg, (Es,*)
is a subsemigroup of (S,:). By [1, Proposition 3.11], (Eg,-) is entropic. This
completes the proof for k = 2 because in this case S = Ejg.

For k£ > 2, for every a € S we have ¢« = azxa and ax = za, where x =
a*=2. So, (S,-) is a completely regular semigroup whose idempotents forms a
subsemigroup, i.e., a normal band. Hence, in this case, the proof is identical with
the second part of the proof of Theorem 6.8 in [15]. Namely, by [20, Theorem 4.1
and Corollary 4.4], a semigroup (S, -) is a normal band of groups. Thus, by [21,
Theorem 3.2], it is a subdirect product of a band B and a semilattice L of groups.
Since, by the definition of subdirect product, B and L are homomorphic images of
a semigroup (S, -), they satisfy all identities satisfied by (.5,-). Hence, they satisfy
the generalized entropic property. This means that a band B is entropic (see the
case k = 2). Every group with the generalized entropic property is commutative [1,
Proposition 4.7] and a semilattice of commutative groups is commutative. Thus
a semilattice L is commutative and hence entropic. Consequently, (S,-), as a
subdirect product of entropic B and L, is entropic. O

Corollary 14. |15, Theorem 6.8] An n-idempotent semigroup (S,-) has the gene-
ralized entropic property if and only if it is entropic.
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On the fine structure of quadratical quasigroups

Wieslaw A. Dudek and Robert A. R. Monzo

Abstract. We prove that quadratical quasigroups form a variety Q of right and left simple
groupoids and that the spectrum of Q is contained in the set of integers equal to 1 plus a
multiple of 4. Properties of quadratical quasigroups are described and their inter-relationships
are explored. Every element of a quadratical quasigroup is proved to belong to a 4-cycle. These
results are applied to find conditions under which the group of additive integers, modulo n,

induces quadratical quasigroups.

1. Introduction

This paper builds on the work of Polonijo [3], Volenec [5] and Dudek [1] on quadra-
tical quasigroups. Polonijo [3] and Volenec [5] proved that a quadratical groupoid
is a quasigroup. Volenec [5, 6] gave a motivation for studying quadratical quasi-
groups, in terms of a geometrical representation of the complex numbers C' as
points of the Euclidean plane. He defined a product x on C' that defines a quadra-
tical quasigroup and in which the product of distinct elements = and y is the third
vertex of a positively oriented, isosceles right triangle, at which the right angle
occurs. Other geometrical motivations for the study of quadratical quasigroups
one can find in [7, 8.

Volenec proved in [5] a number of properties of quadratical quasigroups, which
are listed in Theorem 2.2 below. These properties tell us a great deal and, indeed,
we apply them to prove that quadratical quasigroups form a variety Q (Theorem
2.30). Inter-relationships amongst the properties of quadratical quasigroups are
explored in Section 2.

We begin to amplify our understanding of the fine structure of quadratical
quasigroups in Section 3. In so doing, we give further meaning to the quad in the
word quadratical, in terms of 4-cycles. We apply this to prove that the order of
a finite quadratical quasigroup is m = 4t 4+ 1 for some ¢t € {0,1,2,...} (Proposi-
tions 3.1 — 3.4), fine tuning Dudek’s result that the order of a finite quadratical
quasigroup is odd [1, Corollary 1].

In Section 4 we prove results about conditions under which the group of additive
integers, modulo n, induces quadratical quasigroups. Results in this section rely
heavily on Dudek’s Theorem (cf. Theorem 4.1) that proves that every quadratical
quasigroup is induced by a commutative group.

2010 Mathematics Subject Classification: 20M15, 20N02
Keywords: quadratical quasigroup, variety, dual groupoid, cycle.
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This paper is the first of two by the authors on quadratical quasigroups. The
second paper will examine the fine structure of quadratical quasigroups in detail
and introduce the concept of a translatable quadratical quasigroup. Quadratical
quasigroups of many new orders will also be given, along with ideas about possible
directions of future research in this area.

2. Properties of quadratical groupoids
Definition 2.1. A groupoid (Q, ) has property A if it satisfies the identity
TY T = 2T Y2, (4)

It is called right solvable (left solvable) if for any {a,b} C @ there exists a unique
x € G such that az = b (za = b). It is left (right) cancellative if zy = xz implies
y = 2z (yx = zx implies y = 2). It is a quasigroup if it is left and right solvable.

Note that a right solvable groupoid is left cancellative and a left solvable
groupoid is right cancellative.

Volenec [5] defined a quadratical groupoid as a right solvable groupoid satisfying
property A. He proved that a quadratical groupoid is left solvable and satisfies
the following identities:

Theorem 2.2. A quadratical groupoid satisfies the following identities:

x=x* (idempotency), (1)
x-yr=axy-x (elasticity), (2)
xryr=zxy-z=yx-y (strong elasticity), (3)
yr-zy =z (bookend), (4)
x-yz=uxy- -xzz (left distributivity), (5)
xy-z=uxzz-yz (right distributivity), (6)
xy-zw=xz-yw (mediality), (7)
z(y - yx) = (zy - )y, (8)
(zy - y)z = y(z - yz), (9)
xy =zw «— yz =wz (alterability). (10)

Corollary 2.3. [2 and 3, Theorem 5] A quadratical groupoid is a quasigroup.

Note that throughout the remainder of this paper we will use the fact that
quadratical groupoids are quasigroups and satisfy properties (1) through (10),
often without mention. Note also that property (3) allows us to write the term
xyx without ambivalence in any quadratical quasigroup.

Definition 2.4. We define Q to be the collection of quadratical quasigroups.
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Theorem 2.5. A groupoid Q is a quadratical quasigroup if and only if it satisfies
(4), (3), (4) and (7).

Proof. (=) This follows from Theorem 2.2 and the definition of a quadratical
quasigroup.
(<) First we prove that @ is left cancellative. Suppose that ax = ay. Then,
@ az=ay (4) ®) (4) az=ay “)
r=ar-ra = ay-ra = Yr-y = ry-r = ar-ya = ay-ya = y.
So x = y and @ is left cancellative.

Property A implies 22 - © = 2?22 and so left cancellativity implies = z2.
Hence, @ is idempotent. Since @ is medial and idempotent it is therefore (left and
right) distributive.

Using left and right distributivity, mediality, idempotency and strong elasticity
we have

a(b-ba) =ab-(a-ba) =ab- (ba-b) = (a-ba)b= (ab-a)b.
Hence,
a(b-ba) = (ab - a)b. (11)
We now prove that az = b has a unique solution x = (b-ba)- (b-ba)(ba-a). Indeed,
az 2 a(b-ba) - (a(b-ba) - a(ba - a))

S (aba)(b-ba) =LY ab-ba Ly,

6).() (aba - b) - (aba - b)(aba - a)

The solution x is unique because @ is left cancellative. We have proved that @ is
right solvable and so by definition, @) is a quadratical quasigroup. O

Corollary 2.6. Q is a quadratical quasigroup if and only if it a medial, idempotent
groupoid that satisfies property A.

Proof. (=) This follows from the definition of a quadratical quasigroup and from
Theorem 2.2.
(<) Let @ be a medial, idempotent groupoid that satisfies property A. By Theo-
rem 2.5 we need only show that @ satisfies (3) and (4).

Since @ is idempotent and satisfies property A, for all {z,y} C @,

7 A
r =22 @ 2 . yx - 2y,

so @ satisfies (4). Also, idempotency and mediality imply (5) and so

@ 2 (1 2 @ (4) @
ey x=wy-a? =y = vy = yroyy = gy,

which proves (3). O
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Theorem 2.7. A groupoid satisfying (4) and either (5) or (6) is idempotent

Proof. From (4) we obtain z?z* = z for any x € G. If Q also satisfies (5), then

22z = 22 (222?) © (222?)(222?) = 22,
Also,
r = 222% = (2%2)(2%7) © (z22)2?) ((222)2) = (222?)(2%2) = 222
Then
2? = 2%r = (2%2)(v2?) Y.
Similarly, in a groupoid satisfying (4) and (6), » = 2%z, 22 = 22 and 2? = v2? =
(z%x)(x2?) = x, by (4). O

Example 2.8. A groupoid @ of order greater than or equal to 2 and satisfying
the identity xy = zw is distributive but not idempotent.

Example 2.9. The following groupoid @ satisfies (4) but not (1), (2), (7), (5),
(10). Moreover, it is not left solvable or right solvable.

SRS
SIS SN RS
[SEERSEER IR S N
8 & € g|w
nNe 8 e

Theorem 2.10. A groupoid Q satisfying (4), (5), (6) and (7) is cancellative.

Proof. Suppose that ax = ay for any {a,z,y} C Q. By Theorem 2.7, ax = (ax)?.
(4

Then, ax = ax -axr = ax -ay = ay - ax = a-yr = a - xy. Consequently, yx 4

(a-yz)(yz-a) = az-(yz-a) © (az-yz)(az-a) © (ay-x)(ay-a) © ay-ra = ar-ra Y.
Similarly, zy = y. So y = 2y - yr = yr = =.
Analogously, xa = ya implies x = y, so @ is cancellative. O

Theorem 2.11. A groupoid satisfying (4), (5), (6) and (7) also satisfies (3).

Proof. Theorems 2.7 and 2.10 imply that @ is idempotent and cancellative. So

(6) ()
xy-x = zy-xx = z-yx. Hence, (zy-2)y = (x-yx)y = 2y - (yz-y) = (vy-yx)(zy-y)
@ ®) 2 _ : _ ®)
= ylay-y) = (yv-zy)y* = (y - zy)y and, by cancellation, zy - =y - xy = yx - y.

Therefore, @ is strongly elastic, i.e., it satisfies (3). O

Corollary 2.12. An idempotent medial groupoid satisfying (4) is cancellative and
strongly elastic.

Proof. Medial idempotent groupoids are distributive. The corollary follows from
Theorems 2.10 and 2.11. O
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Theorem 2.13. A left (or right) cancellative, medial, idempotent groupoid satis-
fying (3) satisfies (4).
2

Proof. Mediality and idempotency imply distributivity. Then, (ca - ac)® = ca-ac =
(ca-a)(ca-c). Thus, by (3) we obtain

(ca-ac)* =ca-ac= (ca-a)(c-ac) = (ca-a)(ca-c) = (ca-a)(ac-a) = (ca-ac)a
and so left cancellativity implies ca - ac = a. Also, using right cancellativity,
(ca-ac)® = ca-ac=ca-(ac)® = (c-ac)(a-ac) = (a-ca)(a-ac) = a(ca - ac)
implies a = ca - ac. O

Theorem 2.14. A groupoid Q is a quadratical quasigroup if and only if it is
idempotent, medial and satisfies (4).

Proof. (=) This follows from Theorem 2.2.

(<) By Corollary 2.6, we need only show that zy-x = zz-yz. But, since mediality
and idempotency imply left distributivity, zz-yz = (zz-y)(zz-z) and, by Corollary
212, zx-yz = (zx - y)(xz - ) = (22 - 22)(yr) = = - yxr = 2y - . O

Definition 2.15. The dual of a groupoid (Q, -) is the groupoid @* = (Q, *), where
THRY =1y T

Corollary 2.16. The dual of a quadratical quasigroup is a quadratical quasigroup.

Corollary 2.17. Any subgroupoid of a quadratical quasigroup is a quadratical
quasigroup.

Note that an idempotent semigroup satisfies (4) if and only if it satisfies the
identity x = xyx; that is, if and only if it is a rectangular band. A semigroup with
property A is cancellative if and only if it is trivial.

Theorem 2.18. An idempotent groupoid satisfying (4) and (10) is elastic.
Proof. Indeed, = = 22 = yx - xy implies z - yx = zy - z. O
Theorem 2.19. An elastic groupoid satisfying (4) is idempotent.

2, .2 2 2 0

Proof. 2% = z2? - 2%z = 2z - x2? = x.

Theorem 2.20. A groupoid Q is a quadratical quasigroup if and only if it satisfies

(2), (4) and (7).

Proof. (=) This follows from Theorem 2.2.
(<) Assume that @ satisfies (2), (4) and (7). By Theorem 2.19, @ is idempotent.
By Theorem 2.14 then, @) is quadratical. O

Theorem 2.21. An idempotent groupoid satisfying (2) and (10) satisfies (4).
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Proof. z-yx = zy - x implies yz - 2y = 22 = x. O

Corollary 2.22. An idempotent groupoid satisfying (10) satisfies (2) if and only
if it satisfies (4).

Proof. This follows from Theorems 2.18 and 2.21. O
Theorem 2.23. A medial groupoid satisfying (4) satisfies (10).

Proof. Suppose that xy = zw. Then zw-yr = zy-yxr =y and wz-xy = wz-zw = 2.
Therefore, yz = (zw - yx)(wz - vy) = (2w - wz)(yz - vY) = w. O

Theorem 2.24. A groupoid Q is a quadratical quasigroup if and only if it satisfies
(1), (2), (7) and (10).

Proof. (=) This follows from Theorem 2.2.
(«=) Suppose that @ satisfies (1), (2), (7) and (10). By Theorem 2.21, it satisfies
(4). By Theorem 2.20 it is a quadratical quasigroup. O

Theorem 2.25. A left (or right) distributive groupoid satisfying (3) and (10) has
the property A.

Proof. Since in a left distributive groupoid y - zx = yz-yz, zx-yz =yr-y = xy- .
Similarly, in a right distributive groupoid. O

Theorem 2.26. In a quadratical quasigroup x - yz = xy - z if and only if x = z.

Proof. (=) Using Theorem 2.2, = - yz = xy - z implies zy - £z = xz - yz implies
yz - xy = (v2)? = 1z = 22 - z implies xz = zx - z implies x = zx implies x = z.
(<) By Theorem 2.2, a quadratical quasigroup is elastic and so z-yx = zy-z. O

Definition 2.27. A groupoid is nowhere commutative if xy = yx implies = = y.
Theorem 2.28. Quadratical quasigroups are nowhere commutative.

Proof. Since by Theorem 2.2, quadratical quasigroups are alterable and idempo-
tent, xy = yx implies y? = z? implies y = . O

Theorem 2.29. A groupoid Q is a quadratical quasigroup if and only if it satisfies
(4), (5) and (10).

Proof. (=) This follows from Theorem 2.2.

(<) By Theorem 2.7, @ is idempotent. Therefore, by Theorem 2.14 we need only
show that @ is medial. Observe that by Theorems 2.11 and 2.25, this groupoid has
the property A. Hence, wz-w = zw-xz = yw-xy and, using (10), xz-yw = xy- zw.
So it is medial. O

As a consequence of the above results we obtain
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Theorem 2.30. The class of all quadratical quasigroups form a variety uniquely
defined by

(A), (3), (4), (7), or

(1), (4), (7), or

(2), (4), (7), or

(4), (5), (10).

Definition 2.31. A subset I of a groupoid Q is a right (left) ideal of Q if ig € T
(gi € I) for all i € T and all g € Q). The subset I is called an ideal if it is a right
ideal and a left ideal. A groupoid Q is simple (right simple; left simple) if for every
ideal (right ideal; left ideal) I of @, I = Q.

Theorem 2.32. Groupoids satisfying (4) are right simple and left simple groupoids.

Proof. Suppose that I is a right or left ideal of a groupoid @ satisfying (4). Let
1€l and g € Q. Then, g=1ig-gi € [ and so I = Q. O

Corollary 2.33. Quadratical quasigroups are right and left simple.

3. Cycles in quadratical quasigroups

Let @ be a quadratical quasigroup with a,b € @ and a # b. Suppose that C' =
{z1,xa,...,2,} C @ consists of n distinct elements, such that aba = zi1x9 =
Toly = T3Ty = ... = Tp_1Z, = Tpx1. Then C will be called an (ordered) n-cycle
based on aba. Note that x; # aba, or else 1 = z9 = ... = x, = aba. Note
also that if C = {x1,29,23,...,2,} C @ is an n-cycle based on aba, then so is

Ci= {xiv T(i41)modns L(i+2)modns - -+ » x(iJrnfl)modn}-
Proposition 3.1. If n-cycles exist in a quadratical quasigroup then n = 4.

Proof. Since aba = x,x1 = x122 = 2923, by (10) 1 = x22, and xo = x371. Now
T3 - Toly = T3k - T3Ly = T3X2 - aba = (3 - aba)(xs - aba). But by (10), aba - zo =
x3 - aba and so w3 - xoxy = (23 - aba)(x2 - aba) = (aba - x3) (22 - aba) = o = x327.
Hence, by cancellation, x1 = zox4 = x2x, and so x4 = Ty,- O

Proposition 3.2. Let Q be a quadratical quasigroup with a,b € Q and a # b.
Then every element x1 # aba of Q is a member of a 4-cycle based on aba.

Proof. Let a,b € Q and a # b. Suppose that ;1 # aba for some x; € Q. Using
right solvability, we can solve the equations aba = z1x, aba = zy, aba = yz and
aba = zw. If we define o = x, x3 = y, x4 = z and x5 = w, then aba = x12x2 =
ToX3 = T3T4 = T4T5. USiIlg (10), Ty = T3 and IT5T1 = 2Ty = T2 " T5T3 = T2T5 *
xox3 = xoxws-aba. Therefore, by (10), aba-x5 = x1-x2x5 = 122 125 = aba-x1T5.
Hence 25 = 125 and 21 = x5. So we have proved that {z1, 2o, 23,24} is a 4-cycle
based on aba. O
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Proposition 3.3. Let C and D be two 4-cycles based on aba (a # b) in a quadra-
tical quasigroup. Then either C =D or CN D = (.

Proof. Suppose that C' = {x1, x2, 23,24} and D = {y1,y2,y3,ya}. If £1 = y1, then
aba = 19 = Y1y2 = T1y2 and S0 xo2 = y3. Then, aba = xox3 = Yoz = Yo2us3
and so x3 = y3. Finally, aba = x3x4 = ysz4 = y3ys and x4 = y4. Hence, C' = D.
Similarly, if 1 = yo, then we can prove that zo = y3, 3 = y4 and z4 = y; and
C = D. Similarly, if 21 € {ys, y4} it is straightforward to prove that C' = D.

The proofs that C' = D if x5 € D or x3 € D or x4 € D are similar. O

Proposition 3.4. Any finite quadratical quasigroup has order m = 4t + 1 for
some t € {0,1,2,...}.

Proof. A finite quadratical quasigroup consists of the element aba and the union
of its disjoint 4-cycles based on aba. By definition, no cycle contains the element
aba. The proposition is therefore valid. O

So, later we will assume that m = 4t 4+ 1 for some natural ¢.

4. Existence of quadratical quasigroups

We start with the following theorem proved in [1].

Theorem 4.1. A groupoid (G,-) is a quadratical quasigroup if and only if there
exists a commutative group (G, +) in which for every a € G the equation z+2z = a
has a unique solution z = %a € G, and two its automorphisms @, 1 such that for
all z,y € G we have

z-y =) +9(y), (12)
o(x) + ¥ (z) = =, (13)
2pp(z) = x. (14)

From the proof of this theorem it follows that @i = Y. So, if ¢ # 9, then
(G, +) induces two quadratical quasigroups: G = (G, -) and its dual G* = (G, o),
where zoy = y-x. Clearly, in any case G # G* since zoy = x -y means that (G, -)
is commutative which together with the basic identity (A) gives zy -z = zx - yz =
xz-yz = xy- z. This implies z = 2, a contradiction. Since, G and G*, by (12), are
isotopic to the same group, they are isotopic too. Moreover, from Theorem 3.3 in
[2] it follows that all parastrophes of a quadratical quasigroup are isotopic.

Corollary 4.2. There are no quadratical quasigroups with left (right) neutral el-
ement.

Proof. If e is a left neutral element then x = e - x = ¢(e) + ¥(x). Since P(z) =
x — ¢(e) is an automorphism of a group (Q,+), we have (z + y) — p(e) = ¥(z +
y) = Y(x) + Y(y) = (x +y) — 2¢(e), which implies ¢(e) = 0. Thus ¥(x) = =z,
consequently, by (13), ¢(x) = 0 for every x € @, a contradiction.

Analogously for quasigroups with a right neutral element. O
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Corollary 4.3. There are no quadratical quasigroups that are loops or groups.

Corollary 4.4. If a quadratical quasigroup Q is induced by groups (Q,+) and
(Q,0), then these groups are isomorphic.

Proof. Indeed, 2y = ¢(x) +¢(y) = a(x)oB(y). Thus, pa~'(z) +9B~ ' (y) = zoy.
So, groups (@, +) and (Q,0) are isotopic. Thus, by Albert’s theorem, they are
isomorphic. 0

Corollary 4.5. Quadratical quasigroups are isotopic if and only if they are induced
by isomorphic groups.

Proof. Let quadratical quasigroups 1 and Q2 be induced by groups (Q1, *;) and
(Q2, *2), respectivety. If quasigroups 1 and @2 are isotopic, then groups (Q1, *1)
and (Q2, *2) also are isotopic, and consequently, they are isomorphic. O

Corollary 4.6. Quadratical quasigroups induced by the same group are isotopic.
Corollary 4.7. Quadratical quasigroups of the same prime order are isotopic.

Theorem 4.8. A quadratical groupoid induced by the additive group Z,, has the
form

z-y=ax+ (1—a)y, (15)
where a € Z,, and

2% —2a+1=0. (16)

Proof. First observe that in the additive group Z,,, where m = 4t + 1, for every
b € Z, there exists z € Z,, such that z + z = b. Indeed, if b is even, then
obviously z = 4b € Zy,. If bis odd, then 1 + b is even and z + z = b+ 4t + 1 for
z=2+4tez,.

In Z,, the equation (16) has the form 2a(a—1)+1 = 0 = km. Let d be a positive
common divisor of a and m. Since m is odd, d also is odd and d|(2a(a — 1) + 1).
Consequently, d|1. Hence (a,m) = 1. Analogously we can see that (a —1,m) = 1.
So, for any a satisfying (16) we have (a,m) = (1 — a,m) = 1. Thus the maps
p(z) = axz and P(x) = (1 — a)x, where a € Z,, satisfies (16), are automorphisms
of the additive group Z,, and satisfy (13), which in this case is equivalent to (15).
Since (14) is equivalent to (16), a quasigroup defined by (15) is quadratical. [

Corollary 4.9. A groupoid induced by Z,, by (15) is quadratical if and only if its
dual groupoid with the operation

z-y=(1-a)z+ay (17)

is quadratical.
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Proof. Indeed, as it is not difficult to see a satisfies (16) if and only if (16) is
satisfied by 1 —a. So, a and 1 —a are roots of the polynomial w(z) = 222 — 2z +1.
If a = 1 —a, then w(z) = 2(z — a)? = 222 — 4ax + 2a>. Hence 2a = 1 and 2a® = 1.
Thus, 1 = 4a® = 2. Obtained contradiction shows that a # 1 — a. Thus, (15) and
(17) define two different quadratical quasigroups. O

Theorem 4.10. If m = 4t+1 is prime, then the additive group Z,, induces exactly
two quadratical groupoids. They have form

rojy=amz+ay and  zoyy=axxr+ay,
where a1 =2t +1+s, ay =2t + 1 — s and s> = t(mod m).

Proof. By the Lagrange theorem (cf. [4]), the equation 2a® — 2a + 1 = 0(mod m)
has no more than two solutions in Z,,. (Z,,+, -) is a field, so these solutions have
the form a; = % ++/t and a1 = % — +/t. Since in this field % is equal to 2t + 1
and vt € Z,, for each t € Z,,, we have a; = 2t +1+ s and ay = 2t + 1 — s,
where s? = t(modm). Obviously a; # as and (a1, m) = (az, m) = 1. Theorem 4.8
completes the proof. O

Theorem 4.11. There are no quadratical quasigroups of order m = pips-- - Pk,
where p; are different odd primes such that at least one p; = 3(mod 4).

Proof. Indeed, all groups of such order are isomorphic to the additive group Z,,.
Since any automorphism of the group Z,, has the form ¢(z) = ax, by Theorem
4.8, a quadratical quasigroup induced by this group has the form (15), where a
satisfies (16).

The equation (16) is equivalent to the equation 4a® — 4a + 2 = 0(modm),
i.e., to the equation (2a — 1)2 + 1 = 0(mod m). In the ring Z,, the last equation
can be written in the form 22 = (—1)(modm), where x = 2a — 1. The equation
22 = (—1)(mod m) has a solution only in the case when each prime divisor p of m
has the property p = 1(mod4) (cf. [4]). So, if some prime p;|m and p; = 3(mod 4),
then this group cannot induce quadratical quasigroups. O

Corollary 4.12. There are no quadratical quasigroups of order 21,33,57,69,77,
93,105,129, ...

Theorem 4.13. A commutative group of order m = p1ps - - - pn, where p1,...,Pn
are different primes such that p; = 1(mod 4), induces 2" different quadratical
quasigroups.

Proof. Such groups are isomorphic to the additive group Z,,. Quadratical quasi-
groups defined on this group have the form (15), where a satisfies (16). The
number of solutions of the equation f(z) = 0(mod m) is equal to ThTs--- Ty,
where T; denotes of the number of solutions of the equation f(x) = 0(mod p;)
(cf. [4]). But for f(z) = 22% — 22 + 1 the last equation has exactly two solutions
(Theorem 4.10). Thus, f(z) = 0(mod m) has exactly 2™ solutions. Consequently,
it defines 2™ quadratical quasigroups. O



On the fine structure of quadratical quasigroups 215

Each finite commutative group is isomorphic to a direct product of cyclic
groups. For simplicity consider the case when a commutative group G of or-
der m = 4t + 1 is a direct product of two groups Z,,, and Z,,,. If m; # mao,
then each automorphism ¢ of G has the form ¢(z,y) = (p1(x), p(z2)), where ¢;
is an automorphism of the group Z,,, because any automorphism saves the order
of each element, so ¢(Z,,, x {0}) = Z,,, x {0}. Thus, in this case, quadratical
quasigroups induced by G are direct products of quadratical quasigroups induced
by groups Z,,.

Theorem 4.14. The group Z,, induces a quadratical quasigroup if and only if
m = pitps? - pdn, where p; are different primes such that p; = 1(mod 4) for all
1=1,2,...,n.

Proof. Let m = p{"p5?---p2n, where p; are different primes. Then obviously

L = Lpy X Zp;xz X ... X Zpon. Any automorphism of this group has the form
o(z1,z2,...,2n) = a(z1,2a,...,2,) = (ax1,a22,...,azx,). So, the equation (16),
i.e., 20> —2a + 1 = 0(modm) has a solution if and only if each of equations
2a? — 2a + 1 = 0(mod p{'*) has a solution. The last equation is solved only in the
case when 2a% —2a+1 = 0(mod p;) is solved (cf. [4]), but it is possible if and only
if p; = 1(mod 4). O

Corollary 4.15. If there ezists a prime p|m such that p = 3(mod4), then there
are no quadratical quasigroups induced by the group Z,,.

Below are listed all quadratical quasigroups of the form z-y = az+by(mod m),
where a < b, defined on the group Z,, for m < 400. Dual quasigroups z oy =
bz + ay(mod m) are omitted.

ml| a | b m | a b 2 m a b
512 4 101 | 46 | 56 27(’;5 3“7 T 305 | 67 | 239
133 |11 109 [ 17 | 93 27 | 119 117 | 189
177 |11 113 | 8 | 106 TR T 313 | 13 | 301
25| 4 | 22 125 | 29 | 97 o1 | 198 317 | 102 | 216
2909 |21 137 | 19 | 119 AR 325 29 | 297
37116 | 22 145 | 9 | 137 A EBED 154 | 172
A5 |37 67 | 79 AN R 337 | 95 | 243
5312 | 42 149 | 53 | 97 e AR 349 | 107 | 243
61| 6 |56 157 | 65 | 93 B R 353 | 156 | 198
65 | 24 | 42 169 | 50 | 120 12 | 294 365 | 14 | 352

29 | 37 173 | 47 | 127 AR 87 | 279
7314 | 60 181 | 10 | 172 57109 160 373 | 135 | 239
851 7 |79 185 | 22 | 164 st oeE 377 | 50 | 328

24 | 62 59 | 127 AR AR 154 | 224
89 | 28 | 62 103 [ 41 | 153 R e 389 | 58 | 332
97 | 38 [ 60 197 | 92 [ 106 397 | 32 | 366
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The case when finite commutative group is isomorphic to a direct product of
cyclic groups of the same order is more complicated. Suppose for simplicity that
G =7, X Z,, for some natural n > 1. Then G can be considered as a module or a
vector space Z,, X Z, over Z,. So, automorphisms of this group can be calculated
as linear maps of Z,, X Z,,. From Theorem 4.1 it follows that the matrices of these
maps satisfy the equation 24(A — I) + I = 0, where I and 6 are the identity
and zero matrices. Obviously, if A satisfies this equation then B = A — [ also
satisfies this equation and A+ B = I. Hence (z,y) % (z,u) = A(z,y) + B(z,u) and
(z,y) o (z,u) = B(x,y) + A(z,u) are dual quasigroups.

CASE m =9.
Direct computations shows that for Zg x Zs we have six such quasigroups (cf. [1]).
These quasigroups are defined by maps with the following matrices:
0 1 0 2 2 1

A1—|:1 1:|,A2—|:2 1:|,A3—|:2 Q}andBi—Ai—I.
CASE m = 25.
Using a similar argument we can see that the group G = Zs x Zs induces 16
quadratical quasigroups (G, *;) with the operation

(2,y) *i (2,u) = Ai(z,y) + Bi(z,u) (18)

and 16 quasigroups dual to the above. These quasigroups are determined by

matrices A;:
0 a 2 0 2 ¢ 3 1 3 3
b 1710 2| |d 4|1 3 2 3
where ab = 2(mod 5) and cd = 0(mod 5).

CASE m = 45.

Commutative groups of order m = 45 are isomorphic to Zys, Zs X Z15, Zg X Z3 X
Zs or Zg X Zs. Groups Zs, Zg and Z4s do not induce quadratical quasigroups.
Therefore, from the above groups only Z Z3 x Zs induces such quasigroups. These
quasigroups are a direct product of quadratical quasigroups induced by Zs x Zs
and Zg. So, they have the form

(1,y1,21) *i (T2, Y2, 22) = (Ai(x1,y1) + Bi(x2,y2), a;21 + biza),

where A;, B; are as in the above and a; is equal to 2 or to 4. We have 12 such
quasigroups.

CASE m = 49.

By Theorem 4.11 the group Z49 do not induce any quadratical quasigroups. The

group Zr X Z7 induces 21 quadratical quasigroups defined by (18) and 21 duals.
These quasigroups are determined by matrices A;:

E IR P A A A

=~ W
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where ab = 3(mod 7), cd = 1(mod 7) and ef = 4(mod 7).

CASE m = 65.
Quadratical quasigroups induced by Zgs = Zs5 x Z13 are direct products of quadrat-
ical quasigroups induced by Zs an Zj3. So, they have the form

(x,y) *1 (z,u) = (2o + 42,3y + 11u),
(x,y) *2 (z,u) = (4o + 22z, 11y + 3u),
(x,y) *3 (z,u) = (22 + 42,11y + 3u),
(x,y) *4 (z,u) = (4 4 22,3y + 11u).
Obviously (G,*1) and (G, *2), also (G,x*3) and (G, *4), are dual and are iso-
morphic to quasigroups mentioned in the above table for Zgs.

CASE m = 81.

Commutative groups of order m = 81 are isomorphic to one of groups Zs1, Zg X Zg,
Zg X 227, Zg X Zg X Zg or Zg X Zg X Zg X Zg. By Corollary 4.15 groups Z3, Zg,
Zor, Zg1 do not induce quadratical quasigroups. Thus quadratical quasigroups of
order 81 can be induced by groups Zg X Zg and Zs X Zs3 X Zs x Zs only. The group
Zg X Zg induces 27 quadratical quasigroups defined by (18) and 27 duals. These
quasigroups are determined by matrices A;:

AR AR PR IR E R TR T R

where ab = 4(mod9), cd = 2(mod9), ef = 7(mod9) and gh = 1(mod9).

Using a computer we can see that the group Zs x Zs x Zs x Z3 induces 2106
quadratical quasigroups defined by (18) and 2106 duals. So, this group defines
4212 quadratical quasigroups.

CASE m = 125.

Commutative groups of order m = 125 are isomorphic to one of the groups Zos5,
Zs X Zos or Zs X Zs x Zs. The first group induces only two quadratical quasi-
groups, the second induces 64. Using a computer we can see that the last group
induces 1552 quadratical quasigroups. So in the case m = 125 we have 1618 such
quasigroups.

It is not difficult to observe that if p is prime and p = 1(mod 4) then the group
(Zp)k induces quadratical quasigroups for every k, but for p = 3(mod 4) it induces
quadratical quasigroups only for even k.

Theorem 4.16. There are no quadratical quasigroups induced by the additive
groups Z, Q and R.

Proof. In Z there are no x such that  + z = 1, so, by Theorem 4.1 such a group
cannot induce quadratical quasigroups. Automorphisms of the group (Q,+) have
the form ¢(x) = az for some 0 # a € Q. Obviously ¥(x) = (1 — a)z for a # 1,
also is an automorphism and ¢, satisfy (13). Then (14) gives (16), which is
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equivalent to (2a — 1)>+1=0. So, a = (1 + i) or a = £(1 — ). These elements
are not in Q. Since for each automorphism ¢ of (R, +) there is a € R — {0} such
that ¢(x) = ax for z € Q, each automorphism of (R,+) defining a quadratical
quasigroup satisfies (14), i.e., a satisfies (16). But in this case a ¢ R. O

Corollary 4.17. The smallest quadratical quasigroup of infinite order is defined
on the additive group Q[i] = {u+vi|u,v € Q} and has the form xy = ax+(1—a)y,

where a = 1(141i) ora=1(1—1).
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On (i,j)-commutativity in Menger algebras

of n-place functions

Wieslaw A. Dudek and Valentin S. Trokhimenko

Abstract. We present an abstract characterization of Menger (2, n)-semigroups of n-place func-

tions containing the operation my;: f(x1,...,24,...,%j,...,xn) = f(@1,. .., 5, .., Tiy...,Tn).

1. Introduction

On the set F(A™, A) of all partial n-place functions f: A™ — A (n > 2) one can
consider the following operations:

e the (n+1)-ary Menger’s superposition O: (f,g1,...,9n) — flg1 ... gn] such that

flgr - gnl(al) = fgr(al), g2(at), - ., gn(ar)),

e the binary Mann’s superpositions ®,®,...,® defined by
1 2 n
(f®g)(al) = flai™t g(at), ),

where ag denotes the sequence a;, aiy1,...,aj—1,a; if ¢ < j, and the empty symbol
if ¢ > 7.

Let ® be a nonempty subset of F(A", A). If ® is closed with respect to the
Menger superposition, then the algebra (®,0) is called a Menger algebra of n-

place functions. Since each Mann’s superposition is an associative operation, the
algebra (®,®,®,...,®) is called a (2,n)-semigroup of n-place functions. Con-
1 2 n

sequently, the algebra (®,0,®,®,...,®) is called a Menger (2,n)-semigroup of
1 2 n

n-place functions.

One can prove (cf. [3] or [8]) that an abstract (n + 1)-ary algebra (G, o) is
isomorphic to some algebra (®,O) of n-place functions if and only if it satisfies
the superassociative law:

2010 Mathematics Subject Classification: 20N15
Keywords: Menger algebra, (2, n)-semigroup, n-place function, (¢, j)-commutativity.
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where z[y; . ..y,| denotes o(z,y1,...,yn)- An (n+ 1)-ary algebra (G, o) satisfying
this law is called a Menger algebra of rank n. An algebra (G,®,®,...,®) with
1 2 n

n binary associative operations @, ®,...,® is called a (2,n)-semigroup. A (2,n)-
1 2 n
semigroup closed with respect to an (n+ 1)-ary operation o satisfying (1) is called

a Menger (2,n)-semigroup and is denoted by (G,0,®,®,...,d).
1 2 n

For simplicity, all expressions of the form (--- ((x®y1) ®y2)---) B yr will be
12 1k

i1

i
denoted by xéy{“ In the case when i = iy and i & {i1,...,ix_1} for some
i1
is g
ke {1,...,s}, the expression xki@ xy ., will be written in the form lh(? x$). In
k41 1

any other case ,ul(éB x$) is the empty symbol. For example, u1 (P Pydz) =y P 2,
ir 2 173 3
= = z. Th bol i

,UQ(?(EGPZI/?Z) x?y?za ug(?x?y?z) z e symbo ,u;;(?xeﬁy?z) 18
empty.

It is known (cf. [7] or [8]) that an algebra (G, ®, ..., ®) with n binary operations

1 n
is isomorphic to some algebra (P, ®, ..., d) of n-place functions if and only if for
1 n

all g,x5,y; € G,i=1,...,s, 5 =1,...,k, it satisfies the implication

~.

is Jk is Jk
(m(@aﬁ) =ui(§By’f)) — gbai =gy, (2)
71 J1 21 Ji

1=1

where i1,...,05,J1,.--,Jk €{1,...,n}.

Note that the condition (2) implies the associativity of all binary operations
@, D, ...,d. Indeed, for two expressions @y d z and B(y @ z), where y, z € G, we
12 n i i
have p;(®y®z) = y® 2z = pi(S(y® 2)). For k # i the symbols (P y® z) and
7 7 7 K3 7 K3 K3
1k (B(y @ 2)) are empty. So, the premise of (2) is satisfied. Therefore for all z € G
K3 7

wehave 2Dy D2z =0 B(yD2), ie, (xDY)Dz=2D(yD2).
K3 K3 2 3 3 3 K3 7

An abstract characterization of Menger (2,n)-semigroup of n-place functions

is more difficult. For such characterization we need to use the implication (2)

and several identities. Namely, as it is proved in [6] (cf. also [8]), an algebra
(G, o, ?, ..., ®) of type (n+1,2,...,2) is isomorphic to some algebra (@, O, ?, -~
n n

of n-place functions if and only if it satisfies (1), (2) and
(DY)[z1.. 20 =21 .. zic1 Y21 -+ Z0) Zig1s -5 20 (3)

ey =zl (Dyl) ... pa(Byi)], (5)
11 11 11
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where i =1,2,...,n and {i1,...,is} = {1,...,n}.

2. Menger (2,n)-semigroups

Algebras with one n-ary operation allowing certain permutations of variables were
investigated by various authors (cf. for example [2, 9, 10, 12, 13]). Such n-ary
algebras also are used to study the properties of some affine geometries (cf. [11]).

In this section we describe algebras on n-place functions allowing an exchange
of variables at two fixed places. Namely, on the set F(A", A) we will consider the
unary operation ;; defined in the following way:

- i—1
(mi; f)(a?) = f(ai7" aj,al a0}y ),

where 1 < i < j < n are fixed and the left and right hand sides are defined
or not defined simultaneously. The operation ;; is called the operation of (i, j)-
commutativity. Functions with the property m;; f = f are called (4, j)-commautative;
functions with the property m,f = f — semicommutative. Some n-ary algebras
(G, f) in which the operation f is semicommutative are strongly connected with
medial (entropic) algebras (cf. [4], [9]) and abelian groups (cf. [1] and [5]).

n

. ——
Let (G,0,9,...,®,m;) be an arbitrary algebra of type (n + 1,2,...,2,1),
1 n

where, for simplicity, the unary operation is denoted by ;.
Theorem 1. An algebra (G,0,®,...,®,m;;) of type (n+1,2,...,2,1) is isomor-
1 n
phic to the algebra (D,0,8,...,&,m;;) of partial n-place functions if and only if
1 n
(G,0,®,...,®) is a Menger (2,n)-semigroup satisfying the following identities:
1 n

(mi 2)wr - yn) = 2yl v vl vi vl (6)

T (@Y1 - yn)) = @[Ty - . Tijynl, (7)
(mijx) %(Wijy)a ifkef{l,...,n} —{ij},

TI'U(I’EEy) =< (miz) ?(Wijy)a if k=1, (8)
(mijx) %9(7%‘2%)7 if k=7,

. 9)

Proof. Let (®,0,8,...,®,m;;) be an arbitrary algebra of partial n-place functions
1 n
f: A" — A. Then obviously (®,0,®,...,®) is a Menger (2,n)-semigroup. To
1 n

prove that m;; satisfies the conditions (6) — (9) consider f,gi,...,9,» € ® and
a1,...,0a, € A. Then
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(w3 P)lgr - - gnl(al) = (mi; f)(g1(at), - . gnlal))

= f(gl(al )7 - gimaal), gi(al), giva(al), - - gj—a(al), gi(al), gja(al), - -, gnlay))
= flo1 - 9i-1959i+1 - - - 9i—19iG+1 - - - gl (a}) = flgi 95901 997 1] (a}),

which proves (6).

Similarly, we can see that

mij(flg1 - - - gnl)(al)

f[gl <o gn ](a’zi_17aj7ag-;117 A, a?+1)

- - o
f(gl(al )y Qg af_H ) aiva?-i—l)? ooy gnlal 1,aj,a§+11, ag, a?+1))
=f(mizgi(at), ..., mijgn(al)) = flmijgr ... mijgnl(al).

This proves (7).

To prove (8) we must consider three cases: k € {1,...,n} — {i,j}, k =i and
k = j. In the first case we have three subcases:

k<i<j<n, 1<i<k<ji<n, 1<i<j<k<n
In the first subcase:

Trz](fak?g)(al) f®g( a]7a7,+17a’ta J+1)
= f(a]f 1vg(a§_1v Qj, a’i+1 ) ai7aj+1)7a;:c:—11’ aj, a?;117ai’ CL?Jrl)

=mi; f(ay ™ mig(al), af ) = (i f) %(Wijg)(aﬂ

The remaining two subcases can be verified analogously.

In the case k = 7 we have

i—1

i—1
my(f ©9)(a) = f @ g(ai™" a5, 4l ai )

el ool g1 i1 m
= f(a] ", g(a} vajvai-Hva“aj+1)7ai+1’a“aj+1)

= miif(a] " mijg(at), aty ) = (mi f) & B(mi9)(ah).

In a similar way we can verify the case k = j.

So the condition (8) is valid.

The condition (9) is obvious.

So, the algebra (@,O,?, ...,@®,m;;) satisfies all the conditions mentioned in

the theorem.

Conversely, let (G,0,®,...,®,m;;) be an arbitrary Menger (2,n)-semigroup
1 n

with the unary operation 7;; satisfying the conditions (6) — (9). We will show that
there exists an algebra of n-place functions A\, and the mapping P: g — A, such
that P: G — ® = {)\, : g € G} is an isomorphism.
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Consider the set G* = GU{ey,...,e,}, where eq,. .., e, are different elements
not belonging to G. For every g € G we define on G* an n-place function A4 putting

glxy...xy], if z1,...,2, € G,
g, if (z1,...,2,) = (e1,-..,€n),
Tij9s if (z1,...,20) = (ei‘l,ej»eﬁlf,ei,e?ﬂ),

i . i .
goy, if @ =i (byi), i=1,...,n,
21 1
for some y1,...,ys € G, {i1,...,is} C{1,...,n},
is ) L s s
(mijg) Dy, i 2= pi(yi) @ = pi (i),
1 1 1
is o
xk::u;;(?yklg)? ke{l,...,n}_{l,]},
1
Yy, Ys € G and {i1,...,45s} C{1,...,n},

where by pf (éB x§) we denote the element of G* such that
i1

uGat) = m(j@?ﬁ) if i€ {ir,... 0},

' €; if i {i,..., s}
In other cases Ag(x¥) is not defined.

Note that, according to (2), in the above definition the value of g éB y; does not
depends on y1,...,ys € G. "

We shall prove that algebras (G,o, ?, cee %, m;;) and (2,0, 619, cee ?, i), where
® = {)\,| g € G}, are isomorphic. For this consider the map P: g — A,.

e First we check that such defined P is a homomorphism of (G, o) onto (@, O),
ie., P(glg1-..gn]) = P(9)[P(g1) - .. P(gn)], or equivalently,

Aglgr.gn] (TT) = Ag[Agy -+ Ag, ](27)

for all g,91,...,9n € G and x1,...,2, € G*.
1) Let zq,...,z, € G. Then, in view of (3), we obtain:

Aglgrongn] (@T) = glg1 - gnllz1 . 20] = glar[1 - 0] . gnl2r - 20]]
=Ng(g1[z1 - mnl, o gnlrn o mn]) = Ag(Ag, (2T), - Ag, (2T))

g
= Ag(Ag, (e1), .. g (e1) = Ag[Ag, - - Mg ](€7).
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3) If (z1,...,2,) = (ei_l,ej,eg;f,ei,e?+1), then

. -
Aglor.gn) (€1 s e el it i e y) = mij(glor - - gn]) = glmijgr - - Tijgn]
- - - -
= Xg(Ag, (€1 egnelin e eln), o Ag (el ey el e ey y)
- .
= AQ[)‘Ql B 'Agn](ell 1»€j76§+1,€¢,6?+1).
is is . .
4) Now let (z1,...,2n) = (1 (BY]), ..., wh(®y)). U {ir,..., i} ={1,...,n},
11 71

then, according to (5), this case is reduced to the case when 1,

..., Ty € G. For
{i1,...,is} #{1,...,n}, we have

Nglgrgu] (@) = glo1 - ga] S yi = 9lg1 v - . gn S Y]
11 11 11
/\9 ()‘91 (x?)a OEEE) >\gn (‘T?)) = )‘9 P‘gl c A ](‘rrll)

* i n

, o . is
5) In the case (21,...,2,) = (3511_17#;(2@ yf),xﬁf,uj(?yf),x%ﬂ, where xj, =
1 1

,u;(éByf) and k € {1,...,n} — {i, 7}, we obtain
11

- i 1 is is
Aglgr..gn) (T w3 (D), Tl i (@ yi) aa) = mii(glor - gnl) ©ui
1 1 1
s

) . o iy
= g[mijgr - mijgn] Y5 = gl(mijg1) gByf o (Tijgn) Z@?Jﬂ
1 1

i1

= Ag(Agy (1), -+, Ag,, (7))
= Ag[Agy - Ag @ i (S ), wl i, pi (S u5), 27 ).
71 1

This completes the proof that P is a homomorphism of (G, 0) onto (@, O).
e Now we check that P a homomorphism of a (2,n)-semigroup (G,®,...,®)
1

onto a (2,n)-semigroup (¢, ®,...,d), i.e., P(g1 D g2) = P(g1) ® P(g2), or equiva-
1 n i i
lently,

Agy D92 (z]) = Agy ? Ags (=)

foralli=1,2,...,n, 91,92 € G and 1,
we must verify several cases.

].) If T, .

..., T, € G*. Similarly as in previous case

.., Zn € G, then, applying (3), we obtain
Agr g (27) = (g1 Elng)[xl cZp) = g1lxr w1 g2lXr TR T T

= )‘91 (xliia )‘gz (‘r;,ll)ﬂ x?—&-l) = )‘91 61,9)‘92 (‘%Jl’b)
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2) For (z1,...,2,) = (€1,...,€,) we have Mg, gg,(e]) = g1 ®g2. Conse-
i K2

quently,
Agy ?)‘gz (e7) = Ag, (eg_la)‘gz (e1), z+1) =g (€ ( YUNC i+1) =91 ?927
because i (D g2) = g2 and pi(®ge) =ep fork#i, k=1,...,n
Thits, Ay, 5. (6) = Agy & A (€)

3) In the case (x1,...,2,) = (e’fl,ej,eﬁll,ei,egﬂ), for k=1,...,n, accord-
ing to (8), we have

(7Tij92)> if k ¢ {%.7}3
(Wijgg)7 if k= ’i,

(7%‘91)%
Ag1 @ g2 (e e eliy einely) =m0 %92) =4 (mig1) @

(mijg1) %9(7%'92), if k=j.

<.

For k ¢ {i, j} we have three possibilities:
<k<i<ji<nor 1<i<k<ji<nor 1<i<j<k<n

Inthecase1<k<i<j§nweget

Agy @)‘92( eJ, 1+176“ g+1)
- )‘91 (61 )‘92 (61 €4 eg:-lla €i, Q?Jrl)a 62:-11’ €5, 65;117 €, 6?+1)
= Agy (57 mijg0, €f s egn ey ein el ) = (mijgn) ?(Wz‘jgz)
- )‘91 % )‘gz (ei_la €5, eg;lla €, e;‘l+1),
since ui(%wijgg) = 7;;g2 and /fs‘(%mjgg) =esfors#k s=1,...,n.
In the remaining two cases the proof is analogous.

If k£ =i, then

-1, -1, _n =1, _n
’ejveiJrl’e%?ejJrl)aeiJrlveuejJrl)

1

Agl@ A5!2( 6_], z+17e't’ j+1) )‘91 (61 )‘92(
_ i—1 j—1 _
=g, (€1, Tijg2, €111, €is€)yq) = (mijg1) B(mijg2)

J

_ i—1 j—1 n
_)‘91 G? >‘92 (61 y €55 €541 €y ej+1)7

since pj (@ mijge) = mijg2 and pi (@ miig2) = es for s#j,s=1,....n

J J
In the same manner we can verity the case k = j.

4) Now let (z1,...,z,) = (u’{(é} i), ... ,u;(é y$)). Then, according to the
11 21

definition, Ag, g ¢, (27) = 91 D g2 é@yf On the other side, we have ;) (D g2 éséyf) =
i [3 11 K3 11
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is is is .
G2 Y7 = Ag,(27) and pf (B g2 Dy;) = pp(by;) = ap forall k #4, k =1,...,n.
21 7 11 1
Hence .
. 1s
)‘91 6,9)‘92 (x?) = >‘91 (xll_lv )‘g2 (1’?),1’:—:_1) =91 EDQQ @yf
(3 3 1

Ths Ay, 00 (053 (95,153 90) = doy € As (i (B0, 11 (B )
5) In the case when (z1,...,2,) = (z1 ', ,u;‘“(éa Y3, xgll, ,u;“(é Y1),z 1), where
i i
T = u’,;(éayf) for ke {1,...,n} — {i, 7}, we get
i1
Movgoa(i s @ vl (@) )

(mi591) ?(%‘92) fofa if ke {l,...,n}—{i,j},

= mij(g %gz)GByf =4 (mijo) ©(mijg2) Sy, if k=1,
1 J 1

(mijg1) ©(mijg2) éByf, if k=3
For ke {1,...,n} — {i,j} we get thre(; cases: !
1<k<i<j<n, 1<i<k<j<n, 1<i<j<k<n.
We verify only the last case. Other cases can be verified analogously.

To prove this case let z1,...,2n,41,...,¥ys € G* and 1 < i < j < k < n. Then
S 1 i
/\91% /\gz (le 17 /”'j (?9 yf)’ xz+1 ) Ky (?9 yf)v x?—i—l)
1 1
=\ i—1 *is s j—1 *is s k*l)\ i—1 *is s j—1 *is s n n
=Ag(T] vﬂj(f,? y1)7$i+1aﬂi(§? Y1), Ty 1A ga(T] ,/‘j(?? yl)’$i+17ui(§? Y3)sw 1), )
o is - i o i
= )‘gl(xll 1v F‘; (?9 Z/f)» x?-i—l ) /ﬁ(? yf)a xj+11’ (7‘—2']'92) ?9 yfv xz-i-l)
1 1 1
is
=(mij91) %(7%92) ST,
i1
i is is is
since i (B(mijg2) Dui) = (mijg2) Gyt and pi(D(mijg2) Dyi) = pi(Dyi) for s # k,
1 1 1 1
s=1,...,n. Thus,
. is s o i 1 s
Agﬁ}?m(ﬂ ; N?(Z@yf)? xg-&-l’ /ﬁ(z@y‘f), x?-s-l) = )‘91%)‘92(%21 E M}k(?yf)v xgﬂ, /“;k(?yf)a ‘r?—i-l)'
¢ 1 1 1 1
So in this case P (g1 %gg) = P(q) %P(gg).
In the case k =i, we get
i1 s 1, s
A.(]1 e? )‘92 (xll 17 :uj (EB yf)a $Z+1 s Ko (? yf)v $?+1)
1 1

) . is . is . is
= Agu (2171 Mg (217 5 (S ), w1, (D y3), @), 2l i (S ), 05)
1 1 1
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= Ao, (@71, (2592) é?yfa xi-ﬁl, ﬂf(%? Y1), @) = (mij91) ?(mﬂl‘]?) é? ui,
since u;f(e?(mjgz) %Z/T) = (mij92) ;‘? y§ and MI(?(MJW) %yf) = M:(%‘% y3) for s # 7,
s=1,...,n. Thus, ‘ ) -
Aol M;(:g%yf), 27 M;k(:ejéyf), )= Agl@xgz(x’f% u;*(i@?yf), e u:-‘(z{éyf), T34 )-
So, P(g1 ?gz) = P(g1) ?P(gﬁ-

For k = j the proof is very similar.
In this way we have proved that P a homomorphism of a (2,n)-semigroup

(G,®,...,®) onto a (2,n)-semigroup (®,P,..., D).
1 n 1 n

o This homomorphism also saves the operation m;;, i.e., P(m;;g) = m;;P(g) or,
in other words, A, 4(27) = mijAg(27) for all g € G and x4, ..., 2, € G*.
1) Ifzq,...,2z, € G, then
Ao @) = (migg)as . w] = glai™ wyal et ]
= N (21 Y g, 2l @i @) = migAg (2f).

2) For (x1,...,2,) = (e1,...,e,) we have
>‘7wg(e?) = Tijg = )‘g(e?l’ejaeg4:117eive?+1) = TijAg(€7)-

_ (i—1 Jj—1 :
3) In the case (z1,...,7,) = (€] ", €j,€j,1,€i,€7, ), we obtain
i—1 j—1 no\ _ _ 2.0
/\mjg(el ,€j7€i+1,€i,€j+1) = 7Tij(77ij9) =T;9 =9

= )‘g(e?) = WijAg(ezi_lv €5 ng:llv €4, e?—i—l)-

is is
2) Now, it (z1,..., ) = (5 (B y), ..., (B 7)), then
11 11

Qg T 1s
Amjg(ui(je Yi)s .o ,u:(je yi)) = (mij9) Dy
1 1 1

i— wls E i—1 sle E
= Ag(2} 1,uj(§9yf)’$f+1,ui(Z@yf)w}ql)
1 1
1 s 1, i
= TijAg(x] 1):“1’ (g?yig)’xg+l7uj(§?yf>7x?+l)
is L s
= TijAg (Ui (B yi) - -, (B 31))-
1 1
5) Tn the last case when (21,...,20) = (2174, 15 (S 95), 2l !, w7 (B ), 2740),
11 11

where x;, = u’;(é@ yi)and k€ {1,...,n} — {i,j}, we get
1
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o ia - is is is
p—h l,u;f(?yf),xiﬂ,uf(z@yf)vx?ﬂ) = (M9) Syl = 9 ui
1 1 1 1
is L s 1 s 1 e
= )‘g(lﬁ(l@ Yi)s-- s Hn(lea Y1) = mijAg (] 1,uj(§9yf),$f+1 s My (fof)wT;LJA)
1 1 1 1
This completes the proof that P: g — A, is an epimorphism of (G, &, ..., ®, m;;)
1 n

onto (®,®,...,®,m;). Since P(g1) = P(g2) implies A, (e7) = Ag,(e}), which
1 n

gives g1 = g2, we see that P: g — A4 is an isomorphism. O

From the above theorem we can deduce the following two corollaries.

Corollary 1. An algebra (G, o0,7;;) of type (n+1,1) is isomorphic to an algebra
(®,0,m;;) of partial n-place functions if and only if it satisfies (1), (6), (7) and
(9).

Proof. From the first part of the proof of Theorem 1 it follows that (®,O,m;;) is
a Menger algebra with the operation ;; satisfying the conditions (6), (7) and (9).

To prove the converse statement consider an arbitrary algebra (G, o, ;;) of type
(n+1,1) satisfying all the conditions mentioned in the corollary and define on the
set G* = GU{ey,...,e,}, where ey, ..., e, are different elements not belonging to
G, the function A4 putting:

glxy ... xy], if z1,...,z, €G,
Ag(2h) = g, if (x1,...,25) = (e1,...,€n),
Tij g if (z1,...,2,) = (eﬁ_l,ej,ezlll,ei,ey+1).

In other cases A\y(z7) is not defined.

Then in the same way as in the second part of the proof of Theorem 1, we can
prove that the algebras (G,o,m;;) and (®,0,7;;), where & = {)\;|g € G}, are
isomorphic. This isomorphism has the form P: g — A,. O

Corollary 2. An algebra (G, &, ...,®,m;;) of type (2,...,2,1) is isomorphic to
1 n
the algebra (®,,...,®,m;) of partial n-place functions if and only if it satisfies
1 n
the identities (8), (9), and the implication (2).

Proof. Clearly, the algebra (®, ?, ..., ®,m;;) of partial n-place functions satisfies
(2), (8) and (9).
Conversely, if an algebra (G,Gla,...,@,mj) of type (2,...,2,1) satisfies the

conditions (2), (8) and (9), then for each element g € G we define on the set
G* =GU{ey,...,e,}, where eq, ..., e, are different elements not belonging to G,
the n-place function A\y: (G*)" — G* putting
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9, if ('r17"',$n):(€17"'7€n)7
Tij9, if (xlv' .- 7x7l) = (ei_l,ej,eg;117ei,€?+1)7
is is
goyi, i zi=pi (i), i=1,....n,
71 21
for some y1,...,ys € G,
{il,...,is}C{l,...,n},
is ) L s . s
(mijg) Dyt, i @i =i (Sui), 25 = pi (D),
1 1 1
is . .
kaMZ(?yig)a ]fE{l,...ﬂl}—{Z,]},
1
where y1,...,ys € G, {i1,...,is} C{1,...,n}.

In other cases \4(z7) is not defined.

In the same way as in the second part of the proof of Theorem 1, we can see that
P: g — A4 is an isomorphism between (G,®,...,®, ;) and (2,8, ..., &, m;),
1 n 1 n

where ® = {)\; | g € G}. O

From Theorem 1 we deduce the following characterizations of algebras of (i, j)-
commutative functions.

Corollary 3. An algebra (G, o, ?, ..., ®) of type (n+1,2,...,2) is isomorphic to

the algebra (®,0,®,...,®) of partial (i,j)-commutative n-place functions if and
1 n

only if it satisfies the condition (1), (2), (3), (4), (5) and

oy -yl = 2l yi vl vy, (10)
J

11
rDy, if k=j. (11)

Thy =
k

Corollary 4. An (n+1)-ary algebra (G, o) is isomorphic to the algebra (®,0) of
partial (i, j)-commutative n-place functions if and only if it satisfies the conditions
(1) end (10).

Corollary 5. An algebra (G, ®,...,®) of type (2,...,2) is isomorphic to the

1 n
algebra (D, ®,...,®) of partial (i, j)-commutative n-place functions if and only if
1 n
it satisfies the condition (11) and the implication (2).
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Soft set theoretical approach to residuated lattices

Young Bae Jun and Xiaohong Zhang

Abstract. Molodtsov’s soft set theory is applied to residuated lattices. The notion of (filteristic)
residuated lattices is introduced, and their properties are investigated. Divisible int-soft filters
and strong int-soft filters are defined, and several properties are investigated. Characterizations
of a divisible and strong int-soft filter are discussed. Conditions for an int-soft filter to be
divisible are established. Relations between a divisible int-soft filter and a strong int-soft filter
are considered.

1. Introduction

Various problems in system identification involve characteristics which are essen-
tially non-probabilistic in nature [13]. In response to this situation Zadeh [14]
introduced fuzzy set theory as an alternative to probability theory. Uncertainty is
an attribute of information. In order to suggest a more general framework, the
approach to uncertainty is outlined by Zadeh [15]. To solve complicated problem
in economics, engineering, and environment, we cannot successfully use classical
methods because of various uncertainties typical for those problems. There are
three theories: theory of probability, theory of fuzzy sets, and the interval mathe-
matics which we can consider as mathematical tools for dealing with uncertainties.
But all these theories have their own difficulties. Uncertainties cannot be handled
using traditional mathematical tools but may be dealt with using a wide range of
existing theories such as probability theory, theory of (intuitionistic) fuzzy sets,
theory of vague sets, theory of interval mathematics, and theory of rough sets.
However, all of these theories have their own difficulties which are pointed out
in [9]. Maji et al. [8] and Molodtsov [9] suggested that one reason for these
difficulties may be due to the inadequacy of the parametrization tool of the the-
ory. To overcome these difficulties, Molodtsov [9] introduced the concept of soft
set as a new mathematical tool for dealing with uncertainties that is free from
the difficulties that have troubled the usual theoretical approaches. Molodtsov
pointed out several directions for the applications of soft sets. At present, works
on the soft set theory are progressing rapidly. Maji et al. [8] and Cagman et
al. [2] described the application of soft set theory to a decision making problem.
Maji et al. [7] also studied several operations on the theory of soft sets. Jun and

2010 Mathematics Subject Classification: 03G10, 06B10, 03G25, 06D72.
Keywords: residuated lattice, (filteristic) residuated lattice, (divisible, strong) filter, int-soft
filter, divisible int-soft filter, strong int-soft filter.
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Park [5] applied the notion of soft sets to BCK/BCl-algebras. In order to deal
with fuzzy and uncertain informations, non-classical logic has become a formal
and useful tool. As the semantical systems of non-classical logic systems, various
logical algebras have been proposed. Residuated lattices are important algebraic
structures which are basic of MT L-algebras, BL-algebras, MV-algebras, Godel
algebras, Rp-algebras, lattice implication algebras, etc. The filter theory plays an
important role in studying logical systems and the related algebraic structures,
and various filters have been proposed in the literature. Zhang et al. [16] intro-
duced the notions of IMTL-filters (NM-filters, MV-filters) of residuated lattices,
and presented their characterizations. Ma and Hu [6] introduced divisible filters,
strong filters and n-contractive filters in residuated lattices.

In this paper, we apply the notion of soft set theory by Molodtsov to residuated
lattices. We introduce the notion of (filteristic) residuated lattices, and investigate
their properties. We also define divisible int-soft filters and strong int-soft filters,
and investigate related properties. We discuss characterizations of a divisible and
strong int-soft filter, and provide conditions for an int-soft filter to be divisible.
We establish relations between a divisible int-soft filter and a strong int-soft filter.

2. Preliminaries

We display basic notions on residuated lattices and soft sets which are used in this
paper.
Definition 2.1. A residuated lattice is an algebra £ := (L, V, A, ®, —,0,1) of type
(2,2,2,2,0,0) such that

(L1) (L,V,A,0,1) is a bounded lattice,

(L2) (L,®,1) is a commutative monoid,

(L3) ® and — form an adjoint pair, that is,

Va,y,zeL)(z<y—2 & zQy<2).
In a residuated lattice £, the ordering < and negation — are defined as follows:
(Ve,yeLl)(z<y & zAy=2 & azVy=y & z—>y=1)
and -z =x — 0 for all z € L.

Proposition 2.2 ([1, 3, 4, 6, 11, 12]|). In a residuated lattice L, the following
properties are valid.

losaz=x,z—=1=1, 2—>2=1,0—-z=1, z— (y—z)=1, (2.1)
r—=(y—o2)=y) 2z=y— (z— 2), (2.2)
r<y > zoax<z2Y, Yy~ 25T — 2, (2.3)
r<y > rR2< YR z, (2.4)
zoy<(e—=2)>(z—y), 22y (y—z) = (2 =), (2.5)
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=y oy—2)<z—z (2.6)
ry<zR @ -y <zAy<zA(z—oy) <z, (2.7)
z—=yYhz)=(x—-y)A(lx—=2), (@Vy) = z=(x—2)A(y— 2),(2.8)
r=y< (r®2) = (Y@ 2), (2.9)
-—(z = y) < = . (2.10)
=, o < ol =0, -0 =1, (2.11)
r—=(xAy)=z—y. (2.12)

Definition 2.3 ([10]). A nonempty subset F' of a residuated lattice £ is called a
filter of L if it satisfies the conditions:

(Vx,ye L) (z,ye F = zQyeF), (2.13)
(Vz,yeL)(zeF, z<y = yeF). (2.14)

Proposition 2.4 ([10]). A nonempty subset F' of a residuated lattice L is a filter
of L if and only if it satisfies:

leF, (2.15)
VeeF)WVyel)(x—>yeF = yeF). (2.16)

Definition 2.5 ([17]). A soft set (f, L) over U in a residuated lattice L is called
an int-soft filter of £ over U if it satisfies:

(va.ye L) (faoy) 2 f@)n fw), (2.17)
(vaye L) (2 <y = f@) € fw). (218)

Theorem 2.6 ([17]). A soft set (f, L) over U in a residuated lattice L is an
int-soft filter of L over U if and only if the following assertions are valid:
(v e 1) (F(1) 2 f(@)), (2.19)
(ve.y € L) (Fy) 2 flw = )0 (). (2:20)

3. (Filteristic) soft residuated lattices

In what follows let £ and A be a residuated lattice and a nonempty set, respectively.

Definition 3.1. Let (f, A) be a soft set over £. Then (f,A) is called a soft
residuated lattice over L if f(z) is a sub-residuated lattices of £ for all z € A with
f(x) #0. If f(z)is a filter of £ for all z € A with f(z) # 0, then (f, A) is called
a filteristic soft residuated lattice over L.
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Example 3.2. Let L = {0,a,b,1} be a chain with the operations ® and — given
by tables

®[0 a b 1 —]0 a b 1
0/0 0 0 O 0|1 1 1 1
a0 0 a a ala 1 1 1
b0 a b b b0 a 1 1
110 a b 1 10 a b 1

Then L := (L,V,A,®,—,0,1) is a residuated lattice. For A = N, define two
soft sets (f, A) and (g, A) over U = L in L by

L it x € {aeN|a<10},

f:A=P(L), z— { {b,1} otherwise,

and
L if xe{aeN|a<10},

o {b,1} fze{aeN|10<a <30},
§:A=PUL), 20 T ae{aeN |30 <a< 60},
0 otherwise,

respectively. Then (f, A) is a soft residuated lattices over £ and (§, A) is a filteristic
soft residuated lattice over L.

Theorem 3.3. Let (f,A) be a soft residuated lattice (resp., filteristic soft residu-
ated lattice) over L. If B is a subset of A, then (f|p, B) is a soft residuated lattice
(resp., filteristic soft residuated lattice) over L.

Proof. Straightforward. O

The following example shows that there exists a soft set (f, A) over £ such
that

(i) (f,A) is not a soft residuated lattice over L.

(ii) there exists a subset B of A such that (f|g,B) is a soft residuated lattice
over L.

Example 3.4. Consider a residuated lattice L := {0, a,b, ¢, d, 1} with the follow-
ing Hasse diagram and Cayley tables.
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® |0 a b ¢ d 1 — 10 a b ¢ d 1
0|0 0 0 0O O 01 1 1 1 1 1
a |0 a b d d a a |0 1 b ¢ ¢ 1
blec b b 0 0 b blec a 1l ¢ ¢ 1
c|b d 0 d d c c|lb a b 1 a 1
d|b d 0 d d d d|b a b a 1 1
110 a b ¢ d 1 110 a b ¢ d 1
Let (f, A) be a soft set over £, where A = N and
L ifx € {aeN|a<10},

{a,1} ifzxe{aeN|10<a <20},
(b1} ifzefaeN|20<a<30},
{c,1} ifze{aeN|30<a<40},
{d,1} ifze{aeN|40<a <50},
{¢,d,1} otherwise.

f:A=P(L), z+—

Then (f, A) is not a soft residuated lattice over £. But if we take
B:={aeN|a<50},
then (f|p, B) is a soft residuated lattice over L.

Theorem 3.5. Let (f, A) and (§, B) be two soft residuated lattices (resp., filteristic
soft residuated lattices) over L. If AN B # 0, then the intersection (f, A)N(g, B)
is a soft residuated lattice (resp., filteristic soft residuated lattice) over L.

Proof. Note that (f, A)7(g,B) = (h,C), where C = AN B and h(z) = f(z) or
g(z) for all z € C. Note that h : C — P(L) is a mapping, and therefore (h,C) is a
soft set over L. Since (f, A) and (g, B) are soft residuated lattices (resp., filteristic
soft residuated lattices) over £, it follows that h(z) = f(z) is a sub-residuated
lattice (resp., filter) of L, or h(z) = g(x) is a sub-residuated lattice (resp., filter)
of L for all z € C. Hence (h,C) = (f, A)N(g, B) is a soft residuated lattice (resp.,
filteristic soft residuated lattice) over L. O

Corollary 3.6. Let (f, A) and (g, A) be two soft residuated lattices (resp., filter-
istic soft residuated lattices) over L. Then their intersection (f, A)N(g, A) is a soft
residuated lattice (resp., filteristic soft residuated lattice) over L.

Proof. Straightforward. O

Theorem 3.7. Let (f,A) and (§, A) be two soft residuated lattices (resp., fil-
teristic soft residuated lattices) over L. If A and B are disjoint, then the union
(f,A)J(g, A) is a soft residuated lattice (resp., filteristic soft residuated lattice)
over L.
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Proof. Note that (f, A)J(g, B) = (h,C), where C = AU B and for every e € C,

3 f(e) ifeec A\ B,
h(e) =14 3(e) ifee B\ A,
fleyugle) ifee ANB.

Since AN B = (), either z € A\Borxz € B\Aforallz € C.If z € A\ B,
then h(z) = f(z) is a sub-residuated lattice (resp., filter) of £ since (f, A) is a soft
residuated lattice (resp., filteristic soft residuated lattice) over L. If x € B\ A,
then h(z) = g(z) is a sub-residuated lattice (resp., filter) of £ since (g, B) is
a soft residuated lattice (resp., filteristic soft residuated lattice) over L. Hence
(h,C) = (f, A)U(g, A) is a soft residuated lattice (resp., filteristic soft residuated
lattice) over L. O

Theorem 3.8. If (f, A) and (g, B) are soft residuated lattices (resp., filteristic soft
residuated lattices) over L, then (f, A)A(g, B) is a soft residuated lattice (resp.,
filteristic soft residuated lattice) over L.

Proof. Note that (f, A)A(g, B) = (h, A x B), where h(z,y) = f(z) N §(y) for all
(z,y) € Ax B. Since f(x) and §(y) are sub-residuated lattices (resp., filters) of £,
the intersection f(x)Ng(y) is also a sub-residuated lattice (resp., filter) of £. Hence
h(z,y) is a sub-residuated lattice (resp., filter) of £ for all (z,y) € A x B, and
therefore (f, A)A(§, B) = (h, A x B) is a soft residuated lattice (resp., filteristic
soft residuated lattice) over L. O

4. Divisible and strong int-soft filters
Definition 4.1 ([6]). A filter F of £ is said to be divisible if it satisfies:
(Vz,yeL)((zANy) = [z®(x—y)]eF). (4.21)

Definition 4.2. An int-soft filter ( 7, L) of £ over U is said to be divisible if it
satisfies:

(va,y € L) (F((w ny) = lr@ (@ = y)]) = F1)). (4.22)
Example 4.3. Consider the residuated lattice £ := (L,V, A, ®,—,0,1) which is
given in Example 3.2. Define a soft set (f, L) over U = Z in L by f(l) = 27

and f(z) = 2N for all z(# 1) € L. Tt is routine to verify that ( 7l L) is a divisible
int-soft filter of £ over U = Z.

Example 4.4. Consider a residuated lattice L = [0, 1] in which two operations
“®” and “—” are defined as follows:

[0 ifz+y<3,
:c®y{ Ay otherwise.
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1 if ¢ <
x%y{ 1 LSy,

(5 — x) Vy otherwise.

The soft, set (f, L) over U = N in £ given by f(l) = 3N and f(x) = 6N for all
x(# 1) € L is an int-soft filter of £. But it is not divisible since

f((0.3A0.2) = (0.3® (0.3 = 0.2)) = f(0.3) # f(1).

Proposition 4.5. FEvery divisible int-soft filter (f,L) of L over U satisfies the
following identity.

fl@oy) A(zoz) = (@0 yA2) = f1) (4.23)
for all x,y,z € L.

f(oy)n(ze2) = (z0y) @ (z0y) = (2©2)) = f(1). (4.24)
Using (2.2) and (2.7), we have

(zey)e(zey) = (rR2)=rRye (y = (v — (z©® 2)))
<z YA (= (z®2),

which implies from (2.3)

(z@yA(r@2) =2 (Y@ (z0y) = (¢ 2))

(r®
S(EeyA(rsz) = (e YA (@ —(z©2)).
It follows from (4.24) and (2.18) that

=f(z@y Az©2) = (oY) & (t0y) = (r©2)))
Clxoy)A(z@2) = (@@ YA — (@2)

f()

and so that

flzoy AMz®z) = (@0 YA = (@©2)) = f(1). (4.25)

On the other hand, if we take z := x — (x ® 2) in (4.22) then

FO=Fyr(e—(z22) = (= (2©2)0 (== (@®2) =)
CHEe WA= (z02) =
(@ ((z=(ze2)e (= (2e2) =y)
=f(z@ YAl (@©2) =
(@@= (r@:2)0 (== (r©2) =y)
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by using (2.9)

, (
FO) =f@® YA = (@©:2) =
(@@= (r0:2)0 (== (r©2) =y)

2.18) and the commutativity and associativity of ®. Hence
(4.26)

Using (2.6), we obtain

(zeyA(zez) = (e YAz = (2©2)))
(WA= (202) 2 @@= (2e2)0(z = (202)) =1y))
Sy n(rz) = (t0 (@@= (202) 0 (r = (2 2) 2 y)).

It follows from (2.18), (2.17), (4.25) and (4.26) that

(@ yAr = (z©2)) =
(@@= (r0:2)0 (== (r©:2) =y)

F(@oy)A(z@2) = (@0 = (202) 0 (¢ = (z©2) = y)) = f(1). (4.27)
Since

r@ (= (r02)0((r—>(202)2y) <2202y <z (YA2),
we get

(YA (z®2) 22— (202)0(z— (z®2) > 1y)))
<((z@yY) Az ®2) = (2@ (yA2)).

It follows that

f(@ey) A (z©z2) = (@ (Y A2)
2 (o AE®2) = (0@ = (202)e (= (02) =)
= f(1)
and that f((z@y) A (z®2)) = (2@ (yA2)) = f(1). O

We consider characterizations of a divisible int-soft filter.
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Theorem 4.6. An int-soft filter (f, L) of L over U is divisible if and only if the
following assertion is valid:
Fle = A2l =z 2y @ (@ry) = 2)]) = f1) (4.28)
for all x,y,z € L.
Proof. Assume that ( 1, L) is a divisible int-soft filter of £ over U. If we take
x:=x —yand y: =2 — zin (4.22) and use (2.8) and (2.2), then
f1) = f(
= f(
Using (2.5) and (2.9), we have
@Ay =z @—=y))<[(ze(@—=y) =22 (@Ay) = 2]
<=y o(@e(@—y) =2 ==y e(@Ay) = 2)

=y A—=2)] =z =y (x—=y) = (z—2)
z= A2 = =y e(ze@—y)—a2).

[
[

for all z,y,z € L. Since ( 1, L) is a divisible int-soft filter of £ over U, it follows
from (4.22) and (2.18) that

F) = fl@ny) = e (@ = y))
Cfl@=ye(@e@—y) =2 ===y e(@ry) = 2)
and so from (2.19) that
fl@ =y e(@e@—y) =2 = @—y) e @y - 2) = Ff1)
for all x,y,z € L. Using (2.6), we get
(b= @ral>l@ >y e(@e@—y) - 2))e
(le=pe@e@—y) =2 =@y e (@ry =)
<lr= WA= @ —=y) @ (@ny) = =),
and so
(:17% y A z)] x%y)@((z/\y)%z)])
2 ((le = A =@ =y @ (@e @ —y) =)
(lz=y) @ (@e @ —y) > 2] = (@ =y (@ Ay) = 2)])

2 f(lz = (A2l =@ = y) @ (@® (@ —y) = )N
=y e(@e@—=y) =)= (@ =y)e(@Ay) = 2))
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Therefore
Fle = wr) =@ =y e (@ry - 2)) = F1)

for all z,y,z € L.
Conversely, let (f, L) be an int-soft filter that satisfies the condition (4.28). If
we take z := 1 in (4.28) and use (2.1), then we obtain (4.22). O

Theorem 4.7. An int-soft filter (f, L) of L over U is divisible if and only if it
satisfies:

Flye =)= ze@—=y)) = Ff1) (4.29)
forall x,y € L.

Proof. Suppose that ( 1, L) is a divisible int-soft filter of £ over U. Note that

(zAy) =z @2y <yoly =)=z @—=y)

for all z,y € L. Tt follows from (4.22) and (2.18) that

FO=F(@ry) »ze@->y)) S flyely—a)] =z @@ —y)
and that f([y® (y = )] = [z ® (z = y)]) = F(1).
Conversely, let ( 1, L) be an int-soft filter of £ over U that satisfies the condition

(4.29). Since y - z =y — (y A x) for all z,y € L, the condition (4.29) implies
that

Flyely— (@Ay))=lee@— (@A) = F1) (4.30)

If we take y := z A z in (4.30), then

FO=F(@rz@(@nz) = (@A(zAz)] = o @ = (@A @A)
=f((zh2) =z (@ —2)).
Therefore ( 1, L) is a divisible int-soft filter of £ over U. O

We discuss conditions for an int-soft filter to be divisible.

Theorem 4.8. If an int-soft filter (f, L) of L over U satisfies the following
assertion: ~
(Ay) = (zoy) = f1) (4.31)

f
for all x,y € L, then (f, L) is divisible.
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Proof. Note that x @ y < ¢ ® (x — y) for all 2,y € L. It follows from (2.3) that
(zAy) = (oY) < (zAy) = (2@ (z—y)).

Hence, by (4.31) and (2.18), we have

F) =fl@Ay) = (z0y) C fwAy) = (z@ (x = y),

and so f((x Ay) = (@ (x — y))) = f(1) for all z,y € L. Therefore (f, L) is a
divisible int-soft filter of £ over U. O

Theorem 4.9. If an int-soft filter (f, L) of L over U satisfies the following

assertion:
(@A (z—y) = y) = f(1) (4.32)

f
for all x,y € L then (f, L) is divisible.
Proof. If we take y := 2z ® y in (4.32), then
F) = (@@= @) > @oy) € flary) —» (@oy))

and so f((z Ay) = (x®y)) = f(1) for all z,y € L. It follows from Theorem 4.8
that (f, L) is a divisible int-soft filter of £ over U. O

Theorem 4.10. If an int-soft filter (f, L) of L over U satisfies the following

assertion:
fle—=2)2 f((z@y) = 2)n fz—y) (4.33)

for all x,y,z € L, then (f, L) is divisible.

Proof. If we take x :=xz A (x — y), y := x and z :=y in (4.33), then

f((2 A (&= y) = y)

D f((@A(@—=y)ez) =y N @A (e —y) -2

= f (D).
Thus f((z A (z = y)) = y) = f(1) for all z,y € L, and so (f, L) is a divisible
int-soft, filter of £ over U by Theorem 4.9. O

Theorem 4.11. If an int-soft filter f of L over U satisfies the following assertion:
fla = (z@2) = f(1) (4.34)

for all x € L, then (f, L) is divisible.
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Proof. Let ( 1, L) be an int-soft filter of £ over U that satisfies the condition
(4.34). Using (2.9) and the commutativity of ®, we have
r—oy<(z@z) = (zy),
and so
(= @)=y <(@—= @) (zor)—(zey)

for all z,y € L by (2.4) and the commutativity of ®. It follows from (2.6), (2.4)
and the commutativity of ® that

((z
S(@z—=@on)e(zeor) = (zey) @ (zey) = 2)
<= (zoy)o(z0y) = 2)

<z—2z

—s(zR2)®@—y)(z0y) — 2)
(z

and so from (2.17), (2.18), (2.19) and (4.34) that

fla = 2)

I

(z = @er)o(@—=y)e(r0y) = 2)
(&= @en)@—=y)nf(zey) —2)
(= @@ea)nflz—=y)nfzey) —2)
Wnfle=y)nflzey) - 2)

( fla—y)

for all z,y,z € L. Therefore (f, L) is a divisible int-soft fillter of £ over U by
Theorem 4.10. O

I

U
iy “ﬁz iy

(r®y) —=2)N

Definition 4.12 ([6]). A filter F' of £ is said to be strong if it satisfies:
(- =) e F (4.35)

for all z € L.
Definition 4.13. An int-soft filter ( 7, L) of £ over U is said to be strong if it

satisfies:

F(e(mme = ) = f(1) (4.36)
for all x € L.

Example 4.14. Consider the residuated lattice £ := (L, V, A, ®,—,0, 1) which is
given in Example 3.4. Define a soft set <f, L) over U =Zin L by f(l) = 37 and

f(x) = 6N for all (1) € L. Tt is routine to check that (f, L) is a strong int-soft
filter of L over U = Z.
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We provide characterizations of a strong int-soft filter.

Theorem 4.15. Given a soft set (f, L) over U in L, the following assertions are

equivalent.
(i) ( 7, L) is a strong int-soft filter of £ over U.
(ii) ( 7, L) is an int-soft filter of £ over U that satisfies
(vayel) (fly—a) >y —a)=f)). (@30
(ii) ( 7, L) is an int-soft filter of £ over U that satisfies
(vayel) (f((ha—y) = —(y—2)=J1). (439

Proof. Assume that (f, L) is a strong int-soft filter of £ over U. Then (f, L) is
an int-soft filter of £ over U. Note that
_\_\(_\_\x — J,‘) < ﬂ_\((y — ﬂ_\.’L‘) — (y — fL‘))
< ((y = —z) = oy = 7))

(y = ——a) = =y = 2)
and

N

(- = y) @ ) — x)
—((mz = y) = (-y = )

//\

~((z = y) = oy = 2)
=(z—=y) = -(y—2)
for all z,y € L. If follows from (4.36) and (2.18) that
F(1) = f(==(-mz = 2)) € f((y = —2) = ~=(y = 2)) (4.39)

and

f(1) = f(==(mma = ) C f((-z = y) = —=(-y = 2)). (4.40)
Combining (2.19), (4.39) and (4.40), we have flly = ——a) = ~=(y = x) = f(1)
and f((—x — y) = ——(-y — z)) = f(1) for all z,y € L. Therefore (ii) and (iii)
are valid. Let ( 1, L) be an int-soft filter of £ over U that satisfies the condition
(4.37). If we take y := ——z in (4.37) and use (2.1), then we can induce the
condition (4.36) and so (f, L) is a strong int-soft filter of £ over U. Let (f, L)
be an int-soft filter of £ over U that satisfies the condition (4.38). Taking y := -~
in (4.38) and using (2.1) induces the condition (4.36). Hence (f, L) is a strong
int-soft filter of £ over U.
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We investigate relationship between a divisible int-soft filter and a strong int-
soft filter.

Theorem 4.16. Every divisible int-soft filter is a strong int-soft filter.

Proof. Let ( 1, L) be a divisible int-soft filter of £ over U. If we put z := ——x
and y := x in (4.22), then we have

fl(mz A ) = (-me @ (--x — @) = f(1). (4.41)
Using (2.5) and (2.4), we get

(zAz) = (2@ (- —2) < (2 (- = x)) =5 (-x Ax)
< (0 @~ ® (= > 2)) = (=2 & (e A7)
< (2 & =(mw A2) S~ @ (= @ (= 2)))

for all x € L. It follows from (4.41) and (2.18) that

F) = f((maenz) = (=@ (- = @)

~ (4.42)
C f(n(~mz ® (= A ) = (=2 ® ~(+mw © (+=z — 7)),

Combining (4.42) with (2.19), we have
fE(e@a(mma Ar)) = ~(cme @ ~(-me @ (-mw = 2)) = f(1) (443)
for all x € L. Using (2.2), (2.10), (2.12) and (2.11), we get

(@ (- Az)) = — (- A )
> —=(x — (0—z A )
=-=(x = (z A —x))

and so ~(——z ® ~(—-—z Az)) =1 for all z € L. It follows from (4.43) and (2.20)
that

=7 ® (- @ (mz = 1))

‘U /-\l

=(
f(o(mz @ (== Az)) = = (2 @ ~(——z ® (~—z — 2))))N
Ff(o (= @ ~(~z A )))

Il
ey

(1)

and so that

FQ) = f(=(-mz @ ~(—me © (e = 2))))

/ (4.44)
= f(ﬁ(ﬁﬁa? ® (ﬁﬁx — ﬁ(ﬁﬁ-’lj — .T))))
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Taking x := —-—z and y := =(——z — z) in (4.22) induces

F) = f(mmae A(mmw = 7)) = (me @ (-mx = ~(-—e — 1))

C F(~(mz ® (~—a = (=2 — 2))) = (-2 A =~(~z — @)))

by using (2.3) and (2.18). Thus

fE(E2® (7 — ~(-x — z))) = (- Az — x))) = f(l) (4.45)

Since =(——x — z) < =~z for all x € L, it follows from (2.19), (2.20), (4.44) and
(4.45) that

F) = frema A= = 2)) = flom(ma = @)

for all x € L. Therefore ( 1, L) is a strong int-soft filter of £ over U. O

Corollary 4.17. If an int-soft filter (f, L) of L over U satisfies one of conditions

(4.28), (4.29), (4.31), (4.32), (4.33) and (4.34), then f is a strong int-soft filter of
L over U.

The following example shows that the converse of Theorem 4.16 may not be
true in general.

Example 4.18. The strong int-soft filter f of £ over U which is given in Example
4.14 is not a divisible int-soft filter of £ over U since

fllane) = (@®(a— o)) = fla) # f(1).

5 Conclusions

We have considered the soft set theoretical approach to residuated lattices. We
have discussed (filteristic) soft residuated lattices We have defined divisible int-
soft filters and strong int-soft filters, and have investigated related properties. We
have discussed characterizations of a divisible and strong int-soft filter, and have
provided conditions for an int-soft filter to be divisible. We have establish relations
between a divisible int-soft filter and a strong int-soft filter. In a forthcoming pa-
per, we will study the int-soft version of n-contractive filters in residuated lattices,
and apply the results to the another type filters in residuated lattices.
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On the paper "On dual ordered semigroups"

Niovi Kehayopulu

Abstract. This is about the paper by Thawhat Changphas and Nawamin Phaipong in Quasi-
groups and Related Systems 22 (2014), 193-200.

This paper is actually the introduction and the main part from section 2 (the
first decomposition theorem) of the paper by St. Schwarz [3]. The authors con-
sidered an ordered semigroup (S, -, <) instead of the semigroup (.5,-) considered
by Schwarz. The order plays a very little role in Lemma 1.1(1), Lemma 1.1(4),
Lemma 2.7 and Lemma 2.15(3),(4) (the Lemma 2.8 and Corollaries 2.9 and 2.10
are immediate consequences of Lemma 2.7), but the proofs of Lemma 1.1(1) and
Lemma 1.1(4) are wrong. In addition, the Lemma 1.1(4) does not need any proof
since it is an immediate consequence of Lemma 1.1(1). This is a copy of the proof
of the Lemma 1.1(1) in [1]: If z € I(A) and S >y < z, then yA C 2A =0, and
hence y € [(A). As we see, according to this proof, we first have yA C z A (there is
no the proof in the paper) and then, based on it, we have y € [(A). But to prove
that € [(A) and S 3 y < x implies yA C A (that actually implies yA = zA),
we first have to prove that y € I(A). Then our argument is finished and we do
not go back to use the yA C zA to prove that y € I(A) (which has been already
proved before the proof of the yA C xA). So when the authors say “If « € [(A)
and S 3 y < x implies yA C x A", they cannot mean anything else than the “y < x
implies yA C x A", and this is not true in general. The same problem occurs in
the proof of Lemma 1.1(4) of the paper in [1]. It might be mentioned here that
y < x implies yA C (zA].

Let us prove that if M is a right (resp. left) ideal of an ordered semigroup S,
then y < z does not imply My C Mz (resp. yM C xM) in general. This shows
the mistake in Lemma 1.1(1) as well, as the right and the left ideals of an ordered
semigroup S are nonempty subsets of S.

Example. [2] Consider the ordered semigroup S = {a,b,c,d, f} defined by the
multiplication and the covering relation given below:

2010 Mathematics Subject Classification: 06F05, 20M10
Keywords: dual semigroup; dual ordered semigroup; left (right) ideal.
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SIS SIS OB =S ol S
Q2 0 8 80
Q2 2 2 9|
U2 2 2=

Q Q2 Q@ 2 9

- a0 o

=<={a,b),(c,a),(d,a)}.

The set M = {a,c,d} is a left ideal of S, ¢ < a but ¢cM ¢ aM. The set M =
{a,b,c,d} is a right ideal of S, ¢ < a but Mc¢ ¢ Ma. O

This is the corrected form of Lemma 1.1(1) and its proof:

Lemma 1.1(1). If (S, ., <) is an ordered semigroup with zero and A a nonempty
subset of S, then the set [(A) is a left ideal and the set r(A) is a right ideal of S.

Proof. The set I(A) is a left ideal of the semigroup (S,.) [3]. Let now z € I(A)
and S 3 y < z. Then y € I(A), that is, yA = {0}. Indeed: if z € A, then
yz < zz € zA = {0}, so yz = 0. Since yA C {0} and yA # (), we have yA = {0}.

0
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Cryptcodes Based on Quasigroups

in Gaussian channel

Daniela Mechkaroska, Aleksandra Popovska-Mitrovikj, Verica Bakeva

Abstract. Cryptcodes based on quasigroups transformation, known as Random Codes Based
on Quasigroups (RCBQ) are error-correcting codes defined by using a cryptographic algorithm
during the encoding/decoding process. Therefore, they allow not only correction of certain
amount of errors in the input data, but they also provide an information security, all built in
one algorithm. Standard and Cut-Decoding algorithms for these codes are defined elsewhere.
Also, performances of these codes are investigated elsewhere, when a transmission through a
binary symmetric channel is used. In this paper, we investigate the performances of RCBQ for
transmission through Gaussian channel. We analyze the influence of the code parameters on
the performances of RCBQ for code (72,288) with rate 1/4. We present and compare several
experimental results obtained with different coding/decoding algorithms for these codes.

1. Introduction

Random Codes Based on Quasigroups (RCBQ) considered in this paper are crypt-
codes. In order to provide an information security cryptcodes include an applica-
tion of some of the known ciphers on codewords, before sending them through an
insecure channel ([11, 12]). Usually, in the design of these codes two algorithms
are used, one for error-correcting and another for obtaining information security.
In the paper [4] authors give one algorithm where a block cipher and an error-
correcting code are combined. But, the main application of their design is for
cryptographic purposes, although it can be used as an error-correcting code.
RCBQs are proposed in [2] and they are defined by using a cryptographic al-
gorithm during the encoding/decoding process. They allow not only correction of
certain amount of errors in the input data, but they also provide an information
security, all built in one algorithm. Therefore, these codes are interesting for fur-
ther investigation. The influence of the code parameters on the performances of
these codes are investigated in [6]. In [5] authors compare the performances of
RCBQ with Reed-Solomon and Reed-Muller codes. From the results for packet-
error and bit-error probabilities given there, authors concluded that RCBQ out-
performs Reed-Muller and Reed-Solomon codes significantly for p > 0.05 in binary

2010 Mathematics Subject Classification: 94B35, 94B60, 68P30, 20N05.
Keywords: quasigroup, random code, error-correcting code, cryptcoding, packet-error proba-
bility, bit-error probability.
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symmetric channel. But, the time efficiency of RCBQ is much lower than time
efficiency of these two popular codes. In order to improve the decoding speed
and other performances of RCBQ), in [7, 9] authors proposed new coding/decoding
algorithms. In all papers for RCBQs, transmission through a binary symmet-
ric channel is considered. Here, we investigate performances of these codes for
transmission through Gaussian channel where the noise is a random variable with
normal N (0, Ny) distribution. In this channel, the probability of bit-error (see

[10]) is given by
1 E,
Py= —t 1
b 26ch< N0>, )

where Ej, is a power constraint.

RCBQs are designed using algorithm for encryption /decryption from the imple-
mentation of TASC (Totally Asynchronous Stream Ciphers) by quasigroup string
transformation ([1]). These cryptographic algorithms use the alphabet @ and a
quasigroup operation * on () together with its parastrophe ” \ 7. The notions
of quasigroups and quasigroup string transformations are given in the previous
papers for these codes ([5], [6]). Here, we are using the same terminology and
notations as there. Note that in this paper we consider only ability of RCBQ for
corrections of errors in the transmitted data. The provided information security
is guaranteed from the used quasigroup string transformation E given in [3].

The rest of this paper is organized as follows. In Section 2, we will briefly
repeat the coding/decoding algorithms of RSBQ. In Section 3 we explain how
the experiments are made. The influence of the code parameters on the perfor-
mances of RCBQ with Standard algorithm is investigated in Section 4. In Section
5, we present experimental results obtained with Cut-Decoding algorithm and we
compare these results with the best results for Standard algorithm. In order to
improve the performances of Cut-Decoding algorithm for transmission through
Gaussian channel, in Section 6, we define two combinations of the proposed meth-
ods for decreasing the number of unsuccessful decodings. At the end, we give some
conclusions.

2. Description of RCBQ

Description of coding with Standard and Cut-Decoding algorithms

Let M = myms ... m; be a block of Nyjocr = 41 bits where m; € Q and @ is an
alphabet of 4-bit symbols (nibbles). First, we add a redundancy as zero symbols
and produce message

L=LWL® 1) = [ Ls..L,,,

of N = 4m bits (m = rs), where L; € Q, L™ are sub-blocks of  symbols
from Q. After erasing the redundant zeros from each LV, the message L will
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produce the original message M. In this way we obtain (Npjock, N) code with
rate R = Npoc/N. The codeword is produced after applying the encryption
algorithm of TASC (given in Figure 1) on the message L. For this aim, a key
k= kiks...k, € Q" should be chosen. The obtained codeword of M is

C=0,05...Cp,
where C; € Q.

Encryption Decryption
Input: Key k = kik2 ...k, and || Input: The pair
L:LlLQ...Lm (alag...ar,klkg,,.kn)
Output: codeword Output: The pair
020102...Cm (6162...CT,K1K2...KH)

Forj=1tom Fori=1ton

X «+ Lj; K; + ki;
T «+ 0; For j=0tor—1
Fori=1ton X, T < ajq1;
X+ ki x X; temp < Ky;
T+ To X, For i =n to 2
ki +— X; X «+ temp\ X;
kn < T T+ T X;
Output: C; + X temp +— K;_1;
Ki—l — X;
X « temp\ X;
K, + T,
Cit1 < X
Output: (cic2...cr, K1Ks ... Ky)

Figure 1: Algorithms for encryption and decryption

In Cut-Decoding algorithm, instead of using (Npjock, V) code with rate R, we
use together two (Npock, N/2) codes with rate 2R for coding/decoding the same
message of Npjocr bits. Namely, for coding we apply two times the encryption
algorithm, given in Figure 1, on the same redundant message L using different
parameters (different keys or quasigroups). In this way we obtain the codeword of
the message as concatenation of the two codewords of N/2 bits.

Description of decoding with Standard and Cut-Decoding algorithm

After transmission through a noise channel (for our experiments we use Gaus-
sian channel), the codeword C will be received as message D = D) D) || D) =
D1Ds...D,, where D@ are blocks of r symbols from Q and D; € Q. The de-
coding process consists of four steps: (i) procedure for generating the sets with
predefined Hamming distance, (i¢) inverse coding algorithm, (¢i¢) procedure for
generating decoding candidate sets and (iv) decoding rule.
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Let Bpae be a given integer which denotes the asumed maximum number of
errors occur in a block during transmission. The probability that at most ¢ bits
in D* are not correctly transmitted is

t

P(Pyt) = (4]:) PF(1 - B)ir—*,

k=0

where P, is probability of bit-error in a Gaussian channel. Then P(Py; Bpaz) is
the probability that at most B,,., errors occur in a block during transmission.
We generate the sets H; = {a|a € Q", H(D®W,a) < Bae}, for i =1,2,... s,
where H(D®, o) is the Hamming distance between D) and o

The decoding candidate sets Sy, Sp, So,...,5s, are defined iteratively. Let
So = (k1...kn; A), where A is the empty sequence. Let S;_1 be defined for ¢ > 1.
Then S; is the set of all pairs (d, wiws ... wy;) obtained by using the sets S;_;
and H; as follows (w; are bits). For each element o € H; and each (5, wiws...
Wyr(i—1)) € Si—1, we apply the inverse coding algorithm (i.e., algorithm for de-
cryption given in Figure 1) with input («, 8). If the output is the pair (v, ) and
if both sequences v and LY have the redundant zeros in the same positions, then
the pair (6, wiws ... wyp—1)cic2...¢;) = (S, wrws ... wars) (¢; € Q) is an element
of Si-

The decoding of the received message D is given by the following rule: If the
set S contains only one element

(d1 .. .dn,’LU1 . ~-w4rs)a

then L = w; ... w4 is the decoded (redundant) message and we say that we have
a successful decoding. In the case when the set S contains more than one element
then the decoding of D is unsuccessful and we say a more-candidate-error appears.
In the case when S; = ) for some j € {1,..., s}, the process will be stopped and
we say that a null-error appears.

In Cut-Decoding algorithm, after transmitting through a noise channel, we di-
vide the outgoing message D = DM D@ . D) in two messages D; = DWW DR
DG/2) and Dy = D/2+D) D(/242) | D) with equal lengths and we decode them
parallel with the corresponding parameters. In this decoding algorithm we make
modification in the procedure for generating decoding candidate sets. Let SZ-(I) and

SZ-(2) be the decoding candidate sets obtained in the i*" iteration of the two parallel
decoding processes, i = 1,...,s. Then, before the next iteration we eliminate from

Si(l) all elements whose second part does not match with the second part of an

element in Si(Q), and vice versa. In the (i + 1) iteration the both processes use
the corresponding reduced sets Si(l) and Si(Q). With Cut-Decoding algorithm the
decoding speed is improved and the values of the packet-error probability (PER)
and the bit-error probability (BER) for code (72,288) are smaller.
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3. Experiments

The experiments with the random codes based on quasigroup are made on a high
performance claster on Faculty of Computer Science and Engineering, UKIM -
Skopje. The cluster has 24 GB RAM, a processor with 2.266 GHz and 12 physical
cores (24 logical cores) are used.

The experiments are made in the following way:

Firstly, we extend the message obtained from the source using a pattern
for adding redundant zero nibbles. We made experiments with 6 different
patterns.

The extended message is coded using an algorithm for coding (Standard or
Cut-Decoding) and blocks of 4 nibbles.

On the coded message we make BPSK modulation (0 - —1 and 1 — 1).

The signal is transmitted through Gaussian channel and due to the noises,
the received output signal can be different from the input signal.

Then, we make demodulation on the output signal in the following way:

1) if the received signal is greater than 0, then the receiver assumes that
bit 1 was transmitted;

2) if the received signal is less than 0, then the receiver assumes that bit
0 was transmitted.

The demodulated message is decoded with the corresponding (previously
defined) decoding algorithm.

We compare the decoded message with the input message and compute BER
and PER for different values of SINR in the interval from —3 to 10.

The packet-error probability PER is computed as a ratio of the number of
incorrectly decoded packets (messages) and the number of all packets. The incor-
rectly decoded packets appear in the following cases:

1.

2.

If the last decoding candidate set S, has only one element, then the message
in that element (the decoded message) is compared with the input message.
If both are equal then we have a correct decoding. If the decoded message
differs in at least one bit then we have an uncorrected error.

Packet errors appear in other cases of unsuccessful decoding (more-candidate
errors and null-errors).

The bit-error probability BER is computed as a ratio of the number of in-
correctly decoded bits and the number of all bits. The incorrectly decoded bits
appear in the following cases:
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1. When the decoding is successful, we compare the decoded and the input
message computing Hamming distance between them. It gives the number
of incorrectly decoded bits.

2. When a null-error appears, i.e., S; = () for some 0 < j < s, we take all ele-
ments from the set S;_; and we find their maximal common prefix substring.
If this string has k& bits and the length of the input message is 4] bits then
we compare this substring with the first k bits of the input message. If they
differ in ¢ bits then the number of incorrectly decoded bits is 41 — k + t.

3. If @ more-candidate-error appears we take all elements from the set S, and
we find their maximal common prefix substring. The number of incorrectly
decoded bits is computed as previously.

4. Experimental results for Standard algorithm

In this section we present and analyze the results obtained using Standard cod-
ing/decoding algorithm for RCBQ. We investigate the influence of the code pa-
rameters on the code performances.

The influence of the pattern on the code performances

In order to check the influence of the pattern on the code performances, we
made experiments with 6 different patterns for redundant zero nibbles for code
(72,288) with rate R = 1/4. This means that the alphabet

Q@ =10,1,2,3,4,5,6,8,9,a,b,c, d, e, {}.

In these experiments we have used the quasigroup (Q,*) and its parastrophe
(@, \) given in Table 1, the initial key k& = 0123456789 and 6 patterns given in
Table 2. In the patterns, we denote the message (information) symbol with 1
and the redundant zero symbol with 0. The experiments for different values of
SNR in the interval from —3 to 10 dB are made. In this section we present the
experimental results for bit-error probability (BER) and packet-error probability
(PER).

Firstly, we made experiments for B,,,, = 3 with 13888 messages. The ob-
tained results for BER are given in Table 3 and presented in Figure 2, while the
appropriate values of PER are presented in Table 4 and Figure 3.

The experimental results for BER are compared with a probability P, for
bit-error in Gaussian channel. It is obvious that the values of BER and PER
increase as the values of SN R decrease (smaller values of SN R mean larger noise).
Therefore, we made experiments starting from SNR = 10 and decreasing the
values of SNR by 1. We stoppped with experiments when we get BER > PB,.
In this case the codes does not have sense since the bit-error probability obtained
using the code is greater than the bit-error probability P, without coding. All
experimental results for BE R obtained using pattern 1 and pattern 5 were greater
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* 0 1 2 3 45 6 78 9 abocdef \|]0O 1 23456 7 8 9 abocdef
003 c 25 f 76 1 0Dbde 849 a 08 72 0d 36 5 cef 91 ab4
110 3 9d 8 1 7b65 2 acf e 4 1105 a 1 f 9 8 6 4 2 Db 7 c 3 e d
201 0ec 45 f 9d3 67 a8b 2 2/11 0f 945 abd?7¢ce 3826
36 bf 1 9 4 e a3 780 2¢cd3?5 3 b3 c¢c 85 f 09 a471de6 2
44 5 0 76 b 9 3 f 2 a 8 dec 1 42 f 9 7 01 4 3 b6 a b e c d 8
50f a1l 0e 2 4c7d3b59 8°¢6 53 25 a6cf 8e dl1l b7 9 40
62 f a 3 c 8 dObe 946157 6/ 7 d 0 3 becf 5 a2 846 91
77e 9 ¢c ald8&6 5 f b 24073 717d 4 bf c 87 e 6 13 a225009
8c 76 2 af b5 1049 e d3 8 819 8 3 e a7 2 1f bd460dcb
9 b e 4 9d31f 8c 5 6 7 a 20 9/ f 6 e 5 2 a b c 8 3 d0 9 417
al9 4 d 806 57¢e1f 3 b2 ac al4 9db 16 5 730ecf 28 a
bl 7 8 5 e 2 a3 4c¢c6 0dfbl3?9 blae 46 72 90 1f 5d286b3c
c/5 2 b 6 7 9 0e ald8cf 1 3 4d c/l6 ¢c 1 de 03 49582 af 7Pb
dla 6 8 43 ecd291507Tfb dlc a8 43 b1d=290fFf 6775e
efld 1 3 f b0 284 aT7c 956 e el[5 1 6 2 8 dea7¢c94bo0f 3
f] 8 d 7 b 5 c a2 9 4e 1 36 0f fle b 7¢c¢c 9 4d2 086 3 5 1 af

Table 1: Quasigroup of order 16 used in the experiments and corresponding paras-
trophe

pattern 1 | pattern 2 | pattern 3 | pattern 4 | pattern 5 | pattern 6
1000 1000 1100 1100 1100 1100 1100 1100 1100 1000 1100 1100
1000 1000 0000 1100 1000 0000 1100 0000 | 0000 1100 1000 0000
1000 1000 1100 0000 1100 1000 0000 1100 1000 0000 1100 1100
1000 1000 1100 1100 1000 0000 1100 1100 1100 1000 1000 0000
1000 1000 0000 1100 1100 1100 0000 0000 | 0000 1100 1100 1100
1000 1000 1100 0000 1000 0000 1100 1100 1000 0000 1000 0000
1000 1000 1100 0000 1100 1000 1100 0000 1100 1000 1000 1000
1000 1000 0000 0000 1000 0000 0000 0000 | 0000 1100 1000 0000
1000 1000 0000 0000 0000 0000 0000 0000 1000 0000 | 0000 0000

Table 2: Patterns for redundant zero nibbles

than P, and therefore these results are not present in the following tables and
figures.

From all experimental results given in the tables and figures we can see that
when the value of SNR increases, the bit-error and packet-error probabilities
decrease.

SNR pattern 2 pattern 3 pattern 4 pattern 6
1 0.08637 0.08737 0.10262 0.08838
2 0.02054 0.02075 0.02418 0.02057
3 0.00387 0.00408 0.00398 0.00321
4 0.00055 0.00046 0.00030 0.00016
5 0 0 0.00007 0
6 0 0 0.00004
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0

Table 3: Experimental results for BER for different patterns and Bj,q. = 3

From Figure 2 and Figure 3 we can notice that none of the considered patterns
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Figure 2: Experimental results for BER for different patterns and B, = 3

SNR pattern 2 pattern 3 pattern 4 pattern 6
1 0.176915 0.17519 0.171659 0.175403
2 0.043707 0.04435 0.040971 0.043131
3 0.007488 0.00801 0.007056 0.007272
4 0.001008 0.00086 0.000648 0.000432
5 0 0 0.00007 0
6 0 0 0.00007
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0

Table 4: Experimental results for PER for different patterns and B, = 3

stands out as the best or as the worst, i.e., for all patterns the values of BER
(PER) are very close. In these experiments we did not obtain any unsuccessful
decoding with more-candidate-error. So, all unsuccessful decodings are null-errors,
whose number decreases when SN R increases.

Further on, we made experiments with the same parameters, but for By,q. = 4.
The decoding process in these experiments is much slower than for B,,,, = 3 since
the number of elements in the sets S; are greater. The obtained results for BER
are presented in Table 5 and Figure 4, and the results for PER in Table 6 and
Figure 5.

From Figure 4, we can see that pattern 6 is the worst pattern for this value of
Binaz, while the other patterns give almost equal values of BER (the differences
are in the fourth decimal). Only for smaller values of SN R pattern 3 gives better
results than pattern 2 and pattern 4.

As we concluded before, for By,q; = 3, more-candidate-error does not appear
with none of the patterns. But, from the experiment for B,,,, = 4 we can conclude
the following:
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Figure 3: Experimental results for PER for different patterns and By, = 3

Table 5: Experimental results

SNR | pattern 2 pattern 3 | pattern 4 | pattern 6
0 0.10582 0.08343 0.09630 0.94627
1 0.02411 0.01928 0.02336 0.24562
2 0.00361 0.00400 0.00424 0.04602
3 0.00049 0.00068 0.00047 0.00788
4 0.00024 0.00042 0.00014 0.00202
5 0.00004 0.00066 0.00016 0.00136
6 0.00032 0.00054 0.00016 0.00374
7 0.00025 0.00046 0.00011 0.00354
8 0.00025 0.00053 0.00004 0.00372
9 0.00025 0.00053 0.00004 0.00372
10 0.00025 0.00053 0.00004 0.00372

for BER for different patterns and B, = 4

SNR | pattern 2 pattern 3 | pattern 4 | pattern 6
0 0.10750 0.10829 0.10808 0.10707
1 0.02448 0.02520 0.02635 0.02758
2 0.00367 0.00554 0.00482 0.00511
3 0.00050 0.00137 0.00065 0.00086
4 0.00029 0.00101 0.00014 0.00029
5 0.00007 0.00144 0.00004 0.00014
6 0.00036 0.00115 0.00029 0.00043
7 0.00029 0.00108 0.00022 0.00043
8 0.00029 0.00122 0.00001 0.00043
9 0.00029 0.00122 0.00001 0.00043
10 0.00029 0.00122 0.00001 0.00043

Table 6: Experimental results for PER for different patterns and B,,q. = 4

- for SNR < 3, we obtain more null-errors than more-candidate-errors;

- for SNR > 3, we do not have null-errors, but we have more-candidate-errors.

In order to reduce the number of unsuccessful decodings with more-candidate-
error, we use the heuristic introduced in [7] in the experiments with By,.. = 4.
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Figure 5: Experimental results for PER for different patterns and By, = 4

According to this heuristic, in the case of more-candidate-error we randomly select
a message from the last decoding candidate set and it is taken as decoded message.
The results for BER and PER obtained using the heuristic are presented in
Table 7 and Table 8 (Figure 6 and Figure 7), correspondingly. From the results,
we can conclude that using this heuristic, the values of BER and PER are slightly
better.

From the previous experiments, we can conclude that the chosen pattern has
a great influence on the code performances. For some patterns (for example,
pattern 1 and pattern 5 given in Table 2) the coding does not have a sense.



Cryptcodes Based on Quasigroups in Gaussian channel 259

SNR | pattern 2 pattern 3 | pattern 4 | pattern 6
0 0.10582 0.08301 0.09609 0.94627
0.5 0.05395 0.04187 0.04913 0.48607
1 0.02397 0.01919 0.02336 0.24562
1.5 0.01169 0.00923 0.00960 0.08374
2 0.00361 0.00368 0.00424 0.04602
3 0.00042 0.00052 0.00047 0.00788
4 0.00011 0.00028 0.00014 0.00202
5 0.00004 0.00031 0.00016 0.00136
6 0.00025 0.00025 0.00016 0.00374
7 0.00018 0.00032 0.00011 0.00354
8 0.00018 0.00035 0.00004 0.00372
9 0.00018 0.00035 0.00004 0.00372
10 0.00018 0.00035 0.00004 0.00372

Table 7: Experimental results for BER for B,,,, = 4 using the heuristic for
decreasing of more-candidate-errors

SNR | pattern 2 pattern 3 | pattern 4 | pattern 6
0 0.10750 0.10829 0.10808 0.10707
1 0.02434 0.02506 0.02635 0.02758
2 0.00367 0.00490 0.00482 0.00511
3 0.00043 0.00058 0.00065 0.00086
4 0.00014 0.00058 0.00014 0.00029
5 0.00007 0.00065 0.00036 0.00014
6 0.00029 0.00043 0.00029 0.00043
7 0.00022 0.00058 0.00022 0.00043
8 0.00022 0.00065 0.00014 0.00043
9 0.00022 0.00065 0.00014 0.00043
10 0.00022 0.00065 0.00014 0.00043

Table 8: Experimental results for PER for B, = 4 using the heuristic for
decreasing of more-candidate-errors
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Figure 6: Experimental results for BER for B,,,, = 4 using the heuristic for
decreasing of more-candidate-errors
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Influence of the key length to the code performances

In order to check the influence of the key length to the code performances, we
have made experiments using keys with different lengths. The results obtained for
key lengths of 5, 10 and 15 nibbles are represented in Table 9, Figure 8 (for BER)
and Table 10, Figure 9 (for PER).

SNR | key length 5 | key length 10 | key length 15
1 0.02838 0.01928 0.02090
2 0.01135 0.00400 0.00401
3 0.01026 0.00068 0.00091
4 0.00899 0.00042 0.00041
5 0.00952 0.00066 0.00032
6 0.00910 0.00054 0.00081
7 0.00931 0.00046 0.00067
8 0.00922 0.00053 0.00067
9 0.00927 0.00053 0.00066
10 0.00929 0.00053 0.00066

Table 9: Experimental results for BER for key lengths of 5, 10 and 15 nibbles

Analyzing the presented results we can see that results obtained using keys with
length 10 and 15 are almost identical. Also, in these cases, the decoding speeds are
same. In the experiments with a key of length 5, the worse results for BER and
PER are obtained. For this key length and SNR > 3, the bit-error probability
is about 15 to 20 times greater than the corresponding probability obtained with
the key length 10, and it is up to 29 times greater than the probability obtained
with the key length 15.

From the experiments we can conclude that the key length also has a great
influence on the performances of these codes.
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Figure 8: Experimental results for BER for key lengths of 5, 10 and 15 nibbles

SNR | key length 5 key length 10 key length 15
1 0.03816 0.02520 0.02772
2 0.01533 0.00554 0.00583
3 0.01360 0.00137 0.00151
4 0.01202 0.00101 0.00093
5 0.01245 0.00144 0.00079
6 0.01216 0.00115 0.00144
7 0.01252 0.00108 0.00129
8 0.01245 0.00122 0.00129
9 0.01245 0.00122 0.00129
10 0.01250 0.00122 0.00129

Table 10: Experimental results for PER for key lengths of 5, 10 and 15 nibbles

Influence of the chosen quasigroup to the code performances

In order to check the influence of the choice of a quasigroup on the code per-
formances, we have made experiments with a cyclic quasigroup of order 16 using a
key of 10 nibbles. Firstly, the experiments were made by using the third pattern.
But, in these experiments we obtained a great number of messages in the decoding
candidate sets. So, the decoding process was very slow and it did not finish in
reasonable time.

Therefore, we made experiments using the first pattern and B, = 4. The
decoding was faster than in the previous case, but not enough. Also, we obtained
a great number of more-candidate-errors. For example, for SNR = 1, the proba-
bility for this type of error is 0.98.

From these experiments, we can conclude that the choice of the quasigroup has
an enormous influence on the performances of these codes.

From all experimental results obtained with Standard algorithm for coding/de-
coding messages transmitted through a Gaussian channel, we can conclude that
the best results are obtained using the third pattern, the key length equal to 10
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Figure 9: Experimental results for PER for key lengths of 5, 10 and 15 nibbles

(or 15), the quasigroup given in Table 1 and B, = 4.

5. Experimental results for Cut-Decoding algorithm

In the experiments made with Cut-Decoding algorithm, in both processes of cod-
ing/decoding we used a same quasigroup and different keys. The best results are
obtained for the following parameters:

- redundancy pattern: 1100 1110 1100 1100 1110 1100 1100 1100 0000;
- two different keys with length 5: k1 = 01234 and ko = 56789;

- the quasigroup given in Table 1;

- Biae = 4.

Also, experiments with keys of 10 nibbles were made, but the results were
similar.

Let PER, be the packet-error probability and BER, the bit-error probability
obtained with Cut-Decoding algorithm. We will compare these probabilities with
PER,; and BER; obtained with Standard algorithm using the best parameters
(pattern 3, quasigroup given in Table 1 and key k = 0123456789). In Table 11
and Figure 10, BER,; and BER, for different values of SNR are given, and in
Table 12 and Figure 11 - the corresponding results for PER; and PER,. In the
tables we present the results for SN R > 0, since the decoding does not have sense
(BER > Py) for smaller values of SNR.
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SNR | BER; BER.
0 0.08343 | 0.07153
1 0.01928 | 0.01831
2 0.00400 | 0.00249
3 0.00068 | 0.00073
4 0.00042 | 0.00052
5 0.00066 | 0.00047
6 0.00054 | 0.00060
7 0.00046 | 0.00049
8 0.00053 | 0.00046
9 0.00053 | 0.00046
10 0.00053 | 0.00046

Table 11: Comparison of experimental results for BER for both algorithms
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Figure 10: Comparison of BERs

From the results given in Table 11 and Table 12, we can conclude that for both
algorithms the results for PER and BER are approximately equal (they differ
in the third or higher decimal). But the decoding process with Cut-Decoding
algorithm is about 4 times faster than with Standard algorithm.
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SNR | PER; PER.
0 0.10829 | 0.10001
1 0.02520 | 0.02722
2 0.00554 | 0.00410
3 0.00137 | 0.00230
4 0.00101 | 0.00252
5 0.00144 | 0.00230
6 0.00115 | 0.00252
7 0.00108 | 0.00238
8 0.00122 | 0.00223
9 0.00122 | 0.00223
10 0.00122 | 0.00223

Table 12: Comparison of experimental results for PER for both algorithms
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Figure 11: Comparison of PERs

Methods for decreasing of number of unsuccessful decodings with Cut-
Decoding algorithm

In order to reduce the number of unsuccessful decodings with null-error and
more-candidate-error, several modifications of Cut-Decoding algorithm are defined
(in [7]). To improve the performances of Cut-Decoding algorithm (for transmission
through Gaussian channel) we use the following two combinations of the proposed
modifications.

In the both combinations with backtracking, if the decoding ends with null-
error, then the last two iterations are canceled and the first of them is reprocessed
with Baz + 2 = 6 (the next iterations use the previous value of Bj..). If
the decoding ends with more-candidate-error, then the last two iterations of the
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decoding process are canceled and the penultimate iteration is reprocessed with
Bpaz —1 = 3. In the decoding of a message only one backtracking is made,
except when after the backtracking for null-error, more-candidate-error appears.
In Combination 1, we make one more backtracking for more-candidate-error if
both decoding candidate sets are non-empty. In Combination 2, we make one
more backtracking for more-candidate-error, if at least one of decoding candidate
sets is non-empty.

The bit-error and packet-error probabilities obtained with Combination 1 are
denoted by BER._pack and PER._pqc- The bit-error and packet-error probabili-
ties obtained with Combination 2 are denoted by BER._pqck—2 and PER._pack—2.

In Table 13 and Figure 12, we compare the values of packet-error probabilities
PER;, PER., PER. pock and PER._psc—2 and in Table 14 and Figure 13 -
corresponding bit-error probabilities BER, BER., BER. pack and BER._pqck—2-

SNR | PER;, | PER. | PER. pack | PERc_pack—2
0 0.10829 | 0.10001 0.07431 0.07496
1 0.02520 | 0.02722 0.01944 0.01743
2 0.00554 | 0.00410 0.00259 0.00331
3 0.00137 | 0.00230 0.00043 0.00036
4 0.00101 | 0.00252 0.00014 0.00014
5 0.00144 | 0.00230 0.00014 0.00007
6 0.00115 | 0.00252 0.00022 0.00014
7 0.00108 | 0.00238 0.00029 0.00029
8 0.00122 | 0.00238 0.00029 0.00029
9 0.00122 | 0.00223 0.00029 0.00029
10 0.00122 | 0.00223 0.00029 0.00029

Table 13: Comparison of experimental results for PER

SNR | BER; | BER. | BER: pack | BER:_pack—2
0 0.08343 | 0.07153 0.04701 0.04815
1 0.01928 | 0.01830 0.01163 0.01137
2 0.00400 | 0.00249 0.00146 0.00227
3 0.00068 | 0.00073 0.00018 0.00013
4 0.00042 | 0.00052 0.00009 0.00010
5 0.00066 | 0.00047 0.00005 0.00003
6 0.00054 | 0.00060 0.00007 0.00006
7 0.00046 | 0.00049 0.00010 0.00010
8 0.00053 | 0.00046 0.00010 0.00010
9 0.00053 | 0.00046 0.00010 0.00010
10 0.00053 | 0.00046 0.00010 0.00010

Table 14: Comparison of experimental results for BER
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Figure 13: Comparison of BERs

Analyzing the results we can see that Cut-Decoding algorithm with the both
proposed combinations for backtracking gives better (and almost identical) results
than Cut-Decoding algorithm without backtracking and Standard algorithm.

Also, we calculate the percentage of the eliminated unsuccessful decodings by
using the both combinations for backtracking. These results are given in Table 15.

We can notice that the obtained percentages of the eliminated unsuccessful
decodings are same with both proposed combinations for backtracking, i.e, we
have the same number of eliminated unsuccessful decodings. But, for SNR < 2,
the first combination gives better elimination of null-errors and the second one -
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% of elimination | % of elimination

SNR | 15 combination | 25 combination
0 22.75% 22.85%
1 35.19% 35.19%
2 35.09% 35.09%
3 84.38% 84.38%
4 80.00% 80.00%
5 90.63% 90.63%
6 91.43% 91.43%
7 87.88% 87.88%
8 87.10% 87.10%
9 83.87% 83.87%
10 87.10% 87.10%

Table 15: Percent of eliminated unsuccessful decodings

better elimination of more-candidate-errors.

Conclusions

From the experiments made for investigation of the performances of RCBQ for
transmission through Gaussian channel, we can conclude that all parameters (a
pattern for adding redundancy, a key length and a chosen quasigroup) have in-
fluence to the performances of these codes. Also, the pattern and the quasigroup
have a great influence to the decoding speed. Namely, with inappropriate choice
of these parameters, the decoding process does not finish in real time and the
packet-error and bit-error probabilities are very large. Two combinations with
backtracking of Cut-Decoding algorithm are proposed and they give a good per-
centage of eliminated unsuccessful decodings.

These conclusions for influence of parameters on the performances of RCBQ
for transmission through Gaussian channel are very similar with corresponding
conclusions for transmission through a binary symmetric channel (see, [6, 7, 8, 9]).
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Centralizers on semiprime MA-semirings

Sara Shafig and Muhammad Aslam

Abstract. Let T7,7T> be left centralizers on 2-torsion free non-commutative semiprime MA-
semiring S such that [Ta(z), T (z)]T2(z) + T2(x)[T2(x), Ti(z)] = O holds for all z € S, then
[T (z), To(z)] = 0.

1. Introduction

By a semiring we mean a nonempty set S in which two binary operations '+’
(addition) and ’-’ (multiplication) are defined in this way that (S, -) is a semigroup
and (S, +) is a commmutative semigroup with an absorbing zero 0 (i.e., a + 0 =
0+a=a, ad =0 =0a, for all @ € S) and both right and left distributive laws
holds in S. A semiring S is called an inverse semiring [4] if for every a € S there
exists an element o’ € S such that a +a' +a = a and o’ + a + ¢’ = o', where
a’ is called the pseudo inverse of a. Throughout this paper S will denote MA-
semiring which is an inverse semiring that satisfies the Bandlet’s and Petrich’s
condition Ay, i.e., a+a’ is in center Z(S) of S. For example, commutative inverse
semirings and distributive lattices are MA-semirings. For more examples (non-
commutative) we refer reader to [2]. According to 2], a commutator |, .] is defined
as [z,y] = vy + y'z. We will make use the following commutator identities:

[z,y2] = [z, ylz + ylz, 2], ey, 2] = o, 2]y + aly, 2], [2y,2] = 2]y, 2],

[z, 2y] = xlz, ], [vy,9] = [z, 9ly, [y, 2] = [y, =]y
(see [2], for their proofs). One can see that these fundamental identities including
jacobian identity are useful tools to explore and extend various Lie type results of
rings in the structure of inverse semirings (see [2] and [3]).

A semiring S is prime if aSb = (0) implies @ = 0 or b = 0 and it is semiprime
if aSa = 0 implies ¢ = 0. S is n-torsion free if nx = 0, x € S implies = = 0.
Following [7], an additive mapping T : S — S is called a left (right) centralizer if
for all z,y € S, T'(zy) = T(x)y (resp. T(zy) = 2T (y)) and T is a centralizer if it
is both right and left centralizer.

Motivated by the work of Zalar [7] on centralizers, J. Vukman investigated the
identities satisfied by centralizers on semiprime rings.

In this paper, we explore these identities and extend J. Vukman’s results [6] to
MA-semirings.

2010 Mathematics Subject Classification: 16N60, 16W25.
Keywords: Semiprime inverse semiring, left centralizer, right centralizer, centralizer, 2-torsion
free semiring, MA-semiring.
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2. Main results

To prove our results we need the following lemma (Lemm 1.1 in [5]).

Lemma 2.1. Let S be an inverse semiring. Then a+b = 0 implies a = V', for all
a,bes.

Theorem 2.2. Let S be a 2-torsion free non-commutative semiprime M A-semiring
and Ty, T be left centralizers on S. If

[To(2), T1 (2)| T2 (2) + Ta(2)[Ta(x), Ti(2)] = 0 (1)
holds for all x € S, then [Ta(x),T1(x)] = 0.

Proof. Linearize (1), we get

[To(x), Ty (x

)] y), T
Tr ()]

Ta(y) + To(y)[T2(2), Ta(2)] + [Ta(y), To (y)| T2 () +
Ta(y), Ta(w)] + [Ta(y), Ty (2)] T2 (2) + Ta(2) [Ta(y), Ty (x))+
[To(x), Ty(y)| T2 (2) + To(2) [To(x), Ty (y)] + [Ta(z), Ty (9))T2(y) +
Tz (y)[ (), Ty (y)] + [Ta(y), To(2)]T2(y) + To(y)[T2(y), Ta(2)] = 0. (2)
Replacing z by z’ in (2), and using the fact that T;(z') = T} (x) = (T3 (x))’, i = 1,2,
we have

x)[To(y

(
(

=

[Ta(x), Ty (2)|Ta(y) + Ta(y) [Ta(z), Ty (x)] 4 [Ta(y), Ty (y)] To(2")+
Tr(2")[T2(y), Ty (y)] + [T2(y), T1 (2)|To(x) + Ta(2)[Ta(y), To(x)]+
[Ta(2), Ty ()| Ta(2) + To(2)[Ta(x), Ti (y)] + [To("), T (y)] T2 (y)+
[T W)l

[
To(y)[T2(=), Ta(y)] + [T2(y), T (2)]Ta(y) + To(y)[T2(y), Tr(z")] = 0. (3)

Multiplying (2) by 2 and adding the result in (3), we have

3[T(x), Ta (2)| T (y) + 3Ta(y)[Ta(x), T1(2)] + [T2(y), Ta (y)]| Ta (2" + 22)+
To(2" + 22)[Ta(y), T1(y)] + 3[T2(y), T1 (2)| T2 () + 3Ta(2)[T2(y), T1(2)]+
3[To(x), Ta(y)|Ta(2) + 3To(2) [Ta(x), Ty (y)] + [Ta(2” + 22), T1(y)] T2 (y)+
T (y)[To (2’ +22), Ta ()| +[T2(y), T1 (2" +22)] To(y) + To(y) [T2(y), T1 (2" +22)] = 0.

Using (2) and the fact that S is a 2-torsion free inverse semiring, we get

[T2(2), T1(2)|T2(y) + To(y)[T2(z), Ti(2)] + [T2(y), T1 ()] To(z)+
Ty (2)[T2(y), Ta(2)] + [T2(2), T1 ()| T2 (2) + To(2)[T2(2), T1(y)] = 0. (4)
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Replacing y by xy in (4) and then using (1) we obtain

Ta(z)y[Ta(z), Ty (2)] + 2[T2(z), Ty (2)]yTa(z) + T2(z) [y, T1 ()| T2(z)+
(To(2))?[y, Ty (2)] + Th () [Ta(2), y To(z) + To(z)[To(z), Ty (z)|y+
T3 (2)Th (x)[T2(x),y] = 0. (5)

Replacing y by yTs(x) in last equation, we get

Ty (z)yTo(z)[To(z), T1(2)] + To(2)y[To(z), T1 (2)| T2 (z)+
2[To(2), T1 (2)]y(Ta(2)) + To(x) [y, T1 (2))(Ta(x))*+
(Ta(2))y[Ta (), T1 ()] + (Ta(2))? [y, T1 ()] To () +
Ty (2)[Ta(x), y) (T2 (x))? + Ta()[Ta(x), Ty (z)]yTa(2)+
Ty(2)T1(2)[To(2), y| To(x) = 0. (6)
Using (5) in (6), we get
Ty (2)yTa(2)[T2(x), Ty (x)] + (Ta(2))*y[T2(x), Ty ()] = 0 (7)

Replacing y by T1(z)y in (7), we have

Ty(a) Ty (2)yTa()[T2(2), Ty (2)] + (Ta(2))* Ty (2)y[Ta(2), T1 (2)] = 0. (8)

);

(
Pre-multiplying (7) by T1(x), we have

(

)i

T (2) T (2)yTo(2)[T2(2), Ta ()] + T1(2)(Ta(2))*y[T2(), Ta(x)] = 0. (9)

Adding pseudo inverse of (9) in (8) and then using (1), we obtain

[Ta(2), T1(2)]yTa(2)[Ta(x), Ty (2)] = 0, (10)
which implies
To(x)[To(x), T1(x)] = 0. (11)
From (1), we get
[To(z), Ty (2)] T (x) = 0. (12)

As (4) obtained from (1), from (12) we get

(T2(y), T1 (2)|T2(2) + [T2(x), Ty (y)]T2(2) + [T2(x), Ty (2)]T2(y) = 0. (13)
Replacing y by xy in (13) and then using (12), we get

[To(x), Ty (2))(2y + ') Ta(2) + To(2)yTi (2)To(x) + Tr(x)y (Ta(2))* = 0

[Ta(2), Ty (2)lyTa(w) + Ta(x)yTi(2)Ta(x) + Ti(2)y (Ta(2))* = 0. (14)
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Post-multiplying (14) by T4 (x)
[T2(2), Ty (2)lyTe(2)Ta () + Ta(2)yTi () T2(2) i (2) + Ta(x)y' (T2(2))*Ti(2) :(105-)
Replacing y by yTi(z) in (14), we get
[T2(2), Ty (2)]yT1 (2) Ta(x) + Ta(2)y(T1(2))*Ta(x) + T1(2)y Ty(x)(T2(z))* = 0.
Adding pseudo inverse of (16) in (15) and then using (1), we have 1o
[T2(2), Ty (2)ly[ T2 (2), T1 (2)] + Ta(2)yT1 (2)[Ta(x), Ty ()] + Ty (2)y[(T2)?, Ta(x)] = 0

[To(z), Ty (2)]y[Ta(x), Ti ()] + To(x)yTa (z) [T2(x), Ta (2)] = 0. (17)

Replacing y by 2T%(z)y in (17), we have
[Ta(x), T1 ()] T2 (2)y[To(x), Ty (2)] + To(x)2T2(x)y Ty () [T2(x), To(x)].  (18)
Pre-multiplying (17) by Ty(x)z
Ty (x)2[To(x), Ty (2)|y[Ta(x), T1(2)] + To(2) 2T (2)y Ty (2)[To(2), Ti ()] (19)
Applying Lemma 2.1 to (19) and using it in (18), we get
F(x, 2)y[Ta(x), T1(x)] =0, (20)

where F(z,2) = [To(x), Ty (2)]2T(z) + To(z)2 [To(x), Ti(x)].
Replacing y by yT(x)z in (20)

F(x, 2)yTs(x)z[T2(2), Ty (x)] = 0. (21)
Post-multiplying (20) by z7%(x)

F(z, 2)y[Te(z), Ty (x)]zT2(z) = 0. (22)
Adding pseudo inverse of (21) in (22), we get

F(x,z)yF(z,z) =0.
Semiprimness of S implies
F(x,2) = [Tx(z), T1(2)]zT2(x) + To(z)2' [Ta(z), T1 (z)] = 0. (23)

Applying Lemma 2.1 to (23), we get

[To(z), Th(2)]2T2(x) = To(z)2[T2(2), T1 (x)). (24)
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Replacing 2 by T} (x) in last equation, we have
[T2(x), Ty (2)|yT1 (2)Ta(x) = To(x)yTh (z)[T2(x), Ty (z)]. (25)
Using (25) to (17), we get
[T(2), Ty (2)|y T (2) Ty () + [Ta(x), Ty (2)) (y + ') (T2 (2)) Ta(x) = 0

or

[To(x), Ty (2)]yTa(2)T1(2) + [Ta(x), Tu(x)]y(Ti(2) + Ti(a) T2(x) = 0,
since Ty (z) + T1 (') € Z(S), so we have

[Ta(x), Ta(2)]yTo(2)Ti(2) + [Ta(x), Ty (2)]yT2(z)(Ta(z) + Ti(2")) = 0

or
(T2 (), T1(2)]yTa(z)T1 (x) = 0. (26)

Replacing y by yT1(z) in above equation
[Ta(2), Ty (2)]y Ty (2) T2 () Ti(2) = 0. (27)
Post-multiplying (26) by T1(z)
(T2 (), Ty (2)]yT2(z)(T1(2))* = 0. (28)
Adding pseudo inverse of (27) in (28), we have
[T2(x), Ty (2)]y[T2(x), Ty (x)]Ti(z) = 0.
Replacing y by T1(z)y and using semiprimeness of S, we have
(T2 (x), Ty (2)|T1 () = 0. (29)
Replacing z by T (z)y in (24) and using (29), we have
To(z) Ty (2)y[T2(x), Ty (z)] = 0. (30)
As (14) obtained from (12), from (11), we obtain
Ty(2)y[To(x), Ty(x)] + To(2) 1 (2)y Ta(z) + (Ta(x))*yTi(x) = 0. (31)
By (24), we have
Ta(2)T1(2)(y + o) T2 () + (T (2)) Ta(x))y T2 () + (T2(2))*yTi(x) = 0

Ty(a)(Ta(x) + Ta("))yTa(@) + (T (2)) Ta(@)yTa(z) + (T2())yT1(z) = 0
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or

(T1(2) + T1(2") Ta(2)yTa(2) + (T1(2)) Ta(2))yTa(2) + (T2(2))*yTi(z) = 0

(T1(2)) Ta(2)yTo(x) + (T2 (x))*yT1(z) = 0. (32)
Replacing y by yT1(z) in last equation
(T1(2)) Ta(2)y T (2) To(2) + (T2(2))*y(Ty(x))* = 0. (33)
Post-multiplying (32) by T1(z)
(T1(2)) To()yTo(2) T (2) + (Ta(2))*y(T1(2))* = 0. (34)
Applying Lemma 2.1 to (34) and using the result in (33) we get
T(x)y[Ta(x), Ty (z)] = 0. (35)

Adding pseudo inverse of (35) in (30) we get
(T2(x), T1(2)]y[T2(x), Ty (2)].

This implies
[TQ(x)v Ty (x)] =0,
which completes the proof. O

Theorem 2.3. Let S be 2-torsion free non-commutative semiprime M A-semiring.
If Ty and Ty are left centralizers on S satisfying

([T2(x), Ty(2)], To(2)] = 0 (36)
for all x € S. then [Tz(x),Ti(x)] = 0.
Proof. As (4) obtained from (1), from (36), we get
([T2(2), Ty(2)], Ta(y)] + [[Ta(2), Ti(y)], To ()] + [T2(y), Tr(2)), To(2)] = 0. (37)
Replacing y by zy in last equation and using (36), we obtain
Ty (2)[[T2(z), Ty (2)], y] + 3[T2(2), Ty ()][y, To(x)]+
Ty (2)[[To(x), y], To(2)] + Ta(2)[ly, T ()], Ta(2)] = 0. (38)

Replacing y by yTs(x) in last equation, we get

To(2)[[To(x), Ta (@), Yl To () + To(x)y[[T2(2), Ty (z)], Ta(x
3[Ta(x), Ty (@)][y, To ()| Ta(x) + T1 () [y[T2

Ty (2)[[Ta (), y|To(2), Ta ()] + Ta(2) [y[T: (x

Ty (@)(ly, Th

”Q
~
m’ﬂ
—~~
SL
l\’)
—
8
=
_|_
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Now as To(x) + Ta(z') € Z(S) , so we have

T (z)[y[T2(x), To(x)], To(2)] + Ty () [T2(2), y) Ta(z), Ta(z)]
= T1(2)[y(T2(2)+T2(2")) To(2), To(2)|+T1 () [(T2(2)yTo(z) +y To(2) T2 (2)), T2 (2))]
= T1(2)[(T2(z) + Ta(2) + To(2))yTa(x) + y'To(2)To(2), T2(z)]
=Ty (x)[[T(2), y|To(x), To(x)].  (40)
From (40), (39) and (38), we obtain
Ly(z)ly, To(2)][T2(x), T1(x)] = 0
Ty (2)yTa(2)[Ta(x), Ti ()] + (T2(2))*y [T2(2), T1(2)] = 0. (41)
Replacing y by T7(z)y in last equation, we obtain
Ta(2)T1 (2)yTe(2)[T2(2), T ()] + (To(2))* Ty (2)y [Ta(2), Ti(2)] = 0. (42)
Pre-multiplying (41) by T3 (x), we get
T1(2)Ta(2)yTe(x)[T2(x), Ti (2)] + Ty (2)(To(2))?y [Ta(z), Ti(2)] = 0. (43)
Adding pseudo inverse of (43) in (42)
[Ta(2), T1(2)]yTa () [To(x), Ty (2)] + Ta(2) [To(x), Ty (2)]y [Ta(x), Ty (2)]+
[Ta(2), Ty (2)| T2 (2)y [T2(2), Ti ()] = 0. (44)
Applying Lemma 2.1 in (36) and using the result in the last equation, we have
[Ta(x), Ty (2)]yTo(2)[T2(x), Ty ()] + 2T(2)[T2 (), Ty (2)]y'[T2(z), Ty (x)] = 0. (45)
Pre-multiplying (45) by T»(z), we have

2(T3(2))?[Ta(x), T (2)]y' [T2(x), Ty (2)]+
To(2)[T(x), Ty (2)]y T2 () [Ta(x), Ti ()] = 0. (46)
Replacing y by [T2(z), T1(x)]y in (41), we have
Ty (z)[T2(2), T1 (z) |y T2 () [T2(2), T1 (2)]+

(T2(2))?[Ta(x), T (2)]y' [T2(x), Ty(2)] = 0. (47)
Applying Lemma 2.1 to (46) and using the result in (47), we have

To(2)[Ta(x), Ty (2)]yTo(2) [To(2), Ty ()] = 0, (48)
and semiprimness of S implies
Ty (x)[Ta(x), Ty(x)] = 0, (49)
and from (36) and Lemma 2.1, we obtain
[T2(z), Ty (2)]| T2 (), (50)

which gives [Ty(x), T1(x)] = 0, as in the proof of Theorem 2.2. O
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Gyrogroups and the Cauchy property

Teerapong Suksumran and Abraham A. Ungar

Abstract. A gyrogroup is a nonassociative group-like structure. In this article, we extend the
Cauchy property from groups to gyrogroups. The (weak) Cauchy property for finite gyrogroups
states that if p is a prime dividing the order of a gyrogroup G, then G contains an element of
order p. An application of a result in loop theory shows that gyrogroups of odd order as well as
solvable gyrogroups satisfy the Cauchy property. Although gyrogroups of even order need not
satisfy the Cauchy property, we prove that every gyrogroup of even order contains an element
of order two. As an application, we prove that every group of order ng, where n € N and ¢ is a
prime with n < g, contains a unique characteristic subgroup of order gq.

1. Introduction

Gyrogroups abound as an integral part of group theory. In fact, (i) every gyro-
group is extendable to a group, called the gyrosemidirect product group [23, Section
2.6]; (ii) every gyrogroup is a twisted subgroup of some group [6, 7, 11]; and (iii) a
certain group with an automorphism of order two gives rise to a gyrogroup [6, 7,
12, 17]. Further, any group may be viewed as a gyrogroup with trivial gyroauto-
morphisms. It turns out that gyrogroups share remarkable analogies with groups.
Several well-known results in group theory can be naturally extended to the case
of gyrogroups such as the Lagrange theorem [18], the fundamental isomorphism
theorems, the Cayley theorem [19], the orbit-stabilizer theorem, the class equation,
and the Burnside lemma [16]. Moreover, some gyrocommutative gyrogroups ad-
mit scalar multiplication, turning themselves into gyrovector spaces, just as some
abelian groups admit scalar multiplication, turning themselves into vector spaces.
Remarkably, gyrovector spaces form the algebraic setting for analytic hyperbolic
geometry, just as vector spaces form the algebraic setting for analytic Euclidean
geometry, as evidenced, for instance, from [20, 21, 22, 23, 24, 25, 26, 27]. Thus,
like the group notion, the notion of gyrogroups plays a universal computational
role.

It is known in the literature that every group satisfies the Cauchy property,
that is, if p is a prime dividing the order of a group I, then I' contains an element
of order p. This is the familiar Cauchy theorem in abstract algebra. Cauchy’s
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theorem leads to a better understanding of the structure of a finite group. For
instance, using Cauchy’s theorem, one can prove that every group of order 2p,
where p is a prime, is isomorphic to the cyclic group or the dihedral group of
order 2p [8]. Furthermore, the celebrated Sylow theorems are built on Cauchy’s
theorem, see for instance [4, p. 140] and [3, Section 9.2].

In [18] the authors extend the Cauchy property to the case of gyrogroups and
prove that gyrogroups of order pg and nongyrocommutative gyrogroups of order
pqr satisfy the (strong) Cauchy property, where p,q and r are primes. Unfortu-
nately, there is no hope of extending Cauchy’s theorem to all finite gyrogroups as
Nagy proves the existence of a simple right Bol loop of exponent two and of order
96 [13, Corollary 3.7]. See also [2]. This loop gives rise to a gyrocommutative
gyrogroup of order 96 in which every nonidentity element has order two. However,
some classes of finite gyrogroups do satisfy the Cauchy property. As in the group
case, the Cauchy property leads to a better understanding of the structure of a
finite gyrogroup. For example, any gyrogroup of order pg, where p and ¢ are
distinct primes, is generated by two elements; one has order p and the other has
order ¢ [18, Theorem 6.10]. We will see shortly that any gyrogroup of order pq,
where p and ¢ are primes with p < ¢, contains a unique subgyrogroup of order q.

2. Preliminaries

For the basic theory of gyrogroups, the reader is referred to [15, 18, 19, 23]. For
basic knowledge of loop theory, the reader is referred to [10, 14]. Subgyrogroups,
gyrogroup homomorphisms, normal subgyrogroups, and quotient gyrogroups are
studied in detail in [15, 18, 19].

Let G be a gyrogroup and let a be an element of G. For m € Z, define
recursively the following notation

0a=0, ma=a®((m—1a),m>1, ma=(—m)(Sa), m <0. (1)

It can be shown that (ma)® (ka) = (m+k)a and (mk)a = m(ka) for all m, k € Z.
Hence, the cyclic subgyrogroup generated by a, written (a), forms a cyclic group
with generator a under the gyrogroup operation. In fact,

(a) = {ma: m € Z}. (2)

Further, the gyroautomorphism gyr[ma, ka] descends to the identity automor-
phism for all m,k € Z. The order of a, denoted by |a|, is defined to be the
cardinality of (a) if (a) is finite. In this case, we will write |a| < co. If (a) is
infinite, the order of a is defined to be infinity, and we will write |a| = co. As in
the theory of groups, if |a| < co, then |a] is the smallest positive integer such that
lala = 0. If |a| = oo, then |ma| = oo for all m € Z\ {0}. Furthermore, if G is a
finite gyrogroup, then |G| is divisible by |a|, see [18, Proposition 6.1].

As a consequence of the left cancellation law, the left gyrotranslation by a,
defined by L,: © — a @ z, © € G, is a permutation of G for all ¢ € G. Because
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gyrogroups are left power alternative [18, p. 288], that is, LI = L,,, for all a € G,
m € Z, the gyrogroup-theoretic order of a and the group-theoretic order of L,
coincide.

3. Main results

Throughout the remainder of the article, all gyrogroups are finite and G denotes
an arbitrary finite gyrogroup unless explicitly mentioned otherwise.

Definition 3.1. A gyrogroup G has the weak Cauchy property if for every prime
p dividing the order of GG, G contains an element of order p.

Definition 3.2. A gyrogroup G has the strong Cauchy property if every sub-
gyrogroup of G has the weak Cauchy property.

It is clear that any gyrogroup that satisfies the strong Cauchy property will
automatically satisfy the weak Cauchy property as well. The Cauchy property is an
invariant property of finite gyrogroups in the sense that if G and H are isomorphic
gyrogroups, then G has the weak (resp. strong) Cauchy property if and only if H
has the weak (resp. strong) Cauchy property [18, Corollary 6.6]. Therefore, the
Cauchy property becomes important in classification of finite gyrogroups because
not every gyrogroup has the Cauchy property. Further, the Cauchy property is a
good example to see how information about a gyrogroup G can be obtained from
information on its normal subgyrogroup N and on its quotient gyrogroup G/N,
as shown in the following theorem.

Theorem 3.3 (Corollary 6.8, [18]). Let N be a normal subgyrogroup of G. If
N and G/N have the weak (resp. strong) Cauchy property, then so has G.

Using Theorem 3.3, one can show that finite solvable gyrogroups satisfy the
strong Cauchy property. A (finite or infinite) gyrogroup G is solvable if there
exists a series {0} = Gg < G1 < -+ < Gy, = G of subgyrogroups of G such that
G; 9G4 and the quotient gyrogroup G;11/G; is an abelian group for all ¢ with
0<i<n-—1(c [1,p. 116]).

Theorem 3.4 (Proposition 46, [15]). FEvery solvable gyrogroup has the strong
Cauchy property.

Proof. The proof of the theorem can be done by induction on the number of sub-
gyrogroups in a subnormal series using Theorem 3.3. O

Recall that a loop (L, ) is a left Bol loop if it satisfies the left Bol identity:
a-(b-(a-0) = (a-(b-a))-c (3)
for all a,b,c € L. A loop (L, ) has the Ay-property if the left inner mapping
l(a,b) ==L, ;0Lgo0Ly
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generated by a and b defines an automorphism of L for all a,b € L. Here, L,
denotes the left multiplication map by a defined by L,: x +— a-x, x € L. It
is known in the literature that every gyrogroup forms a left Bol loop with the
Ay-property, where the gyroautomorphisms correspond to left inner mappings,
and vice versa. In particular, the left loop property and the left Bol identity are
equivalent, see for instance [10, Theorem 6.4].

By Glauberman’s result [9], Foguel et al. prove that Cauchy’s theorem holds
for finite left Bol loops of odd order. More specifically, if L is a left Bol loop of odd
order and if p is a prime dividing the order of L, then there exists an element a
of L such that |L,| = p [5, Theorem 6.2]. With this result in hand, one can prove
that gyrogroups of odd order satisfy the weak Cauchy property.

Theorem 3.5 (Cauchy’s theorem). Let G be a gyrogroup of odd order. If p is
a prime dividing |G|, then G has an element of order p. In other words, G has the
week Cauchy property.

Proof. As noted above, G is a left Bol loop of odd order. Hence, by Theorem 6.2
of [5], there is an element a of G such that |L,| = p. Since |a| equals |L,|, the
theorem follows. O

Corollary 3.6. Every gyrogroup of odd order has the strong Cauchy property.

Proof. Let G be a gyrogroup of odd order and let H be a subgyrogroup of G. By
Lagrange’s theorem for gyrogroups [18, Theorem 5.7], |H| divides |G| and so H is
a gyrogroup of odd order. It follows that H has the week Cauchy property, which
completes the proof. O

We have seen in Corollary 3.6 that any gyrogroup of odd order has the strong
Cauchy property. Unfortunately, there is an example of a gyrogroup of even order
that fails to satisfy the weak Cauchy property. In fact, by Corollary 3.7 of [13],
there exists a simple right Bol loop of exponent two and of order 96, say (Ly,-).
The dual loop of Ly, denoted by L N, consists of the underlying set Ly with the
dual operation

axb:=b-a

for all a,b € Ly. It is straightforward to check that Ly is a left Bol loop, that Ly
and Ly share the same identity, and that if @ € Ly, then the inverse of a in Ly
and the inverse of a in L ~ are identical. Note that a = ¢~ ! for all a € L N since
L ~ is of exponent two. Hence,

(axb) ' =axb=a"txb"!

for all a,b € Ly. This shows that Ly is a left Bol loop satisfying the automorphic
inverse property. Hence, Lyisa gyrocommutative gyrogroup by Theorem 6.6 of
[10] and Theorem 3.2 of [23]. Since a * a = 1 for all a € Ly, every nonidentity
element of L ~ has order two. From this it is clear that L ~ does not satisfy the
weak Cauchy property. Nevertheless, any gyrogroup of even order does contain an
element of order two, as shown in the following theorem.
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Theorem 3.7. If G is a gyrogroup of even order, then G contains an element of
order two.

Proof. We first show that {{a,©a}: a € G} forms a disjoint partition of G. For

each a € G, set C, = {a,5a}. Clearly, C, # 0 for all a € G and U C, =G. We
acG

claim that C, N Cy # () implies Cy = Cy. In fact, if z € C, N Cy, then there are
four possibilities:

(1) x =a and x = b;

(2) x =a and x = Sb;

(3) z =6Sa and = = b;

(4) z = ©a and x = ©b.

Each of (1)-(4) implies that C, = C} since &(©z) = x. Note that |C,| =1 or 2.
Note also that |Cy| =1 if and only if a = Sa.

Set m = |{a € G: |Cy| =2} and n = |[{a € G: |C,| = 1}|. Then |G| = 2m+n.
Since 2 divides |G|, we have 2 | n. Thus, n > 2 and so there must be a nonidentity
element ¢ of G such that ¢ = ©¢. Hence, |¢| = 2. O

As a consequence of Theorem 3.7, every gyrocommutative gyrogroup of even
order contains the nontrivial subgyrogroup of elements of order two together with
the gyrogroup identity.

Lemma 3.8. Let G be a (finite or infinite) gyrocommutative gyrogroup. Then
Lg@b =L,0L}oL,
for all a,b € G.

Proof. Note that L' = Lg, for all @ € G. By (2.126) of [23], gyr[a,b] =
gyr [©a, ©b]. By (12) of [19] and Theorem 3.2 of [23],

LogyoLaoLy=Lgo,0Leqo Ley = Loacy © Ly o Lyt = Lagpo Ly o Ly,

which implies L2, = Ly 0 L} o L. O

Theorem 3.9. If G is a (finite or infinite) gyrocommutative gyrogroup, then
Go:={a € G: 2a =0}

forms a subgyrogroup of G.
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Proof. Clearly, 0 € G5. Let a,b € G3. Then a®a = 2a = 0, which implies a = Sa.
Hence, ©a € G5. As in the proof of Proposition 3.10 of [18], LT* = L,,, for all
a € G, m € Z. Hence, by Lemma 3.8,

Loqaay) = L2ep = Lao Lj o Ly = Lq o Loy o Ly = Lo, = idg.

It follows that 2(a @ b) = 0 and so a ® b € G5. By the subgyrogroup criterion [19,
Proposition 14], G2 < G. O

If G is a finite gyrocommutative gyrogroup of odd order, then Gs given in
Theorem 3.9 is the trivial subgyrogroup of G. In fact, if ¢ is a nonidentity element
of G, then |a| divides |G| by Proposition 6.1 of [18]. This implies |a| is odd
and hence 2a # 0. In contrast, if G is a finite gyrocommutative gyrogroup of
even order, then (o is nontrivial since Theorem 3.7 ensures the existence of a
nonidentity element of G of order two.

4. Applications of Cauchy’s theorem

Let H be a subgyrogroup of a gyrogroup G. For each a € G, the right coset of H
by a, denoted by H @a, is defined as H®a = {h @ a: h € H}. As a consequence of
the right cancellation law in a gyrogroup [23, Eq. (2.64)], the right gyrotranslation
by a, R,, is a bijection from G to itself. Hence, the restriction of R, to H is a
bijection from H to H @ a and so H and H @ a have the same size. The following
theorem shows that the right cosets of a cyclic subgyrogroup of G forms a disjoint
partition of G. In contrast, the left cosets of a cyclic subgyrogroup of G need not
partition G.

Theorem 4.1. Let G be a (finite or infinite) gyrogroup and let a € G. The
collection of right cosets of the cyclic subgyrogroup {(a) in G is a disjoint partition

of G.
Proof. Note that if x € G, then (a) ® xz # 0. In fact, z = 0® z € (a) ® z. This
implies that G = U ) @ x. Suppose that z,y € G are such that (@) ®xN{a) Dy
is not empty, naniglff be (a)®xn{a)@y. Then b = ma G x = na ®y for some
m,n € Z. To complete the proof, we show that (a) ®x = (a) D y. Let z € (a) ® x.
Then z = ka @& . We compute

z = kad®x
(k —m)a®ma) & x
k —m)a & (ma @& gyr [ma, (k — m)a)zx)
k—m)a® (mad® x)
k—m)a® (na ®y)
(k — m)a @ na) ® gyr [(k — m)a, naly
k—m+n)ady,

(
(
(
(
(
(
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which implies z € (a) @ y. We have the second equation from Proposition 3.7 of
[18]; the third equation from the right gyroassociative law; the forth equation from
Proposition 3.10 of [18]; the sixth equation from the left gyroassociative law; the
last equation from Propositions 3.7 and 3.10 of [18]. This proves (a) &z C (a) ®y.
Similarly, z = k'a @ y for some k' € Z implies z = (k' —n + m)a ® x, and we have
the reverse inclusion {(a) ®y C (a) ® z. O

Lemma 4.2. Let G be a gyrogroup and let a be an element of G of finite order.
If n € Z and na =0, then n is divisible by |al.

Proof. If n = 0, the statement is trivial. We may therefore assume that n # 0.
Set |a| = m. Using the division algorithm, we write n = mk + r for some k,r € Z
such that 0 < r < m. From Proposition 3.7 of [18], we have

0=na= (mk+r)a=k(ma) @ra=0&ra=ra.
By the minimality of m, r = 0. Hence, n = mk and so m | n. O

Lemma 4.3. Let q be a prime and let n be a positive integer such that n < q.
Let G be a gyrogroup of order nqg. If a is an element of G of order q, then for all
x € G, |x| = q implies x € (a).

Proof. Let a € G with |a] = ¢q. Suppose that @ € G and |z| = q. We prove that
there must be distinct integers ¢, 5 € {0,1,...,¢—1} such that (a)®izN{a)Sjz # 0.
Note that |(a) ® b| = |[(a)| = ¢ for all b € G by the remark above. Suppose to the
contrary that for all 7,7 € {0,1,...,q — 1}, if i # j, then (a) ® iz N {a) & jz = 0.

q—1 q—1 qg—1

Hence, U<a> Gix| = Z [{a) @ ix| = Zq = ¢°, which is impossible, since
i=0 i=0 i=0

q—1 q—1

U (a) @iz C G and so U {(a) ®iz| < |G| = ng < ¢*. Hence, there are integers
i=0 =0

i,j with 0 < i # j < ¢ for which (a)®izN{a)®jz # 0. There is no loss in assuming
that ¢ < j. By Theorem 4.1, {(a) @ iz = (a) @ jx. This implies jz = ¢ @ ix for
some ¢ € (a). By the right cancellation law,

¢ = (c@iz) B (6ix) = jz B (Siz) = jz ® gyr [jz, ix](Sizx) = je Oix = (j —i)x.

o || o
By Corollary 3.15 (2) of [18], —i)r| = ——————= =qfor 0<j—i<q.
y y (2) of [18], [(j — )= ced(al =7 ¢ J q
Since ¢ € (a), {¢) < (a). Since |c| = ¢ = |al|, (¢} = (a). Similarly, ((j —i)x) = (x).
Therefore, () = (a) and hence z € (a). O

Theorem 4.4. Let q be a prime and let n be a positive integer such that n < q.
Let G be a gyrogroup of order nq. Define

Gy ={a € G: gqa=0}. (4)

Then G tis either the trivial subgyrogroup or the unique subgyrogroup of G' order
q.
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Proof. It G, = {0}, then we are done. We may therefore assume that G, # {0}.
Hence, ga = 0 for some a € G\ {0}. By Lemma 4.2, |a| divides ¢. Since ¢ is a
prime and a # 0, |a] = ¢. It follows that (a) is a subgyrogroup of G of order g. If
K is a subgyrogroup of G of order ¢, then K = (b) for some b € K by Theorem
6.2 of [18]. Since |b] = g, Lemma 4.3 implies b € (a). Hence, K = (b) = (a). This
proves existence and uniqueness of the subgyrogroup of G of order q.

Next, we prove that G4 = (a). Let € (a). Then either x =0 or |z| = ¢. In
either case, gx = 0. Hence, z € G4. This proves (a) C G4. Let € G;. Then
gr =0. If =0, then = € (a). We may therefore assume that z # 0. By Lemma
4.2, |z| divides ¢ and so |x| = ¢. By Lemma 4.3, = € (a) and we have the reverse
inclusion G, C (a). O

A subgyrogroup H of a gyrogroup G is called an L-subgyrogroup of G if
gyr(a,h)(H) = H

for all a € G, h € H. One of the main aspects of L-subgyrogroups is that they
partition G into left cosets of equal size [19, Theorem 20].

Theorem 4.5. If G, given in Theorem 4.4 is nontrivial, then it is an L-subgyro-
group of G of index n.

Proof. Assume that G4, # {0}. Let a,b € G. Since gyr|[a,b] is a gyrogroup
automorphism of G, gyr[a,b](G4) forms a subgyrogroup of G of order ¢g. By the
uniqueness of Gy, gyr [a,b](G,) = G4. By definition, G4 <1 G. As G4 <1, G, the
index formula holds and hence [G: G,] = |G|/|G,| = n. O

Theorem 4.6. If G is a gyrogroup of order pq, where p and q are primes with
p < q, then G contains the unique subgyrogroup of order q.

Proof. By Cauchy’s theorem for gyrogroups of order pq [18, Theorem 6.9], G has an
element of order ¢. So, G, # {0} and the theorem follows directly from Theorem
4.4. O

Theorem 4.7. Let G be a gyrogroup of order pq, where p and q are primes with
p < q. If the unique subgyrogroup of G of order q is normal in G, then G is
solvable.

Proof. Let N be the unique subgyrogroup of G of order ¢ and assume that N <G.
By Theorem 6.2 of [18], N is a cyclic group of order g and hence is an abelian group.
Since N J4G, G/N has the quotient gyrogroup structure and |G/N| = [G: N] = p.
Hence, G/N is an abelian group as well. Therefore, the series {0} < N < G fulfills
the condition of a solvable gyrogroup. O

Let T' be a group. A subgroup = of T' is said to be characteristic in T' if
E is invariant under the automorphisms of I, that is, if 7(2) = E for all 7 in
Aut (T). Since group-theoretic conjugation kg : z +— grg~!, x € T, defines a group
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automorphism of T' for all g € T', every characteristic subgroup of I" is normal in
I'. From this point of view, characteristic subgroups are sometimes called strongly
normal subgroups.

In light of Theorem 4.4, not only the structure of a finite gyrogroup, but also
the structure of a finite group, is revealed, as shown in the following theorem.

Theorem 4.8. Let q be a prime and let n be a positive integer such that n < q.
Every group of order ng contains the unique characteristic subgroup of order q.

Proof. Let T be a group of order ng. By Cauchy’s theorem for groups, I' has an
element of order q. By Theorem 4.4, I' has the unique subgroup of order ¢, say =.
If 7 is a group automorphism of I, then 7(Z) is indeed a subgroup of I" of order
g. Hence, 7(E) = E. This proves that = is characteristic in I'. O

Note that if the integer n in Theorem 4.8 becomes a prime, we recover the
well-known result in abstract algebra that any group of order pq, where p and ¢
are primes with p < ¢, contains the unique normal subgroup of order ¢q. This result
arises as an application of the Sylow theorems, see for instance [4, p. 143]. Fur-
ther, it is not difficult to see that Theorem 4.8 can be obtained as a consequence
of the Sylow theorems as well.
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