
Quasigroups and Related Systems 23 (2015), 1− 4

In memoriam:

Galina B. Belyavskaya (1940 � 2015)

Galina Borisovna Belyavskaya (19.04.1940�07.05.2015)

Galina Borisovna Belyavskaya, the greatest woman-mathematician in Moldova,
passed away at a hospital on May 7, 2015, as a result of cerebral hemorrhage.

She has been active professionally until her last days. She left a lot of unpub-
lished notes. Her last �nished work is a website dedicated to V. D. Belousov (see
https://ru.wikipedia.org/wiki).

For more than �fty years Galina Belyavskaya worked in the Institute of Mathe-
matics and Computer Science at the Academy of Sciences of Moldova. She started
working there immediately after �nishing her studies in Moldova State University
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where she graduated with honors. Her PhD dissertation was prepared under the
supervision of Valentin D Belousov.

Her scienti�c interests were connected with the theory of binary and n-ary
quasigroups. List of publications and a brief overview of her results were presented
in vol. 18 (2010), no. 2 of Quasigroups and Related Systems.

In the last �ve years Galina Belyavskaya studied various problems connected
with the orthogonality of binary and n-ary quasigroups, especially paratrophy or-
thogonality, r-di�erentiable quasigroups and their transformations. She has also
investigated parastrophically equivalent identities characterizing quasigroups iso-
topic to abelian groups.

In [77] she proved these two theorems.

Theorem 1. A quasigroup (Q, ·) is isotopic to a group if and only if the following

identity is true

R−1
a (x · L−1

b y) · z = x · L−1
b (R−1

a y · z).

Theorem 2. A quasigroup (Q, ·) is isotopic to an abelian group if and only if the

following identity is true

R−1
a (y · x) · z = R−1

a (y · z) · x.

Since M.M. Glukhov proved (unpublished result), that no balanced identities
(in the Belousov's sense) exist with three variables that guarantee that a quasi-
group is isotopic to an abelian group, the last result (three variables and one �xed
element) seem to be the best possible.

Another well-known result proved by G. Belyavskaya (see Quasigroups and

Related Systems vol. 1 (1994)) is the following theorem, in literature known as
the Belyavskaya's Theorem.

Theorem 3. A quasigroup is central (in the sense of Belyavskaya and Smith) if
and only if it is a T-quasigroup.

Galina put much of her attention to various applications of quasigroups to the
construction of Latin squares (prolongation and contraction) and, in the last years,
to the coding theory, in particular to sharing systems and check character systems.

Wieslaw A. Dudek

Victor A. Shcherbacov



In memoriam: Galina B. Belyavskaya 3

Below we present the list of last publications of Galina B. Belyavskaya. It is a
continuation of the list published in Quasigroups and Related Systems 18 (2010),
109− 112.
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Applications of complete mappings

and orthomorphisms of �nite groups

Anthony B. Evans

Abstract. For a �nite group G a permutation of G is a complete mapping of G if the mapping

g 7→ gθ(g) is a permutation, and an orthomorphism of G if the mapping g 7→ g−1θ(g) is a

permutation. Complete mappings of a �nite group G correspond to transversals of the Cayley

table M of G, and orthomorphisms of G correspond to permutations of the columns of M that

yield latin squares orthogonal to M .

Complete mappings and orthomorphisms have been used in constructions of mutually orthog-

onal sets of latin squares and in constructions of latin squares with particular properties. They

and related mappings have also been used in many other algebraic and combinatorial construc-

tions. In this paper we will survey the applications of complete mappings, orthomorphisms, near

complete mappings, and near orthomorphisms in the construction of orthogonal latin squares,

group sequencings, and neo�elds.

1. Introduction

Let G be a �nite group and let θ : G→ G be a permutation. We call θ a complete
mapping of G if the mapping σ : g 7→ gθ(g) is a permutation, an orthomorphism of
G if the mapping δ : g 7→ g−1θ(g) is a permutation, and a strong complete mapping
of G if it is both a complete mapping and an orthomorphism of G. Complete map-
pings and orthomorphisms are very closely related as a permutation θ is a complete
mapping of G if and only if the mapping g 7→ gθ(g) is an orthomorphism of G
and an orthomorphism of G if and only if the mapping g 7→ g−1θ(g) is a complete
mapping of G. While either complete mappings or orthomorphisms can be used
in applications, we will see that in some applications one is more natural than the
other. For example, in describing transversals of latin squares complete mappings
are more natural, whereas in constructing mutually orthogonal latin squares by
permuting the columns of the Cayley table of a �nite group orthomorphisms are
more natural. In the special case in which G is the additive group of the �nite �eld
GF (q), any permutation of G can be represented by a permutation polynomial of
GF (q). Those permutation polynomials that represent orthomorphisms are called
orthomorphism polynomials, and those permutation polynomials that represent
complete mappings are called complete mapping polynomials or complete permu-

2010 Mathematics Subject Classi�cation: 05B15

Keywords: Complete mapping, orthomorphism, orthogonal latin square, group sequencing,

neo�eld.
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tation polynomials. A complete mapping or orthomorphism θ of G is said to be
normalized or in canonical form if θ(1) = 1. If θ is a complete mapping (ortho-
morphism) of G, then the mapping θ0 : g 7→ θ(g)θ(1)−1 is a normalized complete
mapping (orthomorphism) of G: θ0 is the normalization of θ.

Closely related to complete mappings and orthomorphisms are near complete
mappings and near orthomorphisms, mappings that just fail to be complete map-
pings or orthomorphisms. By a near complete mapping of G we mean a bijection
θ : G \ {h} → G \ {1}, h 6= 1, for which the mapping σ : g 7→ gθ(g) is a bijection
θ : G \ {h} → G \ {k}, for some k ∈ G, k 6= h. A near orthomorphism of G is a
bijection θ : G \ {h} → G \ {1}, h 6= 1, for which the mapping δ : g 7→ g−1θ(g)
is a bijection θ : G \ {h} → G \ {k}, for some k ∈ G, k 6= h−1. A near complete
mapping (near orthomorphism) θ is normalized or in canonical form if k = 1, in
which case h is the exdomain element of θ. Near complete mappings and near
orthomorphisms are closely related as, if θ is a normalized near complete mapping
with exdomain element h, then the mapping g 7→ gθ(g) is a normalized near ortho-
morphism with exdomain element h; and, if θ is a normalized near orthomorphism
with exdomain element h, then the mapping g 7→ g−1θ(g) is a normalized near
complete mapping with exdomain element h.

In Section 2 we will discuss the relationship between complete mappings of
groups and transversals of the Cayley tables of groups; and we will also discuss the
use of orthomorphisms in constructing sets of mutually orthogonal latin squares.
In Section 3 we will discuss group sequencings and its variations that can be
constructed using (near) complete mappings or (near) orthomorphisms; and in
Section 4 we wlll discuss the use of orthomorphisms and near orthomorphisms in
the construction of neo�elds.

2. Latin squares and orthogonality

Complete mappings and orthomorphisms were �rst introduced in constructions of
sets of mutually orthogonal latin squares (MOLS). Complete mappings were in-
troduced by Mann [44] in 1944; and orthomorphisms were introduced by Johnson,
Dulmage and Mendelsohn [36] in 1961, and under the name orthogonal mappings
by Bose, Chakravarti, and Knuth [6] in 1960. A latin square of order n is an
n × n matrix with entries chosen from a set of n symbols, such that each symbol
appears exactly once in each row and exactly once in each column. Latin squares
in general are covered in the books by Dénes and Keedwell ([12] and [13]) and
the forthcoming book by Keedwell [42]. Two latin squares of the same order are
orthogonal if each ordered pair of symbols appears exactly once when the squares
are superimposed: each square is then an orthogonal mate of the other. A set of
k mutually orthogonal latin squares (MOLS) of order n is a set of k latin squares
of order n, each pair of which is orthogonal. We use N(n) to denote the largest k
for which a set of k MOLS of order n exists.

The following is well-known.
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Theorem 1. If n > 1, then the following hold.

(1) 1 6 N(n) 6 n− 1.
(2) N(n) = 1 if and only if n = 2 or n = 6.
(3) If n is a prime power, then N(n) = n− 1.

Proof. See [12] for instance.

For n > 1, a set of n− 1 MOLS of order n is a complete sets of MOLS of order
n. A set of k MOLS of order n is maximal if it cannot be extended to a larger set
of MOLS of order n. A table of lower bounds for N(n) up to n = 10, 000 can be
found in [11].

Cayley ([9] and [10]) pointed out that the multiplication/addition table of a
group is a latin square. Let G = {g1, . . . , gn} be a group of order n. The Cayley
table M of G is the n× n matrix with ijth entry gigj , and for θ a permutation of
G, Mθ denotes the n× n matrix with ijth entry equal to giθ(gj). It is easy to see
that M is a latin square, and that Mθ is obtained from M by permuting columns.

2.1. Complete mappings and transversals. A set of cells in a latin square,
exactly one in each row and exactly one in each column, whose entries are distinct
is called a transversal of the latin square. The transversals of a latin square
determine whether the square has an orthogonal mate or not. To see this, let L1

and L2 be an orthogonal pair of latin squares and let a be a symbol in L2: the
cells in L1 corresponding to cells in L2 with entry a form a transversal in L1. The
set of transversals of L1 corresponding to the symbols of L2 partitions the cells of
L1. We obtain the following.

Theorem 2. A latin square possesses an orthogonal mate if and only if its cells

can be partitioned by transversals.

For the Cayley table M of a �nite group G, a single transversal su�ces.

Theorem 3. The Cayley table M of a �nite group G possesses an orthogonal

mate if and only if it possesses a transversal.

Proof. Let G = {g1, . . . , gn} and let M be the Cayley table of G. If M does not
possess a transversal, then it does not possess an orthogonal mate by Theorem 2.

Let us assume that M does possess a transversal. Let φk : {1, . . . , n} →
{1, . . . , n} be de�ned by φk(j) = t if gjgk = gt, and let the ijith cells of M ,
i = 1, . . . , n form a transversal T . For k = 1, . . . , n, let Tk consist of the iφk(ji)th
cells of M , i = 1, . . . , n. Then T1, . . . , Tn are transversals of M that partition the
cells of M . It follows that M possesses an orthogonal mate by Theorem 2.

There is a natural correspondence between complete mappings of a group and
transversals of its Cayley table.

Theorem 4. There is a on-one correspondence between the complete mappings of

a �nite group G and the transversals of the Cayley table M of G.
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Proof. Let G = {g1, . . . , gn} and let M be the Cayley table of G. Let T be a
transversal of M consisting of the ijith cells of M , i = 1, . . . , n, n the order of G,
and de�ne θ : G→ G by θ(gi) = gji . Then θ is a complete mapping of G and this
correspondence establishes a bijection between the set of complete mappings of G
and the set of transversals of M .

To illustrate the proof of Theorem 4, Figure 1 shows a pair of orthogonal latin
squares of order 7. The square M is the Cayley table of Z7 = {0, 1, 2, . . . , 6}, the
operation being addition modulo 7. The entries of the cells inM corresponding to
the cells in L with entry 3 are shown in italics: these cells clearly form a transversal
of M . Let us de�ne θ : Z7 → Z7 by θ(i) = j if the ijth entry of M is italicized:
this mapping, depicted in Figure 2, is a complete mapping of Z7.

M =



0 1 2 3 4 5 6
1 2 3 4 5 6 0
2 3 4 5 6 0 1
3 4 5 6 0 1 2
4 5 6 0 1 2 3
5 6 0 1 2 3 4
6 0 1 2 3 4 5


, L =



0 3 6 1 5 4 2
1 4 0 2 6 5 3
2 5 1 3 0 6 4
3 6 2 4 1 0 5
4 0 3 5 2 1 6
5 1 4 6 3 2 0
6 2 5 0 4 3 1


Figure 1: A pair of orthogonal latin squares of order 4.

i 0 1 2 3 4 5 6
θ(i) 1 6 3 0 2 4 5

i+ θ(i) 1 0 5 3 6 2 4

Figure 2: A complete mapping of Z7.

Finite groups that admit complete mappings have been characterized.

Theorem 5. The Cayley table of a �nite group G possesses a transversal, equiv-

alently a �nite group G admits complete mappings, if and only if the Sylow 2-
subgroup of G is either trivial or noncyclic.

Proof. See [7], [20], [26], and [60].

As an immediate corollary to Theorems 3 and 5 we obtain the following.

Corollary 1. The Cayley table of a �nite group G possesses an orthogonal mate

if and only if the Sylow 2-subgroup of G is either trivial or noncyclic.
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The literature contains many results on the number of complete mappings of
small groups. Computer searches have con�rmed and extended earlier results. In
particular in 2004 Hsiang, Hsu, and Shieh [30] computed the number of complete
mappings of Zn for n 6 23; and in 2006 McKay, McLeod, and Wanless [45]
computed the number of complete mappings for all groups of order at most 23.

2.2. Orthomorphisms and MOLS. Let us reconsider the pair of orthogonal
latin squares shown in Figure 1. We know thatM is the Cayley table of Z7 and we
observe that L can be obtained from M by permuting columns. This permutation
φ, essentially the �rst row of L as a permutation of the �rst row of M , is shown
in Figure 3: it is an orthomorphism of Z7.

i 0 1 2 3 4 5 6
φ(i) 0 3 6 1 5 4 2

φ(i)− i 0 2 4 5 1 6 3

Figure 3: An orthomorphism of Z7.

Theorem 6. If M is the Cayley table of a �nite group G and θ a permutation of

G, then Mθ is orthogonal to M if and only if θ is an orthomorphism of G. If θ
and φ are two permutations of G, then Mθ and Mφ are orthogonal if and only if

the mapping g 7→ φ(g)−1θ(g) is a permutation of G.

Proof. Routine.

We say that two mappings θ, φ : G → G are orthogonal if the mapping g 7→
φ(g)−1θ(g) is a permutation. Thus a mapping θ : G→ G is a complete mapping of
G if it is orthogonal to the mappings g 7→ 1 and g 7→ g−1, and an orthomorphism
if it is orthogonal to the mapping g 7→ 1 and the identity mapping g 7→ g. Orthog-
onality is a symmetric relationship. Note that, if θ and φ are orthomorphisms of
G and θ0 and φ0 are their respective normalizations, then θ and φ are orthogonal
if and only if θ0 and φ0 are orthogonal. By Theorem 6, pairwise orthogonal sets
of orthomorphisms can be used to construct MOLS.

Corollary 2. From r pairwise orthogonal orthomorphisms of a group of order

n > 1 we can construct a set of r + 1 MOLS of order n.

Proof. LetM be the Cayley table of a group G of order n > 1, and let θ1, . . . , θr be
a pairwise orthogonal set of orthomorphisms ofG.Then the squaresM,Mθ1 , . . . ,Mθr

form a set of r + 1 MOLS of order n.

2.3. Complete sets of MOLS. While complete sets of MOLS of prime power
order were known long before the introduction of complete mappings and ortho-
morphisms, they are easily constructed from pairwise orthogonal sets of orthomor-
phisms.
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Corollary 3. If q is a prime power, then there exists a complete set of MOLS of

order q.

Proof. Let G = GF (q)+, the additive group of the �eld of order q. Then the
mappings x 7→ ax, a 6= 0, 1, form a set of q−2 pairwise orthogonal orthomorphisms
of G from which the result follows.

The orthomorphisms used in the proof of Corollary 3 are called linear ortho-

morphisms and are represented by the orthomorphism polynomials ax, a 6= 0, 1,
of GF (q).

We de�ne ω(G) to be the largest possible order of a set of pairwise orthogonal
orthomorphisms of G. Theorems 1 and Corollary 2 yield bounds on ω(G) when
|G| > 1.

Theorem 7. If |G| = n > 1, then 0 6 ω(G) 6 n− 2.

By Theorem 5, the lower bound in Theorem 7 can be improved to 1 if the
Sylow 2-subgroup of G is either trivial or noncyclic. By the proof of Corollary 3
the upper bound in Theorem 7 is achieved when G is elementary abelian.

For a group G of order n > 2 a set of n−2 pairwise orthogonal orthomorphisms
of G is called a complete set of orthomorphisms of G. By Corollary 2, a complete
set of orthomorphisms of a group G of order n yields a complete set of MOLS of
order n.

It is well-known that a complete set of MOLS of order n corresponds to a
projective plane of order n: see [11, 12, 13]. A projective plane is an incidence
structure in which two distinct points are incident with exactly one line, two
distinct lines meet in exactly one point, and there exist four points, no three of
which are collinear. By removing one line of the projective plane and all the points
on this line we obtain an a�ne plane. If π is a �nite projective plane, then for
some n > 1, each line of π is incident with n + 1 points, and each point of π is
incident with n+1 lines: n is the order of π and also the order of the corresponding
a�ne plane. Given a group G of order n and a complete set of orthomorphisms
θ1, . . . , θn−2 of G we can construct an a�ne plane of order n as follows. Without
loss of generality we may assume that θ1, . . . , θn−2 are normalized. Treat G as
an additive group with identity 0 whether abelian or not. We next form an a�ne
plane A of order n. The points of A are the ordered pairs (x, y), x, y ∈ G. The lines
of A are described by the equations y = b, b ∈ G; y = x+ b, b ∈ G; y = θi(x) + b,
b ∈ G, i = 1, . . . , n − 2; and x = c, c ∈ G. Each class of equations describes a
parallel class of A. A collineation of a a�ne plane is a permutation of the points of
the plane that preserves lines, and a translation of an a�ne plane is a collineation
that �xes all parallel classes and �xes all the lines of a given parallel class. For
each g ∈ G the mapping τg : (x, y) 7→ (x, y + g) is a translation of A, and the set
{τg | g ∈ G} is a group of translations of A that is transitive on the points of any
line x = c. This construction can be reversed.
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Theorem 8. An a�ne plane admits a group G of translations that �xes all lines

of a given parallel class and is transitive on the points of a line of this parallel

class if and only if G admits a complete set of orthomorphisms.

If a projective plane is constructed from a complete set of orthomorphisms of a
group G, then the corresponding projective plane is (P, l)-transitive for some line
l and some point P on l, the corresponding collineation group being isomorphic to
G: see [11, 12, 13] for the de�nition of (P, l)-transitivity. The only groups known
to admit complete sets of orthomorphisms are the elementary abelian groups. An
unsolved problem:

Problem 1. Does there exist a group G, |G| = n > 1, which is not elementary

abelian, that admits a complete set of orthomorphisms?

In particular, as it has long been conjectured that all �nite a�ne and projective
planes are of prime power order, we might ask:

Problem 2. Does there exist a group G, |G| = n > 1, n not a prime power, that

admits a complete set of orthomorphisms?

While many �nite projective planes can be constructed from complete sets
of orthomorphisms, this approach is rarely used in the study of �nite projective
planes. As an example, translation planes are the projective planes that can
be constructed from complete sets of orthomorphisms, each of which is a �xed-
point-free automorphism of an elementary abelian group. However, translation
planes are usually constructed from other algebraic structures such as spreads and
quasi�elds. There are, however, some instances in which orthomorphisms have
been used to establish the nonexistence of certain a�ne and projective planes. In
1973 Baumert and Hall [4] showed that no projective plane of order 10 or 12, if such
existed, could be (P, l)-transitive for any point P on any line l: for the plane of
order 10, this result can be derived from Theorem 5. In 1972 Studnicka [58] showed
that no projective plane of order 2pm, if such existed, could be (P, l)-transitive for
any point P on any line l: this result can also be derived from Theorem 5. In 2004
Lazebnik and Thomason [43], using orthomorphisms and a computer, were able
to construct 3 of the 4 known projective planes of order 9 and 16 of the 22 known
projective planes of order 16: they found no new projective planes.

It has long been conjectured that, if p is a prime, then there is only one a�ne
(projective) plane of order p. This plane can be constructed from the linear ortho-
morphisms used in the proof of Corollary 3. It was shown in 1984 by Evans and
McFarland [23] that the existence of a complete set of normalized orthomorphisms
of Zp, p a prime, that are not all linear, would imply the existence of at least two
a�ne (projective) planes of order p.

Theorem 9 (Evans, McFarland, 1984). If, for a prime p, there exists more than
one complete set of normalized orthomorphisms of Zp, then there exists more than

one a�ne (projective) plane of order p.
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Problem 3. Does there exist more than one complete set of normalized ortho-

morphisms of Zp for any prime p?

For primes 7 or less, Problem 3 is easily answered by hand: the answer is no. In
1961, via a computer search, Johnson, Dulmage, and Mendelsohn [36] showed that
there was only one complete set of normalized orthomorphisms of Z11. Subsequent
computer searches con�rmed this; by Cates and Killgrove [8] in 1981; by Evans
and McFarland [23] in 1984; and by Lazebnik and Thomason [43] in 2004. For
Z13, in 1981 Cates and Killgrove [8] used a computer search to show that there
was only one complete set of normalized orthomorphisms of this group. This was
con�rmed via computer searches by Mendelsohn and Wolk [46] in 1985, and by
Lazebnik and Thomason [43] in 2004.

An alternative approach to searching for other complete sets of normalized
orthomorphisms of Zp, p prime, was tried by Mendelsohn and Wolk [46] in 1985.
They restricted themselves to quadratic orthomorphisms. For q an odd prime
power, the quadratic orthomorphism [A,B] of GF (q)+ is de�ned by

[A,B](g) =


0 if g = 0,

Ag if g is a nonzero square,

Bg if g is a nonsquare,

where AB and (A− 1)(B − 1) are both nonzero squares. Note that the quadratic
orthomorphism [A,B] of GF (q)+ is represented by the orthomorphism polynomial
ax(q+1)/2 + bx, where a = (A− B)/2 and b = (A+ B)/2. The orthomorphism of
Z7, depicted in Figure 3, is the quadratic orthomorphism [3, 5]. Mendelsohn and
Wolk showed by a computer search that there is only one complete set of quadratic
orthomorphisms of GF (13)+ and of GF (17)+, that is the known complete set of
linear orthomorphisms. In 1987 Evans [14] extended this result to all primes p 6 47
using simple hand calculations, and in 1989 Evans [15] extended this result to all
primes.

2.4. Lower bounds for N(n). A number of the best lower bounds for N(n) have
been obtained using di�erence matrices. For G a group of order n an (n, r;λ)-
di�erence matrix over G is an r × λn matrix D = (dij) with entries from G
such that for any i, k ∈ {1, . . . , r}, i 6= k, each element of G appears λ times
in the form d−1ij dkj . We call λ the index of D. An (n, r;λ)-di�erence matrix

can be transformed into another (n, r;λ)-di�erence matrix by permuting columns,
permuting rows, multiplying all the elements of a row on the right by an element
of G, and multiplying all the elements of a column on the left by an element of
G. Employing these operations we may transform any di�erence matrix into a
normalized di�erence matrix, that is, one in which every entry in the �rst row and
�rst column is the identity. Given a normalized (n, r; 1)-di�erence matrix over a
group G, the second row is a listing of the elements of G and the third through
rth rows, regarded as permutations of the second row, form a set of r− 2 pairwise
orthogonal normalized orthomorphisms of G: this construction can be reversed.
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Table 1 shows some of the lower bounds for N(n) that have been obtained from
di�erence matrices with the corresponding groups: this data is from [11].

n N(n) > The group
12 5 GF (3)+ ×GF (4)+
15 4 GF (3)+ ×GF (5)+
21 5 GF (3)+ ×GF (7)+
24 7 GF (3)+ ×GF (8)+
28 5 GF (4)+ ×GF (7)+
33 5 GF (3)+ ×GF (11)+
35 5 GF (5)+ ×GF (7)+
36 8 GF (4)+ ×GF (9)+
39 5 GF (3)+ ×GF (13)+
40 7 GF (5)+ ×GF (8)+
44 5 GF (4)+ ×GF (11)+
45 6 GF (5)+ ×GF (9)+
48 8 GF (3)+ ×GF (16)+

Table 1: MOLS from groups.

Problem 4. For a �nite group G determine ω(G) or improve bounds on ω(G).

Problem 4 has only been completely answered for small groups, elementary
abelian groups (see Corollary 3), and for groups with nontrivial, cyclic Sylow 2-
subgroups (See Theorem 5).

2.5. Maximal sets of MOLS. Given a maximal set of pairwise orthogonal or-
thomorphisms of a group �nite G, is the corresponding set of MOLS also maximal?
The answer to this question is yes. This was implicitly proved by Ostrom [50] in
1966 in the language of nets.

Theorem 10 (Ostrom, 1966). Let G be a �nite group of order n and let M be its

Cayley table. If θ1, . . . , θr is a maximal set of pairwise orthogonal orthomorphisms
of G, then M , Mθ1 , . . ., Mθr is a maximal set of MOLS of order n.

As an example, the orthomorphism of Z7, depicted in Figure 3, is not orthog-
onal to any other orthomorphism of Z7. Hence, by Theorem 10, the latin squares
in Figure 1 form a maximal set of 2 MOLS of order 7. A di�erence matrix over a
group G is maximal if it cannot be extended to a larger di�erence matrix over G
by adding rows. As a corollary to Theorem 10 we obtain the following.

Corollary 4. If there exists a maximal (n, r; 1, G)-di�erence matrix, then there

exists a maximal set of r − 1 MOLS of order n.

All maximal (n, r; 1, G)-di�erence matrices over groups of order at most 10 were
determined by Jungnickel and Grams [37] in 1986. In 1991 Evans [17] generalized
Corollary 4.
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Theorem 11 (Evans, 1991). If there exists an (n, r; 1, G)-di�erence matrix D for

which mD = (D . . .D), i.e., m consecutive copies of D, is maximal and if either

m = 1 or there exist a set of r− 1 MOLS of order m, then there exists a maximal

set of r − 1 MOLS of order nm.

Theorem 11 was used to prove the following.

Theorem 12 (Evans, 1991). If n = mpr, p a prime, gcd(m, p) = 1, and either

m = 1 or there exist a set of p− 1 MOLS of order m then there exists a maximal

set of p− 1 MOLS of order n.

The proof of Theorem 12 was obtained by generalizing the construction of a
maximal set of p − 2 pairwise orthogonal orthomorphisms of Zpr , p a prime. In
1992 Evans [18] used quadratic orthomorphisms to construct two in�nite classes
of maximal sets of MOLS.

Theorem 13 (Evans, 1992). Let p > 7 be a prime.

(1) If p ≡ 3 (mod 4), then there exists a maximal set of (p − 3)/2 MOLS of

order p.

(2) If p ≡ 1 (mod 4), then there exists a maximal set of (p − 1)/2 MOLS of

order p.

The maximal sets of MOLS, constructed in Theorem 13, are obtained from
maximal sets of pairwise orthogonal orthomorphisms of GF (p)+ that are con-
structed in the following way. If p is a prime and [A,B] is a nonlinear, quadratic
orthomorphism ofGF (p)+, then [A,B] is orthogonal to precisely (p−7)/2 linear or-
thomorphisms of GF (p)+, forming a set of (p−5)/2 pairwise orthogonal orthomor-
phisms of GF (p)+. If p ≡ 3 (mod 4), then this set is maximal. If p ≡ 1 (mod 4),
then [B,A] must be included yielding a maximal set of (p−3)/2 pairwise orthogo-
nal orthomorphisms of GF (p)+. As examples, [7, 7], [8, 8], [2, 6] is a maximal set of
3 pairwise orthogonal orthomorphisms of GF (11)+, and [6, 6], [7, 7], [10, 10], [2, 5],
[5, 2] is a maximal set of 5 pairwise orthogonal orthomorphisms of GF (13)+.

In 1993 Pott [54] gave a simpler proof of Theorem 13 using a result of Rédei.
Using a computer and cyclotomic orthomorphisms, a generalization of quadratic
orthomorphisms, Pott found a maximal set of 2 MOLS of order 13, a maximal set
of 4 MOLS of order 13, a maximal set of 3 MOLS of order 17, a maximal set of 4
MOLS of order 17, a maximal set of 3 MOLS of order 19, and a maximal set of 6
MOLS of order 19.

2.6. Strong complete mappings and Knut Vic designs. LetG = {g1, . . . , gn}
be a group of order n. The normal multiplication table of G is the n × n array
with ijth entry gig

−1
j . Strong complete mappings are important in determining

the existence of latin squares orthogonal to both N and the Cayley table M of G.

Theorem 14. Let G be a �nite group with Cayley table M and normal multipli-

cation table N . There exists a latin square orthogonal to both M and N if and

only if G admits a strong complete mapping.
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Proof. See [22].

In fact, if θ is a strong complete mapping of G, then Mθ is orthogonal to both
M and N . In the special case G = Zn = {0, 1, . . . , n − 1}, any latin square L
orthogonal to both the Cayley table of G and the normal multiplication table of
G is a Knut Vic design: these are characterized by each broken left and right
diagonal being a transversal.

Problem 5. Which �nite groups admit strong complete mappings?

Problem 5 was implicitly solved for cyclic groups in papers by Hedayat and
Federer [28] in 1975 and Hedayat [27] in 1977.

Theorem 15 (Hedayat, Federer, 1975 & 1977). Zn admits strong complete map-

pings if and only if gcd(n, 6) = 1.

As a consequence of Theorem 5, if the Sylow 2 subgroup of a �nite group G
is nontrivial and cyclic, then G cannot admit strong complete mappings. In 1990
Evans [16] and Horton [29] showed that the structure of the Sylow 3-subgroup also
plays a role in determining the existence of strong complete mappings.

Theorem 16. If a �nite group G has a nontrivial, cyclic Sylow 3-subgroup that

is a homomorphic image of G, then G does not admit strong complete mappings.

The special case of Theorem 16, G abelian, was proved by Horton and the
general case by Evans. For �nite abelian groups the existence of strong complete
mappings is completely determined by the structure of the Sylow 2-subgroups and
the Sylow 3-subgroups: this was proved by Evans [21] in 2012.

Theorem 17 (Evans, 2012). A �nite abelian group with a trivial or noncyclic Sy-

low 2-subgroup and a trivial or noncyclic Sylow 3-subgroup admits strong complete
mappings.

In light of Theorem 5, it is natural to ask whether it is true that a �nite
group with a nontrivial, cyclic Sylow 3-subgroup does not admit strong complete
mappings. The answer to this question was shown to be no by Shieh, Hsiang, and
Hsu [57], who described a strong complete mapping of D12, the dihedral group of
order 12. Since then, Evans [22] has shown a number of classes of dihedral groups
and quaternion groups to admit strong complete mappings, as well as most groups
of order at most 31. Let D4k = 〈a, b | a2k = b2 = 1, ab = ba−1〉 denote the dihedral
group of order 4k, and Q4k = 〈a, b | a2k = 1, b2 = ak, bab−1 = a−1〉 the quaternion
group of order 4k. Evans' results are given in Theorems 18, 19, and 20.

Theorem 18. D8 does not admit strong complete mappings. If gcd(m, 6) = 1,
then D4m, D12m, D16m, and D24m admit strong complete mappings.

Similar results hold for the quaternion groups.
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Theorem 19. Q8 does not admit strong complete mappings. If gcd(m, 6) = 1,
then Q16m and Q24m admit strong complete mappings.

The following is the result of a computer search for strong complete mappings.

Theorem 20. All groups of order at most 31 admit strong complete mappings

with the following exceptions:

(1) any group with nontrivial, cyclic Sylow 2-subgroups,
(2) any group G with a nontrivial, cyclic Sylow 3-subgroup that is a homo-

morphic image of G,
(3) D8, and

(4) Q8.

3. Group labeling problems

In this section we will discuss group sequencings, which can be constructed from a
class of near complete mappings: these arose in the construction of complete latin
squares. We will also discuss two variants of group sequencings, R-sequencings
and harmonious orderings, both of which can be constructed from classes of or-
thomorphisms.

3.1. Group sequencings. A sequencing of a group G of order n is an ordering
a0 = 1, a1, a2, . . . , an−1 of the elements of G such that the partial products b0 =
a0 = 1, b1 = a0a1, b2 = a0a1a2 , . . . , bn−1 = a0a1a2 · · · an−1 are distinct. We say
that a group is sequenceable if it possesses a sequencing.

Group sequencings were introduced by Gordon [25] in 1961 in the construction
of complete latin squares. A latin square L = {lij} of order n is row complete

if the n(n − 1) ordered pairs (lij , li,j+1), i = 1, . . . , n and j = 1, . . . , n − 1, are
distinct, column complete if the n(n− 1) ordered pairs (lij , li+1,j), i = 1, . . . , n− 1
and j = 1, . . . , n, are distinct, and complete if it is both row complete and column
complete.

Theorem 21 (Gordon, 1961). Let a0, a1, a2, . . . , an−1 be a sequencing of a group

G of order n and let b0, b1, b2, . . . , bn−1 be the corresponding sequence of partial

products. Then the n×n matrix with ijth entry {b−1i bj} is a complete latin square

of order n.

Proof. See Theorem 2 in [25].

Example 1. Let 0, 1, 8, 3, 6, 5, 4, 7, 2, 9 be an ordering of the elements of Z10. As

the partial sums 0, 1, 9, 2, 8, 3, 7, 4, 6, 5 are distinct this is a sequencing of Z10. The

associated complete latin square is shown in Figure 4.

The sequencing of Example 1 can be generalized: the ordering

0, 1,−2, 3,−4, . . . , 2n− 3,−(2n− 2), 2n− 1
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is a sequencing of Z2n as the partial sums are

0, 1,−1, 2,−2, . . . , n− 1,−(n− 1), n.

0 1 9 2 8 3 7 4 6 5
9 0 8 1 7 2 6 3 5 4
1 2 0 3 9 4 8 5 7 6
8 9 7 0 6 1 5 2 4 3
2 3 1 4 0 5 9 6 8 7
7 8 6 9 5 0 4 1 3 2
3 4 2 5 1 6 0 7 9 8
6 7 5 8 4 9 3 0 2 1
4 5 3 6 2 7 1 8 0 9
5 6 4 7 3 8 2 9 1 0


Figure 4: A complete latin square of order 10.

It should be noted that the complete latin square in Figure 4 can be obtained
from the Cayley table of Z10 by permuting rows and columns. This was observed
by Keedwell [38] in 1976.

Theorem 22. A complete latin square can be obtained from the Cayley table of a

�nite group G, by permuting rows and columns, if and only if G is sequenceable.

From a sequencing of a group we can construct a near complete mapping of
the group.

Theorem 23. Let a0, a1, a2, . . . , an−1 be a sequencing of a group G of order n
and let b0, b1, b2, . . . , bn−1 be the partial products. De�ne θ : G \ {bn−1} → G \ {1}
by

θ(bi) = ai+1, i = 0, . . . , n− 2.

Then θ is a near complete mapping of G with exdomain element bn−1.

Proof. First note that {b0, . . . , bn−2} = G \ {bn−1}.
Now

{θ(b0), . . . , θ(bn−2)} = {a1, . . . , an−1} = G \ {1}

and
{b0θ(b0), . . . , bn−2θ(bn−2)} = {b1, . . . , bn−1} = G \ {1},

from which the result follows.

As an example, the near complete mapping derived from the sequencing of Z10,
described in Example 1, is shown in Figure 5. The exdomain element of this near
complete mapping is 5.
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g 0 1 2 3 4 5 6 7 8 9
θ(g) 1 8 6 4 2 . 9 7 5 3

g + θ(g) 1 9 8 7 6 . 5 4 3 2

Figure 5: A near complete mapping from a sequencing of Z10.

Just as the cycle (c0 c1 · · · ck−1) is used to represent the mapping ci 7→ ci+1,
i = 0, . . . , k−1, the subscripts being added modulo k, the sequence [c0 c1 · · · ck−1]
is used to denote the mapping is used to represent the mapping ci 7→ ci+1, i =
0, . . . , k − 2. Any complete mapping, orthomorphism, near complete mapping, or
near orthomorphism can be written as a product of disjoint cycles and sequences.
The near orthomorphism, g 7→ g+θ(g), associated with the near complete mapping
in Figure 5 can be written as the sequence [0 1 9 2 8 3 7 4 6 5].

In 1984 Hsu and Keedwell [34] characterized the normalized near orthomor-
phisms from which group sequencings can be constructed.

Theorem 24 (Hsu, Keedwell, 1984). A group G of order n is sequenceable if and

only if it admits a normalized near orthomorphism that consists of one sequence

of length n.

Proof. Let a0, a1, a2, . . . , an−1 be a sequencing of a group G of order n and let
b0, b1, b2, . . . , bn−1 be the partial products. Then [b0 b1 · · · bn−1] is a normalized
near orthomorphism of G.

If [b0 b1 · · · bn−1] is a normalized near orthomorphism of G, then setting

ai =

{
1 if i = 0,

b−1i−1bi if i = 1, . . . , n− 1,

yields a sequencing a0, . . . , an−1 of G.

Problem 6. Which groups are sequenceable?

Problem 6 was answered for abelian groups by Gordon [25] in 1961.

Theorem 25 (Gordon, 1961). An abelian group is sequenceable if and only if it

has a unique element of order 2.

Proof. See Theorem 1 in [25].

The situation is di�erent for nonabelian groups. Order 10 appears to be a
dividing line.

Theorem 26. No nonabelian group of order less than 10 is sequenceable.

Proof. See Gordon [25].
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However, the nonabelian group of order 10, the dihedral group D10 = 〈a, b |
a5 = b2 = 1, ab = ba−1〉 is sequenceable. 1, ba, a4, ba2, b, ba4, a2, a, ba3, a3 is a
sequencing for this group. In 1983 Keedwell [40] conjectured that nonabelian
groups of order less that 10 were the only nonsequenceable nonabelian groups.

Conjecture 1 (Keedwell). All nonabelian groups of order at least 10 are sequence-
able.

Keedwell's conjecture has been proved true for many classes of groups.

Theorem 27 (Anderson, 1987). All nonabelian groups of order n, 10 6 n 6 32
are sequenceable.

Proof. See [1] and [2].

Theorem 28 (Anderson, 1987). A5 and S5 are sequenceable.

Proof. See [1].

The proof that the dihedral groups satisfy Keedwell's conjecture is the result
of work by several mathematicians, whose work is described in the dynamic sur-
vey [49] by Ollis.

Theorem 29. The dihedral group of order 2n, D2n, n > 5, is sequenceable.

There are a number of results for binary groups: a group is binary if it has
exactly one involution. Theorem 25 can be restated as, a �nite abelian group is
sequenceable if and only if it is a binary group. Keedwell's conjecture has been
proved for binary solvable groups.

Theorem 30 (Anderson and Ihrig, 1993). All binary solvable groups, except the

quaternion group of order 8, are sequenceable.

Proof. See [3].

Anderson and Ihrig actually proved the stronger result that solvable groups
with a unique element of order 2 are symmetrically sequenceable. A symmetric

sequencing of a group G of order 2n, with a unique element u of order 2, is a
sequencing a0 = 1, a1, a2, . . . , a2n−1 of G for which an = u and an−i = a−1n+i,
i = 1, 2, . . . , n − 1. A group is symmetrically sequenceable if it possesses a sym-
metric sequencing. A number of other groups have been shown to be sequenceable
including many binary groups and groups of odd order: see [49] for details.

3.2. R-sequencings. An R-sequencing of a group G of order n is an order-
ing a0 = 1, a1, a2, . . . , an−1 of the elements of G such that the partial products

b0 = a0 = 1, b1 = a0a1, b2 = a0a1a2 , . . . , bn−2 = a0a1a2 · · · an−2 are distinct and
a0a1a2 · · · an−1 = 1. A group is R-sequenceable if it possesses an R-sequencing.
R-sequencings were introduced by Paige [53] in 1951 as a su�cient condition for a
group to admit complete mappings, equivalently orthomorphisms. they were also
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used by Ringel [55] in 1974 in his solution of the map coloring problem for all com-
pact 2-dimensional manifolds except the sphere. Note that in and R-sequencing
of a �nite group G exactly one element of G does not appear as a partial product.

Theorem 31. Let a0, a1, a2, . . . , an−1 be an R-sequencing of a group G of order

n, let b0, b1, b2, . . . , bn−2 be the corresponding sequence of partial products, and let

c be the element of G that is not in the list of partial products. Then, the mapping

θ : G→ G de�ned by

θ(g) =


bi+1 if g = bi, i = 0, 1, . . . , n− 3,

b0 if g = bn−2,

c if g = c,

is an orthomorphism of G.

Proof. Routine.

An immediate consequence of Theorems 5 and 31.

Corollary 5. If G is a �nite R-sequenceable group, then its Sylow 2 subgroup is

either trivial or non-cyclic.

As an example 0, 12, 2, 10, 4, 8, 6, 5, 9, 3, 11, 1, 7 is an R-sequencing of Z13. The
partial sums are 0, 12, 1, 11, 2, 10, 3, 8, 4, 7, 5, 6, missing 9. The associated ortho-
morphism is shown in Figure 6.

g 0 1 2 3 4 5 6 7 8 9 10 11 12
θ(g) 12 11 10 8 7 6 0 5 4 9 3 2 1

θ(g)− g 12 10 8 5 3 1 7 11 9 0 6 4 2

Figure 6: An orthomorphism of Z13.

The orthomorphism in Figure 6 is the cycle (0 12 1 11 2 10 3 8 4 7 5 6). In
1984 Hsu and Keedwell [34] characterized the normalized orthomorphisms from
which R-sequencings can be constructed.

Theorem 32 (Hsu, Keedwell, 1984). A group G of order n is R-sequenceable if

and only if it admits a normalized orthomorphism that consists of one cycle of

length n− 1.

Proof. Similar to the proof of Theorem 24.

Problem 7. Which �nite groups are R-sequenceable?

Cyclic groups of odd order were shown to be R-sequenceable groups by Fried-
lander, Gordon, and Miller [24] in 1978.
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Theorem 33 (Friedlander, Gordon and Miller, 1978). If n is odd, then Zn is

R-sequenceable.

Proof.

0,−1, 2,−3, 4, . . . ,−(2n− 1), 2n, 2n− 1,−(2n− 2),

2n− 3,−(2n− 4), . . . , 3,−2, 1,−2n

is an R-sequencing of Z4n+1, and

0,−1, 2,−3, 4, . . . ,−(2n− 1), 2n,−(2n+ 2), 2n+ 3,

−(2n+ 4), . . . ,−4n, 4n+ 1,−(4n+ 2), 2n+ 2

is an R-sequencing of Z4n+3.

There are many other classes of R-sequenceable groups known: see Ollis [49].

3.3. Harmonious groups. A harmonious ordering of a group G of order n is
an ordering a0 = 1, a1, a2, . . . , an−1 of the elements of G such that the products
a0a1, a1a2, a2a3, . . . , an−1a0 are distinct. G is a harmonious group if it possesses
a harmonious ordering. Harmonious groups were introduced by Beals, Gallian,
Headley, and Jungreis [5] in 1991.

Theorem 34. If a0 = 1, a1, a2, . . . , an−1 is a harmonious ordering of a group

G, of order n, then the mapping ai 7→ aiai+1, indices added modulo n, is an

orthomorphism of G.

Proof. Routine.

As an example, 0, 1, 2, . . . , n − 1 is a harmonious ordering of Zn if n is odd.
The associated orthomorphism is i 7→ 2i + 1. Note that this orthomorphism is
not normalized, and that its associated complete mapping i 7→ i + 1 is a cycle of
length n. Beals, Gallian, Headley, and Jungreis characterized complete mappings
from which harmonious orderings can be constructed.

Theorem 35. A group G of order n is harmonious if and only if it admits a

complete mapping that consists of one cycle of length n.

Proof. Routine.

An immediate corollary of Theorems 5 and 34.

Corollary 6. Finite groups with nontrivial cyclic 2-groups are not harmonious.

Beals, Gallian, Headley, and Jungreis [5] discovered an additional class of non-
harmonious groups.

Theorem 36 (Beals, Gallian, Headley, and Jungreis, 1991). The additive group

of the �nite �eld GF (2n) is not harmonious.
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Problem 8. Which �nite groups are harmonious?

Beals, Gallian, Headley, and Jungreis [5] completely characterized �nite abelian
harmonious groups and showed all groups of odd order to be harmonious.

Theorem 37 (Beals, Gallian, Headley, and Jungreis, 1991). Groups of odd order

are harmonious.

Theorem 38 (Beals, Gallian, Headley, and Jungreis, 1991). Abelian groups, ex-

cept GF (2n)+, with trivial or noncyclic 2-groups, are harmonious.

In addition, several dihedral and quaternion groups have been shown to be
harmonious: See Ollis [49]

4. Neo�elds

Neo�elds were �rst introduced in 1949 by Paige [52]: they were also the subject
of his 1947 Ph.D thesis [51]. A left neo�eld is a set N with two binary operations,
addition and multiplication, satisfying the following:

1. The elements of N form a loop under addition, with identity 0.

2. The nonzero elements of N form a group under multiplication, with identity 1.

3. The left distributive law holds: a(b+ c) = ab+ ac for all a, b, c ∈ N .

A left neo�eld is called a neo�eld if the right distributive law is also satis�ed.
For a neo�eld or left neo�eld we will use N+ to denote the additive loop and N∗

to denote the multiplicative group of nonzero elements.
Loops that can be the additive loop of a left neo�eld can be characterized by

their automorphism groups.

Theorem 39. A loop can be the additive loop of a left neo�eld if and only if it

admits an automorphism group that acts sharply transitively on its nonidentity

elements.

Proof. Let N be a left neo�eld and, for each g ∈ N∗, de�ne τg : N → N by
τg(a) = ga. Then {τg | g ∈ N∗} is an automorphism group of N+ that acts
sharply transitively on the nonzero elements of N .

Conversely, let L be a loop written additively with identity 0. Let us assume
that G is an automorphism group of L that acts sharply transitively on the nonzero
elements of L. We will use G to de�ne multiplication on L. Pick a nonzero element
of L and denote it 1 and for each nonzero element a ∈ L, let τa denote the unique
element of G satisfying τa(1) = a. De�ne multiplication on L by:

ab =

{
0 if a = 0 or b = 0,

τa(b) if a, b 6= 0.

With this multiplication L is a left neo�eld.
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An automorphism of a left neo�eld N is a bijection α : N → N for which α(a+
b) = α(a)+α(b), and α(ab) = α(a)α(b), for all a, b ∈ N . Clearly the automorphism
group Aut(N) of a left neo�eld N is a subgroup of the automorphism group of
N∗, as well as a subgroup of the automorphism group of N+.

4.1. Orthomorphisms and near orthomorphisms. The presentation function
of a left neo�eld N is the mapping θ : N → N de�ned by θ(x) = 1 + x. A
left neo�eld N is complete determined by its multiplicative group N∗ and its
presentation function θ as, if a, b 6= 0, then

a+ b = a(1 + a−1b) = aθ(a−1b).

The presentation function of a left neo�eld N is essentially an orthomorphism or
near orthomorphism of N∗ depending on whether 1 + 1 = 0 in N or not. Bruck
(see [52], Theorem I.1) implicitly established the connection between neo�elds with
multiplicative group G and orthomorphisms and near orthomorphisms of G. Later
in 1984 Hsu and Keedwell [34] generalized this result to establish a correspondence
between left neo�elds with multiplicative group G and orthomorphisms and near
orthomorphisms of G. Neo�elds in which 1 + 1 = 0 can be constructed from
orthomorphisms.

Theorem 40 (Hsu, Keedwell, 1984). Let G be a group, written multiplicatively

with identity 1, let θ be a normalized orthomorphism of G, and de�ne θ′ : G∪{0} →
G ∪ {0} by

θ′(g) =


0 if g = 1,

1 if g = 0,

θ(g) if g 6= 0, 1.

Then θ′ is the presentation function of a left neo�eld in which 1 + 1 = 0.

Proof. Let N = G ∪ {0} and de�ne addition and multiplication in N as follows.
Multiplication is as in G except that 0a = a0 = 0 for all a ∈ N . To de�ne addition,

x+ y =

{
y if x = 0,

xθ′(x−1y) if x 6= 0.

N is then a left neo�eld, with presentation function θ′, in which 1+1 = 0.

This construction can be reversed.

Theorem 41 (Hsu, Keedwell, 1984). Let θ be the presentation function of a left

neo�eld, in which 1 + 1 = 0, with multiplicative group G. De�ne θ′ : G→ G by

θ′(g) =

{
1 if g = 1,

θ(g) if g 6= 1.

Then θ′ is a normalized orthomorphism of G.
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Proof. Routine.

The constructions of Theorems 40 and 41 establish a one-one correspondence.

Corollary 7. There is a one to one correspondence between the set of normalized

orthomorphisms of a group G and the set of left neo�elds, in which 1+1 = 0, with
multiplicative group G.

Neo�elds in which 1 + 1 6= 0 can be constructed from near orthomorphisms.

Theorem 42 (Hsu, Keedwell, 1984). Let G be a group, written multiplicatively

with identity 1, let θ be a normalized near orthomorphism of G, with exdomain

element t, and de�ne θ′ : G ∪ {0} → G ∪ {0} by

θ′(g) =


0 if g = t,

1 if g = 0,

θ(g) if g 6= 0, t.

Then θ′ is the presentation function of a left neo�eld in which 1 + t = 0.

Proof. Similar to the proof of Theorem 40.

This construction can be reversed.

Theorem 43 (Hsu, Keedwell, 1984). If θ is the presentation function of a left

neo�eld, in which 1 + t = 0, t 6= 1, with multiplicative group G, then θ, restricted
to G \ {t}, is a normalized near orthomorphism of G with exdomain element t.

Proof. Similar to the proof of Theorem 41.

The constructions of Theorems 42 and 43 establish a one-one correspondence.

Corollary 8. There is a one to one correspondence between normalized near or-

thomorphisms of a group G and left neo�elds, in which 1+1 6= 0, with multiplicative
group G.

4.2. Properties of left neo�elds. We have associated to each neo�eld N a
normalized orthomorphism of N∗ if 1+1 = 0 or a normalized near orthomorphism
with exdomain element t if 1 + t = 0 and t 6= 1. Thus properties of neo�elds
and their additive loops can, in principle, be determined from their associated
normalized orthomorphisms or normalized near orthomorphisms.

For normalized orthomorphisms of a group G the following maps will prove
useful. For α ∈ Aut(G) the homology Hα is de�ned by Hα[θ] = αθα−1; the
re�ection R is de�ned by R[θ](x) = xθ(x−1); and the inversion I is de�ned by
I[θ](x) = θ−1(x). All of these mappings map normalized orthomorphisms to nor-
malized orthomorphisms. Homologies, and re�ections preserve orthogonality, but
inversion does not. However, if θ is a normalized orthomorphism, then there is a
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one-one correspondence between the normalized orthomorphisms orthogonal to θ
and the normalized orthomorphisms orthogonal to I[θ] that preserves orthogonal-
ity. For more information about these and other mappings that map orthomor-
phisms into orthomorphisms see [19].

For normalized near orthomorphisms these same maps will be useful. The
homologies and re�ection are de�ned as for normalized orthomorphisms, but in-
version must be de�ned di�erently. If θ is a normalized near orthomorphism of a
group G with exdomain element t, then I[θ] is de�ned by I[θ](x) = t−1θ−1(tx).
The exdomain element for Hα is α(t), and the exdomain element for both R[θ]
and I[θ] is t−1.

Theorem 44. When acting on the set of normalized orthomorphisms of a group,

the following relationships hold between homologies, re�ection and inversion.

(1) HαHβ = Hαβ,

(2) R2 = 1,
(3) HαR = RHα,

(4) I2 = 1,
(5) HαI = IHα,

(6) (IR)3 = 1.

Proof. Routine.

The relationships in Theorem 44 still hold for actions on the set of normalized
near orthomorphisms of a group except, possibly, for the last (IR)3 = 1. If θ is
a normalized near orthomorphism with exdomain element t, then (IR)3[θ] = θ if
t ∈ Z(G) and t2 = 1.

The homologies that �x the normalized orthomorphism or normalized near
orthomorphism associated with a left neo�eld determine automorphisms of the
left neo�eld and instances of the right distributive law.

Theorem 45. Let θ be a normalized orthomorphism or normalized near ortho-

morphism of a group G, let N be the left neo�eld constructed from θ, and let

α ∈ Aut(G).
(1) α extends to an automorphism of N , by setting α(0) = 0, if and only if

Hα[θ] = θ.
(2) If α(x) = c−1xc then Hα[θ] = θ if and only if (a+ b)c = ac+ bc for all

a, b ∈ N .

Proof. (1). If a, b 6= 0 then α(a + b) = α(a) + α(b) if and only if α(aθ(a−1b)) =
α(a)θ(α(a−1b)) if and only if α(θ(a−1b)) = θ(α(a−1b)). By setting x = α(a−1b),
this is seen to be true if and only if αθα−1(x) = θ(x). Hence the result.

(2). If any of a, b, or c is zero then (a + b)c = ac + bc. If a, b, c 6= 0 then
(a+ b)c = aθ(a−1b)c and ac+ bc = acθ(c−1a−1bc) and aθ(a−1b)c = acθ(c−1a−1bc)
if and only if Hα[θ] = θ.

An immediate corollary.
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Corollary 9. If N is the left neo�eld constructed from a normalized orthomor-

phism or a normalized near orthomorphisms θ of a group G, then

Aut(N) = {α ∈ Aut(G) | Hα[θ] = θ}.

Theorem 45 yields a characterization of those normalized orthomorphisms and
normalized near orthomorphisms that correspond to neo�elds.

Corollary 10. Let θ be a normalized orthomorphism or normalized near ortho-

morphism of a group G, and let N be the left neo�eld constructed from θ. Then

N is a neo�eld if and only if Hα[θ] = θ for all α ∈ Inn(G).

Corollary 11. If θ is a normalized near orthomorphism of a group G with exdo-

main element t corresponding to a neo�eld, then the t ∈ Z(G).

Proof. By Corollary 10, Hα[θ] = θ for all α ∈ Inn(G). As the exdomain element
of Hα[θ] is α(t), α(t) = t for all α ∈ Inn(G). The result follows.

Let N be a left neo�eld. N is commutative if N+ is commutative and abelian

if N∗ is abelian. N has the right inverse property if for all a ∈ N there exists
(−a)R ∈ N such that (x + a) + (−a)R = x for all x ∈ N . N has the left inverse
property if for all a ∈ N there exists (−a)L ∈ N such that (−a)L + (a + x) = x
for all x ∈ N . N has the inverse property if it has both the left and right inverse
properties. N has the exchange inverse property if for all a ∈ N there exists
(−a)L ∈ N such that (−a)L+(x+a) = x for all x ∈ N . If a left neo�eld N is con-
structed from a normalized orthomorphism or normalized near orthomorphism θ,
then the properties N satis�es are determined by which elements of 〈R, I〉 �x θ.

Lemma 1. Let N be a left neo�eld in which 1+t = 0, t 6= 1. If N is commutative,

satis�es the left inverse property, or satis�es the right inverse property, then t2 = 1.

Proof. If N is commutative, then t + 1 = 0 and so t(1 + t−1) = 0, from which it
follows that t−1 = t.

If N has the right inverse property then (−t)R = 1 as (1 + t) + (−t)R = 1 and
then (0 + t) + 1 = 0, which again implies that t2 = 1.

If N has the left inverse property then (−1)L = t as (−1)L + (1 + t) = t and
then t+ (1 + 0) = 0, which again implies that t2 = 1.

Theorem 46. Let θ be a normalized orthomorphism of a group G, or a normalized
near orthomorphism of G with exdomain element t, and let N be the left neo�eld

constructed from θ.
(1) N is commutative if and only if R[θ] = θ.
(2) If t ∈ Z(G) then N has the right inverse property if and only if IRI[θ] = θ.
(3) N has the left inverse property if and only if I[θ] = θ.
(4) If t ∈ Z(G) then N has the inverse property if and only if I[θ] = θ and

IRI[θ] = θ.
(5) N has the exchange inverse property if and only if RI[θ] = θ.
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Proof. We will give the proof for the special case θ a normalized orthomorphism:
thus a + a = 0 for all a ∈ N . The proof for the case θ a normalized near ortho-
morphism is similar except that it requires Lemma 1.

N is commutative if and only if a + b = b + a, for all a, b 6= 0, if and only if
aθ(a−1b) = bθ(b−1a), for all a, b 6= 0, if and only if θ(a−1b) = (a−1b)θ((a−1b)−1),
for all a, b 6= 0, if and only if R[θ](a−1b) = θ(a−1b), for all a, b 6= 0, if and only if
R[θ] = θ.

If N has the right inverse property, then, as (0+a)+(−a)R = 0, (−a)R = a. If
a, x 6= 0, then (x+ a)+ a = x if and only if θ(θ(x−1a)−1x−1a) = θ(x−1a)−1 if and
only if θ(yθ−1(y−1)) = y, where y = θ(x−1a)−1, if and only if yθ−1(y−1) = θ−1(y)
if and only if RI[θ](y) = I[θ](y) if and only if IRI[θ] = θ.

A similar proof shows thatN has the left inverse property if and only if I[θ] = θ.
N has the inverse property if and only if N has both the right and left inverse

properties, if and only if I[θ] = θ and IRI[θ] = θ.
If N has the exchange inverse property then (−a)L = a. If a, x 6= 0, then

a + (x + a) = x if and only if aθ(a−1xθ(x−1a)) = x if and only if RI[θ](a−1x) =
θ(a−1x), if and only if RI[θ] = θ.

Further correspondences between the properties of neo�elds and properties of
the corresponding near orthomorphisms can be found in [39]. These properties
were used in Hsu [31] in 1980 to classify cyclic neo�elds, i.e. neo�elds in which the
multiplicative group is cyclic.

5. Final remarks

This survey of applications of complete mappings and orthomorphisms, and the
related near complete mappings and near orthomorphisms is not exhaustive. We
have tended to emphasize applications in which there is a clear relationship be-
tween properties of the mappings and properties of the algebraic and combinatorial
structures constructed from them.

In Section 3, there are a number of variants of group sequencings that we did not
cover: symmetrically harmonious orderings, R∗-sequencings, and 2-sequencings for
instance. Readers interested in pursuing these topics should consult Ollis [49] or
the chapter on sequenceable and R-sequenceable groups in Dénes and Keedwell's
book [13].

Readers who want to know more about neo�elds should consult the papers by
Hsu and Keedwell [34, 35] or the more recentpaper by Keedwell [41].

A number of applications are described in the papers in the reprint volumes [32,
33], edited by Hsu, and in the papers by Hsu and Keedwell [34, 35]. Other appli-
cations include the construction of Bol loops by Niederreiter and Robinson [48],
Mittenthal's [47] use of orthomorphic mappings in cryptography, Wanless' [59] use
of cyclotomic orthomorphisms in the construction of atomic latin squares, and Sha-
heen and Winterhof's [56] use of complete permutation polynomials to construct
check digit systems.
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Describing cyclic extensions of Bol loops

Stephen M. Gagola III

Abstract. It was shown in [4] that if a Moufang loop G factorizes as G = NH where N is a

normal subloop and H = 〈u〉 =
〈
u3

〉
is a cyclic group then the structure of G is determined by

the binary operation of N , the intersection N ∩ H and how u permutes the elements of N as

a semi-automorphism of N . Here it is shown that if G is Moufang with H = 〈u〉 6=
〈
u3

〉
or if

G is a Bol loop, not necessarily Moufang, then the structure of G is determined by the binary

operation of N , the intersection N ∩H, how u permutes the elements of N and either of the two

binary operations x ∗1 y = (xu)(u\y) or x ∗−1 y = (xu−1)(u−1\y) of N .

1. Introduction

A quasigroup (Q, ·) is a set Q with a binary operation · such that for any a, b ∈ Q,
the equations a ·x = b and y · a = b have unique solutions x, y ∈ Q respectively. A
quasigroup is a loop if it contains a two-sided identity element. A right Bol loop

is a loop Q which, for all x, y, z ∈ Q, satis�es the right Bol relation

((zx)y)x = z((xy)x).

Similarly, a loop Q is a left Bol loop provided it satis�es the right Bol relation

x(y(xz)) = (x(yx))z.

Recently the structure and construction of Bol loops has caught the atten-
tion of many including Chein and Goodaire [1, 2] along with Foguel, Kinyon and
Phillips [3].

Here the focus will be on (right) Bol loops of the form Q = NH where N E Q
and H = 〈u〉 is cyclic. It is well known for groups that the binary operation of Q
depends only on the binary operation of N , the intersection N ∩ H and how H
acts on N . Likewise, it was shown in [4] that the same is true for Moufang loops
as long as H = 〈u〉 =

〈
u3
〉
. Generalizing to Bol loops, it is shown here how such

extensions depend on the maps

fm,n :N −→N

g 7−→ (um(gun))u−m−n.

2010 Mathematics Subject Classi�cation: 20E22, 20E34, 20N05
Keywords: Extensions, semidirect products.
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Furthermore, the structure of Q depends not only on the structure of N , the
intersection N ∩H and the maps fn,m but also on the Bol loops (N, ∗i) where

x ∗i y = (xui)(ui\y).

For instance, there exists a nonassociative right Bol loop Q = NH of order eight
(the mirror version of the left Bol loop LeftBolLoop(8,2) in GAP [5]) where N ∼=
C2 × C2, H ∼= C2 and fm,n : N → N is the identity map for all m,n ∈ Z. But
since Q is nonassociative, Q 6∼= C2 ×C2 ×C2. This is because the cyclic extension
also depends on the Bol loop (N, ∗1) which is not the Klein four-group but rather
the cyclic group of order four.

2. Preliminaries

For every element, say a, of a quasigroup Q one can de�ne the right translation

Ra : Q −→ Q by (x)Ra = xa and the left translation La : Q −→ Q by (x)La = ax.
By de�nition of a quasigroup, all such translations are bijections of Q. Let

x\y = yL−1
x and x/y = xR−1

y

and note that

x\y = z ⇐⇒ y = xz and x/y = w ⇐⇒ x = wy.

Such operations \ and / are called the left and right divisions respectively. The
multiplication group of Q, denoted by Mlt(Q), is the permutation group generated
by all left and right translations of Q. If Q is a loop with an identity element 1
then the inner mapping group of Q, denoted by Inn(Q), is the stabilizer of 1 in
Mlt(Q).

Two quasigroups (Q1, ∗) and (Q2, ◦) are called isotopic if there exist three
bijections f, g, h : Q1 −→ Q2 such that f(x ∗ y) = g(x) ◦ h(y) for any x, y ∈ Q1.

Lemma 1. Every quasigroup (Q, ∗) is isotopic to a loop. For a, b ∈ Q, (Q, ∗) is

isotopic to (Q, ◦) where
x ◦ y = (x)R−1

b ∗ (y)L
−1
a

or equivalently

(x ∗ b) ◦ (a ∗ y) = x ∗ y.

Here (a ∗ b) ◦ x = x = x ◦ (a ∗ b) for any x ∈ Q.

A loop Q is said to be power-associative if for any element x ∈ Q, the subloop
generated by x is a group. A loop Q is diassociative if for any x, y ∈ Q, the
subloop generated by x and y is a group. A loop Q is left power-alternative, if for
any x, y ∈ Q,

xm(xny) = xm+ny
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for all integers m and n. Similarly, Q is right power-alternative, if for any x, y ∈ Q,

(yxm)xn = yxm+n

for all integers m and n. A loop Q is power-alternative if it is both left and right
power-alternative.

Robinson [6] made the simple observation that right (left) Bol loops are right
(left) power-alternative. Let Q be a right Bol loop with u ∈ Q and de�ne x ∗i y =
(xui)(ui\y) for any x, y ∈ Q. Since right Bol loops are right power-alternative,

x ∗i y = (xui)(ui\y)
= (x/u−i)(ui\y)

and (Q, ∗i) is a loop isotopic to Q.

Lemma 2. (cf. [7]) Let Q be a (right) Bol loop. Then all loop isotopes of Q are

isomorphic to Q.

From this it follows that (Q, ∗i) is a right Bol loop isomorphic to the original
loop Q.

3. Diassociative Bol loops

It is well known that a Bol loop is diassociative if and only if it is a Moufang loop.
As mentioned in [4], cyclic extensions Q = NH resulting in such loops depend on
more than just how H acts on N when

〈
u3
〉
� 〈u〉 = H.

Theorem 1. Let Q be a right Bol loop. Suppose Q = NH where N E Q and

H = 〈u〉. If Q is diassociative then for any x, y ∈ N and any m,n ∈ Z

(xum) (yun) = (x ∗2m+n fm(y))um+n (1)

where

f :N −→N

g 7−→ ugu−1

and (Q, ∗i) is a right Bol loop isomorphic to Q with x ∗i y = (xui)(ui\y) =
(xui)(u−iy).

Proof. By Lemma 2, (Q, ∗i) is isomorphic to Q. For any x, y ∈ N and anym,n ∈ Z

(xum) (yun) = (xum)
(
un · u−ny · un

)
=
[
(xum)un ·

(
u−ny

)]
un

=
[(
xum+n

)(
um · u−m−nyu−m · um

)]
un

=
[(
xum+n

)
um ·

(
u−m−nyu−m

)]
um · un

=
[(
xu2m+n

)(
u−2m−nfm(y)

)]
um · un

= (x ∗2m+n fm(y))um+n.
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If 2m + n ≡ 0 (mod 3) then, from Equation (1) of [4], the binary operation
∗2m+n is uniquely determined by f : g 7−→ ugu−1. But if 2m + n 6≡ 0 (mod 3)
then x ∗2m+n y depends on f along with either of the two operations ∗1 or ∗−1.

Lemma 3. Let Q be a diassociative Bol loop with u ∈ Q. For any x, y ∈ Q de�ne

x ∗i y = (xui)(u−iy) and f : Q −→ Q as f(x) = uxu−1. If 2m+ n ≡ 1 (mod 3),
that is 2m+ n = 3k + 1, then

x ∗2m+n y = fk
(
f−k(x) ∗1 f−k(y)

)
.

Likewise, if 2m+ n ≡ 2 (mod 3) and 2m+ n = 3k + 2 then

x ∗2m+n y = fk+1
(
f−k−1(x) ∗−1 f

−k−1(y)
)
.

Proof. If 2m+ n = 3k + 1 then, by using Equation (1) of [4],

x ∗2m+n y =
(
xu3k+1

)(
u−3k−1y

)
=
(
xuu3k

)(
u−1f−3k(y)u−3k

)
= fk

(
f−k(xu)f2k(u−1f−3k(y))

)
= fk

(
f−k(x)u · u−1f−k(y)

)
= fk

(
f−k(x) ∗1 f−k(y)

)
.

Similarly, if 2m+n = 3k+2 then x∗2m+n y = fk+1
(
f−k−1(x) ∗−1 f

−k−1(y)
)
.

Note that for any integers i and k, x ∗i y = fk
(
f−k(x) ∗i−3k f−k(y)

)
. In other

words
fk(x ∗i y) = fk(x) ∗i+3k fk(y). (2)

From [4] it is known that if Q = NH is a Moufang loop where N E Q and
H = 〈u〉 =

〈
u3
〉
then the binary operation of Q depends only on the binary

operation of N , the intersection N ∩ H and how u permutes the elements in N .
Thus without loss it can be assumed that H = 〈u〉 6=

〈
u3
〉
in which case the binary

operation of Q also depends on the loops (N, ∗1) and (N, ∗−1).

Theorem 2. Let Q be a right Bol loop. Suppose Q = NH where N E Q and

H = 〈u〉 with
〈
u3
〉
� H. If Q is diassociative then for any x, y ∈ N

(xum)(yun)=

{
fk
(
f−k(x) ∗1 fm−k(y)

)
um+n if 2m+ n = 3k + 1;

fk+1
(
f−k−1(x) ∗−1 f

m−k−1(y)
)
um+n if 2m+ n = 3k + 2;

where

f :N −→N

g 7−→ ugu−1

and (Q, ∗i) is a right Bol loop isomorphic to Q with x ∗i y = (xui)(u−iy).
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Proof. By Theorem 1, (xum) (yun) = (x ∗2m+n fm(y))um+n for any x, y ∈ N . If
2m+ n = 3k + 1 then, by Lemma 3,

x ∗2m+n fm(y) = fk
(
f−k(x) ∗1 f−k(fm(y))

)
= fk

(
f−k(x) ∗1 fm−k(y)

)
.

Hence, (xum)(yun) = fk
(
f−k(x) ∗1 fm−k(y)

)
um+n. Similarly, if 2m+n = 3k+2

then (xum)(yun) = fk+1
(
f−k−1(x) ∗−1 f

m−k−1(y)
)
um+n.

From this we see that these extensions by cyclic groups with orders divisible by
three depend on the permutation f(x) = uxu−1 along with the binary operations
∗1 and ∗−1. In Section 4 it will be shown that such extensions depend on f along
with just one of the binary operations ∗1 or ∗−1.

Proposition 1. Suppose Q = NH is a loop where N E Q and H = 〈u〉. For any

x, y ∈ N let

f :N −→N

g 7−→ (ug)u−1

and x ∗i y = (xui)(u−iy). If Q is a diassociative right Bol loop then

(x ∗t−s y) ∗t (z ∗t+s f
s(x)) = x ∗2r−s ((y ∗t z) ∗2r fs(x)) (3)

for any r, s, t ∈ Z and any x, y, z ∈ N . Furthermore, Q is a diassociative right Bol

loop if and only if equations (1), (2) and (3) hold.

Proof. Let x, y, z ∈ Q and k,m, n ∈ Z. Using Equations (1) and (2) it follows that(
(xuk) (f−k(y)um)

)(
(f−k−m(z)un)(xuk)

)
=

= (x ∗2k+m y)uk+m ·
(
f−k−m(z) ∗2n+k fn(x)

)
un+k

=
(
(x ∗2k+m y) ∗3k+2m+n fk+m(f−k−m(z) ∗2n+k fn(x))

)
u2k+m+n

=
(
(x ∗2k+m y) ∗3k+2m+n (z ∗4k+3m+2n fk+m+n(x))

)
u2k+m+n

and

(xuk)
[
(f−k(y)um)(f−k−m(z)un) · (xuk)

]
=

= (xuk)
[(

f−k(y) ∗2m+n f−k(z)
)
um+n · (xuk)

]
= (xuk)

[(
f−k(y) ∗2m+n f−k(z)

)
∗k+2m+2n fm+n(x) · uk+m+n

]
=
[
x ∗3k+m+n fk

((
f−k(y) ∗2m+n f−k(z)

)
∗k+2m+2n fm+n(x)

)]
u2k+m+n

=
[
x ∗3k+m+n

(
fk
(
f−k(y) ∗2m+n f−k(z)

)
∗4k+2m+2n fk+m+n(x)

)]
u2k+m+n

=
[
x ∗3k+m+n

(
(y ∗3k+2m+n z) ∗4k+2m+2n fk+m+n(x)

)]
u2k+m+n.
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By letting s = k +m + n, t = 3k + 2m + n and r = 2k +m + n (i.e., k = r − s,
m = t+ s− 2r and n = s− t+ r)(

(xuk)(f−k(y)um)
)(
(f−k−m(z)un)(xuk)

)
= (x ∗t−s y) ∗t (z ∗t+s f

s(x))

and

(xuk)
[
(f−k(y)um)(f−k−m(z)un) · (xuk)

]
= x ∗2r−s ((y ∗t z) ∗2r fs(x)).

Hence, Q satis�es the Moufang identities if and only if Equations (1), (2) and (3)
hold.

Note that by letting y = 1, Equation (3) simpli�es to

x ∗t (z ∗t+s f
s(x)) = x ∗2r−s (z ∗2r fs(x)).

Since the right hand side of the equality is independent of t,

x ∗t1 (z ∗t1+s f
s(x)) = x ∗t2 (z ∗t2+s f

s(x))

for any t1, t2 ∈ Z. Similarly, by letting z = 1 in Equation (3) and using a similar
argument it follows that

(x ∗t1 y) ∗t1+s f
s(x) = x ∗t2 (y ∗t2+s f

s(x))

for any t1, t2 ∈ Z. Therefore, from Equation (3) it follows that ifQ is a diassociative
right Bol loop then

(x ∗n−k y) ∗n (z ∗n+k fk(x)) = x ∗m−k ((y ∗n z) ∗m fk(x))

= (x ∗`−k (y ∗n z)) ∗` fk(x)

for any x, y, z ∈ Q and k,m, n, ` ∈ Z.

4. The general case

Here Theorem 1 will be generalized for cyclic extensions resulting in arbitrary right
Bol loops. The following is a useful lemma that will be used to prove the main
result.

Lemma 4. If Q is a right Bol loop with u ∈ Q then u\x =
(
u−1(xu)

)
u−1 for

any x ∈ Q.

Proof. For any x ∈ Q,

u
[(
u−1(xu)

)
u−1

]
=
((
uu−1

)
(xu)

)
u−1

= (xu)u−1

= x.
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Theorem 3. If Q = NH is a right Bol loop with N E Q and H = 〈u〉 ≤ Q then

for any x, y ∈ N and any m,n ∈ Z

(xum) (yun) = (x ∗2m+n fm,n(y))u
m+n (4)

where

fm,n :N −→N

g 7−→ (um (gun))u−m−n

and (Q, ∗i) is a right Bol loop isomorphic to Q with x ∗i y = (xui)(ui\y).

Proof. By Lemma 2, (Q, ∗i) is isomorphic to Q. Furthermore, for any x, y ∈ N
and any m,n ∈ Z

(xum) (yun) =
((
xu2m+nu−m−n

)
(yun)

)
u−m−num+n

=
[(
xu2m+n

)[(
u−m−n(yun)

)
u−m−n

]]
um+n

=
[(
xu2m+n

)[(
u−2m−num(yun)

)
um · u−2m−n

]]
um+n

=
[(
xu2m+n

)[[
u−2m−n((um(yun))um)

]
u−2m−n

]]
um+n

=
[(
xu2m+n

)[[
u−2m−n

(
(um(yun))u−m−n · u2m+n

)]
u−2m−n

]]
um+n

=
[(
xu2m+n

)[[
u−2m−n

(
fm,n(y)u

2m+n
)]
u−2m−n

]]
um+n

=
[(
xu2m+n

)(
u2m+n\fm,n(y)

)]
um+n

= (x ∗2m+n fm,n(y))u
m+n.

Since right Bol loops are right power-alternative, it should be noted that
fm,n : g 7→ (um (gun))u−m−n is the identity map whenever m = 0. Therefore,
from Theorem 3, it follows that in any right Bol loop x(yun) = (x ∗n y)un.

Proposition 2. Suppose Q is a right Bol loop with u ∈ Q. Let

fi,j :Q −→Q

g 7−→
(
ui
(
guj
))

u−i−j

and (Q, ∗i) be the right Bol loop isomorphic to Q with x ∗i y = (xui)(ui\y). Then

by knowing the maps fi,j along with (Q, ∗n) and (Q, ∗n+1) for some �xed integer

n, the Bol loop (Q, ∗k) is uniquely determined for any integer k.

Proof. Since Q is a right Bol loop,

z
((
xun−2m

)
u3m−n ·

(
xun−2m

))
=
((
z
(
xun−2m

))
u3m−n

)(
xun−2m

)
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for any z, x ∈ N and any n,m ∈ Z. Therefore, by Theorem 3,

z
((
xun−2m)u3m−n ·

(
xun−2m)) = ((z(xun−2m))u3m−n)(xun−2m)

=⇒ z
(
(xum)

(
xun−2m)) = (((z ∗n−2m x)un−2m)u3m−n)(xun−2m)

=⇒ z
(
(x ∗n fm,n−2m(x))un−m) = ((z ∗n−2m x)um)

(
xun−2m)

=⇒ (z ∗n−m(x ∗n fm,n−2m(x)))un−m = ((z ∗n−2m x) ∗n fm,n−2m(x))un−m

=⇒ z ∗n−m(x ∗n fm,n−2m(x)) = (z ∗n−2m x) ∗n fm,n−2m(x). (5)

By letting m = −1, Equation (5) becomes

z ∗n+1(x ∗n f−1,n+2(x)) = (z ∗n+2 x) ∗n f−1,n+2(x).

Whereas, by replacing n with n+ 1 and m with 1, Equation (5) becomes

z ∗n(x ∗n+1 f1,n−1(x)) = (z ∗n−1 x) ∗n+1 f1,n−1(x).

Hence, with the operations ∗n and ∗n+1, both z ∗n+2 x and z ∗n−1 x can be
determined for any elements z and x. By induction, ∗k can then be obtained for
any k ∈ Z.

Since ∗0 is just the original binary operation of N , by letting n be either 0 or
−1, it immediately follows that for any integer k the Bol loop (Q, ∗k) is uniquely
determined by the maps fi,j , the subloop N and either (N, ∗1) or (N, ∗−1).

Corollary 1. If Q = NH is a right Bol loop with N E Q and H = 〈u〉 ≤ Q then

for any x, y ∈ N and any m,n ∈ Z the product (xum)(yun) is uniquely determined

by the subloops N and N ∩H along with the maps

fm,n :N −→N

g 7−→ (um (gun))u−m−n

and one of the two Bol loops (N, ∗1) or (N, ∗−1) where x ∗i y = (xui)(ui\y).

But if [Q,N ] = 2 then much of the Cayley table of (N, ∗1) may be determined
by N and the maps fi,j .

Proposition 3. Suppose Q = NH is a right Bol loop with N E Q and H = 〈u〉 ≤
Q where [Q : N ] = 2. Then for any z ∈ N and

y ∈ {x ∗2 f1,0(x) | x ∈ N} = {(x(f1,0(x)u2))u−2 | x ∈ N} ⊆ N,

z ∗1 y = (zu)(u\y) is uniquely determined by the binary operation of N and

f1,0 :N −→N

g 7−→ (ug)u−1.
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Proof. By Lemma 4, for any a, x ∈ Q,

a ∗2 f1,0(x) =
(
au2
)(
u2\f1,0(x)

)
=
(
au2
)(
u−2

(
f1,0(x)u

2
)
· u−2

)
=
(
au2 · u−2

)(
f1,0(x)u

2
)
· u−2

= a
(
f1,0(x)u

2
)
· u−2.

Since Q is a right Bol loop, for any x, z ∈ N , z((xu)x) = ((zx)u)x. Thus, by
Theorem 3,

z((xu)x) = ((zx)u)x

=⇒ z((x ∗2 f1,0(x))u) = ((zx) ∗2 f1,0(x))u
=⇒ (z ∗1 (x ∗2 f1,0(x)))u = ((zx) ∗2 f1,0(x))u
=⇒ z ∗1 (x ∗2 f1,0(x)) = (zx) ∗2 f1,0(x)
=⇒ z ∗1

(
x
(
f1,0(x)u

2
)
· u−2

)
= (zx)

(
f1,0(x)u

2
)
· u−2.

Since [Q : N ] = 2, u2 ∈ N . Hence, for any elements z ∈ N and

y ∈ {x ∗2 f1,0(x) | x ∈ N} = {(x(f1,0(x)u2))u−2 | x ∈ N} ⊆ N,

z ∗1 y is uniquely determined by f1,0 and the binary operation of N .

Acknowledgment. The author would like to thank Ales Drápal for the
idea that certain loop extensions depend also on the binary operations x ∗ y =
(x/u)(u−1\y).
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Design of crypto primitives

based on quasigroups

Smile Markovski

Abstract. Today, the security of the modern world is undoubtedly dependent on the crypto-

graphic primitives built into the various protocols used for secure communication. Let us mention

here the most important, like block ciphers, stream ciphers, digital signatures and encryption

schemes, hash functions, pseudo random number generators, ... The design of these, and many

other crypto primitives, uses di�erent concepts from number theory, group and �nite �eld theory,

Boolean algebras, etc. In this survey article we will present how quasigroups can be used for

construction of various crypto primitives. We will discuss especially what type of quasigroups

are used and how they can be constructed. Some open research problem will be mentioned as

well.

1. Introduction

It is well known that One-time-pad is the only information theoretically secure
cryptographic product, i.e., there is a mathematical proof of its security. All other
cryptographic primitives that are massively used for di�erent purposes in commu-
nication, banking, commerce and many other today human activities, have security
based on three facts: �rst one is the believing (that some mathematical problems
are hard to be solved), the second one is the experience (some cryptographic prim-
itives cannot be broken after several years, even decades, of attacking), and the
third one is the adjusting (whenever a weakness of some used cryptographic sys-
tem is found, it is immediately repaired or changed). Thus, in the last decades no
catastrophic damage was made of breaking some cryptographic product (maybe
ENIGMA was the last one, more than seventy years ago).

Having in mind the previous, we realized that designs of new cryptographic
primitives, products, systems, algorithms, protocols etc. have as well theoretical as
practical importance. Nowadays, crypto primitives are produced mainly by using
results from number and group theory, �nite �eld theory, Boolean algebras and
functions, and all of them are associative structures. We think that broadening the
set of used theories with non-associative mathematical structures, like quasigroup

2010 Mathematics Subject Classi�cation: 20N05, 94A60, 68P25
Keywords: Quasigroups (left, right, n-ary, huge, orthogonal, MQQ, MQLQ), cryptographic
primitives, quasigroup transformations, cryptographic S-boxes, block ciphers, stream ciphers,
PRNGs, hush functions, signatures, public encryptions schemes.
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theory, that can be used for making suitable cryptographic primitives, is also
important. In such a way cryptographic primitives with di�erent properties of the
existing ones can be obtained, hence the domain of the crypto primitives will be
enlarged.

In this paper we show how the quasigroups can be used for building di�erent
type of cryptographic primitives. For that aim we de�ne some type of quasigroups
that are suitable for that purpose (Section 2), we give the de�nitions of several
kinds of quasigroup transformations (Section 3), and we explain the constructions
of some types of cryptographic primitives obtained by quasigroup transformations
(Section 4). The last section contains discussion and conclusion.

2. Quasigroups

We start by giving a brief overview of the quasigroup theory that we will use in
the sequel.

De�nition 1. A quasigroup (Q, ∗) is a groupoid, i.e., a set Q with binary operation

∗ : Q2 → Q, satisfying the law

(∀u, v ∈ Q)(∃! x, y ∈ Q) u ∗ x = v & y ∗ u = v. (1)

The de�nition is equivalent to the statements that ∗ is a cancellative operation
(x∗y = x∗z ⇒ y = z, y ∗x = z ∗x⇒ y = z) and the equations a∗x = b, y ∗a = b
have solutions x, y for each a, b ∈ Q.

In this paper we need only �nite quasigroups, i.e., the order |Q| of a quasigroup
Q is a �nite positive integer. Closely related combinatorial structures to �nite
quasigroups are the so called Latin squares:

De�nition 2. A Latin square L on a �nite set Q of cardinality |Q| = n is an

n × n-matrix with elements from Q such that each row and each column of the

matrix is a permutation of Q.

To any �nite quasigroup (Q, ∗), given by its multiplication table, there can be
associated a Latin square L consisting of the matrix formed by the main body of
the table, and each Latin square L on a set Q de�nes at most |Q|!2 quasigroups
(Q, ∗) (obtained by all possible bordering ).

A relation of isotopism and between two quasigroups are de�ned as follows.

De�nition 3. A quasigroup (K, ∗) is said to be isotopic to a quasigroup (Q, •)
if and only if there are bijections α, β, γ from K onto Q such that γ(x ∗ y) =
α(x) •β(y) for each x, y ∈ K. Then the triple (α, β, γ) is called an isotopism from

(K, ∗) to (Q, •).
Given a quasigroup (Q, ∗) �ve new operations, so called parastrophes or adjoint

operations, denoted by \, /, •, \\, //, can be derived from the operation ∗ as
follows:

x ∗ y = z ⇔ y = x \ z ⇔ x = z/y ⇔ y • x = z ⇔ y = z \ \x ⇔ x = y//z. (2)
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Then the algebras (Q, ∗, \, /) and (Q, •, \\, //) satisfy the identities

x \ (x ∗ y) = y, x ∗ (x \ y) = y, (x ∗ y)/y = x, (x/y) ∗ y = x (3)

y = (x ∗ y) \\x = (y • x) \\x, x = y//(x ∗ y) = y//(y • x),

y = x ∗ (y \\x) = (y \\x) • x, x = (y//x) ∗ y = y • (y//x), (4)

and (Q, \), (Q, /), (Q, •) (Q, \\), (Q, //) are quasigroups too.

2.1. n-ary, left and right quasigroups

An n-ary quasigroup is a pair (Q, f) of a nonempty set Q and an n-ary operation
f with the property that given any n of the elements a1, a2, . . . , an+1 ∈ Q, the
n + 1-th is uniquely determined the equality f(a1, a2, . . . , an) = an+1 hold true.
A quasigroup is a binary (2-ary) quasigroup. Given n-ary quasigroup (Q, f), we
de�ne n operations f1, f2, . . . , fn by

f(a1, a2, . . . , an) = an+1 ⇔ fi(a1, . . . , ai−1, an+1, ai+1, . . . , an) = ai.

Then the following identities holds, for each i = 1, 2, . . . , n:

f(a1, . . . , ai−1, fi(a1, . . . , an), ai+1 . . . , an) = ai,

fi(a1, . . . , ai−1, f(a1, a2, . . . , an), ai+1, . . . , an) = ai. (5)

De�nition 4. A left (right) quasigroup (Q, ∗) is a groupoid satisfying the law

(∀u, v ∈ Q)(∃! x ∈ Q) u ∗ x = v

((∀u, v ∈ Q)(∃! y ∈ Q) y ∗ u = v.)

It is clear that a groupoid is a quasigroup i� it is left and right quasigroup.
Given a left (right) quasigroup (Q, ∗) the parastrophe \ (/) can be derived from

the operation ∗ as following.
x ∗ y = z ⇔ y = x \ z (x ∗ y = z ⇔ x = z/y)

and then the algebra (Q, ∗, \) ((Q, ∗, /)) satis�es the identities
x \ (x ∗ y) = y, x ∗ (x \ y) = y, ((x ∗ y)/y = x, (x/y) ∗ y = x).

2.2. Huge quasigroups

A quasigroup can be constructed by using a Latin square, that will be the main
body of the multiplication table of the quasigroup, or analytically by some func-
tions. A quasigroup of small order is easily representable by its multiplication
table (as in Table 3). Clearly, it cannot be done for quasigroups of huge orders
216, 264, 2128, 2256, 2512, . . . (we say huge quasigroups), that are used in the
constructions of some crypto primitives. There are several known constructions of
huge quasigroups, and we describe some of them.
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2.2.1. Huge quasigroups obtained by Feistel networks

Extended Feistel networks FA,B,C are de�ned in [91] as follows.
Let (G,+) be an abelian group, let f : G→ G be a mapping and let A,B,C ∈

G be constants. The extended Feistel network FA,B,C : G2 → G2 created by f is
de�ned for every (l, r) ∈ G2 as

FA,B,C(l, r) = (r +A, l +B + f(r + C)).

When f is a bijection, FA,B,C is an orthomorphism of the group (G2,+) (i.e.,
FA,B,C and FA,B,C − I are permutations), so a quasigroup (G2, ∗FA,B,C

) can be
produced by Sade's diagonal method [122] as

X ∗FA,B,C
Y = FA,B,C(X − Y ) + Y.

This construction is suitable for many applications, since the parametersA,B,C
of an extended Feistel network FA,B,C can be used for di�erent purposes. By
iterating, starting from a group of small order, we can construct a huge quasi-
group. Namely, if f is bijection on G, then f1 = FA,B,C is a bijection on G2, so
we can de�ne suitable extended Feistel network FA1,B1,C1

by choosing constants
A1, B1, C1 ∈ G2. Again, by Sade's diagonal method we can construct a quasi-
group (G4, ∗FA1,B1,C1

) of order |G|4. Hence, in such a way, after k steps, we have

a quasigroup of order |G|2k . Thus, when G = Z2, after 8 steps wee have a huge
quasigroup of order 2256. Note that only the starting bijection f has to be kept in
memory.

More constructions of quasigroups by di�erent types of Feistel networks are
given in [111].

2.2.2. Huge quasigroups obtained by T-functions

Huge quasigroups can be de�ned by so called T−functions [18] and one way how
it can be done is the following [127].

Let Q = Z2w and let represent the element of Q binary, as bit strings of length
w. (Thus, for w = 4, the integer 9 is represented as 1001.) Let xw, . . . , x1 be
Boolean variables, and let b be a constant Boolean vector. Let A1 = [fij ]w×w
and A2 = [gij ]w×w be upper triangular matrices of linear Boolean expressions
with variables xw, . . . , x1, such that: 1) fii = 1, gii = 1 and fiw are constants
for every i = 1, . . . , w; 2) for all i < j < w, fij can depend only on the variables
xw−j , . . . , x1 and 3) for all i < j, gij can depend only on the variables xw, . . . , x1.
Let x = (xw, . . . , x1), y = (yw, . . . , y1) be binary presentation of the variables x,y
over Q. Then, (Q, ∗) is a quasigroup of order 2w, where ∗ is de�ned by

x ∗ y = A1 · (xw, . . . , x1)T + A2 · (yw, . . . , y1)T + bT .

The parastrophe (Q, \) is de�ned by

x \ y = A−12 · ((yw, . . . , y1)T −A1 · (xw, . . . , x1)T − bT ).
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2.2.3. Huge quasigroups obtained by simple isotopies

The compression function of the hash function Edon-R [58] uses two huge quasi-
groups of order 2256 and 2512 and their operations are de�ned by isotopies of the
Abelian group ((Z2w)8,+8), w = 32 and w = 64, respectfully. (+8 is a component-
wise addition on two 8-dimensional vectors in (Z2w)8). The quasigroup operation
∗ is de�ned by

X ∗ Y = π1(π2(X) +8 π3(Y ))

where X = (X0, X1, . . . , X7), Y = (Y0, Y1, . . . , Y7) ∈ (Z2w)8 and πi : Z2w →
Z2w , 1 6 i 6 3, are permutations obtained in a suitable simple (and e�cient) way.

2.3. Quasigroups for symbolic computations

Designs of some crypto primitives (like digital signatures, public key encryptions)
need symbolic computations. (For example, for producing a public key consisting
of polynomials.) For that aim, quasigroups capable for symbolic computations are
de�ned as well.

2.3.1. Multivariate quadratic quasigroups (MQQ)

As we already mentioned, the elements of a �nite quasigroups (Q, ∗) of order 2d

can be represented binary as bit strings of d bits. Now, the binary operation ∗ can
be interpreted as a vector valued operation ∗vv : {0, 1}2d → {0, 1}d de�ned as:

x ∗ y = z⇐⇒ ∗vv(x1, . . . , xd, y1, . . . , yd) = (z1, . . . , zd),

where x1 . . . xd, y1 . . . yd, z1 . . . zd are binary representations of x,y, z. Each zi de-
pends of the bits x1, x2, . . . , xd, y1, y2, . . . , yd and is uniquely determined by them.
So, each zi can be seen as a 2d-ary Boolean function zi = fi(x1, . . . , xd, y1, . . . , yd),
where fi : {0, 1}2d → {0, 1} strictly depends on, and is uniquely determined by, ∗.

A k-ary Boolean function f(x1, . . . , xk) can be represented in a unique way by
its algebraic normal form (ANF) as a sum of products in the �eld GF (2):

ANF (f) =
∑

I⊆{1,2,...,k}
αIx

I ,

where αI ∈ {0, 1} and xI is the product of all variables xi such that i ∈ I.
The ANFs of the functions fi give us information about the complexity of the
quasigroup (Q, ∗) via the degrees of the Boolean functions fi. It can be observed
that the degrees of the polynomials ANF (fi) rise with the order of the quasigroup.
In general, for a randomly generated quasigroup of order 2d, d > 4, the degrees
are higher than 2.

The MQQ are de�ned in [51]. A quasigroup (Q, ∗) of order 2d is called Mul-
tivariate Quadratic Quasigroup (MQQ) of type Quadd−kLink if exactly d − k of
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its Boolean polynomials fi are of degree 2 (i.e., they are quadratic) and k of them
are of degree 1 (i.e., they are linear), where 0 6 k < d.

Theorem 1 below gives us su�cient conditions for a quasigroup (Q, ∗) to be
MQQ.

Theorem 1. Let A1 = [fij ]d×d and A2 = [gij ]d×d be two d× d matrices of linear

Boolean expressions, and let b1 = [ui]d×1 and b2 = [vi]d×1 be two d× 1 vectors of

linear or quadratic Boolean expressions. Let the functions fij and ui depend only

on variables x1, . . . , xd, and let the functions gij and vi depend only on variables

xd+1, . . . , x2d. If

Det(A1) = Det(A2) = 1 in GF (2) (6)

and if

A1 · (xd+1, . . . , x2d)
T + b1 ≡ A2 · (x1, . . . , xd)T + b2 (7)

then the vector valued operation

∗vv(x1, . . . , x2d) = A1 · (xd+1, . . . , x2d)
T + b1

de�nes a quasigroup (Q, ∗) of order 2d that is MQQ.

Similarly as in Theorem 1, a construction of so called Mutually Quadratic Left
Quasigroups (MQLQ) is given in [124].

Theorem 2. Let x1, . . . , xw, y1, . . . , yw be Boolean variables, w > 1. Let A1 =
[fij ]w×w and A2 = [gij ]w×w be two w × w nonsingular upper triangular matrices

of random a�ne Boolean expressions, such that for every i = 1, . . . , w, fii = 1
and gii = 1, and for all i, j, i < j 6 w, fij and gij depend only on the variables

x1, . . . , xw, yi+1, . . . , yw. Let D1 = [dij ]w×w, D2 = [dij ]w×w and D = [dij ]w×w be

nonsingular Boolean matrices and let b = [bi]w×1, c1 = [ci]w×1, c2 = [ci]w×1 and

c = [ci]w×1 be Boolean vectors.

Then the vector valued operations

∗1(x1, . . . , xw, y1, . . . , yw) = A1 · (x1, . . . , xw)⊕A2 · (y1, . . . , yw)⊕ b (8)

and

∗2(x1, . . . , xw, y1, . . . , yw) = D(∗1(D1(x1, . . . , xw)⊕ c1,D2(y1, . . . , yw)⊕ c2))⊕ c
(9)

de�ne left quasigroups (Q, ∗1) and (Q, ∗2) of order 2w that are MQLQ, where

Q = {0, 1, . . . . . . , 2w − 1}.

The de�nition of the quasigroup (Q, ∗) implies immediately that symbolic com-
putations can be performed with linear polynomials on the �eld GF (2).

More information for MQQ can be found in [125] and [17].
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2.3.2. Matrix representation

All quasigroup operations on the set Q = {0, 1, 2, 3} have so called matrix repre-
sentations in the following form, given in the next theorem [137]:

Theorem 3. Each quasigroup (Q, ∗) of order 4 has a matrix representation of

form

x ∗ y = m
T +AxT +ByT + CAxT ◦ CByT , (10)

where x = (x1, x2), y = (y1, y2) ∈ Q (xi, yi denotes bit variables), m = (m1,m2)
is some constant from Q, A and B are nonsingular 2-dimensional matrices of

bits, C is one of the matrices

[
0 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
1 1
1 1

]
, and ◦ denotes the

component-wise multiplication of vectors. (Note: The addition and multiplication
are in the �eld GF (2).)

The matrix presentation of the parastrophe operation \ of the quasigroup op-
eration ∗ given by (10) is the following:

x \ z = B−1mT +B−1(I + C)AxT +B−1(CmT ◦ CAxT )+

+B−1zT +B−1(CAxT ◦ CzT ),
(11)

where I denotes the identity matrix.
The variables x and y may vary over the polynomial ring Z[X], not only over

Q.
Matrix representation for some types of quasigroups of order 8 are also inves-

tigated.
Here we note that for any order 2n we have matrix representations of the so

called linear quasigroups of order 2n as follows. Let denote x = (x1, . . . , xn), where
xi are bit variables.

Theorem 4. Let A and B be nonsingular binary n × n−matrices and m ∈ Q =
{0, 1, 2, . . . , 2n − 1} be a constant. Then (Q, ∗) is a quasigroup (called linear

quasigroup), where
x ∗ y = m

T +AxT +ByT . (12)

By Theorem 4, we can take m to be 1 × n matrix and A and B to be
n × n−matrices with entries that are Boolean expressions such that det(A) 6= 0,
det(B) 6= 0, and then x ∗ y will be a Boolean expression too. So, we can use this
matrix presentation for symbolic computations.

We can extended the previous result for k-ary case as well.

Theorem 5. Let Ai, i = 1, 2, . . . , k, be nonsingular binary n × n−matrices and
m ∈ Q = {0, 1, 2, . . . , 2n − 1} be a constant. Then (Q, f) is a k-ary quasigroup

(called linear k−quasigroup), where

f(x1,x2, . . . ,xk) = m
T +A1x

T
1 +A2x

T
2 + · · ·+Akx

T
k . (13)
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2.3.3. Polynomial quasigroups

Quasigroups of order 2n can be de�ned by using bivariate polynomials P (x, y) over
the ring (Z2n ,+, ·), n > 2 ([123], [121], [95]), when the polynomials satisfy the
following condition: each of the functions P (x, 0), P (x, 1), P (0, y) and P (1, y) is a
permutation on Z2n . Then the quasigroup (Z2n , ∗), called polynomial quasigroup,
is de�ned by x ∗ y = P (x, y).

If only the univariate polynomials P (x, 0), P (x, 1) (P (0, y), P (1, y)) are per-
mutations, (Z2n , ∗) is right quasigroup (left quasigroup), and vice versa.

Polynomial quasigroups can be of huge order and, since de�ned by polynomials,
they can be used for symbolic computations as well.

We note that there are e�ective algorithms for computing the parastrophic
operations of the polynomial quasigroups.

3. Quasigroup string transformations

Quasigroup String Transformations were introduced in [84] and were investigated
in several other papers ( [85], [89], [90], [81], [80]).

Consider an alphabet (i.e., a �nite set) Q, and denote by Q+ = {a1a2 . . .
. . . an| ai ∈ Q} the set of all nonempty words (i.e., �nite strings) formed by
the elements of Q. (If there is no misunderstanding, we identify a1a2 . . . an and
(a1, a2, . . . , an).) Let ∗ be a quasigroup operation on the set Q, i.e., consider a
quasigroup (Q, ∗). For each a ∈ Q we de�ne two functions

ea,∗, da,∗ : Q+ −→ Q+

as follows. Let ai ∈ Q, α = a1a2 . . . an. Then

ea,∗(α) = b1b2 . . . bn ⇐⇒ b1 = a ∗ a1, b2 = b1 ∗ a2, . . . , bn = bn−1 ∗ an

and

da,∗(α) = c1c2 . . . cn ⇐⇒ c1 = a ∗ a1, c2 = a1 ∗ a2, . . . , cn = an−1 ∗ an.

The functions ea,∗, da,∗ are called e- and d-transformation of Q+ based on the
operation ∗ with leader a, and their graphical representation is shown on Fig. 1
and Fig. 2.

a1 a2 . . . an−1 an

a b1 b2 . . . bn−1 bn
�
���

�
���

�
���

�
���

�
���? ? ? ?

Figure 1: Graphical representation of ea,∗ function
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a a1 a2 . . . an−1 an

b1 b2 . . . bn−1 bn

- - - - -

? ? ? ?

Figure 2: Graphical representation of da,∗ function

• 0 1 2 3
0 2 1 0 3
1 3 0 1 2
2 1 2 3 0
3 0 3 2 1

\ 0 1 2 3
0 2 1 0 3
1 1 2 3 0
2 3 0 1 2
3 0 3 2 1

/ 0 1 2 3
0 3 1 0 2
1 2 0 1 3
2 0 2 3 1
3 1 3 2 0

Figure 3: A quasigroup (Q, •) and its parastrophes (Q, \) and (Q, /)

Example 1. Take Q = {0, 1, 2, 3} and let the quasigroup (Q, •) and its parastro-
phes (Q, \) and (Q, /) be given by the multiplication schemes in Figure 3.

Consider the string α = 1 0 2 1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 0 1 0 1 0 3 0 0
and choose the leader 0. Then by the transformations e0,• and d0,• we will obtain
the following transformed strings e0,•(α) and d0,•(α):

e0,•(α) = 1 3 2 2 1 3 0 2 1 3 0 2 1 0 1 1 2 1 1 1 3 3 0 1 3 1 3 0,
d0,•(α) = 1 3 0 2 3 2 2 2 2 2 2 2 2 1 0 1 2 3 0 3 1 1 3 1 3 3 0 2.
We present four consecutive applications of the e-transformation on Table 1.

After that we apply four times the transformation d0,\ on the last obtained
string β = e0,•4(α) (see Table 1):

Notice that we have obtained

α = d0,\
4(β) = d0,\

4(e0,•4(α)) = (d0,\
4 ◦ e0,•4)(α).

In fact, by (3), the following property is true([85]):

Theorem 6. Let (Q, ∗, \, /) be a �nite quasigroup. Then for each string α ∈ Q+

and for each leader l ∈ Q we have that el,∗ and dl,\ are mutually inverse permu-

tations of Q+, i.e., dl,\(el,∗(α)) = α = el,∗(dl,\(α)).

leader 1 0 2 1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 0 1 0 1 0 3 0 0 = α
0 1 3 2 2 1 3 0 2 1 3 0 2 1 0 1 1 2 1 1 1 3 3 0 1 3 1 3 0 = e0,•(α)
0 1 2 3 2 2 0 2 3 3 1 3 2 2 1 0 1 1 2 2 2 0 3 0 1 2 2 0 2 = e0,•2(α)
0 1 1 2 3 2 1 1 2 0 1 2 3 2 2 1 0 1 1 1 1 3 1 3 3 2 3 0 0 = e0,•3(α)
0 1 0 0 3 2 2 2 3 0 1 1 2 3 2 2 1 0 1 0 1 2 2 0 3 2 0 2 1 = e0,•4(α)

Table 1: Consecutive e-transformations
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leader
0 1 0 0 3 2 2 2 3 0 1 1 2 3 2 2 1 0 1 0 1 2 2 0 3 2 0 2 1 = β
0 1 1 2 3 2 1 1 2 0 1 2 3 2 2 1 0 1 1 1 1 3 1 3 3 2 3 0 0 = d0,\(β)

0 1 2 3 2 2 0 2 3 3 1 3 2 2 1 0 1 1 2 2 2 0 3 0 1 2 2 0 2 = d0,\
2(β)

0 1 3 2 2 1 3 0 2 1 3 0 2 1 0 1 1 2 1 1 1 3 3 0 1 3 1 3 0 = d0,\
3(β)

1 0 2 1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 0 1 0 1 0 3 0 0 = d0,\
4(β)

Table 2: Consecutive d-transformations

By Theorem 6 we conclude that the transformations ea,∗ and da,\ can be used
for de�ning suitable functions for encryption and decryption. Much more, we can
de�ne in the similar way several pairs of quasigroup string transformations that
can be used for de�ning suitable functions for encryption and decryption. Thus,
let a, a1, a2, . . . , an ∈ Q and let de�ne the functions e′a,∗, d

′
a,∗ : Q+ −→ Q+ as

follows:

e′a,∗(α) = b1b2 . . . bn ⇐⇒ bn = an ∗ a, bn−1 = an−1 ∗ bn, . . . , b1 = a1 ∗ b2,

d′a,∗(α) = c1c2 . . . cn ⇐⇒ cn = an ∗ a cn−1 = an−1 ∗ an, . . . , c1 = a1 ∗ a2.
Then, by (4), Theorem 6 holds for the functions e′a,∗, d

′
a,\ too. Also, for encryp-

tion/decryption purposes, in a suitable way transformations with the pair of func-
tions (ea,∗, da,/), (e′a,∗, d

′
a,/), (ea,∗, da,\), (e

′
a,∗, d

′
a,\), (ea,•, da,//), (e′a,•, d

′
a,//),

(ea,•, da,\\), (e′a,•, d
′
a,\\) can be de�ned in an obvious way.

Several quasigroup operations can be de�ned on the set Q and let ∗1, ∗2,
. . . , ∗k be a sequence of (not necessarily distinct) such operations. We choose
also leaders l1, l2, . . . , lk ∈ Q (not necessarily distinct either), and let t(i) ∈
{eli,∗, dli,/, e′li,∗, d′li,/, dli,//, d

′
li,//

, da,\\, d′li,\\, . . . }. Then, the transforma-

tion T = t(1)t(2) . . . t(k) of Q+ is said to be a generalized T -transformation. It
is a permutation of Q+ with inverse T−1 = (t(k))−1(t(k−1))−1 . . . (t(1))−1, where
(t(i))−1 ∈ {eli,∗, e′li,∗, eli,•, e′li,•, dli,/, d′li,/, dli,//, d

′
li,//

, da,\\, d′li,\\, . . . }. The
generalized transformations T, T−1 can be used as encryption/decryption func-
tions.

3.1. Parastrophic quasigroup transformations

In order to exploit more completely one quasigroup, an idea for quasigroup string
transformation that will be based on all isotopes of a quasigroup is given in
[73]. Here we give a description of a slightly modi�cation of this transforma-
tion, called parastrophic quasigroup transformation, as presented in [3]. For that
aim we denote the parastrophic operation {∗, \, /, •, //, \\} of a quasigroup (Q, ∗)
respectively as f1, f2, f3, f4, f5, f6, and we write f1(x, y), f2(x, y), . . . instead of
x ∗ y, x\y, . . . Note that some of the parastrophes fi may coincides, depending of
the quasigroup.
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The parastrophic transformations PE is de�ned on �nite quasigroups (Q, ∗)
of integers, i.e., Q = {1, 2, . . . , t}. They are using the transformations el,fi for
transformations of block of letters, where l is a leader. Also, a positive integer p
is used.

Let p be a positive integer and x1x2 . . . xn be an input message. We de�ne a
parastrophic transformation PE = PEl,p : Q+ → Q+ by using auxiliary parame-
ters di, qi and si as follows.

To start, let d1 = p, q1 = d1, s1 = (d1 mod 6) + 1 and take a starting block
A1 = x1x2 . . . xq1 . Denote by B1 the block

B1 = y1y2 . . . yq1−1yq1 = el,fs1 (x1x2 . . . xq1−1xq1).

Further, we calculate the numbers d2 = 4yq1−1 + yq1 (that determines the length
of the next block), q2 = q1 + d2 and s2 = (d2 mod 6) + 1. We denote A2 =
xq1+1 . . . xq2−1xq2 and

B2 = yq1+1 . . . yq2−2yq2−1yq2 = Eyq1 ,fs2 (xq1+1 . . . xq2−2xq2−1xq2).

Inductively, after getting the blocks B1, B2,. . . , Bi−1 where Bi−1 = yqi−2+1 . . .
. . . yqi−1−1yqi−1

, we calculate di = 4yqi−1−1+yqi−1
, qi = qi−1+di, si = (di mod 6)+

1, Ai = xqi−1+1 . . . xqi−1xqi and obtain the block

Bi = Eyqi−1
,fsi

(xqi−1+1 . . . xqi).

Now, the parastrophic transformation PEl,p is de�ned by concatenation of the
obtained blocks as

PEl,p(x1x2 . . . xn) = B1||B2|| . . . ||Br. (14)

(Note that the length of the last block Ar may be shorter than dr, depending on
the number of letters in input message).

3.2. Other types of transformations

For di�erent purposes other types of quasigroups transformations are de�ned else-
where. We will shortly mention some of them.

Special kind of E transformation is the quasigroup reverse string transformation
R, introduced in [42], where the leaders are the elements of the string, taken in
reverse order. Namely, a string of letters α = a1a2 . . . an is transformed to E(α),
where E = e∗,an ◦ e∗,an−1

◦ · · · ◦ e∗,a1 .
Let (Q, ∗1) and (Q, ∗2) be two orthogonal (�nite) quasigroups, i.e., the equality

{(x∗1y, x∗2y)| x, y ∈ Q} = Q2 holds. Orthogonal quasigroup string transformation
OT : Q+ → Q+ of a string x1x2 . . . xr is de�ned in [110] by the following iterative
procedure:

OT (x1) = x1, OT (x1, x2) = (x1 ∗1 x2, x1 ∗2 x2)
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and if OT (x1, x2, . . . , xt−1) = (z1, z2, , . . . , zt−1) is de�ned for t > 2, then

OT (x1, x2, , . . . , xt−1, xt) = (z1, z2, , . . . , zt−2, zt−1 ∗1 xt, zt−1 ∗2 xt).

OT is a permutation of Q.
Let Q = Z2n , let (Q, ∗) be a quasigroup and let + denote addition modulo

2n. Elementary quasigroup additive and reverse additive string transformations
A,RA : Q+ → Q+ with leader l are de�ned in [92] as follows:

A(x1x2 . . . xt) = (z1z2, . . . zt)⇐⇒ zj = (zj−1 + xj) ∗ xj , 1 6 j 6 t, z0 = l,

RA(x1x2 . . . xt) = (z1z2 . . . zt)⇐⇒ zj = xj ∗ (xj + zj + 1), 1 6 j 6 t, zt+1 = l.

These transformations are not bijective mappings. One can create composite quasi-
group transformations M by composition of di�erent A and/or RA transformations
with di�erent leaders.

Quasigroup string transformations Fi, Gi, i = 1, 2, 3, de�ned by 3-ary quasi-
group (Q, f) are given in [117]. The operations F1, F2, F3 are de�ned by f , whileGi
are de�ned by fi. By (5) all transformations are permutations and Fi has inverse
Gi. Here we present the de�nitions of F1 andG1. Let take leaders a1, a2, a3, a4 ∈ Q,
and de�ne

F1(x1x2 . . . xt) = (z1z2 . . . zt)⇔ zj =

 f(x1, a1, a2), j = 1
f(x2, a3, a4), j = 2
f(xj , zj−2, zj−1), j > 2,

G1(x1x2 . . . xt) = (z1z2 . . . zt)⇔ zj =

 f1(x1, a1, a2), j = 1
f1(x2, a3, a4), j = 2
f1(xj , xj−2, xj−1), j > 2.

4. Crypto primitives based on quasigroups

In this section we will consider several designs of cryptographic primitives based on
quasigroups, i.e., on di�erent kinds of quasigroup transformations. We emphasize
that for getting suitable cryptographic properties of the designs, we have to choose
the used quasigroups very carefully. One most desirable property of the quasigroup
is its shapelessness [55]. This means that the quasigroup (Q, ∗) should not be
associative, commutative, idempotent, have (left,right) unit, it should not have
proper subquasigroups and it should not satis�es identities of kind

(((y ∗ x) ∗ x) ∗ . . . ) ∗ x︸ ︷︷ ︸
k

= y, x ∗ (x ∗ . . . (x ∗ (x︸ ︷︷ ︸
k

∗y))) = y

for some k < 2n, where n = |Q|.More complete de�nition of a shapeless quasigroup
is given in [82], and several construction of huge shapeless quasigroups are given
in [111].
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According to the properties satis�ed by quasigroups, the set of quasigroups Qn

of �x order n is classi�ed in several classes. Thus, Qn may consists of two disjoint
classes, the class of fractal and the class of non-fractal quasigroups ([34],[82]). By
considering growing the periods of the strings el,∗t(α) of a periodic string α, Qn

can be classi�ed again in two disjoint classes, the class of exponential and the class
of linear quasigroups. A quasigroup is said to be exponential if the period of the
string el,∗t(α) is down bounded by an exponential function const ·2at, where const
and a are positive constant ([33],[80],[87]). We note that for some quasigroups the
constant a is enough big, so they can be used to produce suitable crypto primitives.

In the subsequent section we discus constructions based on quasigroups of
several crypto primitives.

4.1. S-boxes de�ned by quaisgroups

The main point of security in symmetric cryptography in almost all modern block
ciphers are the substitution boxes (S-boxes). S-boxes have to confuse the input
data into the cipher. Since S-boxes contain a small amount of data, the construc-
tion of an S-box should be made very carefully in order the needed cryptographic
properties to be satis�ed. It is especially important when ultra-lightweight block
cipher are designed, like PRESENT ([14]). PRESENT S-boxes are derived as a
result of an exhaustive search of all 16! bijective 4-bit S-boxes. Then 16 di�erent
classes are obtained and all S-boxes in these classes are optimalwith respect to
linear and di�erential properties.

Instead of an exhaustive search of all 16! bijections of 16 elements as it was done
for the design of PRESENT, quasigroups of order 4 can be applied for construction
of cryptographically strong S-boxes, called Q-S-boxes [103].

There is no formal de�nition for S-boxes, they are usually de�ned as lookup
tables that are interpreted as vector valued Boolean functions or Boolean maps
f : Fn2 → Fq2, where F2 is a Galois �eld with two elements. De�ned as mappings,
for S-boxes so called linearity and di�erential potential can be computed and
correspondingly resistance against linear and di�erential attacks can be measured.

We already mentioned that quasigroups of order 2n have vector valued repre-
sentation. For example, the next quasigroup of order 4

∗ 0 1 2 3
0 0 1 3 2
1 1 0 2 3
2 2 3 0 1
3 3 2 1 0

has representation with the following pair of Boolean functions

f(x0, x1, y0, y1) = (x0 + y0, x1 + y0 + y1 + x0y0).

The algebraic degree of this quasigroup is 2, since the Boolean function f2(x0, x1,
y0, y1) = x1 + y0 + y1 + x0y0 has degree 2. Generally, the quasigroups of order
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4 can have algebraic degree 1 (144 of them, so called linear) and 2 (432 of them,
so called nonlinear), [44]. Only nonlinear quasigroups are used for construction of
suitable S-boxes, i.e., Q-S-boxes. Note that quasigroups of order 4 are 4 × 2-bit
S-boxes.

We want to generate 4×4-bit cryptographically strong S-boxes by using quasi-
groups of order 4. One criterion for good S-box is to have highest possible algebraic
degree, so we search for 4×4-bit S-boxes that have algebraic degree 3 for all output
bits. For obtaining 4 × 4-bit S-boxes, e-transformations will be used to raise the
algebraic degree of the produced �nal bijections. As it is shown in Figure 4, one
non-linear quasigroup of order 4 and at least 4 e-transformations will be used to
reach the desired degree of 3 for all the bits in �nal output block.

a0 a1

l0 b0 b1

c0 c1 l1

l2 d0 d1

e0 e1 l3
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Figure 4: Four e-transformations that bijectively transforms 4 bits into 4 bits by
a quasigroup of order 4.

So we can get a Q-S-box that satisfy one condition, to be of degree 3 for all
output bits. If the other conditions are satis�ed (linearity, di�erential potential, ...)
we will put it in the set of optimal Q-S-boxes. The algorithm for this methodology
is given in Table 3. We mention that the minimum number of rounds (iterations)
is 4, and using the described methodology we can generate Q-S-boxes in di�erent
ways depending on the number of rounds and the number of leaders that we can
choose. In our investigation we choose to work with 2, 4 and 8 di�erent leaders
and 4 and 8 rounds, respectively. We found all the Q-S-boxes that ful�ll the
predetermined criteria to be optimal.

Many experiments were made with 2, 4 and 8 di�erent leaders and 4 and 8
rounds, respectively. The obtained results are given in the Table 4.

Some representative of optimal Q-S-boxes are given in Table 5.
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An iterative method for construction of Q-S-boxes

Step 1 Take one quasigroup of order 4 from the class
of non-linear;

Step 2 Input the number of rounds;

Step 3 Input the leaders. Usually, their number is the same
as the number of rounds;

Step 4 Generate all possible input blocks of 4 bits in the
lexicographic ordering (they are 24);

Step 5 Take input blocks one by one, and for each of them:

Step 5.1 Apply e-transformation with leader l
on the input block;

Step 5.2 Reverse the result from above and apply
e-transformation with other leader l again;

Step 5.3 Continue this routine as many times as
there is a number of rounds;

Step 5.4 Save the 4-bit result from the last round;

Step 6 At the end concatenate all saved results which generate
permutation of order 16 or 4× 4-bit Q-S-box;

Step 7 Investigate predetermined criteria;

Step 7.1 If the Q-S-box satis�es criteria, put it in the set of
optimal S-boxes;

Step 7.2 If not, go to Step 3;

Step 8 Analyze the optimal set of newly obtained Q-S-boxes;

Table 3: Construction of one Q-S-box

Number of Leaders Number of Rounds Number of Optimal boxes
2 4 1 152
4 4 9 216
8 8 331 264

Table 4: The number of optimal Q-S-boxes under di�erent parameters

4.2. Block ciphers

Block cipher is an enciphering method that encrypt a block M of plaintext of
length n into a block C of ciphertext of length n, by using a secret key K. It uses
an encryption function E : P ×K → C and a decryption function D : C ×K → P,
where P, C and K are the spaces of plaintext, ciphertext and keys; usually P =
C = {0, 1}n, K = {0, 1}k. The functions E(M,K) and D(C,K) are permutation
for �xed K and D(E(M,K),K) = M , and there are no di�erent keys K1,K2 such
that E(M,K1) = E(M,K2). Note that when P = C = K = {0, 1}n, then E is a
quasigroup operation with parastrophe D. Besides the last property, there are no
many block ciphers based on quasigroup. Here we show the design of the block
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 1 2 E F 9 3 4 8 0 A B 7 D 6 5

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) D 9 F C B 5 7 6 3 8 E 2 0 1 4 A

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) D 9 F C B 5 7 6 3 8 E 2 0 1 4 A

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 5 E 6 D 7 4 2 A 8 C 0 9 1 B F 3

Table 5: Examples of optimal Q-S-boxes given in its hexadecimal notation

cipher BCMPQ (Block Cipher De�ned by Matrix Presentation of Quasigroups),
[83].

The design of BCDMPQ uses matrix presentation of quasigroups of order 4.
Thus, given a quasigroup (Q, ∗) of order 4, for all x, y ∈ Q, x = (x1, x2), y =
(y1, y2), xi, yi are bits:

x ∗ y = mT +AxT +ByT + CAxT ◦ CByT (15)

where A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
are nonsingular Boolean matrices,

m = [m1,m2] is a Boolean vector and C =

[
1 1
1 1

]
. The operation "◦" denotes

the component wise product of two vectors.

There are 144 quasigroups of form (15). Out of them, a list of 128 is chosen
and stored in memory as follows:

seq_num m1,m2, a11, a12, a21, a22, b11, b12, b21, b22 (16)

where seq_num is a seven bit number (the number of the quasigroup in the list)
while m1,m2, a11, a12, a21, a22, b11, b12, b21, b22 are the bits appearing in the matrix
form (15) of the quasigroup operation. (Note that a quasigroup of order 4 is given
by using only ten bits, while 32 bits are needed for its Latin square.)

The encryption and decryption algorithms use 16 quasigroups: Q1, Q2, . . . , Q8,
T1, . . . , T8 in di�erent steps. These matrices are determined by using the round
key key, which is generated out of the secret key K and consists of 128 bits.

The key length of 128 bits is distributed in the following way:

• 16 bits for the leaders l1, l2, ..., l8 (two bits per each leader)

• 56 bits for the quasigroupsQ1, Q2, ..., Q8 (7 bits per each quasigroup, actually
the value of sequence_number)

• 56 bits for the quasigroups T1, T2, ..., T8 (7 bits per each quasigroup)
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The design of this block cipher is based on three algorithms: round key gener-
ation, encryption and decryption.

Denote by K the secret symmetric key of 128 bits. In order to generate a
round (working) key k out of the secret key, we �rst determine a �xed shapeless
quasigroup Q and a �xed leader l = 0 = [0, 0]. The round key is obtained by
e-transformations. The procedure for generation a round key is described in the
RoundKeyGeneration Algorithm. (There, and in the next two algorithms, auxil-
iary variables are used, tmp is two bits variable and ltmp is one bit variable.)

RoundKeyGeneration Algorithm

Input: The secret key K = K1K2 . . .K128, Ki are bits.
Output: The round key key = k1k2 . . . k128, ki are bits.
Initialization: (Q, ∗) is a �xed matrix quasigroup of order 4
such that a ∗ a 6= a for each a ∈ Q, l = (0, 0) is a two bit leader.

for i = 1 to 128 do
ki ← Ki;
for i = 1 to 4 do

ltmp ← l;
for j = 1 to 127 step 2 do

tmp← (kj , kj+1);
(kj , kj+1) = mT +AlTtmp +BtmpT + CAlTtmp ◦ CBtmpT ;
ltmp ← (kj , kj+1);

ltmp ← l;
for j = 128 to 2 step 2 do

tmp← (kj−1, kj);
(kj−1, kj) = mT +AlTtmp +BtmpT + CAlTtmp ◦ CBtmpT ;
ltmp ← (kj−1, kj);

The message block length of BCDMPQ can be 8n for any n, but we take that
n = 8, i.e., we consider the light version of the cipher. So, the plaintext message
should be split into blocks of 64 bits. Afterwards, the Encryption Algorithm
should be applied on each block. (If the message length is not devided by 64, a
suitable padding will be applied). The encryption algorithm consists of two steps.
In the �rst step we use the matrices Q1, Q2, ..., Q8 and in the second the matrices
T1, T2, ..., T8.

Brie�y, in the �rst step we split the 64 bit block into 8 smaller blocks (mini-
blocks) of 8 bits. We apply e-transformation on each of these mini-blocks with a
di�erent leader and a di�erent quasigroup. Actually, we use the leader li and the
quasigroup Qi for the i-th mini-blocks. The resulting string is used as input in the
next step.
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In the second step, we apply e-transformations on each resulting string, re-
peating 8 times with alternately changing direction. In the i-th transformation we
use the quasigroup Ti and the leader li. The detailed and formalized algorithm is
presented in the Encryption Algorithm.

Encryption Algorithm

Input: The round key key = k1k2 . . . k128, ki are bits,
the plaintext message a = a1a2 . . . a64, ai are bits.
Output: The ciphertext message c = c1c2 . . . c64.
Initialization: Put li = (k2i−1, k2i) for i = 1, 2, . . . , 8.

Lookup the quasigroup Qi using the sequence number binary
presented as (k7i−6, k7i−5, ..., k7i) where i = 1, 2, ..., 8. Initialize
the matrices AQi

and BQi
, as well as the vector mQi

for i = 1, 2, ..., 8.

Lookup the quasigroup Ti using the sequence number binary
presented as (k7(i+8)−6, k7(i+8)−5, ..., k7(i+8)). Initialize the
matrices ATi

and BTi
, as well as the vector mTi

for i = 1, 2, ..., 8.

for i = 1 to 8 do
ltmp ← li;
for j = 1 to 7 step 2 do

tmp← (aj , aj+1);
(cj , cj+1) = mT

Qi
+AQi l

T
tmp +BQI

tmpT

+CAQi l
T
tmp ◦ CBQitmp

T ;
ltmp ← (cj , cj+1);

for i = 1 to 4 do
ltmp ← li;
for j = 1 to 63 step 2 do

tmp← (cj , cj+1);
(cj , cj+1) = mT

Ti
+ATi

lTtmp +BTi
tmpT + CATi

lTtmp ◦ CBTi
tmpT ;

ltmp ← (cj , cj+1);
ltmp ← li+4;
for j = 64 to 2 step 2 do

tmp← (cj−1, cj);
(cj−1, cj) = mT

Ti+4
+ ATi+4 l

T
tmp +BTi+4tmp

T+

CATi+4
lTtmp ◦ CBTi+4

tmpT ;
ltmp ← (cj−1, cj);

For decryption purposes we use parastrophe (Q, \) of quasigroup (Q, ∗). If
x ∗ y = z, then recall that y = x\z has matrix representation
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Decryption Algorithm
Input: The round key key = k1k2 . . . k128, ki are bits,
the ciphertext message c = c1c2 . . . c64, ci are bits.
Output: The plaintext message a = a1a2 . . . a64.
Initialization: Put li = (k2i−1, k2i) for i = 1, 2, . . . , 8.

Lookup the quasigroup Qi using the sequence number binary
presented as (k7i−6, k7i−5, ..., k7i) where i = 1, 2, ..., 8. Initialize
the matrices AQi

and BQi
, as well as the vector mQi

for i = 1, ..., 8.

Lookup the quasigroup Ti using the sequence number binary
presented as (k7(i+8)−6, k7(i+8)−5, ..., k7(i+8)). Initialize
the matrices ATi and BTi , as well as the vector mTi for i = 1, 2, ..., 8.
for i = 1 to 64 do ai ← ci;
for i = 1 to 4 do

ltmp ← li+4;
for j = 64 to 2 step 2 do

tmp← (aj−1, aj);
(aj−1, aj) = B−1Ti+4

mT
Ti+4

+B−1Ti+4
(I + C)ATi+4 l

T
tmp+

B−1Ti+4
(CmT

Ti+4
◦ CATi+4

lTtmp) +B−1Ti+4
tmpT+

B−1Ti+4
(CATi+4

lTtmp ◦ CtmpT );

ltmp ← (aj−1, aj);
ltmp ← li;
for j = 1 to 63 step 2 do

tmp← (aj , aj+1);
(aj−1, aj) = B−1Ti

mT
Ti

+B−1Ti
(I + C)ATi l

T
tmp+

B−1Ti
(CmT

Ti
◦ CATi l

T
tmp) +B−1Ti

tmpT+

B−1Ti
(CATi

lTtmp ◦ CtmpT );
ltmp ← (aj , aj+1);

for i = 1 to 8 do
ltmp ← li;
for j = 1 to 7 step 2 do

tmp← (aj , aj+1);
(aj−1, aj) = B−1Qi

mT
Qi

+B−1Qi
(I + C)AQi

lTtmp+

B−1Qi
(CmT

Qi
◦ CAQi

lTtmp) +B−1Qi
tmpT +B−1Qi

(CAQi
lTtmp ◦ CtmpT );

ltmp ← (aj , aj+1);

x\z = B−1mT+B−1(I+C)AxT+B−1(CmT ◦CAxT )+B−1zT+B−1(CAxT ◦CzT ).

So, what we actually need to do to decrypt is to start from the ciphertext and
reverse the e-transformation, using the quasigroups T8, T7, ..., T1 sequentially at
�rst, and then reverse the e-transformations of the mini-blocks (from the encryp-
tion algorithm) using the quasigroups Q8, Q7, ..., Q1. This can be done using the
inverse operation we mentioned shortly before. The decryption of a ciphertext
c1c2 . . . c64 is done by the Decryption Algoritam.
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Period q = 2.66 Period q = 2.48 Period q = 2.43 Period q = 2.37
•0 0 1 2 3
0 0 2 1 3
1 2 1 3 0
2 1 3 0 2
3 3 0 2 1

•1 0 1 2 3
0 1 3 0 2
1 0 1 2 3
2 2 0 3 1
3 3 2 1 0

•2 0 1 2 3
0 2 1 0 3
1 1 2 3 0
2 3 0 2 1
3 0 3 1 2

•3 0 1 2 3
0 3 2 1 0
1 1 0 3 2
2 0 3 2 1
3 2 1 0 3

Table 6: Quaigroups used in the design of Edon80

For the cipher BCDMPQ only preliminary security investigations were done.
The avalanche e�ect and propagation of one bit and two bits changes were con-
sidered and satisfactory results were obtained. It is an open research problem to
check the resistance on the other block cipher attacks.

4.3. Stream ciphers

Stream ciphers are classi�ed mainly as synchronous (when the keystream is gen-
erated independently of plaintext and cyphertext) and asynchronous (when the
keystream is generated by the key and a �xed number of previous ciphertext sym-
bols). A synchronous stream cipher is binary additive when the alphabet consists
of binary digits and the output function is the XORing of the keystream and the
plaintext. Also, totally asynchronous stream cipher is de�ned (when the keystream
is generated by the key and all previous ciphertext symbols). There are several
designs of stream cipher based on quasigroups, and here we will consider two of
them.

4.3.1. Edon80

Edon80 is a binary additive stream cipher that is an unbroken eSTREAM �nalists
[53]. Schematic and behavioral description of Edon80 is given on the Figure 5.
Edon80 works in three possible modes:

1) KeySetup,
2) IVSetup and
3) Keystream mode.
For its proper work Edon80 beside the core (that will be described later) has

the following additional resources:
1. One register Key of 80 bits to store the actual secret key,
2. One register IV of 80 bits to store padded initialization vector,
3. One internal 2-bit counter Counter as a feeder of Edon80 Core in Keystream

mode,
4. One 7 bit SetupCounter that is used in IVSetup mode,
5. One 4× 4 = 16 bytes ROM bank where 4 quasigroups (i.e., Latin squares)

of order 4, indexed from (Q, •0) to (Q, •3), are stored.
Those 4 prede�ned quasigroups are described in Table 6.



Design of crypto primitives based on quasigroups 61

Key : 80 bits

IV : 64 + 16 = 80 bits

ROM: 16 bytes

4 Quasigroups of order 4

Edon80 Core

?

-

-

Counter : 2 bits

SetupCounter
7 bits

Keystream : 2 bits-

in KeySetup mode

in Keystream mode

in IVSetup

mode

in IVSetup mode

in Keystream

mode
-

-

?�

6

�

6

Figure 5: Edon80 components and their relations.

The structure of the Edon80 Core is described in the next two �gures. The
internal structure of Edon80 can be seen as pipelined architecture of 80 simple 2-bit
transformers called e-transformers. The schematic view of a single e-transformer
is shown on Figure 6.

The structure that performs the operation ∗i in e-transformers is a quasigroup
operation of order 4. We refer an e-transformer by its quasigroup operation ∗i. So,
in Edon80 we have 80 of this e-transformers, cascaded in a pipeline, one feeding
another. The Figure 7 shows the pipelined core of Edon80.

We will not discuss in all details Edon80. What we want to emphasize is
that the chosen quasigroups have enough big periods of growths. Thus, if any
of the quasigroups is used k times in an e-transformations, the period of the
obtained string will be correspondingly 2.66k, 2.48k, 2.43k, 2.37k. (Note that
2.4880 ≈ 2104.8.) We have to state that 64 out of 576 quasigroups of order 4 have
so big periods of growth, any 4 of them could be taken in the construction of
Edon80.

Edon80 shows that, when adequately designed, the quasigroups of very small
order can produce crypto primitives of high quality.

4.3.2. Edon X, Y, Z

Here we present a design of three di�erent kinds of stream ciphers: the synchronous
stream cipher EdonX, the asynchronous stream cipher EdonY and the totaly
asynchronous stream cipher EdonZ.
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∗i 0 1 2 3

0 ? ? ? ?

1 ? ? ? ?

2 ? ? ? ?

3 ? ? ? ?

Core i-th e-transformer

pi is 2 bit register - PreviousState

ai is 2-bit register - InternalState

Ti is 1-bit register - TAG

--In

-In

-In

Out If Ti = 1

Operation:

{
ai ← ai ∗i pi , If Ti = 1
NONE , If Ti = 0

-Out

Figure 6: Schematic representation of a single e-transformer of Edon80.

p0 p1 p79

a0 a1 a79

∗0 ∗1 ∗79

- -- - -

Edon80 core pipeline

Figure 7: Edon80 core of 80 pipelined e-transformers.
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All 3 ciphers EdonX,Y,Z have a same Initialization phase, and it is a very
important phase of their designs. We denote by Kin secretly shared initial key
an it is transformed in the initial phase to the working key K. The keys, as well
as the messages, consist of s-bit words of any desired length s > 4. The used
quasigroups are de�ned on the set of all s-bit words, and they have 2s elements.
The length n of the initial key (in s-bit words) can be any positive integer, larger
n for higher security. This �exibility of the choice of the key length is one of the
important performances of this Edon family.

The initialization phase of Edon family is described by following algorithm,
where from the secret key Kin and the public quasigroup (Q, •) is obtained as
output a secret working key K and a secret working quasigroup (Q, ∗), that is an
isotope of (Q, •).

Initialization of Edon X,Y,Z family of stream ciphers

Phase 1. Input of initial key

1. Input: an integer s � the length of the words, an integer n � the initial length of the
secret key, an integer m � the length of the working key, a quasigroup (Q, •) of order 2s

and the initial secret value of the key Kin = K0||K1|| · · · ||Kn−1 (Ki are s-bit words)
Phase 2. Padding the key

2. Set K := Kin||n1||n2, where n1 is the most signi�cant and n2 is the least
signi�cant s-bit word of n.

Phase 3. Expanding the key to 512 s-bit words

3. Set Kex := K||K|| · · · ||K||K′, where K′ consists of the �rst l s-bits words of K
such that the total length of Kex is 512 s-bits words.

Phase 4. Transformation of Kex with the given quasigroup (Q, •) of order 2s

4. For i = 0 to 511 do
begin
Set leader := K[i mod (n+ 2)];
Kex ← eleader,•(Kex);
Kex ← RotateLeft(Kex);

end;
Phase 5. Transformation (Q, ∗)← Isotope(Q, •)
5. (Q, ∗)← (Q, •);
For i = 0 to 511 step 8 do
begin
Set row1 := Kex[i]; Set row2 = Kex[i+ 1];
(Q, ∗)← SwapRows(Q, row1, row2);
Set column1 := Kex[i+ 2]; Set column2 = Kex[i+ 3];
(Q, ∗)← SwapColumns(Q, column1, column2);
Set γ := (Kex[i+ 4], Kex[i+ 6]);
(Q, ∗)← γ(Q, ∗);

end;
Phase 6. Setting the working key K = K0|| · · · ||Km−1 (the last m s-bits words of Kex)
6. Set K = K0||K1|| · · · ||Km−1 := Kex[512−m]|| · · · ||Kex[511]

In the above algorithm Kex means expanded key (it is an auxiliary variable)
and the symbol ||means concatenation of s-bit words. The notationKin[j] (Kex[j],
K[j]) means the j-th s-bit words of the Kin (Kex, K). Thus, K[j] and Kj have
the same meaning. The function RotateLeft(Kex) cyclicly rotates the values of
the Kex such that Kex[i]← Kex[i+ 1], i = 0, 1, 2, . . . , 510 and Kex[511]← Kex[0].
The name of the functions SwapRows and SwapColumns speaks for themselves -
they are functions by which the rows or columns of a quasigroup (i.e., the Latin
square) are swapped.
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EdonX
EdonX operates on nibbles, i.e., on 4-bit variables and consequently it uses

quasigroups Q = {0, 1, . . . , 15} of order 16 for doing quasigroup transformations
on the streams of data. The working key K is stored in m > 64 internal variables
Ki, i.e., K = K0K1 . . .Km−1 and Ki ∈ Q.

The secret key Kin = Kin[0]Kin[1] . . .Kin[n−1], Kin[j] ∈ Q of length n, 32 6
n 6 256, and an initial public quasigroup (Q, •) of order 16. The decryption func-
tion of EdonX is the same as the encryption function. The encryption/decryption
function of EdonX uses also two auxiliary 4-bit variables T and X, and one ad-
ditional integer variable Counter. The operation ⊕ is the bitwise XOR operation
on nibbles.

EdonX encryption and decryption function
Phase 1. Initialization
From the secret initial key Kin of length n
and the initial quasigroup (Q, •) obtain
new working key K of length m and new quasigroup
(Q, ∗)← Isotope(Q, •).

Phase 2. En(De)cryption
1. Counter ← 0; p = bFracm2c;
2. X ← K[Counter mod n];
3. T ← K[Counter + p mod n];
4. For i = 0 to m− 1 do

begin
X ← Ki ∗X;
T ← T •X;
Ki ← X;

end;
Km−1 ← T ;

5. Output: X ⊕ Inputnibble;
6. Counter ← Counter + 1;
7. Go to 2;

It is shown that EdonX is resistant to chosen plaintex/ciphertext attacks. In
order to proof that theorems of this type are proved:

Theorem 7. Any quasigroup (Q, ∗) of order 16, where Q = {0, 1, 2, . . . , 15}, is a
solution of the system of functional equations

x0 = y0 ∗ yi mod m

x1 = y1 ∗ x0
x2 = y2 ∗ x1
· · ·
xm−2 = ym−2 ∗ xm−3
a = ym−1 ∗ xm−2
z = ((. . . (yi+p mod m • x0) • x1) • · · · ) • xm−2) • a

(17)
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with one unknown quasigroup operation ∗ and unknown variables x0, x1, . . . ,
xm−2, y0, y1, . . . , ym−1, z over Q, where • is given quasigroup operation on

Q, a ∈ Q is �xed element, i is a nonnegative integer and p = bm2 c.

EdonX can be used as secure pseudo-random number generator like any syn-
chronous stream cipher. For that aim take the message M = 000 . . . to con-
sist of zeros only and let us analyze the output string C = C0C1C2 . . . . Since
Ci = Xi ⊕ 0 = Xi (i = 0, 1, 2, . . . ), the output string C in this case consists of the
values of the variable X.

From the encryption/decryption algorithm of EdonX the following system of
iterative functions can be obtained:

Kλ,0 = Kλ−1,0 ∗Kλ−1,i mod m

Kλ,1 = Kλ−1,1 ∗Kλ,0

· · · · · · · · ·
Kλ,m−2 = Kλ−1,m−2 ∗Kλ,m−3
Xλ,m−1 = Kλ−1,m−1 ∗Kλ,m−2
Kλ,m−1 = ((. . . (Kλ−1,i+p mod m •Kλ,0) •Kλ,1) · · · •Kλ,m−2) •Xλ,m−1

(18)

What we are interested for are the values of Xλ,m−1 for λ = 0, 1, . . . , since the
output string C is just the string X0,m−1X1,m−1X2,m−1X3,m−1 . . . . "What is the
period and the nature of the string C"? The answer depends on the theory of
discrete chaos systems, that is not developed yet! In several experiments with a
reduced system (18) with initial keys of length 4 and m = 16 is obtained that
either the ergodic part had length greater than 232 or the periodic part had a
period greater than 232 (or both). It is resonable to to conjecture that in the
standard version of EdonX (when m = 64 and the initial keys have length at least
32) either an ergodic part of length 2128 or a period 2128 (or both) will be obtained.

EdonY
The proof that EdonY is self-synchronized is a direct consequence of the

following theorem.

Theorem 8. Let E = el1,∗1 ◦ · · · ◦ eln,∗n and D = dln,\n ◦ · · · ◦ dl1,\1 be trans-

formations obtained with n quasigroup transformations ∗1, . . . , ∗n on Q, leaders
l1, . . . , ln and corresponding parastrophes \1, . . . , \n. Assume that E(b1b2 . . . bk) =
c1c2 . . . ck, k > n, and d 6= ci for some �xed i (bj , cj , d ∈ Q). Then, for some

d1, . . . , dn+1 ∈ Q,

D(c1 . . . ci−1dci+1 . . . ck) =

{
b1 . . . bi−1d1 . . . dn+1bi+n+1 . . . bk, k > i+ n
b1 . . . bi−1d1 . . . dk−i+1, k 6 i+ n

.

In the construction of EdonY we use a public quasigroup (Q, •) of order 32
de�ned on 5-bits letters, Q = {0, 1, 2, . . . , 31} and a secret key Kin stored in n
internal variables Ki ∈ Q, i.e., Kin = K0K1 . . .Kn−1 and n > 32.
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The EdonY encryption algorithm and decryption algorithm are precisely
de�ned by the following procedures, where M = M0M1M2M3M4 . . . (C =
C0C1C2C3C4 . . . ) is the input plaintext (output ciphertext) string. The variables
X and Y in the decryption algorithm are auxiliary 5-bits variables.

EdonY encryption algorithm
Phase 1. Initialization
From the secret initial key Kin of length n
and the initial quasigroup (Q, •) obtain
new working key K of length m and new quasigroup
(Q, ∗)← Isotope(Q, •).

Phase 2. Encryption
1. Counter ← 0; p = bFracn2c;
2. K0 ← K0 ∗ (MCounter ∗KCounter+p mod n)
3. For i = 1 to n− 1 do

begin
Ki ← Ki ∗Ki−1;

end;
4. Output: CCounter = Kn−1;
5. Counter ← Counter + 1;
6. Go to 2;

EdonY decryption algorithm
Phase 1. Initialization
From the secret initial key Kin of length n
and the initial quasigroup (Q, •) obtain
new working key K of length m and new quasigroup
(Q, ∗)← Isotope(Q, •).

Phase 2. Decryption
1. Counter ← 0; p = bFracn2c;
2. X ← Kn−1
Kn−1 ← CCounter;

3. For i = n− 2 down to 0 do
begin
Y ← Ki

Ki ← X \Ki+1;
X ← Y

end;
4. Output: MCounter = (X \K0)/KCounter+p mod n;
5. Counter ← Counter + 1;
6. Go to 2;

It follows from Theorem 8 that EdonY is self synchronized since one error in
the cipher-text C will propagate n + 1 errors in the recovered plaintext M ′, i.e.,
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Initialization
From the secret initial key Kin of length n
and the initial quasigroup (Q, •) obtain

new working key K of length 64 and new quasigroup
(Q, ∗)← Isotope(Q, •).

Encryption.
Input: Key K of
length n and message M .
Output: Message C.

Decryption.
Input: Key K of
length n and message C.
Output: Message M .

1) X ← InputNibble;
2) T ← 0;
3) For i = 0 to n− 1 do

X ← Ki ∗X];
T ← T ⊕X;
Ki ← X;

4) Kn−1 ← T ;
5) Output X;
6) Go to 1;

1) X,T ← InputNibble;
2) temp← Kn−1;
3) For i = n− 1 downto 0 do

X ← temp \X;
T ← T ⊕X;
temp← Ki−1;
Ki−1 ← X;

4) Kn−1 ← T ;
5) Output X;
6) Go to 1;

Table 7: Totaly Asynchronous Stream Cipher

the original message M and M ′ will di�er in n + 1 consecutive letters. If there
will be a string of errors in C of length r, then the recovered plaintext will have
r + n errors.

There are proofs that EdonY is resistent to dictionary and to chosen plain-
text/ciphertext attacks. Considering only the known ciphertext attacks, the resis-
tance follows from the next theorem.

Theorem 9. Given a ciphertext C, for each quasigroup operation ∗ on Q =
{0, 1, . . . , 31} and each key K = K0K1 . . .Kn−1 there is a plaintext M such that

C is its ciphertext.

EdonZ
EdonZ operates on nibbles, so it uses a quasigroup (Q, •), Q = {0, . . . , 15}, of

order 16. The secret key Kin is stored in n = 64 internal variables Ki, that have
values in the range Q = {0, 1, . . . , 15}.

EdonZ encryption and decryption algorithms use also temporal 4-bit variables
T,X, and temp. EdonZ di�ers from the synchronous EdonX in the way how the
initial value of the variables X and T are set and how the �nal computation of X is
done. However, in decrypting algorithm EdonX does not use the left parastrophe
of the (Q, ∗) since it is binary additive stream cipher, but EdonZ needs (Q, \).

Next we will give an example that will work on the principles of EdonZ, but
for the simplicity of the explanation, quasigroup of order 4 will be used and the
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working key will be of length 4. We take that the working key is K = 2 3 2 3, the
message is M = {0, 0, 1, 0, 2, 3, 0, . . . } and the quasigroup and its parastrophe are
the following.

∗ 0 1 2 3
0 3 0 2 1
1 1 2 0 3
2 0 3 1 2
3 2 1 3 0

\ 0 1 2 3
0 1 3 2 0
1 2 0 1 3
2 0 2 3 1
3 3 1 0 2

Several steps of EdonZ encryption are as following.

M0 M1 M2 M3

K X T K X T K X T K X T · · ·
i 0 0 0 0 1 0 0 0 · · ·
0 2 0 0 0 3 3 3 1 1 1 1 1
1 3 2 2 2 2 1 2 3 2 3 1 0
2 2 1 3 1 0 1 0 1 3 1 2 2
3 3 1 2 2 0 1 1 2 1 1 0 2

Output C = X 1 0 2 0

We emphasize that EdonZ is used in the de�nition of the random error-correcting
code RCBQ with cryptograpic properties ([55], [119]).

4.4. Pseudo random number generators

A truly random sequence can be obtained only by theory. Namely, if we take that
a sequence is random only if it passes all of the statistical test for randomness, then
we can never check if a sequence is random until all of the tests, in�nitely many, are
passed. So, sequences that look randomly are used in many applications were ran-
dom sequences are needed. They are produced by some deterministic algorithms
or physical phenomenas and are called Pseudo Random Sequences (PRS). PRS
have to pass all known approved battery o statistical tests for randomness (like
Diehard, NIST, ...) The algorithms for producing PRS are called Pseudo Random
Sequence Generator (PRSG), i.e., PRNG when we have number sequences.

Many PRNG that are used for many purposes are biased, for example the next
produced bit (or symbol) can be predictable with probability greater than 1/2.
Then, the obtained sequence of such a generator should be unbiased. By using
quasigroup transformations several type of PRNG can be designed. In fact, all of
the previous stream ciphers can be used as PRNG, and they are cryptographically
secure, since a key is used. What is a problem with those PRNG is their e�ciency,
since they are designed for other purposes.

Very simple PRNG can be obtained by the following procedure.
QPRNG can produce pseudo random sequences from very biased sequences,

even from periodical sequences as well. We emphasize that in QPRNG the choice
of the quasigroup is very important, it should be shapeless and exponential with
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Quasigroup PRNG (QPRNG)

Phase I. Initialization
1. Choose a positive integer s > 4;
2. Choose a quasigroup (A, ∗) of order s;
3. Set a positive integer k;
4. Set a leader l, a �xed element of A such that l ∗ l 6= l;
Phase II. Transformations of the random

string b0b1b2b3 . . . , bj ∈ A
5. For i = 1 to k do Li ← l;
6. j ← 0;
7. do

b← bj ;
L1 ← L1 ∗ b;
For i = 2 to k do Li ← Li ∗ Li−1;
Output: Lk;
j ← j + 1;

loop;

Table 8: Algorithm for simple QPRNG

as higher period of growth as possible. In fact, for quasigroups of order 4 one
can compute the period of growth of all 576 quasigroups. The Table 9 shows that
suitable quasigroups of order 16 can be �nd enough easily too.

As an example of the capacity of QPRNG we consider the PRNG used in GNU
C v2.03 that do not passed all of the statistical tests in the Diehard Battery v0.2
beta [30], but after using QPRNG on the obtained sequence from GNU with a
quasigroup of order 256 and for k = 1 (only one application of an e-transformation)
all tests of Diehard were passed ([87]).

***** TEST SUMMARY FOR GNU C (v2.03) PRNG *****

All p-values:
0.2929,0.8731,0.9113,0.8755,0.4637,0.5503,0.9435,0.7618,0.9990,0.0106,1.0000,0.0430,
1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,
1.0000,1.0000,1.0000,0.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,
. . . . . . . . . . . .. . . . . . .
0.7921,0.4110,0.3050,0.8859,0.4783,0.3283,0.4073,0.2646,0.0929,0.6029,0.4634,0.8462,
0.2385,0.6137,0.1815,0.4001,0.1116,0.2328,0.0544,0.4320,0.0000,0.0000,0.0000,0.0000,
. . . . . . . . . . . .. . . . . . .
0.0003,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
0.0753,0.0010,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0233,0.0585,0.0000,0.0000,
0.0000,0.0000,0.0000,0.2195,0.0321,0.0000,0.0000,0.9948,0.0006,0.0000,0.0000,0.0688,
. . . . . . . . . . . .. . . . . . .
0.2303,0.1190,0.8802,0.0377,0.6887,0.4175,0.0803,0.3687,0.7010,0.7425,0.1003,0.0400,
0.9488,0.3209,0.5965,0.0676,0.0021,0.2337,0.5204,0.5343,0.0630,0.2008,0.6496,0.4157,
0.9746,0.1388,0.4657,0.5793,0.6455,0.8441,0.5248,0.7962,0.8870

Overall p-value after applying KStest on 269 p-values = 0.000000
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Number of Number of
Value of c quasigroups with Value of c quasigroups with

period growth 2c k period growth 2c k

0.00 6 c < 0.25 4 2.00 6 c < 2.25 79834
0.25 6 c < 0.50 23 2.25 6 c < 2.50 128836
0.50 6 c < 0.75 194 2.50 6 c < 2.75 174974
0.75 6 c < 1.00 686 2.75 6 c < 3.00 199040
1.00 6 c < 1.25 2517 3.00 6 c < 3.25 175848
1.25 6 c < 1.50 7918 3.25 6 c < 3.50 119279
1.50 6 c < 1.75 18530 3.50 6 c < 3.75 45103
1.75 6 c < 2.00 42687 3.75 6 c 6 4.00 4527

Table 9: Period growth of 106 randomly chosen quasigroups of order 16 after 5
applications of e-transformations (k=5 in QPRNG)

*** TEST SUMMARY FOR GNU C v2.03 + QUASIGROUP PRNG IMPROVER ***

All p-values:

0.5804,0.3010,0.1509,0.5027,0.3103,0.5479,0.3730,0.9342,0.4373,0.5079,0.0089,0.3715

0.0584,0.1884,0.1148,0.0662,0.8664,0.5070,0.7752,0.1939,0.9568,0.4948,0.1114,0.2042,

0.4883,0.4537,0.0281,0.0503,0.0346,0.6085,0.1596,0.1545,0.0855,0.5665,0.0941,0.7693,

. . . . . . . . . . . .. . . . . . .

0.6544,0.9673,0.8787,0.9520,0.8339,0.4397,0.3687,0.0044,0.7146,0.9782,0.7440,0.3042,

0.8465,0.7123,0.8752,0.8775,0.7552,0.5711,0.3768,0.1390,0.9870,0.9444,0.6101,0.1090,

. . . . . . . . . . . .. . . . . . .

0.8538,0.6871,0.8785,0.9159,0.4128,0.4513,0.1512,0.8808,0.7079,0.2278,0.1400,0.6461,

0.3353,0.1064,0.6739,0.2066,0.5119,0.0558,0.5748,0.5064,0.8982,0.6422,0.7512,0.8633,

0.4625,0.0843,0.0903,0.7641,0.6253,0.8523,0.7768,0.8041,0.5360,0.0826,0.0378,0.8710,

. . . . . . . . . . . .. . . . . . .

0.2115,0.8156,0.8468,0.9429,0.8382,0.1463,0.4212,0.6948,0.4816,0.3454,0.2114,0.3493,

0.3448,0.0413,0.2422,0.6363,0.2340,0.8404,0.0065,0.7319,0.8781,0.2751,0.5197,0.4105,

0.0832,0.1503,0.1148,0.3008,0.0121,0.0029,0.4423,0.6239,0.0651,0.3838,0.0165,0.2770,

0.2074,0.0004,0.7962,0.4750,0.4839,0.9152,0.1681,0.0822,0.0518

Overall p-value after applying KStest on 269 p-values = 0.018449

4.5. Hash functions

Hash functions on a set A are mappings h : A+ → An that take a variable-
size input messages and map them into �xed-size output, known as hash result,
message digest, hash-code etc. They are used in checking data integrity, digital
signature schemes, commitment schemes, password based identi�cation systems,
digital timestamping schemes, pseudo-random string generation, key derivation,
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one-time passwords etc.
The �rst attempts for using quasigroup transformations for creating crypto-

graphic hash functions do not have actual implementations ([37], [38], [86], [47]).
In [140] is proposed a hash function as one elementary e-transformation on the
message x1x2 . . . xt:

H(x1x2 . . . xt) = (((a • x1) • x2) · · · • xt = ea,•(x1x2 . . . xt).
The huge working quasigroup (Q, •) is obtained from the modular subtraction

quasigroup (Q, ∗) de�ned by x ∗ y = x+ (r − y) mod r, |Q| = r, and three secret
permutations π,w, ρ as x • y = π−1(w(x) + (r−ρ(y)) mod r). The leader a is used
as initialization vector.

A generic hash function with quasigroup reverse string transformation R has
been described in [54], with �rst implementation named Edon-R(256, 384, 512)
given in [46]. Another interesting application of quasigroups is the quasigroup
folding, a 2 time slower security �x of the MD4 family of hash functions [48],
with shapeless randomly generated quasigroup of order 16. Similar technique has
been used in [49] , where new hash function SHA-1Q2 has been constructed from
SHA-1 by message expansion part with quasigroup folding and has only 8 internal
iterative steps (and it is 3% faster than SHA-1).

Further on we will consider the candidate of NIST SHA-3 competition, Edon-R
and NaSHA, whose designs were based on huge quasigroup transformations.

Edon-R
Edon-R [58] is wide-pipe iterative hash function with standard MD-straiten-

ing. It was the fastest First round candidate of NIST SHA-3 competition.
The chaining valueHi and the message inputMi for the ith round are composed

of two q-bits blocks, q = 256, 512, i.e., Hi = (H1
i , H

2
i ) and Mi = (M1

i ,M
2
i ), and

the new chaining value Hi+1 is produced as follows
Hi+1 = (H1

i+1, H
2
i+1) = R(H1

i , H
2
i ,M

1
i ,M

2
i ),

R is little bit modi�ed reverse string transformation, in a sense that two parts
from the message are taken reversed when are used like a leaders, and the or-
der of leaders is M̄2

i , H
1
i , H

2
i , M̄

1
i . The compression function R uses two huge

quasigroups of order 2256 and 2512. Algorithmic description of the quasigroup of
order 2256 is given in the Table . There Xi, Yi and Zi are 32-bit variables, so
X = (X0, X1, . . . , X7), Y = (Y0, Y1, . . . , Y7) and Z = (Z0, Z1, . . . , Z7) are 256-bits
variables. (Note that the operation is X ∗Y = Z.) Operation �+" denotes addition
modulo 232 , operation ⊕ is the logical operation of bitwise exclusive or and the
operation ROTLr(Xi) is the operation of bit rotation of the 32-bit Xi, to the left
for r positions.

NaSHA
NaSHA [92] is another First round candidate to the NIST SHA-3 competition

based on quasigroups . It is also wide-pipe iterative hash function with standard
MD-straitening. NaSHA-(m, k, r) has three parameters m, k, r, where m denotes
message length, k is the number of elementary quasigroup string transformations
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Quasigroup operation of order 2256

Input: X = (X0, X1, . . . , X7) and Y = (Y0, Y1, . . . , Y7),
where Xi and Yi are 32-bit variables.
Output: Z = (Z0, Z1, . . . , Z7) where Zi are 32-bit variables.
Temporary 32-bit variables: T0, . . . , T15.

T0 ← ROTL0(0xAAAAAAAA+X0 +X1 +X2 +X4 +X7);
T1 ← ROTL4(X0 +X1 +X3 +X4 +X7);
T2 ← ROTL8(X0 +X1 +X4 +X6 +X7);

1. T3 ← ROTL13(X2 +X3 +X5 +X6 +X7);
T4 ← ROTL17(X1 +X2 +X3 +X5 +X6);
T5 ← ROTL22(X0 +X2 +X3 +X4 +X5);
T6 ← ROTL24(X0 +X1 +X5 +X6 +X7);
T7 ← ROTL29(X2 +X3 +X4 +X5 +X6);

T8 ← T3 ⊕ T5 ⊕ T6;
T9 ← T2 ⊕ T5 ⊕ T6;
T10 ← T2 ⊕ T3 ⊕ T5;

2. T11 ← T0 ⊕ T1 ⊕ T4;
T12 ← T0 ⊕ T4 ⊕ T7;
T13 ← T1 ⊕ T6 ⊕ T7;
T14 ← T2 ⊕ T3 ⊕ T4;
T15 ← T0 ⊕ T1 ⊕ T7;

T0 ← ROTL0(0x55555555 + Y0 + Y1 + Y2 + Y5 + Y7);
T1 ← ROTL5(Y0 + Y1 + Y3 + Y4 + Y6);
T2 ← ROTL9(Y0 + Y1 + Y2 + Y3 + Y5);

3. T3 ← ROTL11(Y2 + Y3 + Y4 + Y6 + Y7);
T4 ← ROTL15(Y0 + Y1 + Y3 + Y4 + Y5);
T5 ← ROTL20(Y2 + Y4 + Y5 + Y6 + Y7);
T6 ← ROTL25(Y1 + Y2 + Y5 + Y6 + Y7);
T7 ← ROTL27(Y0 + Y3 + Y4 + Y6 + Y7);

Z5 ← T8 + (T3 ⊕ T4 ⊕ T6);
Z6 ← T9 + (T2 ⊕ T5 ⊕ T7);
Z7 ← T10 + (T4 ⊕ T6 ⊕ T7);

4. Z0 ← T11 + (T0 ⊕ T1 ⊕ T5);
Z1 ← T12 + (T2 ⊕ T6 ⊕ T7);
Z2 ← T13 + (T0 ⊕ T1 ⊕ T3);
Z3 ← T14 + (T0 ⊕ T3 ⊕ T4);
Z4 ← T15 + (T1 ⊕ T2 ⊕ T5);

Table 10: An algorithmic description of a quasigroup of order 2256.
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of type A and RA, and r is from the order 22
r

of used quasigroups. To the com-
petition was sent NaSHA-(m, 2, 6), m = 224, 256, 384, 512. Every round consists
of one linear transformation obtained from an LFSR, followed by MT quasigroup
string transformation, that is a composition of k alternate quasigroup string trans-
formations A and RA. NaSHA uses novel design principle: the quasigroups used
in every iteration in compression function are di�erent, and depend on the pro-
cessed message block. Even in one iteration, di�erent quasigroups are used for
two quasigroup transformations. Quasigroups in NaSHA are obtained by using
Extended Feistel Networks as orthomorphisms and complete mappings on the
groups (Z216 ,⊕), (Z232 ,⊕) and (Z264 ,⊕). NaSHA is of order 264 and is produced
from known starting bijection of order 28 by using xoring, addition modulo 264

and table lookups.

The MQQ (Multivarite Quadratic Quasigroups) family of crytptosystems was
�rst de�ned in 2007 [51]. Subsequently, a signature [57], and an improved encryp-
tion variant was proposed [59]. As the name suggests, the cryptosystems from this
family are based on multivariate quadratic quasigroups � MQQs, de�ned over a
�nite �eld. It belongs to the broader family of multivariate public key cryptosys-
tems (MQ) whose security relies on the hardness of solving quadratic polynomial
systems of equations over �nite �elds, known to be NP-hard problem.

A typical (MQ) public key cryptosystem relies on the knowledge of a trapdoor
for a particular system of polynomials over a �nite �eld Fq. The public key of the
cryptosystem is usually given by a multivariate quadratic map P : Fnq → Fmq , i.e.,

P(x1, . . . , xn) =


p1(x1, . . . , xn) =

∑
16i6j6ñ

γ
(1)
ij xixj +

n∑
i=1

β̃
(1)
i xi + α̃(1)

...

pm(x1, . . . , xn) =
∑

16i6j6ñ

γ
(m)
ij xixj +

n∑
i=1

β̃
(m)
i xi + α̃(m)


for some coe�cients γ̃

(s)
ij , β̃

(s)
i , α̃(s) ∈ Fq. It is obtained by obfuscating a structured

central map

F : (x1, . . . , xn) ∈ Fnq →
(
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)
∈ Fmq ,

using two bijective a�ne mappings S, T over Fnq that serve as a sort of mask to
hide the structure of F . The public key is de�ned as

P = T ◦ F ◦ S.

The mappings S and T are part of the private key s. Besides them, the private
key may also contain other secret parameters that allow creation, but also easy
inversion of the transformation F . Without loss of generality, we can assume that
the private key is s = (F ,S, T ).
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input x

x = (x1, . . . , xn)

x′

y′

output y

private: S

private: F

private: T

public:
P = (p1, . . . , pn)

Figure 8: A generalMQ trapdoor

Graphically, the trapdoor of anMQ scheme can be depicted as in Figure 8.

MQQ-SIG is a signature scheme that has excellent performance in signing.
In particular, it is the fastest signature scheme in the ECRYPT benchmarking
of cryptographic systems (eBACS) [13]. It is de�ned over F2 and has the minus
modi�er applied because of the possibility for direct algebraic attack and MinRank
attack otherwise.

The length of the messages that can be signed is n/2, and the signing process
is performed by prepending a random string of length n/2.

A high-level schematic presentation of the signing and veri�cation process is
given in Figure 9 and the corresponding algorithmic description in Algorithm 1.

The central mapping F of MQQ-SIG is a quasigroup string transformation
using one quasigroup q. Both F and the inverse F−1 are depicted in Figure 10
and Figure 11. Algorithm 2 gives a detailed description of the construction of the
central map F .

The MQQs used are of relatively small order 28 that allows storing them in a
lookup table, used for the signing process.

The algorithm used for construction of the MQQ is presented in Algorithm 3.
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m
———
———
———
———

h = h0||h1

y0 = r0||h1 y1 = r1||h1

x0 = D(y0) x1 = D(y1)

Signature = (x0, x1)

H(m)

h = h0||h1

H(m)

E(x0) || E(x1)

h0 h1||

Signature

Compare

m
———
———
———
———

Figure 9: The signing and veri�cation process of MQQ-SIG

X1 X2 X3 · · · Xn
8−1 Xn

8

Y1 Y2 Y3 · · · Yn
8−1 Yn

8

∗ ∗ ∗ ∗ ∗

Figure 10: Graphical representation of the central map F in MQQ-SIG.

Y1 Y2 Y3
. . . Yn/8−1 Yn/8

X1 X2 X3
. . . Xn/8−1 Xn/8

q\ q/ q\ q/ q\

Figure 11: Graphical representation of the inverse map F−1 in MQQ-SIG, using the
right and left parastrophes.
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Algorithm 1 MQQ-SIG

Key Generation

1. Use Algorithm 2 to construct the central map F .
2. Construct the a�ne mappings S and S ′ as de�ned in [57].

3. Pick a hash function H : {0, 1}∗ → {0, 1}n.
4. Construct the mapping P ′ = S ◦ F ◦ S ′ and de�ne the public key P as the

last n
2 coordinates of P ′. Denote by P ′−1 the inverse of P ′. Algorithm 4 is

used to compute P ′−1.
Output: The public key P and the private key (F ,S,S ′).
Signature Generation
Input: A message m ∈ {0, 1}∗ to be signed.

1. Compute h = h0||h1 ← H(m), where h0 and h1 are both n
2 bits long.

2. Generate two random n
2 -bit values, r0 and r1, and set y0 = r0||h0 and

y1 = r1||h1.

3. Compute x0 = P ′−1(y0) and x1 = P ′−1(y1).

Output: The digital signature (x0,x1).

Signature Veri�cation
Input: A message-signature pair (m, (x0,x1)).

1. Compute h = h0||h1 ← H(m).

2. Compute z0 ← P(x0) and z1 ← P(x1).

Accept the signature if z0 = h0 and z1 = h1, otherwise reject.
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Algorithm 2 ConstructF

Input: A vector x = (x1, . . . , xn) , where n is a multiple of 8.

1. Represent the vector x as a string X = X1X2 . . . Xk, where k = n
8 , and

Xi = (x8(i−1)+1, . . . , x8i) for every i ∈ {1, . . . , k}.

2. Use Algorithm 3 to construct an MQQ (F8
2, q).

3. Compute the string Y = Y1Y2 . . . Yk, where

Yi =


X1 if i = 1,

q(Xi−1, Xi) if i = 2, 4, . . . , k,

q(Xi, Xi−1) if i = 3, 5, . . . , k − 1.

(19)

4. Represent Y as a vector y = (y1, . . . , yn).

Output: The vector y.

Algorithm 3 ConstructMQQ

Repeat

1. Construct d × d upper triangular Boolean matrices Ui, i ∈ {1, . . . d − 1}
that have all elements 0 except the elements in the rows from {1, . . . , i} that
are strictly above the main diagonal. Choose these elements uniformly at
random from F2.

2. Choose randomly three nonsingular d × d matrices A1, A2 and B over F2

and a vector c ∈ Fd2.

3. Form the d× d block matrix

U(x) = Id+

 0 U1 ·A1 · x U2 ·A1 · x . . . Ud−1 ·A1 · x

 .
4. Construct the mapping q(x,y) = B ·U(x) ·A2 ·y+B ·A1 ·x+c, that de�nes

an MQQ of order 2d.

Until the following conditions about the matrices Q(i) of the coordinates qi are
satis�ed:

∀i ∈ {1, . . . , d} , Rank(Q(i)) > 2d− 4, (20a)

∃j ∈ {1, . . . , d} , Rank(Q(j)) = 2d− 2, (20b)

Output: The MQQ q(x,y).
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An important feature of the MQQs used, as it can be seen from Algorithm 3, is
their bilinear nature, i.e., the variables from the two operands are only mixed with
each other quadratically, and there is no quadratic mixing of variables from one
operand. This property makes the private key smaller, in particular, the bilinear
MQQs only require 81 bytes of memory. Further, it also enables fast signing even
in constrained environments by solving systems of linear equations.

The Algorithm used for computing the inverse of F is given in Algorithm 4.

Algorithm 4 ComputeInverseF
Input: A vector y = (y1, . . . , yn) ∈ Fn2 , where n is a multiple of 8.

1. Represent the vector y as a string Y = Y1Y2 . . . Yk, where k = n
8 , and Yi ∈ F8

2

for every i ∈ {1, . . . , k}.

2. Compute the string X = X1X2 . . . Xk, where

Xi =


Y1, if i = 1

the solution of Yi = q(Xi−1, Xi), if i = 2, 4, . . . , k

the solution of Yi = q(Xi, Xi−1), if i = 3, 5, . . . , k − 1

3. Represent X as a vector x ∈ Fn2 .

Output: The vector x.

In [125], the authors propose a natural interpretation of the private key, in
particular the secret quasigroup q. Instead of storing q, the holder of the private
key can store the isotopic q0(x,y) = U(A−11 · x) · y + x + c0, and the invertible
A1,A2,B. In this case, the bilinear quasigroup can be stored in 50.5 bytes, rather
than 81 bytes using the naive approach from the original paper.

In MQQ-SIG, as much as half of the public polynomials are removed in order
to defend from Gröbner bases attacks. While this is not a problem for a signature
scheme, an encryption scheme can not be build with such a heavy use of the minus
modi�er. Therefore, in the subsequent proposal MQQ-ENC for an encryption
scheme [59], the authors propose to use left quasigroups instead.

Let (Q, q) be a left quasigroup of order pkd. We say that (Q, q) is a Left
Multivariate Quadratic Quasigroup (LMQQ) if q can be represented as a func-
tion q = (q(1), q(2), . . . , q(d)) : F2d

pk → Fdpk , where for every s = 1, . . . , d, q(s) is a

quadratic polynomial over Fpk . For simplicity, we take that Q = Fdpk .

The following theorem provides su�cient conditions for a multivariate mapping
to de�ne a quasigroup.
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Theorem 10. The function q0 = (q(1), q(2), . . . , q(d)) : F2d
pk → Fdpk such that for

every s = 1, . . . , d, the component q
(s)
0 is of the form

q
(s)
0 (x1, . . . , xd, y1, . . . , yd) = p(s)(ys) +

∑
16i,j6d

α
(s)
i,j xixj +

∑
s<i,j6d

β
(s)
i,j yiyj +

+
∑

16i6d,s<j6d

γ
(s)
i,j xiyj +

∑
16i6d

δ
(s)
i xi +

∑
s<i6d

ε
(s)
i yi + η(s), (21)

where p(s)(x) = ax, a 6= 0, or p(s)(x) = ax2, a 6= 0, p = 2, de�nes an LMQQ

(Fdpk , q0) of order pkd.

For the purpose of MQQ-ENC, and using the form from Theorem 10 the
LMQQs can be constructed using Algorithm 5.

Algorithm 5 CreateLMQQ(d, p, k)

Input d, p, k ∈ N, where p is prime.

1. For all s ∈ {1, . . . , d} generate at random from Fpk the coe�cients:

• α(s)
i,j , δ

(s)
i , for all i, j, 1 6 i, j 6 d, and β

(s)
i,j , ε

(s)
i , for all i, j, s < i, j 6 d,

• γ(s)i,j , for all i, j, 1 6 i 6 d, s < j 6 d, and the constant term η(s).

2. For all s ∈ {1, . . . , d}

• If p = 2 generate at random a bit r ∈ F2, otherwise set r = 0.

• Choose at random a(s) ∈ Fpk \ {0}. If r = 0 set p(s) = a(s)xs, otherwise

set p(s) = a(s)x2s.

3. For all s ∈ {1, . . . , d} construct q
(s)
0 (x,y) given by (21), and the LMQQ

q0 = (q
(1)
0 , q

(2)
0 , . . . , q

(d)
0 ).

4. Generate at random over Fpk , d×d nonsingular matrices D,Dy, and vectors
c, cy of dimension d.

Output the quintet (q0,D
−1,D−1y , c, cy) and the LMQQ of order pkd:

q(x,y) = D · q0(x,Dy · y + cy) + c.

As in MQQ-SIG, an e�cient algorithm for inverting the central mapping is
based on e�ciently computing the parastrophe q\ of q at a given point. In other
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words, the problem is reduced to to solving the system of d quadratic equations
in d variables y1, y2, . . . , yd over Fpk

q(u,y) = v (22)

Even though this is a non trivial problem in general, the speci�c structure of the
LMQQs in use, allows this system to be solved in polynomial time, very e�ciently
and fast.

The MQQ-ENC cryptosystem is de�ned as a triplet of probabilistic algorithms
MQQ-ENC= (GMQQ, EMQQ,DMQQ), associated to a message spaceMspace(nk) =
{0, 1}nk/2, and random coins Coins(nk) = {0, 1}nk/4, given by Algorithms 6, 7
and 8 as follows.

Algorithm 6 Key-Generation algorithm GMQQ

Input: 1nk,

1. Run CreateST(n, 2, k, r1, r2, rem) to obtain

(σ1, σ2,M0, (a
(1)
i )r1+1, (a

(2)
i )r2+1) and the a�ne mappings S and T .

2. Run CreateLMQQ(8, 2, k) to obtain (q0,D,Dy, c, cy) and q.

3. Represent the vector (x1, x2, . . . , xn) of variables over F2k as a vector
(x1,x2, . . . ,xn/8) of variables over F8

2k , where xi = (x8i−7, x8i−6, . . . , x8i).

4. De�ne a mapping F : Fn2k → Fn2k (a quasigroup string transformation) by:

(y1, . . . , yn) = F(x1, . . . , xn)⇔
(y1,y2, . . . ,yn/8) = (q(11 . . . 1,x1), q(x1,x2), . . . , q(xn/8−1,xn/8)) (23)

5. Construct the mapping Pfull : Fn2k → Fn2k as Pfull = T ◦ F ◦ S. We use the
notation Pfull = (p1, p2, . . . , pn), where pi(x1, . . . , xn), 1 6 i 6 n.

6. The vector of polynomials P : Fn2k → Fn−rem
2k

is obtained by removing the
last rem coordinates from Pfull, i.e., P = (p1, p2, . . . , pn−rem).

7. Choose a universal hash function H : {0, 1}3nk/4 → {0, 1}nk/4.

8. Set pk = (P, H),

and sk = (σ1, σ2,M0, (a
(1)
i )r1+1, (a

(2)
i )r2+1, q0,D

−1,D−1y , c, cy).

Output: Public private key pair (pk, sk).
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Algorithm 7 Encryption algorithm EMQQ

Input: Public key pk = (P, H) and plaintext message m = {m1,m2, . . . ,mn/2} ∈
Mspace(nk),

1. Generate a random string r = {r1, r2, . . . , rn/4} ∈ Coins(nk).

2. Evaluate (h1, . . . , hn/4) = H(m, r) = H(m1, . . . ,mn/2, r1, . . . , rn/4).

3. Evaluate P(m, r,H(m, r)) = P(m1, . . . ,mn/2, r1, . . . , rn/4, h1, . . . , hn/4).

Output: Ciphertext c = P(m, r,H(m, r)).

Algorithm 8 Decryption algorithm DMQQ

Input: Private key sk=(σ1, σ2,M0, (a
(1)
i )r1+1, (a

(2)
i )r2+1, q0,D

−1,D−1y , c, cy)

and cipher c=(c1, . . . , cn−rem) ∈ Fn−rem
2k

,
For all (cn−rem+1, cn−rem+2, . . . , cn) ∈ Frem2k do

1. Evaluate (m′1,m
′
2, . . . ,m

′
n) = S−1 ◦ F−1 ◦ T −1(c1, c2, . . . , cn), where F−1 is

evaluated by:
(u1, u2, . . . , un) = F−1(v1, v2, . . . , vn)⇔

(u1,u2, . . . ,un/8) =(q\(u0,v1),q\(u1,v2), q\(u2,v3), . . . , q\(un/8−1,vn/8)).(24)

Here, u0 = (11 . . . 1), and for every i ∈ {0, . . . , n/8− 1}, ui+1 = q\(ui,vi+1)
is evaluated by running Algorithm Q\(ui,vi+1, 8, 2, k, q0,D

−1,D−1y , c, cy).

The vector (u1, . . . , un) over F2k is represented as a vector (u1, . . . ,un/8)
over F8

2k , where ui = (u8i−7, u8i−6, . . . , u8i). Analogously, the same is done
for the vector (v1, v2, . . . , vn).

2. If H(m′1,m
′
2, . . . ,m

′
3n/4) = (m′3n/4+1,m

′
3n/4+2, . . . ,m

′
n) then break;

End for;
Output: Plaintext m′ or ⊥ if the above test failed for all (cn−rem+1, . . . , cn) ∈
Frem2k .

5. Conclusion

The aim of this article was to present how quasigroups can be exploit for build-
ing suitable cryptographic primitives. There were presented constructions of sev-
eral types of quasigroups and several types of quasigroups string transformations.
Designs with these types of quasigroups and transformations were illustrated in
constructions of S-boxes, block cipher, stream ciphers, pseudo random number
generators, hash functions and public key security and signatures. There are
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also other applications of quasigroups in cryptography (MAC, Identity encryption
schemes, Authenticated encryption, ...) but we found that what we had presented
is quite enough to conclude that, slowly but surely, quasigroups are taking there
role in cryptography. We emphasize that there are several other survey papers
where di�erent applications of quasigroups in cryptography are discussed as well:
[132], [60], [133], [134], [135], [108], etc.

We have to notice that cryptographic properties are not discussed in this pa-
per. The e�ciency and security of the crypto products based on quasigroup is
an open research problem for cryptographers and cryptanalysts. There are many
broken designs based on quasigroups, but also there are some with perfect crypto
properties.

At the end, one can notice that the presented results were mostly from Mace-
donian quasigroupists and cryptographers; that was done intentionally.

Acknowledgment. The author is grateful to Aleksandra Mileva, Vesna Dim-
itrova, Simona Samardjiska, Aleksandra Popovska-Mitrovikj and Hristina Miha-
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A guide to self-distributive quasigroups,

or latin quandles

David Stanovský

Abstract. We present an overview of the theory of self-distributive quasigroups, both in the

two-sided and one-sided cases, and relate the older results to the modern theory of quandles, to

which self-distributive quasigroups are a special case. Most attention is paid to the representation

results (loop isotopy, linear representation, homogeneous representation), as the main tool to

investigate self-distributive quasigroups.

1. Introduction

1.1. The origins of self-distributivity. Self-distributivity is such a natural
concept: given a binary operation ∗ on a set A, �x one parameter, say the left
one, and consider the mappings La(x) = a ∗ x, called left translations. If all such
mappings are endomorphisms of the algebraic structure (A, ∗), the operation is
called left self-distributive (the pre�x self- is usually omitted). Equationally, the
property says

a ∗ (x ∗ y) = (a ∗ x) ∗ (a ∗ y)

for every a, x, y ∈ A, and we see that ∗ distributes over itself.
Self-distributivity was pinpointed already in the late 19th century works of lo-

gicians Peirce and Schröder [69, 76], and ever since, it keeps appearing in a natural
way throughout mathematics, perhaps most notably in low dimensional topology
(knot and braid invariants) [12, 15, 63], in the theory of symmetric spaces [57]
and in set theory (Laver's groupoids of elementary embeddings) [15]. Recently,
Moskovich expressed an interesting statement on his blog [60] that while associa-
tivity caters to the classical world of space and time, distributivity is, perhaps, the
setting for the emerging world of information.

Latin squares are one of the classical topics in combinatorics. Algebraically,
a latin square is represented by a binary operation, and such algebraic structures
are called quasigroups. Formally, a binary algebraic structure (A, ∗) is called a
quasigroup, if the equations a ∗ x = b and y ∗ a = b have unique solutions x, y, for
every a, b ∈ A.

2010 Mathematics Subject Classi�cation: 20N05, 57M27
Keywords: Distributive quasigroup, left distributive quasigroup, latin quandle, commutative
Moufang loop, Bruck loop, B-loop, a�ne representation.
The author was partially supported by the GA�R grant 13-01832S.
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It is therefore no surprise that one of the very �rst algebraic works fully de-
voted to non-associative algebraic strucures was Burstin and Mayer's 1929 paper
Distributive Gruppen von endlicher Ordnung [11] about quasigroups that are both
left and right distributive. Another earliest treatise on non-associative algebraic
structures was [86] by Sushkevich who observed that the proof of Lagrange's theo-
rem (the one in elementary group theory) does not use associativity in full strength
and discussed weaker conditions, some related to self-distributivity, that make the
proof work. These pioneering works were quickly followed by others, with vari-
ous motivations. For example, Frink [22] argued that the abstract properties of
the mean value are precisely those of medial idempotent quasigroups, and self-
distributivity pops up again.

The foundations of the general theory of quasigroups were laid in the 1950s
and carved in stone in Bruck's book A survey of binary systems [10] (despite
the general title, the book leans strongly towards a particular class of Moufang
loops). Ever since, self-distributive quasigroups and their generalizations played a
prominent role in the theory of quasigroups, both in the Western and the Soviet
schools [3, 30, 71]. More in the Soviet one, where the dominant driving force was
Belousov's program to investigate loop isotopes of various types of quasigroups
(see the list of problems at the end of the book [3]). We refer to [72] for a more
detailed historical account.

Re�ection in euclidean geometry (and elsewhere) is another example of a self-
distributive operation: for two points a, b, consider a ∗ b to be the re�ection of b
over a. The equation a ∗ x = b always has a unique solution, namely, x = a ∗ b,
but in many cases, re�ections do not yield a quasigroup operation (e.g. on a
sphere). These observations, and the resulting abstraction of the notion of a
re�ection, can be attributed to Takasaki and his remote 1942 work [87], but the real
advances have been made by Loos and others two decades later [57]. The resulting
notions of kei (Takasaki), symmetric spaces (Loos), or involutory quandles in the
modern terminology, are axiomatized by three simple algebraic properties: left
distributivity, idempotence (a ∗a = a for every a), and the left involutory law (the
unique solution to a ∗x = b is x = a ∗ b; the property is also called left symmetry).
The background is described e.g. in [54].

Group conjugation, a∗b = aba−1 on any subset of a group closed with respect to
conjugation, is another prototypical self-distributive operation. This observation is
often attributed to Conway andWraithe [60], who also coined the the term wrack of
a group, although the idea to represent self-distributive quasigroups by conjugation
appeared earlier in [84] by Stein. The conjugation operation is idempotent, left
distributive, but again, rarely a quasigroup: only solutions to the equation a ∗
x = b are guaranteed to exist uniquely. Algebraic structures satisfying the three
conditions are called quandles nowadays. (The word quandle has no meaning in
English and was entirely made up by Joyce [40]. Many other names have been
introduced for quandles, such as automorphic sets, pseudo-symmetric sets, left
distributive left quasigroups, etc.)

In early 1980s, Joyce [40] and Matveev [58], independently, picked up the idea
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of "wracking a group" to extract the essential part of the fundamental group of a
knot complement. Unlike the fundamental group, the resulting structure, called
the fundamental quandle of a knot, is a full invariant of (tame, oriented) knots
(up to reverse mirroring) with respect to ambient isotopy. Ever sicne, quandles
were successfully used in knot theory to design e�ciently computable invariants,
see e.g. [12, 21].

The works of Joyce and Matveev put the foundations for the modern the-
ory of quandles, which covers, to some extent, many traditional aspects of self-
distributivity as a special case (self-distributive quasigroups, or latin quandles, in
particular). It is the main purpose of the present paper to overview the classical
results on self-distributive quasigroups, and relate them to the results in modern
quandle theory.

1.1. Contents of the paper. The paper is organized as a guide to the literature
on self-distributive quasigroups, or latin quandles, trying to relate the results of
various mathematical schools, which are often fairly hard to �nd and navigate (at
least to me, due to a combination of writing style, terminology mess, and, to most
mathematicians, language barrier).

As in most survey tasks, I had to narrow down my focus. The main subject
of the paper are representation theorems, serving as the main tool to investigate
self-distributive algebraic structures, such as quandles and quasigroups. To see the
tools in action, my subjective choice are enumeration results. Other interesting
results are cited and commented. I do not claim completeness of my survey, and
apologize in advance for eventual ignorance.

In Section 2, we overview the background from the theory of quasigroups,
loops and from universal algebra. First, we recall various equational properties
of quasigroups and quandles, and de�ne the multiplication groups. Then, various
weakenings of the associative and commutative laws are introduced, with a focus
towards the classes of commutative Moufang loops and Bruck loops, which are
used in the representation theorems. Finally, we talk about isotopy, linear and
a�ne representation, and polynomial equivalence between quasigroups and loops.

Section 3 addresses distributive and trimedial quasigroups. In the �rst part,
we prove the classical a�ne representation of medial quasigroups (Theorem 3.1),
outline Kepka's a�ne representation of trimedial quasigroups over commutative
Moufang loops (Theorem 3.2), and comment upon some special cases and gener-
alizations. Then, in the second part, we present a few consequences of the repre-
sentation theorem, namely, a classi�cation theorem (Theorem 3.5), enumeration
results (Table 1), and we also mention the property called symmetry-by-mediality.

In a short intermezzo, Section 4, we brie�y comment on the Cayley-like repre-
sentation of quandles using conjugation in symmetric groups, and on the construc-
tion called the core of a loop. These were some of the �rst families of examples of
left distributive quasigroups which are not right distributive.

In Section 5, we investigate loop isotopes of left distributive quasigroups, so
called Belousov-Onoi loops. First, we prove a representation theorem (Theo-
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quasigroups loops

medial abelian groups

distributive (trimedial) commutative Moufang

involutory l.d. B-loops

left distributive Belousov-Onoi

Theorem 3.1

Theorems 3.2, 3.3

Theorem 5.5

Theorem 5.9

Figure 1: Correspondence between certain classes of quasigroups and loops.

rem 5.5, based on more detailed Propositions 5.2 and 5.4), and then continue
with the properties of Belousov-Onoi loops (among others, Propositions 5.8, 5.7,
5.10 and Theorem 5.11). We explain why, at the moment, the correspondence is of
limited value for the general theory of left distributive quasigroups. Nevertheless,
one special case is important: involutory left distributive quasigroups correspond
to the well established class of B-loops (Theorem 5.9). The representation theo-
rems are outlined in Figure 1.

In Section 6, we introduce the homogeneous representation of connected quan-
dles, which is perhaps the strongest tool to study self-distributive quasigroups
developed so far. We present several applications to the structure theory, with
most attention paid to enumeration results.

Many proofs in our paper are only sketched. In the case of trimedial and dis-
tributive quasigroups (Theorems 3.2 and 3.3), we believe that new, shorter, and
conceptually cleaner proofs are possible, using modern methods of universal alge-
bra, but we did not succeed to make a substantial progress yet. The only minor
contribution in this part is yet another proof of the Toyoda-Murdoch-Bruck theo-
rem on medial quasigroups (Theorem 3.1). Neither we go into details in Section
6 on homogeneous representation, since it has been presented in our recent pa-
per [35]. On the other hand, many details are given in Section 5, the Belousov-Onoi
theory is presented in a substantially di�erent way. In particular, we provide a new
and cleaner proof of the representation theorem for left distributive quasigroups
(Theorem 5.5), which contains as a special case the classical results of Belousov
on distributive quasigroups (a part of Theorem 3.3), and the Kikkawa-Robinson
theorem on involutory left distributive quasigroups (Theorem 5.9).

1.3. A remark on automated theorem proving. Many theorems discussed in
the present paper admit a short �rst order theory formulation, and subsequently
could be attempted by automated theorem proving (ATP). Most of them are



A guide to self-distributive quasigroups, or latin quandles 95

beyond the capabilites of current provers, but a few can be proved by any state-
of-the art theorem prover within a few seconds. In those cases, we do not always
bother to provide a reference or a proof, considering such problems "easy symbolic
manipulation", although it may be rather intricate to �nd a proof without the aid
of a computer. We refer to [73] for more information about automated theorem
proving in algebra.

2. Background

2.1. Quasigroups and quandles. Let (A, ∗) be an algebraic structure with a
single binary operation, or, shortly, a binary algebra (also referred to as magma or
groupoid elsewhere). We say it possesses unique left division, if for every a, b ∈ A,
there is a unique x ∈ A such that a ∗ x = b; such an x is often denoted x = a\b.
Unique right division is de�ned dually: for every a, b ∈ A, there is a unique y ∈ A
such that y∗a = b; such a y is often denoted y = b/a. Binary algebras with unique
left and right division are called quasigroups.

We list a few identities which are met frequently (all identities are assumed
to be universally quanti�ed, unless stated otherwise). A binary algebra (A, ∗) is
called

• left distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z),

• right distributive if (z ∗ y) ∗ x = (z ∗ x) ∗ (y ∗ x),

• distributive if it is both left and right distributive,

• medial if (x ∗ y) ∗ (u ∗ v) = (x ∗ u) ∗ (y ∗ v),

• trimedial if every 3-generated subquasigroup is medial,

• idempotent if x ∗ x = x,

• left involutory (or left symmetric) if x ∗ (x ∗ y) = y (hence we have unique
left division with x\y = x ∗ y).

Observe that left distributive quasigroups are idempotent: x∗(x∗x) = (x∗x)∗(x∗x)
by left distributivity and we can cancel from the right. Non-idempotent medial
quasigroups exist, indeed, abelian groups are examples. Also observe that idem-
potent trimedial binary algebras are distributive: given a, b, c ∈ A, the subalgebra
〈a, b, c〉 is medial, hence (a ∗ b) ∗ (a ∗ c) = (a ∗ a) ∗ (b ∗ c) = a ∗ (b ∗ c), and du-
ally for right distributivity; it requires quite an e�ort to prove the converse for
quasigroups, see Theorem 3.3.

A binary algebra is called a (left) quandle, if it is idempotent, left distributive
and has unique left division (remarkably, the three conditions correspond neatly
to the three Reidemeister moves in knot theory, see [12, 63]). Quandles that also
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have unique right division are called latin quandles. Indeed, latin quandles and
left distributive quasigroups are the very same things.

For universal algebraic considerations, it is often necessary to consider quandles
as algebraic structures with two binary operations, (A, ∗, \), and quasigroups as
structures with three binary operations, (A, ∗, /, \). Then, subalgebras are really
quandles (quasigroups, respectively), etc. We will implicitly assume the division
operations to be part of the algebraic structure whenever needed (e.g. when con-
sidering term operations in Section ).

Given a binary algebra (A, ∗), it is natural to consider left translations La(x) =
a ∗ x, and right translations Ra(x) = x ∗ a, and the semigroups they generate, the
left multiplication semigroup LMlt(A, ∗) = 〈La : a ∈ A〉, the right multiplica-
tion semigroup RMlt(A, ∗) = 〈Ra : a ∈ A〉, and the multiplication semigroup
Mlt(A, ∗) = 〈La, Ra : a ∈ A〉. Unique left division turns left translations into
permutations, and thus the left multiplication semigroup into a group (and dually
for right translations). Observe that L−1a (x) = a\x and R−1a (x) = x/a. Also note
that (A, ∗) is left distributive if and only if La is an endomorphism for every a ∈ A.
Hence, in quandles, LMlt(A, ∗) is a subgroup of the automorphism group.

A binary algebra (A, ∗) is called homogeneous if Aut(A, ∗) acts transitively on
A. It is called left connected if LMlt(A, ∗) acts transitively on A (we will omit the
adjective "left" for quandles). A �nite quandle is therefore connected if, for every
a, b ∈ A, there exist x1, . . . , xn ∈ A such that b = x1 ∗ (x2 ∗ (. . . (xn ∗a))) (compare
to unique right division!). Connected quandles are arguably the most important
class of quandles, both from the algebraic and topological points of view. Indeed,
latin quandles are connected, and the class of connected quandles is a very natural
generalization of left distributive quasigroups: many structural properties of left
distributive quasigroups extend to connected quandles, as we shall see throughout
Section 6.

To illustrate the power of connectedness, let us prove the following implication
for quandles that are (both left and right) distributive.

Proposition 2.1 ([13, Theorem 5.10]). Finite connected distributive quandles are
quasigroups.

Proof. Assume the contrary, and let (Q, ∗) be the smallest counterexample. Right
distributivity says that every right translation Ra is a homomorphism, hence, its
image, Ra(Q), forms a subquandle that is also connected and distributive (both
properties project to homomorphic images). For every a, b ∈ Q, the subquan-
dles Ra(Q) and Rb(Q) are isomorphic: connectedness of (Q, ∗) provides an au-
tomorphism α ∈ LMlt(Q, ∗) such that α(a) = b, and it follows from α(x ∗ a) =
α(x)∗α(a) = α(x)∗b that α restricts to an isomorphism between Ra(Q) and Rb(Q).
Therefore, by minimality, all subquandles Ra(Q) are proper subquasigroups. Now
we prove that Ra(Q) ⊆ Rx∗a(Q) for every x, a ∈ Q. Let y ∗ a ∈ Ra(Q). Since
Ra(Q) is a quasigroup, there is z ∗ a ∈ Ra(Q) such that y ∗ a = (z ∗ a) ∗ (x ∗ a).
Hence y ∗ a ∈ Rx∗a(Q). By induction, Ra(Q) ⊆ Rx1∗a(Q) ⊆ Rx2∗(x1∗a)(Q) ⊆ . . .,
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and thus, from connectedness, Ra(Q) ⊆ Rb(Q) for every a, b ∈ Q. Hence all sub-
quasigroups Ra(Q) are equal, and since x ∈ Rx(Q) for every x ∈ Q, all of them
are equal to Q, a contradiction.

2.2. Loops. A loop is a quasigroup (Q, ·) with a unit element 1, i.e., 1·a = a·1 = a
for every a ∈ A. In the present paper, loops will be denoted multiplicatively.
To avoid parenthesizing, we shortcut x · yz = x · (y · z) etc., and we remove
parentheses whenever the elements associate, i.e. write xyz whenever we know
that x · yz = xy · z. For all unproved statements, we refer to any introductory
book on loops, such as [10, 71].

Let (Q, ·) be a loop. Inner mappings are those elements of the multiplication
group Mlt(Q, ·) that �x the unit element. For example, the conjugation mappings
Tx(z) = xz/x are inner and, in a way, measure the non-commutativity in the loop.
The left inner mappings are de�ned by Lx,y(z) = (xy)\(x · yz) and measure the
non-associativity from the left.

The most common example of loops are groups (i.e. associative loops), and
most classes of loops studied in literature are those satisfying a weak version of
associativity or commutativity. We list a few weak associative laws (note that all
the conditions hold in groups): a loop is called

• diassociative if all 2-generated subloops are associative;

• left alternative if x · xy = x2y;

• power-associative if all 1-generated subloops are associative;

• Moufang if (xy · x)z = x(y · xz) (the dual law is equivalent in loops);

• left Bol if (x · yx)z = x(y · xz);

• automorphic if all inner mappings are automorphisms.

• left automorphic if all left inner mappings Lx,y are automorphisms.

Moufang's theorem [18] says that in a Moufang loop, every subloop generated
by three elements that associate, is associative. In particular, Moufang loops
are diassociative, since a(ba) = (ab)a for every a, b, as directly follows from the
Moufang law. Bol loops are power-associative.

The nucleus of a loop (Q, ·) is the set of all elements a ∈ Q that associate with
all other elements, i.e.,

N = {a ∈ Q : a · xy = ax · y, x · ay = xa · y, x · ya = xy · a for all x, y ∈ Q}.

An element of a loop is called nuclear if it belongs to the nucleus. A mapping
f : Q→ Q is called k-nuclear if xkf(x) ∈ N for every x ∈ Q.

Commutative Moufang loops were a central topic in the Bruck's book [10], and
newer results are surveyed in [7, 78]. The following characterization shows how
natural the class is.
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Theorem 2.2 ([10, 70]). The following are equivalent for a commutative loop
(Q, ·):

(1) it is diassociative and automorphic;

(2) it is Moufang;

(2′) the identity xx · yz = xy · xz holds.

(3) the identity f(x)x · yz = f(x)y · xz holds for some f : Q→ Q.

Moreover, if (Q, ·) is a commutative Moufang loop, than the identity of (3) holds
if and only if f is a (−1)-nuclear mapping.

The equivalence of (1), (2), (2') is well-known [10]. The rest is a special case
of a lesser known, but intriguing characterization of Moufang loops by P�ugfelder
[70]. It is one of the crucial ingrediences in Kepka's proof of Theorem 3.2, and also
in our new proof of Proposition 5.7.

Example 2.3. According to Kepka and N¥mec [49, Theorem 9.2], the smallest
non-associative commutative Moufang loops have order 81, there are two of them
(up to isomorphism), and can be constructed as follows. Consider the groups
G1 = (Z3)

4 and G2 = (Z3)
2 × Z9. Let e1, e2, e3(, e4) be the canonical generators.

Let t1 be the triaditive mapping over G1 satisfying

t1(e2, e3, e4) = e1, t1(e3, e2, e4) = −e1, t1(ei, ej , ek) = 0 otherwise.

Let t2 be the triaditive mapping over G2 satisfying

t2(e1, e2, e3) = 3e3, t2(e2, e1, e3) = −3e3, t2(ei, ej , ek) = 0 otherwise.

The loops Qi = (Gi, ·), i = 1, 2, with

x · y = x+ y + ti(x, y, x− y),

are non-isomorphic commutative Moufang loops, and every commutative Moufang
loop of order 81 is isomorphic to one of them.

In an arbitrary loop (Q, ·), we can de�ne the left inverse as x−1 = x\1 (in
general, x\1 6= 1/x). Then, the left inverse property (LIP) requests that a\b =
a−1b for every a, b ∈ Q, and the left automorphic inverse property (LAIP) requests
that (ab)−1 = a−1b−1 for every a, b ∈ Q. The RIP and RAIP are de�ned dually;
if left and right inverses coincide, we talk about IP and AIP.

Diassociative loops have the IP, and then, commutativity is indeed equivalent
to the AIP. Bol loops have the LIP, and are power associative, hence the left and
right inverses coincide. Occasionally, we will need the following technical lemma.

Lemma 2.4 ([51] or ATP). The following properties are equivalent for a left Bol
loop (Q, ·):
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(1) the AIP;

(2) the identity (xy)2 = x · y2x;

(3) L2
ab = LaL

2
bLa for every a, b ∈ Q.

It seems that the AIP is the appropriate generalization of commutativity into
the Bol setting (commutativity is no good, as it implies the Moufang law). We
have the following "left version" of Theorem 2.2, under the additional assumption
of unique 2-divisibility, which states that the mapping x 7→ x2 is a permutation.

Theorem 2.5 ([53] and ATP). The following are equivalent for a uniquely 2-
divisible loop (Q, ·) with the LAIP:

(1) it has the LIP, is left alternative and left automorphic;

(1′) the identities x2 · x−1y = xy and Lx,y(z
−1) = Lx,y(z)

−1 hold;

(2) it is left Bol;

(2′) the identity (xy)2 · (x−1z) = x · y2z holds.

Proof sketch. (1') is an immediate consequence of (1), and (2') easily follows from
(2) by Lemma 2.4, but the converse implications are trickier; we could not �nd
them anywhere in literature, but they can be veri�ed by an automated theorem
prover.

To prove that the equivalent conditions (1),(1') are in turn equivalent to the
equivalent conditions (2),(2'), we can use [53, Theorem 3], which states that, for
left alternative uniquely 2-divisible loops with the LIP and LAIP, the identity (2')
is equivalent to being left automorphic.

Left Bol loops with the AIP are called Bruck loops (or K-loops or gyrocommu-
tative gyrogroups). A lot of structure theory is collected in Kiechle's book [51].
Uniquely 2-divisible Bruck loops were called B-loops (we will use the shortcut,
too) and studied in detail by Glauberman [31]. A �nite Bruck loop is uniquely
2-divisible if and only if it has odd order [31, Proposition 1]. Every B-loop can
be realized as a subset Q of a group (G, ◦) such that the mapping x 7→ x ◦ x is a
permutation on Q and the loop operation is a · b =

√
a ◦ b ◦

√
a [31, Theorem 2].

Example 2.6. The smallest non-associative B-loop has order 15 and can be con-
structed as follows. Consider the loop (Z5 × Z3, ·) with

(a, x) · (b, y) = (ϕx,ya+ b, x+ y)

where ϕx,y ∈ Z∗5 are given by the following table:

0 1 2
0 1 2 2
1 1 3 1
2 1 1 3
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It is straightforward to check that this is a B-loop. It is an abelian extension of
Z5 by Z3 in the sense of [82].

2.3. Linear and a�ne representation. A great portion of the present paper
is about establishing that "two algebraic structures are essentially the same". To
formalize the statement, we borrow a formal de�nition from universal algebra. Let
(A, f1, f2, . . . ) be an arbitrary algebraic structure (shortly, algebra), with basic op-
erations f1, f2, . . . A term operation is any operation that results as a composition
of the basic operations. Polynomial operations result from term operations by
substituting constants for some of the variables. Two algebras with the same un-
derlying set are called term equivalent (or polynomially equivalent, respectively),
if they have the same term operations (or polynomial operations). For example,
a group can be presented in the standard way, as (G, ·,−1 , 1), or in the loop the-
oretical way, as an associative loop (G, ·, /, \, 1); the two algebraic structures are
formally di�erent, but they are term equivalent, since the basic operations in any
one of them are term operations in the other one. Term equivalent algebras have
identical subalgebras, polynomially equivalent algebras have identical congruences,
and share all properties that only depend on terms or polynomials (for example,
the Lagrange property, see Section 6.3). To learn more, consult [8, Section 4.8].

One of the fundamental tools to study a quasigroup is, to determine its loop
isotopes, and use the properties of the loops to obtain an information about the
original quasigroup. An isotopy between two quasigroups (Q1, ∗) and (Q2, ·) is a
triple of bijective mappings α, β, γ : Q1 → Q2 such that

α(a) · β(b) = γ(a ∗ b)

for every a, b ∈ Q1. Then, (Q2, ·) is called an isotope of (Q1, ∗). The combinatorial
interpretation is that (Q2, ·) is obtained from (Q1, ∗) by permuting rows, columns
and renaming entries in the multiplication table. Up to isomorphism, we can only
consider isotopes with Q1 = Q2 and γ = id, so called principal isotopes.

Every quasigroup admits many principal loop isotopes, often falling into more
isomorphism classes, yet all of them have a particularly nice form.

Proposition 2.7 ([10, Section III]). Let (Q, ∗) be a quasigroup and α, β permu-
tations on Q. The following are equivalent:

• the isotope a · b = α(a) ∗ β(b) is a loop;

• α = Re1 and β = Le2 for some e1, e2 ∈ Q.

Rephrased, given a quasigroup (Q, ∗), the only loop isotopes, up to isomor-
phism, are (Q, ·) with

a · b = (a/e1) ∗ (e2\b),

where e1, e2 ∈ Q can be chosen arbitrarily. Then the unit element is 1 = e2 ∗ e1.
For the division operations, we will use the symbols \· and /·, to distinguish them
from the quasigroup division.
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Notice that the new operation · is a polynomial operation over the original
quasigroup, and so are the division operations. We can recover the quasigroup
operation as

a ∗ b = Re1(a) · Le2(b),

but this is rarely a polynomial operation over (Q, ·). The most satisfactory loop
isotopes are those where Re1 and Le2 are a�ne mappings over (Q, ·).

A permutation ϕ of Q is called a�ne over (Q, ·), if

ϕ(x) = ϕ̃(x) · u or ϕ(x) = u · ϕ̃(x)

where ϕ̃ is an automorphism of (Q, ·) and u ∈ Q. In other terms, if ϕ = Ruϕ̃
or ϕ = Luϕ̃. A quasigroup (Q, ∗) is called a�ne over a loop (Q, ·) if, for every
a, b ∈ Q,

a ∗ b = ϕ(a) · ψ(b),

where ϕ,ψ are a�ne mappings over (Q, ·) such that ϕ̃ψ̃ = ψ̃ϕ̃. If both ϕ,ψ are
automorphisms, we call (Q, ∗) linear over (Q, ·). (Note that the a�ne mappings
ϕ,ψ do not necessarily commute.)

Example 2.8. To illustrate the concept of a�ne representation, consider a quasi-
group (Q, ∗) a�ne over an abelian group (Q, ·). We prove that it is medial. With
ϕ = Ruϕ̃, ψ = Rvψ̃ (left or right makes no di�erence here), we have

(a ∗ b) ∗ (c ∗ d) = ϕ (ϕ(a) · ψ(b)) · ψ (ϕ(c) · ψ(d))

= ϕ̃
(
ϕ̃(a)u · ψ̃(b)v

)
u · ψ̃

(
ϕ̃(c)u · ψ̃(d)v

)
v

= ϕ̃2(a) · ϕ̃ψ̃(b) · ψ̃ϕ̃(c) · ψ̃2(d) · ϕ̃(uv) · ψ̃(uv) · uv.

Since ϕ̃ψ̃ = ψ̃ϕ̃, the expression is invariant with respect to interchange of b and c.
As we shall see, Theorem 3.1 states also the converse: every medial quasigroup is
a�ne over an abelian group.

Any adjective to the words "a�ne" or "linear" will refer to the properties of the
mappings ϕ and ψ. In Section 3, we will consider 1-nuclear a�ne representations
over commutative Moufang loops, i.e. we will assume that ϕ,ψ are 1-nuclear a�ne
mappings. Notice that if ϕ = Fuϕ̃, with F ∈ {L,R}, is 1-nuclear, then u is nuclear
(substitute 1), and if the nucleus is a normal subloop, then ϕ̃ is also 1-nuclear.

How to turn an a�ne representation into a polynomial equivalence? Consider
a�ne mappings ϕ = Fuϕ̃, ψ = Gvψ̃ where F,G ∈ {L,R} and ϕ̃, ψ̃ are automor-
phisms of (Q, ·). Then x∗y = ϕ(x)·ψ(y) is a polynomial operation over the algebra
(Q, ·, ϕ̃, ψ̃), and a similar statement applies to the division operations, too (one also
needs to use the inverse automorphisms ϕ̃−1, ψ̃−1). Conversely, if (Q, ·) is a loop
isotope of a quasigroup (Q, ∗), then x · y = (x/e1) ∗ (e2\y), x\·y = e2 ∗ ((x/e1)\y),
and x/·y = (x/(e2\y)) ∗ e1 are all polynomial operations over the quasigroup. If
the translations Re1 , Le2 are a�ne over (Q, ·), then R̃e1(x) = (x ∗ e1)/·(1 ∗ e1),



102 D. Stanovský

L̃e2(x) = (e2 ∗ x)/·(e2 ∗ 1) are polynomial operations, too, hence the quasigroup
(Q, ∗, \, /) and the algebra (Q, ·, \·, /·, R̃e1 , R̃−1e1 , L̃e2 , L̃

−1
e2 ) are polynomially equiva-

lent, i.e. essentially the same object. It is convenient to perceive the loop expanded
by two automorphisms in a module-theoretic way, as we shall explain now.

The classical case �rst: assume the loop is an abelian group and let us denote
it additively, (Q,+). Let ϕ,ψ be two commuting automorphisms of (Q,+). Then
the algebra (Q,+,−, 0, ϕ, ϕ−1, ψ, ψ−1) is term equivalent to the module over the
ring of Laurent polynomials Z[s, s−1, t, t−1] whose underlying additive structure
is (Q,+) and the action of s, t is that of ϕ,ψ, respectively. The corresponding
quasigroup operation can be written as the a�ne form

x ∗ y = sx+ ty + c,

where c ∈ Q is a constant.
For general loops, one can consider "generalized modules" over commutative

"generalized rings", where the underlying additive structures are not necessarily
associative. No general theory has been developed yet, but there are indications
that this approach could provide a powerful tool. For example, commutative
diassociative loops share a lot of module-theoretic properties of abelian groups,
such as the primary decomposition [56]. The idea of "generalized modules" and
the corresponding homological methods have been exploited several times to prove
interesting theorems about quasigroups [33, 34, 48].

Finally, let us note that our de�nition of a�ne quasigroup is too strong in one
sense, and possibly weak in another sense.

The condition that the two automorphisms ϕ̃, ψ̃ commute is strongly tied to
mediality and its weaker forms, and we included it only for brevity. Omitting
the condition makes a very good sense from the universal algebra point of view.
Quasigroups that admit a "non-commuting" a�ne representation over an abelian
group (and thus polynomially equivalent to a module over the ring of Laurent
polynomials of two non-commuting variables) have been studied since the 1970s,
see [79, Chapter 3] or [17] for recent developments (the original name T-quasigroups
is slowly fading away, being replaced by the adjective central ; in universal algebra,
they would be called abelian or a�ne, as the two concepts are equivalent for
quasigroups).

In Section 3, all a�ne representations will be 1-nuclear. However, we resist to
enforce nuclearity in the de�nition of a�neness, since we do not understand its role
properly (in particular, we do not know whether the representation of Theorem
5.5 admits any sort of nuclearity). We are not yet certain what is the appropriate
generalization of the notion of an a�ne form into the non-associative setting.

3. Distributive quasigroups

3.1. A�ne representation. The �rst ever a�ne representation theorem was
the one for medial quasigroups, proved independently by Toyoda [88], Murdoch
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[61] and Bruck [9] in the 1940s.

Theorem 3.1 ([9, 61, 88]). The following are equivalent for a quasigroup (Q, ∗):

(1) it is medial;

(2) it is a�ne over an abelian group.

Proof. (2)⇒ (1) was calculated in Example 2.8.
(1)⇒ (2). Pick arbitrary e1, e2 ∈ Q and de�ne a loop operation on Q by a ·b =

(a/e1)∗ (e2\b). We can recover the quasigroup operation as a∗ b = Re1(a) ·Le2(b),
where Re1 , Le2 are translations in (Q, ∗). We show that (Q, ·) is an abelian group,
and that Re1 , Le2 are a�ne mappings over (Q, ·).

First, consider the quasigroup (Q, ◦) with a ◦ b = (a/e1) ∗ b. We prove that it
is also medial. Observe that, for every x, y, u, v ∈ Q,

(x/y) ∗ (u/v) = (x ∗ u)/(y ∗ v), (†)

since ((x/y) ∗ (u/v)) ∗ (y ∗ v) = ((x/y) ∗ y) ∗ ((u/v) ∗ v) = x ∗ u, and we obtain the
identity by division from the right. Now we expand

(a ◦ b) ◦ (c ◦ d) = (((a/e1) ∗ b)/e1) ∗ ((c/e1) ∗ d)
= (((a/e1) ∗ b)/((e1/e1) ∗ e1)) ∗ ((c/e1) ∗ d)
= (((a/e1)/(e1/e1)) ∗ (b/e1)) ∗ ((c/e1) ∗ d),

and using mediality, we can interchange b/e1 and c/e1, and by an analogous cal-
culation obtain (a◦ b)◦ (c◦d) = (a◦ c)◦ (b◦d). Now notice that a · b = a◦ (e2\b) =
a ◦ ((e2 ∗ e1)\◦b), hence a dual argument, with ∗ replaced for ◦ and e1 replaced
for e2 ∗ e1, shows that the loop (Q, ·) is also medial. But medial loops are abelian
groups.

It remains to prove that the mappings Re1 , Le2 are a�ne over (Q, ·) and that
the corresponding automorphisms R̃e1 , L̃e2 commute. Let 1 denote the unit and
−1 the inverse element in the group (Q, ·). Consider a, b ∈ Q. By mediality,

(R−1e1 (a) ∗ L−1e2 (b)) ∗ (L−1e2 (1) ∗ L−1e2 (1)) = (R−1e1 (a) ∗ L−1e2 (1)) ∗ (L−1e2 (b) ∗ L−1e2 (1)).

Rewriting x ∗ y = Re1(x) · Le2(y), we obtain

Re1(a · b) · Le2Re1L−1e2 (1) = Re1(a) · Le2Re1L−1e2 (b).

With a = 1, we obtain Le2Re1L
−1
e2 (b) = Re1(b) ·Le2Re1L−1e2 (1) ·Re1(1)−1, and after

replacement of the last term in the previous identity, and after cancelling the term
Le2Re1L

−1
e2 (1), we obtain

Re1(a · b) = Re1(a) ·Re1(b) ·Re1(1)−1.
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This shows that Re1 is an a�ne mapping, with the underlying automorphism
R̃e1(x) = Re1(x)Re1(1)

−1. Dually, we obtain that Le2 is an a�ne mapping, with
the underlying automorphism L̃e2(x) = Le2(x)Le2(1)

−1.
Finally we show that the two automorphisms commute. With ϕ = Re1 , ψ =

Le2 , u = Re1(1)
−1 and v = Le2(1)

−1, we can calculate as in Example 2.8 that, for
every x ∈ Q,

ϕ̃ψ̃(x)·ϕ̃(uv)·ψ̃(uv)·uv = (1∗x)∗(1∗1) = (1∗1)∗(x∗1) = ψ̃ϕ̃(x)·ϕ̃(uv)·ψ̃(uv)·uv.

After cancellation, we see that ϕ̃ψ̃ = ψ̃ϕ̃.

Note that we proved a stronger statement: any loop isotope of a medial quasi-
group is an abelian group that provides an a�ne representation. For other classes,
in order to obtain an a�ne representation over a nice class of loops, one often
has to choose the parameters e1, e2 in a special way. For instance, for trimedial
quasigroups, one has to take e1 = e2 which is a square, as we shall see.

Perhaps the best way to perceive distributive quasigroups is through trimedial-
ity. As we shall see, a quasigroup is distributive if and only if it is idempotent and
trimedial. This was �rst realized by Belousov in [2], and his proof was based on
�nding an isotopy of a distributive quasigroup to a commutative Moufang loop,
and subsequently using Moufang's theorem (see also his book [3, Theorems 8.1
and 8.6]). Belousov's method actually provides a linear representation, but this
fact was recognized and explicitly formulated only later by Soublin [80, Section
II.7, Theorem 1]. An analogous theorem for general (not necessarily idempotent)
trimedial quasigroups was proved by Kepka [43] a few years later (Theorem 3.2).
We will now outline Kepka's proof, and show how the Belousov-Soublin theorem
follows as a special case (Theorem 3.3).

Many equivalent conditions charecterizing trimediality are formulated in [43],
we only pick the most important ones here: (1) trimediality, (2) a stronger fact
stating that mediating elements generate a medial subquasigroup, (3) a �nite
equational base for trimediality, and (4) the a�ne representation. In fact, Kepka
lists several �nite bases, but not the one we state here: our condition (3) is a
minimal base, found in [55], and subsumes most of Kepka's bases.

Theorem 3.2 ([43]). The following are equivalent for a quasigroup (Q, ∗):

(1) it is trimedial;

(2) for every a, b, c, d ∈ Q, if (a∗b)∗(c∗d) = (a∗c)∗(b∗d) then the subquasigroup
〈a, b, c, d〉 is medial;

(3) it satis�es, for every a, b, c ∈ Q, the identities

(c ∗ b) ∗ (a ∗ a) = (c ∗ a) ∗ (b ∗ a),
(a ∗ (a ∗ a)) ∗ (b ∗ c) = (a ∗ b) ∗ ((a ∗ a) ∗ c);
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(4) it is 1-nuclear a�ne over a commutative Moufang loop.

Proof sketch. (2)⇒ (1). For any a, b, c ∈ Q, we have (b∗a)∗(a∗c) = (b∗a)∗(a∗c).
Hence, by (2), 〈a, b, c〉 is medial.

(1)⇒ (3). Given a, b, c ∈ Q, consider the subquasigroup 〈a, b, c〉. It is medial,
hence the two identities hold for a, b, c.

(3)⇒ (4). First of all, we need to prove the following two additional identities:
(a ∗ a) ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) and (a ∗ b) ∗ (c ∗ a) = (a ∗ c) ∗ (b ∗ a) (in Kepka's
terminology, to prove that (Q, ∗) is a WAD-quasigroup). A proof can be found
quickly by an automated theorem prover, or read in [55]. Now we can follow
Kepka's proof from [43], whose structure is similar to our proof of Theorem 3.1.

Pick an arbitrary square e ∈ Q (i.e. e = e′ ∗ e′ for some e′) and de�ne the loop
operation on Q by a · b = (a/e) ∗ (e\b). We can recover the quasigroup operation
as a∗b = Re(a) ·Le(b), where Le, Re are translations in (Q, ∗). To show that (Q, ·)
is a commutative Moufang loop, it is su�cient to verify condition (3) of Theorem
2.2 with f = ReL

−1
e . The proof is rather technical, see [42, Proposition 4.8(iii)]. It

also follows that the mapping f is (-1)-nuclear, and another technical calculation,
see [43, Lemma 3(iii)], shows that the mappings Le, Re are 1-nuclear. Finally,
we can reuse the second part of our proof of Theorem 3.1 to show that the two
mappings are a�ne and that the underlying automorphisms commute, since we
only used the identity (a∗a)∗ (b∗ c) = (a∗ b)∗ (a∗ c) and its dual in the proof. We
have to be careful about non-associativity of the multiplication, but fortunately, all
calculations are correct thanks to the fact that the mappings Le, Re are 1-nuclear,
hence preserve the nucleus (in particular, all elements resulting by application of
Le, Re on 1 are nuclear).

(4) ⇒ (2). The idea is, �nd a subloop Q′ of (Q, ·) that contains all four
elements a, b, c, d and is generated by three elements u, v, w that associate. Then,
by Moufang's theorem [18], Q′ is an abelian group, and thus the subquasigroup
〈a, b, c, d〉 is medial by Theorem 3.1. The construction is described in [43, Theorem
2 (vi)⇒(vii)].

As a corollary to Theorem 3.2, we settle the case of distributive quasigroups.

Theorem 3.3 ([80]). The following are equivalent for an idempotent quasigroup
(Q, ∗):

(1) it is trimedial;

(2) for every a, b, c, d ∈ Q, if (a∗b)∗(c∗d) = (a∗c)∗(b∗d) then the subquasigroup
〈a, b, c, d〉 is medial;

(3) it is distributive;

(4) it is 1-nuclear linear over a commutative Moufang loop.
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Proof. Look at Theorem 3.2. Conditions (1) and (2) are identical. Under the as-
sumption of idempotence, condition (3) of Theorem 3.2 is equivalent to distributiv-
ity. To obtain the equivalence of the fourth conditions, we observe that an idempo-
tent quasigroup which is 1-nuclear a�ne over a commutative Moufang loop (Q, ·)
is actually linear over (Q, ·): with ϕ = Ruϕ̃ and ψ = Rvψ̃, thanks to nuclearity and
commutativity, we have a∗b = ϕ̃(a)ψ̃(a)uv, and since 1 = 1∗1 = ϕ̃(1)ψ̃(1)uv = uv
we see that a ∗ b = ϕ̃(a)ψ̃(a) is a linear representation.

For idempotent quasigroups, the linear representation a ∗ b = ϕ(a) · ψ(b) is
determined by either one of the automorphisms ϕ or ψ, since a = a∗a = ϕ(a)·ψ(a),
hence ϕ(a) = a/·ψ(a) or ψ(a) = ϕ(a)\·a. Mappings ϕ,ψ satisfying ϕ(a) ·ψ(a) = a
will be called companions. Note that the companion of an automorphism is not
necessarily a permutation or an endomorphism! However, if it is an endomorphism,
then the two mappings commute.

Example 3.4. Combining Theorem 3.3 and Example 2.3, one can determine the
smallest non-medial distributive quasigroups. They have order 81 and there are
six of them (up to isomorphism) [49, Theorem 12.4]. A careful analysis of the
automorphisms of the loops (G1, ·) and (G2, ·) of Example 2.3 (see [49, Sections 5
and 6], respectively) leads to the following classi�cation:

1. (G1, ∗) with x ∗ y = x−1 · y−1.

2. (G1, ∗) with x∗y = ϕ(x) ·ψ(y) where ϕ(x) = (x2−x1)e1−x2e2−x3e3−x4e4
and ψ is its companion.

3. (G2, ∗) with x ∗ y =
√
x · √y. In (G2, ·), the mapping x 7→ x2 is a 1-nuclear

automorphism, and so is its inverse x 7→
√
x.

4. (G2, ∗) with x ∗ y = x−1 · y2.

5. (G2, ∗) with x ∗ y = x2 · y−1.

6. (G2, ∗) with x ∗ y = ϕ(x) · ψ(y) where ϕ(x) = −x1e1 − x2e2 − (3x1 + x3)e3
and ψ is its companion.

Theorem 3.3 has an interesting connection to design theory. It is well known
that Steiner triple systems correspond to a certain class of (�nite) idempotent
quasigroups, called Steiner quasigroups. A�ne Steiner triple systems, constructed
over the a�ne spaces (F3)

k, correspond to medial Steiner quasigroups, ((F3)
k, ∗)

with a ∗ b = −a − b. Hall triple systems can be de�ned by the property that
every subsystem generated by three points is a�ne. Theorem 3.3 implies that the
corresponding quasigroups are precisely the distributive Steiner quasigroups. As a
consequence, one can obtain, for instance, the enumeration of Hall triple systems,
see the numbers DQ(n) in Table 1 (the one of order 81 is item 1. of Example 3.4).
We refer to [6, 16] for details and other relations between distributive quasigroups,
�nite geometries and combinatorial designs.
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Theorems 3.2 and 3.3 can be further generalized in several directions. For
example, it was proved by Kepka, Kinyon and Phillips [47, Theorem 1.2] that
the class of F-quasigroups, properly containing the trimedial quasigroups, admits
a 1-nuclear (−1)-Moufang-central a�ne representation over NK-loops, a class of
Moufang loops that are sums of their nucleus and Moufang center. Another direc-
tion is weakening the unique divisibility condition, see the comprehensive studies
by Jeºek, Kepka and N¥mec [36, 38, 39, 45, 49]. In all of these papers, a self-
dual condition (such as trimediality or both-sided distributivity) is essential for
linearization. The one-sided case is quite di�erent and will be studied in Section
5. Nevertheless, we will be able to obtain the representation from Theorem 3.3 as
a consequence of the one-sided theory.

3.2. Structure and enumeration. Theorem 3.3 allows to use the well developed
theory of commutative Moufang loops to build the structure theory of distributive
quasigroups. We will describe a few examples. Further results can be found in the
comprehensive survey [7].

We start with Galkin's interpretation of the Fischer-Smith theorem [23, 77].

Theorem 3.5 ([23]). Let Q be a �nite distributive quasigroup of order pn1
1 ·. . .·p

nk

k

where p1, . . . , pk are pairwise di�erent primes. Then

Q ' Q1 × . . .×Qk

where |Qi| = pni
i . Moreover, if Qi is not medial, then pi = 3 and ni ≥ 4.

The story of the proof goes as follows. Let Q be a �nite distributive quasi-
group. The �rst step was Fischer's proof [20] that LMlt(Q) is solvable, using
substantial results from group theory, including the Feit-Thompson theorem and
the Brauer-Suzuki theorem. Then Smith [77] was able to strengthen Fischer's the-
orem, while avoiding the heavy �nite group machinery, by combining Theorem 3.3
and the Bruck-Slaby theorem [10, Chapter VIII] stating that �nite commutative
Moufang loops are centrally nilpotent. Smith's result says that the derived sub-
group LMlt(Q)′ is the direct product of a 3-group and an abelian group of order
coprime to 3 (hence LMlt(Q)′ is nilpotent and LMlt(Q) is solvable, as proved by
Fischer). Finally, Galkin [23] observed that his idea of minimal representation
(explained in our Section 6) implies that the quasigroup Q decomposes in a way
analogous to the decomposition of LMlt(Q)′. Using the fact that every 3-generated
subquasigroup is medial (see Theorem 3.3), one concludes that a non-medial dis-
tributive quasigroup has at least 34 = 81 elements.

A somewhat di�erent approach to the Fischer-Smith theorem, based on the
homogeneous representation of Section 6, is presented in [29].

An interesting story is the enumeration of distributive quasigroups. Again,
Theorem 3.3 is crucial here, as it allows to focus on the enumeration of commu-
tative Moufang loops and their automorphism groups. It is not di�cult to prove
(see e.g. [49, Lemma 12.3]) that two commutative Moufang loops, Q1 and Q2,
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and their nuclear automorphisms, ψ1 and ψ2, respectively, provide isomorphic dis-
tributive quasigroups if and only if there is a loop isomorphism ϕ : Q1 → Q2 such
that ψ2 = ϕψ1ϕ

−1.

In particular, the lemma applies to abelian groups, hence the number MI(n)
of medial idempotent quasigroups of order n up to isomorphism can be determined
using the classi�cation of �nite abelian groups and the corresponding linear alge-
bra. The function MI(n) is indeed multiplicative (i.e. MI(mn) = MI(m)MI(n)
for every m,n coprime) and explicit formulas forMI(pk), p prime and k ≤ 4, were
found by Hou [34] (in his paper, (�nite) medial idempotent quasigroups are re-
ferred to as connected Alexander quandles; the formulas are given in [34, equation
(4.2)] and the complete list of quasigroups is displayed in [34, Table 1]). See our
Table 3 for the �rst 47 values of MI(n).

Theorem 3.5 says that the interesting (i.e. directly indecomposable) non-medial
distributive quasigroups have orders n = 3k, k ≥ 4. Table 1 summarizes some of
the enumeration results found in literature. CML(n) denotes the number of non-
associative commutative Moufang loops of order n up to isomorphism, as calcu-
lated in [49]; the next four rows describe the numbers of non-medial quasigroups
of order n up to isomorphism in the following classes: 3M(n) refers to trime-
dial quasigroups [46], D(n) to distributive quasigroups [49], DM(n) to distribu-
tive Mendelsohn quasigroups [16], and DS(n) to distributive Steiner quasigroups
[6, 44]; the last row displays the medial case.

n 3 32 33 34 35 36

CML(n) 0 0 0 2 6 ≥ 8
3M(n) 0 0 0 35
D(n) 0 0 0 6

DM(n) 0 0 0 2 ≥ 3
DS(n) 0 0 0 1 1 3
MI(n) 1 8 30 166

Table 1: Enumeration of commutative Moufang loops and of various classes of
distributive quasigroups.

Another interesting enumeration result says that the smallest non-medial hamil-
tonian distributive quasigroup has order 36, and that there are two of them [33].
This is perhaps the deepest application of the module-theoretical approach to
distributive quasigroups.

Finally, let us mention the property called symmetry-by-mediality. An idem-
potent binary algebra is called symmetric-by-medial, if it has a congruence α
such that its blocks are symmetric (i.e. both left and right involutory), and the
factor over α is medial. (In idempotent algebras, congruence blocks are always
subalgebras.) Symmetric distributive quasigroups are commutative, and they are
precisely the distributive Steiner quasigroups. Using Bruck's associator calculus
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for Moufang loops, Belousov proved that distributive quasigroups are symmetric-
by-medial [3, Theorem 8.7]. Again, the theorem generalizes to a non-quasigroup
setting [37, 81].

4. Conjugation and cores

Let (G, ·) be a group and Q a subset of G closed with respect to conjugation. Then
the binary algebra (Q, ∗) with

a ∗ b = aba−1

is a quandle, called a conjugation quandle over the group (G, ·). It is easy to
verify that every quandle admits a Cayley-like representation over a conjugation
quandle.

Proposition 4.1. Let (Q, ∗) be a quandle. Then a 7→ La is a quandle homomor-
phism of (Q, ∗) onto a conjugation quandle over the group LMlt(Q, ∗).

Proof. Left distributivity implies a ∗ (b ∗ (a\x)) = (a ∗ b) ∗ x, hence La ∗ Lb =
LaLbL

−1
a = La∗b.

This homomorphism is rarely an embedding, even for connected quandles.
However, it is an embedding for every latin quandle, because, in a latin quan-
dle, La(x) = a ∗ x 6= b ∗ x = Lb(x) for every a 6= b and every x. Hence, every
latin quandle is a conjugation quandle, up to isomorphism. This observation can
probably be attributed to Stein [84]. He also found the following criterion.

Proposition 4.2 ([84]). Let (G, ·) be a group, Q a subset of G closed with respect
to conjugation, and assume that for every a, b, c ∈ Q, aNG(c) = bNG(c) i� a = b.
Then the conjugation quandle (Q, ∗) is latin.

A few structural results on quandles have been proved using the Cayley rep-
resentation. For instance, Kano, Nagao and Nobusawa [41] used it for involutory
quandles (in this case, the quandle is represented by involutions), and proved the
following characterization of involutory quandles that are latin.

Theorem 4.3 ([41]). A �nite involutory quandle (Q, ∗) is a quasigroup if and
only if the derived subgroup LMlt(Q, ∗)′ has odd order.

The proof is not easy and uses Glauberman's Z∗-theorem. They conclude that
involutory left distributive quasigroups are solvable, and possess the Lagrange and
Sylow properties (see Section 6.3 for a more comprehensive discussion).

The Cayley representation is fundamental in Pierce's work on involutory quan-
dles [74], and McCarron [59] used conjugation to represent simple quandles and
to argue that there were no connected quandles with 2p elements, for any prime
p > 5 (see also Section 6.2).
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Let (G, ·) be a group, or, more generally, a Bol loop. The binary algebra (G, ∗)
with

a ∗ b = a · b−1a

is an involutory quandle, called the core of (G, ·). The core is a quasigroup if
and only if the loop is uniquely 2-divisible [3, Theorem 9.4]. The core operation
was introduced by Bruck who proved that isotopic Moufang loops have isomorphic
cores [10]. It was later picked up by Belousov and others to construct some of the
�rst examples of involutory left distributive quasigroups, see e.g. [3, Chapter IX]
or [89].

Example 4.4. The smallest non-medial involutory left distributive quasigroup has
order 15 and it is the core of the B-loop constructed in Example 2.6. Explicitly,
it is the quasigroup (Z5 × Z3, ∗) with

(a, x) ∗ (b, y) = (µx,ya− b,−x− y)

where µx,y ∈ Z∗5 are given by the following table:

0 1 2
0 2 −1 −1
1 −1 2 −1
2 −1 −1 2

5. Left distributive quasigroups: Isotopy

5.1. Right linear representation. Restricting self-distributivity to only one
side, it is natural to expect that the loop counterpart will admit one of the weaker
one-sided loop conditions mentioned in Section 2.2. There are good news and bad
news. Left distributive quasigroups are polynomially equivalent to a certain class
of "non-associative modules", satisfying a (very) weak associative law. However,
the connection is non-linear (only one of the de�ning mappings is an automor-
phism), and the corresponding class of loops, called Belousov-Onoi loops here,
extends beyond the well-established theories (except for some special cases). The
correspondence is therefore of limited utility at the moment. Nevertheless, it is in-
teresting to look at details. Most of the ideas of the present section were discovered
by Belousov and Onoi [5], but our presentation is substantially di�erent.

Let (Q, ·) be a loop and ψ its automorphism. We will call (Q, ·, ψ) a Belousov-
Onoi module (shortly, BO-module) if

ϕ(ab) · ψ(ac) = a · ϕ(b)ψ(c) (BO)

holds for every a, b, c ∈ Q, where ϕ(x) = x/·ψ(x) is the companion mapping
for ψ. (The explanation why is it reasonable to consider such structures as "non-
associative modules" has been explained at the end of Section 2.3.) To match the
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identity (BO) to the Bol identity, substitute ψ−1(ac) for c and obtain an equivalent
identity

ϕ(ab) · (ψ(a) · ac) = a · (ϕ(b) · ac). (BO')

Example 5.1. We state a few examples of Belousov-Onoi modules.

1. Every loop (Q, ·) turns into the BO-module (Q, ·, id). If ψ(x) = x, then
ϕ(x) = 1 and thus the identity (BO) holds.

2. Every group (Q, ·) with any automorphism ψ turns into the BO-module
(Q, ·, ψ). Condition (BO) is easily veri�ed.

3. Every Bruck loop (Q, ·) turns into the BO-module (Q, ·,−1 ). If ψ(x) = x−1,
then ϕ(x) = x2 by power-associativity, and we verify (BO') by (ab)2 · (a−1 ·
ac) = (ab)2 · c = a · (b2 · ac) using Lemma 2.4 in the second step.

Call a BO-module non-trivial if ψ 6= id. There are relatively few loops that turn
into a non-trivial BO-module, see the values of BOM(n) in Table 2. Nevertheless,
nearly all groups and all Bruck loops (except possibly those where x−1 = x) have
the property.

A BO-module turns naturally into a quandle. The proof illustrates very well
the conditions imposed by the de�nition.

Proposition 5.2. Let (Q, ·, ψ) be a Belousov-Onoi module, ϕ the companion map-
ping, and de�ne for every a, b ∈ Q

a ∗ b = ϕ(a) · ψ(b).

Then (Q, ∗) is a quandle. The quandle is a quasigroup if and only if ϕ is a
permutation.

Proof. Idempotence explains the de�nition of the companion mapping: we have
a ∗ a = a i� ϕ(a) · ψ(a) = a i� ϕ(a) = a/·ψ(a).

Unique left division follows from the fact that ψ is a permutation: we have
a ∗ x = ϕ(a) · ψ(x) = b i� ψ(x) = ϕ(a)\·b i� x = ψ−1(ϕ(a)\·b).

Left distributivity is veri�ed as follows: expanding the de�nition of ∗ and using
the identity (BO), we obtain

(a ∗ b) ∗ (a ∗ c) = ϕ(ϕ(a)ψ(b)) · ψ(ϕ(a)ψ(c)) = ϕ(a) · (ϕψ(b) · ψ2(c)),

and since ψ is an automorphism and ϕ a term operation, we have ϕψ = ψϕ, and
thus the right hand side equals

ϕ(a) · (ψϕ(b) · ψ2(c)) = ϕ(a) · ψ(ϕ(b)ψ(c)) = a ∗ (b ∗ c).

Unique right division is dual to the left case: it happens if and only if ϕ is a
permutation.
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Example 5.3. Consider the three items from Example 5.1.

1. Any trivial BO-module (Q, ·, id) results in a projection quandle (Q, ∗) with
a ∗ b = b.

2. The BO-module (Q, ·, ψ), constructed over a group with an automorphism,
results in a homogeneous quandle (Q, ∗) with

a ∗ b = aψ(a−1b).

If Q is �nite, then (Q, ∗) is a quasigroup if and only if ψ is a regular auto-
morphism (i.e. the unit is the only �xed point of ψ). Belousov [3, Theorem
9.2] proves that all left distributive quasigroups isotopic to a group result in
this particular way, and Galkin [24, Section 5] shows a number of interesting
properties of such quasigroups. See Construction 6.1 for a generalization of
this idea which covers all left distributive quasigroups.

3. The BO-module (Q, ·,−1 ), constructed over a Bruck loop, results in an invo-
lutory quandle (Q, ∗) with a ∗ b = a2b−1. It follows from Lemma 2.4(2) that
x 7→ x2 is a homomorphism from (Q, ∗) to the core of (Q, ·); hence, if (Q, ·)
is a B-loop, then the two constructions result in isomorphic quasigroups. In
Theorem 5.9, we shall see that all involutory left distributive quasigroups
result this way.

Relatively few quandles admit a Belousov-Onoi representation as in Proposi-
tion 5.2, see the values of BOQ(n) in Table 2. Even connected quandles do not
always result from a BO-module: for example, a quick computer search reveals
that none of the quandles constructed over a BO-module of order 6 is connected
(compare to [35, Table 2]). In the latin case, however, the situation is di�erent.
The setting of BO-modules was designed by Belousov and Onoi in order to prove
that all left distributive quasigroups (latin quandles) admit a representation as in
Proposition 5.2.

A loop (Q, ·) possesing an automorphism ψ such that (B, ·, ψ) is a BO-module
and the companion mapping for ψ is a permutation, will be called a Belousov-Onoi
loop (shortly, BO-loop) with respect to ψ. (The original name was S-loops, for no
apparent reason. Our de�nition uses the characterizing condition of [5, Theorem
4].)

Proposition 5.4 ([5]). Let (Q, ∗) be a left distributive quasigroup, e ∈ Q and let

a · b = (a/e) ∗ (e\b).

Then (Q, ·) is a Belousov-Onoi loop with respect to ψ = Le, the companion mapping
is ϕ = Re and

a ∗ b = ϕ(a) · ψ(b).

Moreover, di�erent choices of e result in isomorphic loops.



A guide to self-distributive quasigroups, or latin quandles 113

Proof. First notice that a ∗ b = (a ∗ e) · (e ∗ b) = ϕ(a) ·ψ(b). Indeed, both ϕ,ψ are
permutations and ϕ is the companion for ψ, since ϕ(a) · ψ(a) = a. To prove that
ψ is an automorphism of (Q, ·), we calculate for every a, b ∈ Q

ψ(ab) = e ∗ ab = e ∗ ((a/e) ∗ (e\b))
= (e ∗ (a/e)) ∗ (e ∗ (e\b))
= ((e ∗ a)/e) ∗ (e\(e ∗ b) = (e ∗ a) · (e ∗ b) = ψ(a)ψ(b).

In the third and fourth steps, we used left distributivity: in the latter case, since
Le is an automorphism of (Q, ∗), we also have Le(x/y) = Le(x)/Le(y) for every
x, y. To prove the condition (BO), we calculate for every a, b ∈ Q

ϕ(ab) · ψ(ac) = (ab ∗ e) · (e ∗ ac) = ab ∗ ac
= ((a/e) ∗ (e\b)) ∗ ((a/e) ∗ (e\c))
= (a/e) ∗ ((e\b) ∗ (e\c))
= (a/e) ∗ (e\(b ∗ c)) = a · (b ∗ c) = a · ϕ(b)ψ(c).

In the fourth and �fth steps, we used left distributivity: in the latter case, using
the fact that L−1e is also an automorphism of (Q, ∗).

Let e1, e2 ∈ Q and consider an automorphism ρ of (Q, ∗) such that ρ(e1) =
e2 (for example, we can take ρ = Le2/e1). Then ρ is an isomorphism of the
corresponding loops (Q, ·1) and (Q, ·2), since

ρ(a ·1 b) = ρ((a/e1) ∗ (e1\b)) = (ρ(a)/ρ(e1)) ∗ (ρ(e1)\ρ(b)) = ρ(a) ·2 ρ(b)

for every a, b ∈ Q.

If (Q, ·) is a Belousov-Onoi loop with respect to ψ, the companion mapping
ϕ is usually not an automorphism. In such a case, the representation of (Q, ∗)
over (Q, ·) will be called right linear. In Proposition 5.7, we shall prove that ϕ
is an automorphism if and only if the loop is commutative Moufang. Therefore,
according to Theorem 3.3, we do not have a linear representation, unless we handle
a (both-side) distributive quasigroup.

Still, the left distributive quasigroup (Q, ∗) (formally, the algebra (Q, ∗, \, /))
is polynomially equivalent to the Belousov-Onoi module (Q, ·, ψ) (formally, the al-
gebra (Q, ·, \·, /·, ψ, ψ−1)): all operations in Proposition 5.4 were de�ned polyno-
mially, the same can be shown about the division operations, and ϕ(x) = x/·ψ(x)
is a polynomial, too. In fact, we can think of the mapping ϕ as quadratic over the
BO-module (Q, ·, ψ), as the variable x appears only twice in its de�nition.

Combining Propositions 5.2 and 5.4, we can formulate the following represen-
tation theorem.

Theorem 5.5 ([5]). The following are equivalent for a quasigroup (Q, ∗):

(1) it is left distributive;
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(2) it is right linear over a Belousov-Onoi loop (with respect to the automorphism
used in the right linear representation).

Example 5.6. The smallest non-associative Belousov-Onoi loops have order 15,
and there are two of them (up to isomorphism). One is a B-loop, see Example 2.6.
The other one can be constructed by a modi�cation of the previous construction.
Consider the loop (Z5 × Z3, ·) with

(a, x) · (b, y) = (ϕx,ya+ b+ θx,y, x+ y)

where ϕx,y ∈ Z∗5 are as before, and θx,y ∈ Z5 are given by the following table:

0 1 2
0 0 0 0
1 0 −1 1
2 0 −2 2

It is straightforward to check that this is a BO-loop with respect to the automor-
phism (a, x) 7→ (−a+ δx,2,−x) where δx,y = 1 if x = y and δx,y = 0 otherwise. It
is not a B-loop, it does not even have the LIP. It is also an abelian extension of
Z5 by Z3. If we set θx,y = 0 for every x, y, we would have obtained the B-loop of
Example 2.6.

Correspondingly, the smallest non-medial left distributive quasigroups have
order 15, and there are two of them (up to isomorphism). One is involutory, see
Example 4.4. The other one can be constructed as (Z5 × Z3, ∗) with

(a, x) ∗ (b, y) = (µx,ya− b+ τx,y,−x− y)

where µx,y ∈ Z∗5 is as before, and τx,y = δx−y,1 for every x, y. (See [13, 14] for a
generalization of this construction, originally suggested by Galkin [26].)

5.2. Belousov-Onoi loops. Given the correspondence of Theorem 5.5, a natural
question arises. What are these Belousov-Onoi loops? Can we use an established
part of loop theory to investigate left distributive quasigroups? The current state of
knowledge is unsatisfactory in this respect. In the rest of the section, we summarize
most of the known results on BO-loops.

First of all, it is not even clear how to construct Belousov-Onoi loops which
are not B-loops. All BO-loops of order less than 15 are abelian groups, and there
are two non-associative BO-loops of order 15, see Example 5.6. Nowadays, these
facts are easy to check on a computer, but back in the 1970s, this was realized
only indirectly, via Theorem 5.5, using the theory of left distributive quasigroups.
The �rst example of a left distributive quasigroup not isotopic to any Bol loop
was constructed by Onoi in [67]. The construction is quite intricate, and occupies
a major part of the paper: Onoi starts with 2 × 2 matrices over a certain non-
associative ring with four elements, takes a quadratic operation on pairs of the
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matrices, and then creates a left distributive isotope; thus, the quasigroup has
order 216. The smallest example, of order 15, was found later by Galkin in [26].
We see the situation twisted: it is not the loops that reveal properties of the
quasigroups, it is the other way around!

Table 2 shows some enumeration results related to Belousov-Onoi loops. The
upper part compares the numbers L(n) of all loops, BOM(n) of loops that turn
into a non-trivial BO-module, and BOL(n) of BO-loops, of order n up to isomor-
phism. The lower part compares the numbers Q(n) of all quandles, BOQ(n) of
quandles that admit a Belousov-Onoi representation as in Proposition 5.2, and
LQ(n) of latin quandles (left distributive quasigroups), of order n up to isomor-
phism. The sequences L(n), Q(n) are well known [66], the other numbers were
calculated using an exhaustive computer search.

n 1 2 3 4 5 6 7 8
L(n) 1 1 1 2 6 109 23746 106228849

BOM(n) 0 0 1 1 1 3 1 144
BOL(n) 1 0 1 1 1 0 1 3

Q(n) 1 1 3 7 22 73 298 1581
BOQ(n) 1 1 2 3 4 3 6 9
LQ(n) 1 0 1 1 3 0 5 2

Table 2: Enumeration of small loops and quandles related to the Belousov-Onoi
representation.

In the rest of the section, we present a few results that relate the Belousov-
Onoi loops to more established classes of loops, and specialize the correspondence
between left distributive quasigroups and Belousov-Onoi loops, proved in Theorem
5.5, on two important subclasses: the distributive quasigroups, and the involutory
left distributive quasigroups.

We start with a variation on [68, Theorem 2]. Our proof, based on Theorem
2.2 (the P�ugfelder's part), is much simpler.

Proposition 5.7. Let (Q, ·) be a loop, ψ an automorphism of (Q, ·) and assume its
companion mapping ϕ is a permutation. Then any two of the following properties
imply the third:

• (Q, ·) is a Belousov-Onoi loop with respect to ψ;

• (Q, ·) is a commutative Moufang loop;

• ϕ is an automorphism.

Proof. According to Theorem 2.2, (Q, ·) is a commutative Moufang loop if and
only if, for some mapping f on Q, the identity f(x)y · xz = f(x)x · yz holds.
Let f = ϕψ−1 and substitute x = ψ(a), y = ϕ(b), z = ψ(c). We obtain



116 D. Stanovský

that (Q, ·) is a commutative Moufang loop if and only if ϕ(a)ϕ(b) · ψ(a)ψ(c) =
ϕ(a)ψ(a) · ϕ(b)ψ(c) = a · ϕ(b)ψ(c) for every a, b, c ∈ Q. Consider the following
three expressions:

X = ϕ(a)ϕ(b) · ψ(a)ψ(c)
Y = a · ϕ(b)ψ(c)
Z = ϕ(ab) · ψ(a)ψ(c)

We just proved that X = Y for every a, b, c ∈ Q i� (Q, ·) is commutative Moufang.
According to condition (BO), Y = Z for every a, b, c ∈ Q i� (Q, ·) is a BO-loop with
respect to ψ. And, obviously, X = Z for every a, b, c ∈ Q i� ϕ is an automorphism
of (Q, ·).

Now we can reprove Belousov's result that every distributive quasigroup is
linear over a commutative Moufang loop (a similar argument is presented in [68,
Theorem 3]).

Proof of Theorem 3.3, (3)⇒ (4). Let (Q, ∗) be a distributive quasigroup, pick e ∈
Q a let a · b = (a/e) ∗ (e\b). Since (Q, ∗) is left distributive, (Q, ·) is a BO-loop
with respect to Le, which in turn is an automorphism of (Q, ·). Since (Q, ∗) is
right distributive, (Q, ·) is also a right(!) BO-loop (this is irrelevant for us) with
respect to Re, which in turn is an automorphism of (Q, ·). We showed that the
companion of Le is an automorphism, hence (Q, ·) is a commutative Moufang loop
by Proposition 5.7.

Next we show that B-loops are precisely the BO-loops with respect to the left
inverse mapping.

Proposition 5.8 ([5, Theorem 8]). Let (Q, ·) be a loop and ψ(x) = x\·1. Then
(Q, ·) is a Belousov-Onoi loop with respect to ψ if and only if it is a B-loop.

Proof. The backward implication was proved in Example 5.1, item 3. In the
forward direction, condition (BO) with b = 1 and c = a says that ϕ(a)ψ(a2) =
aψ(a) = 1, and thus

ϕ(a) = 1/·ψ(a2) = 1/·(a2\·1) = a2

for every a ∈ Q. Hence, (Q, ·) is a uniquely 2-divisible loop with the LAIP. Now,
condition (BO), upon substitution of ψ−1(c) for c, says that (ab)2 · ((a\·1) · c) =
a · b2c, and we can use Theorem 2.5 to conclude that (Q, ·) is a Bol loop.

With the aid of Proposition 5.8, we establish the correspondence between in-
volutory left distributive quasigroups and B-loops. This connection has a rich
history: it was �rst realized by Robinson in his 1964 PhD thesis, but published
only 15 years later in [75]. Independently, Belousov and Florya [4, Theorem 3]
noticed that involutory left distributive quasigroups are isotopic to Bol loops, but
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they did not formulate the full correspondence. Independently, the theorem was
formulated by Kikkawa [52] (at the �rst glance, it is not obvious that his loop
axioms are equivalent to those of B-loops, as he uses condition (2') of Theorem 2.5
instead of the Bol identity). The theorem was rediscovered once more in [62, The-
orems 2.5 and 2.7]. Unlike all of the other representation theorems in the present
paper, Theorem 5.9 has a fairly straightforward direct proof, and contemporary
ATP systems can prove it within a second.

Theorem 5.9 ([52, 62, 75]). The following are equivalent for a quasigroup (Q, ∗):

(1) it is involutory left distributive;

(2) there is a B-loop (Q, ·) such that a ∗ b = a2 · b−1.

Proof. (1)⇒ (2) Consider the quasigroup operation a·b = (a/e)∗(e\b). According
to Theorem 5.5, (Q, ·) is a BO-loop with respect to Le. If we prove that Le(x) =
x\·1, Proposition 5.8 applies and (Q, ·) is a B-loop. Then, clearly, the companion
mapping is ϕ(x) = x2, and thus a ∗ b = a2 · b−1.

We need to check that Le(a) = e ∗ a equals a\·1 = a\·e for every a ∈ Q.
We have e ∗ a = a\·e i� a · (e ∗ a) = e i� (a/e) ∗ a = e (we expanded the
de�nition of ·). Now multiply the last identity by a/e from the left, and obtain
(a/e) ∗ ((a/e) ∗ a) = (a/e) ∗ e = a, which is always true thanks to the involutory
law.

(2) ⇒ (1) Left distributivity was veri�ed in Proposition 5.2 through Example
5.1. It is involutory, as a ∗ (a ∗ b) = a2(a2b−1)−1 = a2(a−2b) = b thanks to the
AIP and LIP in Bruck loops.

As far as we know, only two papers, [5, 68], are devoted to Belousov-Onoi
loops. We state two more results here. The �rst one identi�es some important
subclasses of BO-loops, see [5, Theorem 2], [68, Theorem 1] and [5, Theorem 3],
respectively.

Proposition 5.10 ([5, 68]). Let (Q, ·) be a Belousov-Onoi loop.

(1) It is Bol if and only if it is left alternative.

(2) It is Moufang i� it is right alternative, i� it has the RIP, i� the identity
(xy)−1 = y−1x−1 holds, i� the identity x · yx = xy · x holds.

(3) It is a group if and only if it is left alternative and every square is nuclear.

The second is a characterization of Belousov-Onoi loops that matches well with
Theorem 2.5 on B-loops.

Theorem 5.11 ([5]). The following are equivalent for a loop (Q, ·) with an auto-
morphism ψ such that its companion mapping ϕ is a permutation:

(1) it satis�es the identity ϕ(x) · ψ(x)y = xy and it is left automorphic as a
BO-module (i.e. the left inner mappings are automorphisms of (Q, ·, ψ));
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(1′) the identities ϕ(x) · ψ(x)y = xy and Lx,yψ = ψLx,y hold;

(2) it satis�es condition (BO).

Proof sketch. The equivalence of (1') and (2) is proved in [5, Theorem 4]. Condi-
tion (1') is a special case of (1). It remains to prove that in any BO-loop (Q, ·), ev-
ery inner mapping Lx,y is an automorphism of (Q, ·, ψ). It respects ψ as postulated
in (1'). According to Theorem 5.5, (Q, ·) is isotopic to a left distributive quasi-
group, and Belousov and Florya prove in [4, Theorem 2] that every loop isotope
of a left distributive quasigroup (actually, more generally, of any F-quasigroup) is
left automorphic.

We are not aware of any general structural results on left distributive quasi-
groups proved using the correspondence of Theorem 5.5. Actually, with the ef-
�cient methods we will describe in Section 6, the correspondence could be used
in the other direction, to investigate properties of Belousov-Onoi loops via left
distributive quasigroups.

Nevertheless, in the involutory case, loop theory helps considerably, as the
theory of Bruck loops is well developed. One example for all: Glauberman proved
that �nite B-loops are solvable, and that analogies of the Lagrange and Sylow
theorems hold (see [31, Section 8] for precise statements). Since a B-loop (Q, ·) and
its corresponding involutory left distributive quasigroup (Q, ∗) are polynomially
equivalent, they share all the properties de�ned by polynomial operations. For
instance, congruences and solvability. The polynomial correspondence uses a single
constant, e, therefore, the subloops of (Q, ·) are exactly the subquasigroups of
(Q, ∗) containing e. Since e can be chosen arbitrarily, the Lagrange and Sylow
properties are shared by (Q, ∗) as well. In Section 6.3, we put these results into a
broader context.

6. Left distributive quasigroups:

Homogeneous representation

6.1. Homogeneous representation. Our exposition in this section follows our
recent paper [35] where many older ideas are collected and adjusted to the mo-
dern quandle setting. A reader interested in more details (proofs in particular), is
recommended to consult [35]. Here we try to reference the original sources.

Recall that a quandle Q is homogeneous, if Aut(Q) acts transitively on Q.
Since LMlt(Q) is a subgroup of Aut(Q), all connected quandles (and thus all left
distributive quasigroups) are homogeneous.

It is not clear who came up with Construction 6.1. But it was certainly Galkin
[24] who recognized its importance for representing self-distributive algebraic struc-
tures, followed independently by Joyce and others (perhaps a partial credit could
be paid to Loos [57], too).
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Construction 6.1 ([24, 40]). Let (G, ·) be a group, H its subgroup, and ψ an
automorphism of (G, ·) such that ψ(a) = a for every a ∈ H. Such a triple (G,H,ψ)
will be called admissible. Denote G/H the set of left cosets {aH : a ∈ G}, and
consider the binary algebra Q(G,H,ψ) = (G/H, ∗) with

aH ∗ bH = aψ(a−1b)H.

It is straightforward to verify that Q(G,H,ψ) is a homogeneous quandle. If G is
�nite, then Q(G,H,ψ) is a quasigroup if and only if, for every a, u ∈ G, aψ(a−1) ∈
Hu implies a ∈ H.

Note that the operation can be written as aH ∗ bH = ϕ(a)ψ(b)H, where ϕ is
the companion mapping to ψ, so this really is, in a way, a variation on the isotopy
method. Also note that the special case Q(G, 1, ψ), with the trivial subgroup
H = 1, is the same construction as in Example 5.3, item 2.

Example 6.2. According to Theorem 3.1, medial idempotent quasigroups are
precisely the quasigroups Q(G, 1, ψ) where G is an abelian group and ψ is an
automorphism such that its companion is a permutation (and therefore an auto-
morphism, too).

In the present section, we will denote conjugation as ab = bab−1 (unlike most
texts on group theory, we use the right-left composition of mappings, hence it
is natural to use the dual notation for conjugation). Similarly, we will denote
aG = {ag : g ∈ G} the conjugacy class of a in G, Hb = {hb : h ∈ H}, and −b the
mapping x 7→ xb. If G is a group acting on a set X and e ∈ X, we will denote eG

the orbit containing e, and Ge the stabilizer of e.
The following observation appeared in many sources in various forms, its com-

plete proof can be found e.g. in [35, Section 3].

Proposition 6.3. Let (Q, ∗) be a quandle and e ∈ Q. Let G be a normal subgroup
of Aut(Q, ∗). Then (G,Ge,−Le) is an admissible triple and the orbit subquandle
(eG, ∗) is isomorphic to the quandle Q(G,Ge,−Le).

Proof sketch. Since −Le is a restriction of an inner automorphism to a normal
subgroup, it is an automorphism of G. It is straightforward to check that it �xes
the stabilizer pointwise. Consider the bijective mapping f : G/Ge → eG, αGe 7→
α(e). Again, it is straightforward to check that this is a quandle isomorphism
Q(G,Ge,−Le) ' (eG, ∗).

Consider three particular choices of the normal subgroup: G = Aut(Q, ∗),
G = LMlt(Q, ∗) and G = LMlt(Q, ∗)′, respectively. If G acts transitively on Q,
Proposition 6.3 claims the following:

(1) Every homogeneous quandle (Q, ∗) is isomorphic to Q(G,Ge,−Le) with G =
Aut(Q, ∗).
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(2) Every connected quandle (Q, ∗) is isomorphic to Q(G,Ge,−Le) with G =
LMlt(Q, ∗). This will be called the canonical representation of (Q, ∗).

(3) Every connected quandle (Q, ∗) is isomorphic to Q(G,Ge,−Le) with G =
LMlt(Q, ∗)′. This will be called the minimal representation of (Q, ∗). (To
make it work, one has to show that the actions of LMlt(Q, ∗) and LMlt(Q, ∗)′
have identical orbits [24, 40].)

Corollary 6.4 ([40, Theorem 7.1]). A quandle is isomorphic to Q(G,H,ψ) for
some admissible triple (G,H,ψ) if and only if it is homogeneous.

Why minimal representation? Galkin [24, Theorem 4.4] proved the following
fact: if a connected quandle (Q, ∗) is isomorphic to Q(G,H,ψ) for some admissible
triple (G,H,ψ), then LMlt(Q)′ embeds into a quotient of G. Hence, if Q is �nite,
the minimal representation is the one with the smallest group G.

Why canonical representation? Fix a set Q and an element e. We have a
1-1 correspondence between connected quandles (Q, ∗) on one side, and certain
con�gurations in transitive groups acting on Q on the other side. A quandle
envelope is a pair (G, ζ) where G is a transitive group on Q and ζ ∈ Z(Ge) (here
Z denotes the center) such that 〈ζG〉 = G. The correspondence is given by the
following two mutually inverse mappings:

connected quandle ↔ quandle envelope

(Q, ∗) → (LMlt(Q, ∗), Le)
Q(G,Ge,−ζ) ← (G, ζ)

If Q is �nite, then an envelope (G, ζ) corresponds to a latin quandle if and only if
ζ−1ζα has no �xed point for every α ∈ GrGe. Moreover, two envelopes (G1, ζ1)
and (G2, ζ2) yield isomorphic quandles if and only if there is a permutation f of

Q such that f(e) = e, ζf1 = ζ2 and Gf1 = G2 (in particular, the two groups are
isomorphic). See [35, Section 5] for details, and [35, Section 7] for a plenty of
illustrative examples (the correspondence seems to be an original contribution of
the paper).

Canonical representation is arguably the most powerful tool currently available
to study connected quandles, and left distributive quasigroups in particular, as we
shall see in the remaining part of the section.

6.2. Enumeration. Canonical representation allows to enumerate connected
quandles (left distributive quasigroups in particular) with n elements, provided a
classi�cation of transitive groups of degree n. Currently, such a library is available
for n ≤ 47. The enumeration of small connected quandles was carried out in
[35, 90]. Here, in Table 3, we present the numbers of quasigroups, where LD(n)
refers to non-medial left distributive ones, and ILD(n) to non-medial involutory
left distributive ones, of order n up to isomorphism. We recall from Section 3.2
that MI(n) denotes the number of medial idempotent quasigroups and can be
determined by Hou's formulas [34].
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LD(n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
ILD(n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

MI(n) 1 0 1 1 3 0 5 2 8 0 9 1 11 0 3 9

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

LD(n) 0 0 0 0 2 0 0 0 0 0 32 2 0 0 0 0
ILD(n) 0 0 0 0 1 0 0 0 0 0 4 0 0 0 0 0

MI(n) 15 0 17 3 5 0 21 2 34 0 30 5 27 0 29 8

n 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

LD(n) 2 0 0 1 0 0 2 0 0 0 0 0 12 0 0
ILD(n) 1 0 0 0 0 0 1 0 0 0 0 0 3 0 0

MI(n) 9 0 15 8 35 0 11 6 39 0 41 9 24 0 45

Table 3: Enumeration of small left distributive quasigroups.

From the historical perspective, the �rst serious attempt on enumeration was
carried out by Galkin [26] who calculated (without a computer!) the numbers
LD(n) for n < 27, and found that LD(27) ≥ 3. A few results in the involutory
case can be found in an earlier paper by Nobusawa [64]. In [90], Vendramin
enumerated connected quandles of size n ≤ 35, which was the state-of-the-art
in the classi�cation of transitive groups at the time, but his algorithm works for
larger orders as well.

One can make a few observations about Table 3. Most obviously, we do not
see any left distributive quasigroups (medial or not) with 4k+2 elements. This is
true for every k, as proved by Stein already in the 1950s [83, Theorem 9.9].

Theorem 6.5 ([83]). There are no left distributive quasigroups of order 4k + 2,
for any k ≥ 0.

The fact is easy to observe in the medial case: any medial idempotent quasi-
group of order 4k+2 is linear over an abelian group which is the direct product of
Z2 and a group of odd order; however, there is no idempotent quasigroup of order
2. Stein's remarkable argument uses a topological reasoning, constructing a trian-
gulated polyhedron from the graph of the quasigroup and discussing parity of its
Euler characteristic (for details, see [83] or [30, Section 6]). In [85], Stein observed
that the result extends to all homogeneous quasigroups, since each of them is iso-
topic to an idempotent quasigroup and the same method as in the self-distributive
case proves non-existence. In [24, Theorem 6.1], Galkin proved Stein's theorem
using a short group theoretical argument about the minimal representation.

Let us note that connected quandles of order 4k + 2 do exist, although there
are no connected quandles with 2p elements for any prime p > 5 [35, 59].
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Our second observation about Table 3 is that there are severe restrictions on
the admissible orders of non-medial left distributive quasigroups. Many gaps are
justi�ed by the following theorem.

Theorem 6.6 ([19, 32]). Every connected quandle with p or p2 elements, p prime,
is medial.

The prime case was proved by Galkin [24] for quasigroups, and by Etingof,
Soloviev and Guralnick [19] for connected quandles. A conceptually simpler proof
using canonical representation can be found in [35, Section 8], here is an outline.
First, use a group-theoretical result by Kazarin: in a �nite group G, if |aG| is
a prime power, then 〈aG〉 is solvable; with little work, it follows that if Q is a
connected quandle of prime power size, then LMlt(Q) is solvable. Now recall that
a transitive group (here: LMlt(Q)) acting on a set of prime size (here: Q) is
primitive, and apply a theorem of Galois stating that any �nite solvable primitive
group acts as a subgroup of the a�ne group over a �nite �eld.

The prime square case for quasigroups is claimed by Galkin in [30] but never
appeared in print; for connected quandles, it was solved by Graña [32]. For invo-
lutory left distributive quasigroups, the proof is substantially easier, see [64]. The
prime cubed case is discussed in [1], but the classi�cation is not easy to state.

We can also observe that there are no non-medial left distributive quasigroups
of order 2k for k = 1, 2, 3, 4, 5. However, this is not a general property: in fact,
the �rst ever example of a left distributive quasigroup not isotopic to a Bol loop,
constructed by Onoi [67], has 216 elements. The smallest non-medial connected
quandle with 2k elements exists for k = 5, but we do not know the smallest k in
the quasigroup case.

Our �nal observation is that there are precisely two non-medial left distributive
quasigroups of order 3p for p = 5, 7, 11, 13. Two such examples were constructed
for every prime p ≥ 5 by Galkin in [26] (the construction was studied recently in
a great detail in [13, 14], see also Example 5.6). It is an open problem whether
there exist any other connected quandles with 3p elements.

6.3. Structural properties. We will mention a few subalgebra and congruence
properties here. A �nite quasigroup of order n has the Lagrange property, if the
order of every subquasigroup divides n. It has the Sylow property, if, for every
maximal prime power divisor pk of n, there is a subquasigroup of order pk (stronger
versions of the Sylow property exist, and we refer to each particular paper for its
own precise de�nition). Informally, a left distributive quasigroup is called solvable,
if it can be constructed by a chain of extensions by medial quasigroups; formal
de�nitions di�er [25, 41, 65], but they seem to share the following property: a
left distributive quasigroup is solvable if and only if its left multiplication group
is solvable. (We note that it is not at all clear what is the "correct" notion of
solvability for quasigroups and loops, see [82] for a thorough discussion; the par-
ticular choice made by Glauberman, following Bruck, is only one of the reasonable
options.)
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Finite involutory left distributive quasigroups are solvable and have the La-
grange and Sylow properties. This has been proved independently several times,
using each of the three methods we have discussed: through the conjugation repre-
sentation in [41], through the isotopy to B-loops (combining Theorem 5.9 and the
results of Glauberman on B-loops [31]), and through the homogeneous representa-
tion in [28]. In each case, the underlying group theoretical result is Glauberman's
Z∗-theorem, which is used to show that the left multiplication group is solvable.
An in�nite counterexample to solvability is presented in [28].

Later, Galkin generalized the results into the non-involutory setting. In [25],
he proves that every �nite solvable left distributive quasigroup has the Lagrange
property, but not necessarily the Sylow property (a counterexample of order 15
exists). In [27], he proves the Sylow property under the additional assumption
that the order of the quasigroup, and the order of its translations, are coprime
(this is always true in the involutory case).

Recall that all left distributive quasigroups isotopic to a group admit a ho-
mogeneous representation of the form Q(G, 1, ψ), cf. Example 5.3. They also
satisfy the Lagrange and Sylow properties [24, Theorem 5.3]. This fact is used to
show an important structural feature: a �nite left distributive quasigroup with no
non-trivial subquasigroups is medial [24, Theorems 5.5 and 7.2].

More information about Galkin's results on left distributive quasigroups can be
found in his survey paper [30, Section 6]. A part of Galkin's theory was translated
to English and clari�ed in [91].

7. Open problems

Several interesting problems appeared to us while writing the paper.

7.1. Commutator theory over "non-associative modules". Universal al-
gebra develops a commutator theory based on the notion of abelianess, related
to a�ne representation over classical modules (see [82] for the commutator the-
ory adapted to loops, and the references thereof). For instance, Theorem 3.1 can
be explained in this manner. Is there a meaningful weakening of the principle
of abelianess, related to a�ne representation over some sort of "non-associative
modules"? A one that would, for instance, explain Theorem 3.2? To what extent
the module theoretic methods can be adapted to the non-associative setting?

7.2. Non-idempotent generalization of left distributive quasigroups.

Find a "non-idempotent generalization" of Theorem 5.5: describe the class of
quasigroups (whose idempotent members are precisely the left distributive quasi-
groups) that are right a�ne over Belousov-Onoi loops; perhaps, impose an addi-
tional condition on the representation in order to obtain an elegant description of
the class. Theorem 3.2 shall follow as an easy consequence of this generalization,
just as it happens in the idempotent case (see Section 5.2). We are not aware of
any results even in the involutory case (generalizing Theorem 5.9).
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7.3. Enumeration. The generic problem is, to extend all enumeration results
presented in this paper. Perhaps the most interesting questions are:

1. distributive and trimedial quasigroups of order 35;

2. commutative Moufang loops of order 36 and the corresponding enumeration
of distributive and trimedial quasigroups of order 36;

3. connected quandles and left distributive quasigroups of order 3p, p prime, or
more generally, pq, p, q primes;

4. left distributive quasigroups of order 2k, k > 5 (cf. [67]).

Acknowledgement. I am indebted to my former student Jan Vlachý for a thor-
ough research on Galkin's papers and for explaining me their contents and signif-
icance. His remarkable student project [91] on enumeration of small left distribu-
tive quasigroups convinced me that this is the right approach to left distributive
quasigroups in particular, and connected quandles in general.
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Three lectures on automorphic loops

Petr Vojt¥chovský

Abstract. These notes accompany a series of three lectures on automorphic loops to be
delivered by the author at Workshops Loops '15 (Ohrid, Macedonia, 2015). Automorphic loops
are loops in which all inner mappings are automorphisms.

The �rst paper on automorphic loops appeared in 1956 and there has been a surge of interest
in the topic since 2010. The purpose of these notes is to introduce the methods used in the study
of automorphic loops to a wider audience of researchers working in nonassociative mathematics.

In the �rst lecture we establish basic properties of automorphic loops (�exibility, power-
associativity and the antiautomorphic inverse property) and discuss relations of automorphic
loops to Moufang loops.

In the second lecture we expand on ideas of Glauberman and investigate the associated oper-
ation (x−1\(y2x))1/2 and similar concepts, using a more modern approach of twisted subgroups.
We establish many structural results for commutative and general automorphic loops, including
the Odd Order Theorem.

In the last lecture we look at enumeration and constructions of automorphic loops. We show
that there are no nonassociative simple automorphic loops of order less than 4096, we study
commutative automorphic loops of order pq and p3, and introduce two general constructions of
automorphic loops.

The material is newly organized and sometimes new, shorter proofs are given.
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Introduction

The purpose of these notes is to give a gentle introduction into the theory of
automorphic loops that nevertheless captures the main ideas of current investi-
gation. Due to the limited scope of the lectures, not all proofs are included and
not all known results about automorphic loops are stated. A survey article on
automorphic loops that attempts to remedy both of these shortcomings is under
preparation by the author and will appear elsewhere.

Let Q = (Q, ·, \, /, 1) be a loop, where we also write xy to denote the product
x · y. For x ∈ Q, let

Lx : Q→ Q, Lx(y) = xy and Rx : Q→ Q, Rx(y) = yx

be the left and right translation by x, respectively. The permutation group

Mlt(Q) = 〈Lx, Rx : x ∈ Q〉

is called the multiplication group of Q, and its subloop

Inn(Q) = 〈ϕ ∈ Mlt(Q) : ϕ(1) = 1〉

is the inner mapping group of Q.
Denote by Aut(Q) the automorphism group of Q. An automorphic loop (or

A-loop) is a loop Q in which every inner mapping is an automorphism, that is,
Inn(Q) ≤ Aut(Q). Note that groups are automorphic loops, but the converse is
certainly not true.

The following multiplication table speci�es a nonassociative automorphic loop
of the smallest possible order, which we will call Q6:

Q6 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 4 6 3 5
3 3 5 1 2 6 4
4 4 3 6 5 1 2
5 5 6 2 1 4 3
6 6 4 5 3 2 1

.

Properties of Q6 can be checked in the GAP [19] package LOOPS [38], for instance.
Bruck proved [5] that in any loop

Inn(Q) = 〈Lx,y, Rx,y, Tx : x, y ∈ Q〉,

where

Lx,y(z) = (yx)\(y(xz)), Rx,y(z) = ((zx)y)/(xy), and Tx(y) = x\(yx).
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It is also well known that a mapping between two loops is a homomorphism of
loops if and only if it respects the multiplication operation. Because this fact is of
crucial importance for automorphic loops, we give a short proof:

Let f : (A, ·A, \A, /A, 1A) → (B, ·B , \B , /B , 1B) be a mapping between loops
such that f(x ·A y) = f(x) ·B f(y) for every x, y ∈ A. Then f(x) ·B f(x\Ay) =
f(x ·A (x\Ay)) = f(y) and therefore f(x\Ay) = f(x)\Bf(y) for every x, y ∈ Q.
The argument for right division is dual, and the property f(1A) = 1B is obtained
by cancelation from f(1A) = f(1A ·A 1A) = f(1A) ·B f(1A).

It follows that a loop Q is an automorphic loop if and only if for every x, y ∈ Q
the inner mappings Lx,y, Rx,y and Tx respect multiplication. Consequently, the
class of automorphic loops is a subvariety of the variety of loops, consisting of all
loops satisfying the axioms

(yx)\(y(x(uv))) = ((yx)\(y(xu)))((yx)\(y(xv))), (A`)

(((uv)x)y)/(xy) = (((ux)y)/(xy))(((vx)y)/(xy)), (Ar)

x\((uv)x) = (x\(ux))(x\(vx)). (Am)

In particular, subloops, factor loops and homomorphic images of automorphic
loops are again automorphic loops.

We call a loop left automorphic if (A`) holds, right automorphic if (Ar) holds,
and middle automorphic if (Am) holds.

The axioms (A`), (Ar), (Am) are somewhat long and intimidating, certainly
much more so than the axiom

(xy)(zx) = (x(yz))x (M)

de�ning Moufang loops, for instance. But the message of the axioms is easy to
remember��inner mappings respect multiplication��and, as we shall see, auto-
morphic loops are very much amenable to algebraic investigation.

Such an investigation started in earnest in 1956 with the work of Bruck and
Paige [6]. We will retrace some of their steps, for instance by proving that au-
tomorphic loops are power-associative. The main contribution of [6], which we
will not follow here, was to demonstrate that diassociative automorphic loops
share many properties with Moufang loops (which are always diassociative, by
Moufang's theorem [36]).

The conjecture that every diassociative automorphic loop is Moufang is implicit
in [6], but its proof remained elusive for 45 years. The conjecture was established
for the special case of commutative loops by Osborn in 1958 [41]. Since commuta-
tive Moufang loops are automorphic by [5] (or see Proposition 1.14), it follows from
Osborn's result that commutative Moufang loops are precisely commutative dias-
sociative automorphic loops. The full conjecture was �nally con�rmed by Kinyon,
Kunen and Phillips in 2002 [33].

Following a few sporadic results in late 1900s and early 2000s, of which we
mention [14, 17, 32, 39, 43], automorphic loops became one of the focal areas
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in loop theory after the work of Jedli£ka, Kinyon and the author on commutative
automorphic loops [25, 26] was circulated. It is worth mentioning that some results
of [25] were �rst obtained by automated deduction [35], which remains in�uential
in this �eld. But once the initial hurdles were cleared, the theory opened up to
more traditional modes of investigation.

New results by many authors followed in quick succession. We mention two
highlights: Odd Order Theorem for automorphic loops [34], and solvability of �nite
commutative automorphic loops [23].

The �eld remains active and we hope that these survey notes will attract new
researchers to automorphic loops and related areas. Open problems can be found
in the last section of this paper.

From now on we will employ the following notational conventions in order to
save parentheses and improve legibility. The division operations are less binding
than juxtaposition, and the explicit · multiplication is less binding than divisions
and juxtaposition. For instance, x/y · y\zy means (x/y)(y\(zy)).

Lecture 1: Basic properties

In this section we establish some basic properties of automorphic loops. Most of
these properties were known already to Bruck and Paige [6], except that they were
not aware of the fact that automorphic loops have the antiautomorphic inverse
property (see [29] or Proposition 1.4) and its consequences (one of the axioms (A`),
(Ar) can be ommitted by Theorem 1.6, and the left and right nuclei coincide by
Theorem 1.11). Of course, they also did not know that diassociative automorphic
loops are Moufang [33], a result that we have incorporated without proof into
Theorem 1.12.

Many proofs presented in this section shorten older arguments. We do not
hesitate to prove even folklore results to better show to the reader that most
result in this section can be derived quickly from �rst principles. In this spirit,
consider:

Lemma 1.1. Let Q be a loop and ϕ ∈ Aut(Q). Then

ϕL±1x ϕ−1 = L±1ϕ(x), ϕR±1x ϕ−1 = R±1ϕ(x),

ϕT±1x ϕ−1 = T±1ϕ(x), ϕL±1x,yϕ
−1 = L±1ϕ(x),ϕ(y), ϕR±1x,yϕ

−1 = R±1ϕ(x),ϕ(y)

for every x, y ∈ Q.

Proof. We have ϕLxϕ
−1(y) = ϕ(x · ϕ−1(y)) = ϕ(x) · ϕ(ϕ−1(y)) = ϕ(x) · y =

Lϕ(x)(y), so ϕLxϕ
−1 = Lϕ(x). Then ϕL−1x ϕ−1 = (ϕLxϕ

−1)−1 = L−1ϕ(x). The

argument for Rx is similar. Then ϕTxϕ
−1 = ϕL−1x Rxϕ

−1 = ϕL−1x ϕ−1ϕRxϕ
−1 =

L−1ϕ(x)Rϕ(x) = Tϕ(x), and so on.
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Thus in any loop Q, the automorphism group Aut(Q) acts on Mlt(Q) and on
Inn(Q) by conjugation, mapping left inner mappings to left inner mappings, and
so on. If Q is an automorphic loop, then the action of Aut(Q) induces an action
of Inn(Q).

1.1. Flexibility and power-associativity

A loop Q is �exible if x(yx) = (xy)x holds for every x, y ∈ Q. A consequence of
�exibility is that every element x has a (unique) two-sided inverse x−1. Indeed, if
x`, xr ar the left and right inverses of x, respectively, then x = x(x`x) = (xx`)x,
so xx` = 1 = xxr and x` = xr.

Proposition 1.2 ([6, p. 311]). Every middle automorphic loop is �exible.

Proof. Suppose that Q satis�es (Am). Then Tx(xy) = Tx(x) · Tx(y), and multi-
plying this equality by x on the left yields (xy)x = x(x\xx ·x\yx) = x(x ·x\yx) =
x(yx).

We remark that there exists a loop (of order 6) that is both left and right
automorphic, yet does not posses two-sided inverses, so is also not �exible.

A loop Q is said to be power-associative if for every x ∈ Q the subloop 〈x〉 of
Q generated by x is associative. For a prime p, a power-associative loop Q is said
to be a p-loop if every element of Q has order that is a power of p.

Assuming two-sided inverses, a general strategy for proving power-associativity
is as follows: De�ne nominal powers x[n] by letting x[0] = 1, x[k+1] = xx[k] and
x[−k] = (x[k])−1. Then it is not hard to show by induction that Q is power-
associative if and only if

x[i](x[j]x[k]) = (x[i]x[j])x[k] (1.1)

for all i, j, k ∈ Z. A typical proof of (1.1) in a given variety of loops is based on a
careful induction. In automorphic loops, however, Bruck and Paige [6] employed
an ingenious argument that we will essentially follow here.

Note that for any loop Q and a subset A of Aut(Q) the set

Fix(A) = {x ∈ Q : ϕ(x) = x for every ϕ ∈ A}

of common �xed points of automorphisms from A is a subloop of Q.

Proposition 1.3 ([6, Theorems 2.4 and 2.6]). Every automorphic loop is power-
associative and satis�es (xiy)xj = xi(yxj), xi(xjy) = xj(xiy), (yxi)xj = (yxj)xi

for every i, j ∈ Z.

Proof. Our loop Q is �exible by Proposition 1.2, which implies that x ∈ Fix(Ly,x)
and hence 〈x〉 ≤ Fix(Ly,x). In particular, (xy)x[j] = x(yx[j]). (Note that we have
not used (Ar) yet.) This means that the inner mapping R−1

yx[j]Rx[j]Ry �xes x, thus
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also x[i], and we have (x[i]y)x[j] = x[i](yx[j]). As a special case we obtain (1.1),
which implies power-associativity. Then xi is well-de�ned, coincides with x[i], and
(xiy)xj = xi(yxj) follows.

The inner mapping R−1xy LxRy trivially �xes x, so also xi. This shows that

R−1xiyLxiRy �xes x, so also xj , and xi(xjy) = xj(xiy) follows. The last identity is
proved dually.

Note that the identities of Proposition 1.3 say that for a �xed x in an auto-
morphic loop Q, the group 〈Lxi , Rxi : i ∈ Z〉 is commutative.

1.2. Antiautomorphic inverse property

A loop with two-sided inverses has the antiautomorphic inverse property if it sat-
is�es the identity

(xy)−1 = y−1x−1. (1.2)

We are now going to show that every automorphic loop has the antiautomorphic
inverse property. For reasons that become clear, we prove a seemingly stronger
result, assuming only (A`) and (Am). We give a shorter proof than in [29].

Proposition 1.4 (compare [29, Proposition 7.4]). Every loop that is both left and
middle automorphic has the antiautomorphic inverse property.

Proof. In the proof of Proposition 1.3 we established (xy)x[j] = x(yx[j]) using only
(A`) and (Am). In particular, we can use (xy)x−1 = x(yx−1) below. Consider
ψ = L−1y LxLx\y = Lx\y,x ∈ Aut(Q). Since ψ((x\y)−1) = y\x, we also have
ψ(x\y) = (y\x)−1. Then (y\x)−1 · y−1 = (y\x)−1 · y\1 = ψ(x\y)ψ((x\y)\x−1) =
ψ(x−1) = y\(x ·(x\y)x−1) = y\(x(x\y) ·x−1) = y\yx−1 = x−1. Then (1.2) follows
by substituting yx for x.

In general, the antiautomorphic inverse property has a similar e�ect as commu-
tativity in the sense that it allows one to deduce properties about right concepts
from properties of left concepts, and vice versa. In the following well-known lemma,
let J be the inversion mapping x 7→ x−1.

Lemma 1.5. Let Q be an antiautomorphic inverse property loop. Then the inver-
sion mapping J is an involutory antiautomorphism of Q. Moreover, JLxJ = Rx−1

and JLx,yJ = Rx−1,y−1 for every x, y ∈ Q.

Proof. With x, y ∈ Q we have JLxJ(y) = (xy−1)−1 = yx−1 = Rx−1(y), so
JLxJ = Rx−1 . Then JLx,yJ = JL−1yx J · JLyJ · JLxJ = R−1(yx)−1Ry−1Rx−1 =

R−1x−1y−1Ry−1Rx−1 = Rx−1,y−1 .

We now easily arrive at the following important result:

Theorem 1.6 (compare [29, Theorem 7.1]). The following properties are equiva-
lent for a loop Q:
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(i) Q is automorphic,

(ii) Q is left and middle automorphic,

(iii) Q is right and middle automorphic.

Proof. Thanks to the duality, it su�ces to establish the implication (ii) ⇒ (i).
Suppose that Q is left and middle automorphic. By Proposition 1.4, Q has the
antiautomorphic inverse property. By Lemma 1.5, J is an antiautomorphism and
Rx−1,y−1 = JLx,yJ is an automorphism, being a composition of an automorphism
and two antiautomorphisms.

We can further exploit the inversion mapping J .

Lemma 1.7 ([34, Lemma 2.7]). Let Q be an automorphic loop. Then J centralizes
Inn(Q). Moreover, Lx,y = Rx−1,y−1 and T−1x = Tx−1 for every x, y ∈ Q.

Proof. Because ϕ(x−1) = ϕ(x)−1 for every x ∈ Q and ϕ ∈ Aut(Q), the inversion
mapping J centralizes Inn(Q) ≤ Aut(Q). Combining this with Lemma 1.5 yields
Lx,y = JLx,yJ = Rx−1,y−1 . Using this fact and Proposition 1.3 yields TxTx−1 =

L−1x RxL
−1
x−1Rx−1 = RxRx−1L−1x L−1x−1 = Rx−1,xL

−1
x,x−1 = Rx−1,xR

−1
x−1,x = 1.

1.3. Nuclei

As usual, de�ne the left, middle and right nucleus of a loop Q by

N`(Q) = {a ∈ Q : a(xy) = (ax)y for all x, y ∈ Q},
Nm(Q) = {a ∈ Q : x(ay) = (xa)y for all x, y ∈ Q},
Nr(Q) = {a ∈ Q : x(ya) = (xy)a for all x, y ∈ Q},

respectively, and the nucleus of Q by N(Q) = N`(Q) ∩Nm(Q) ∩Nr(Q).
It is easy to observe that all the nuclei are associative subloops of Q. In general

loops, there is no relationship between the three nuclei N`(Q), Nm(Q) and Nr(Q).
On the other hand, it is well known (see below) that in inverse property loops all
nuclei coincide.

Recall that a loop with two-sided inverses has the left inverse property if
x−1(xy) = y holds, the right inverse property if (xy)y−1 = x holds, and the
inverse property if it has both the left and right inverse properties.

Proposition 1.8 ([5, Theorem VII.2.1]). In antiautomorphic inverse property
loops the left and right nuclei coincide. In inverse property loops all nuclei coincide.

Proof. Suppose thatQ satis�es (1.2). Then the condition ax·y = a·xy is equivalent
to y−1 · x−1a−1 = y−1x−1 · a−1, so N`(Q) = Nr(Q). Now suppose that Q has the
inverse property. From (xy)−1x = (xy)−1(xy · y−1) = y−1 we deduce (1.2), so it
remains to show that N`(Q) = Nm(Q). If ax · y = a · xy then y = (ax)−1(a · xy),
and substituting x = a−1u−1, y = ua · v yields ua · v = y = u · av. The other
inclusion follows by a similar argument.
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Suppose that Q is an automorphic loop. We know from Proposition 1.4 that
Q has the antiautomorphic inverse property, and thus that N`(Q) = Nr(Q) by
Proposition 1.8. But taking x = 2 and y = 3 in Q6 shows that Q does not
necessarily have the left or right inverse property, so there is no a priori reason
why the nuclei of Q should coincide. In fact, there are automorphic loops Q
satisfying the strict inclusion N(Q) = N`(Q) = Nr(Q) < Nm(Q). Theorem 1.11
shows that no other inclusions among nuclei arise in automorphic loops.

Call a subloop S of a loop Q characteristic if ϕ(S) = S for every ϕ ∈ Aut(Q).
In general loops, nuclei are not necessarily normal subloops, but they are always

characteristic subloops. For instance, if a ∈ N`(Q) and ϕ ∈ Aut(Q) then ϕ(a) ·
ϕ(x)ϕ(y) = ϕ(a · xy) = ϕ(ax · y) = ϕ(a)ϕ(x) · ϕ(y) shows that ϕ(a) ∈ N`(Q).

In automorphic loops, nuclei are therefore normal subloops thanks to this easy
but important fact:

Lemma 1.9 ([6, Theorem 2.2]). Let Q be an automorphic loop and S a charac-
teristic subloop of Q. Then S is normal in Q.

Proof. A subloop S is normal in Q if and only if ϕ(S) = S for every ϕ ∈ Inn(Q).

Lemma 1.10. Let Q be an automorphic loop. Then TxTy(a) = Tyx(a) for every
a ∈ N`(Q) = Nr(Q).

Proof. We have already shown that N`(Q) = Nr(Q) is a characteristic subloop of
Q. Let u = Tx(y) (that is, xu = yx). Because a ∈ Nr(Q), we also have Txu(a) ∈
Nr(Q), and so x(uTxu(a)) = (xu)Txu(a) = a(xu). Since a ∈ N`(Q), we then have
TxTy(a) = Tx(y\ay) = Tx(y)\Tx(ay) = Tx(y)\(x\(ay)x) = Tx(y)\(x\a(yx)) =
u\(x\a(xu)) = u\(x\x(uTxu(a))) = Txu(a) = Tyx(a).

Theorem 1.11. Let Q be an automorphic loop. Then N(Q) = N`(Q) = Nr(Q) ≤
Nm(Q) and all nuclei are normal subloops of Q.

Proof. All nuclei are normal by Lemma 1.9. Let A = N`(Q) = Nr(Q). It remains
to prove that A ≤ Nm(Q). Note that Lx,y and Rx,y �x A pointwise, while (xa)y =
x(ay) holds if and only if Mx,y(a) = a, where Mx,y = L−1x R−1y LxRy.

Given a ∈ A, we want to show that Mx,y(a) = a. Now,

Mx,y = (L−1x Rx)(R−1x R−1y Rxy)(R−1xy Lxy)(L−1xy LxLy)(L−1y Ry),

and thus Mx,y = TxR
−1
x,yT

−1
xy Ly,xTy. While evaluating Mx,y at a, we never leave

the normal subloop A, so Mx,y(a) = TxT
−1
xy Ty(a). By Lemma 1.10, Mx,y(a) =

TxT
−1
xy Ty(a) = Tx(TyTx)−1Ty(a) = a.

The middle nucleus is important in automorphic loops but its role is not fully
understood.
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1.4. Diassociativity and the Moufang property

Up to this point we have carefully proved all the results. In this subsection we
skip some proofs and refer the reader to the literature.

A loop has the left alternative property if it satis�es x(xy) = (xx)y and the
right alternative property if x(yy) = (xy)y holds. A loop Q is diassociative if any
two elements of Q generate an associative subloop.

By Moufang's theorem [36], Moufang loops are diassociative. The loop Q6 with
x = 2 and y = 3 shows that automorphic loops need not have the left alternative
property nor the right alternative property so, in particular, they need not be
diassociative.

Bruck and Paige proved in [6, Theorem 2.4] that the following properties are
equivalent for an automorphic loop Q: Q is diassociative; Q satis�es both left
and right inverse properties; Q satis�es both left and right alternative properties.
Moreover, as we have already mentioned in the introduction, every diassociative
automorphic loop is Moufang [33]. Thanks to Proposition 1.4, we can re�ne these
results as follows:

Theorem 1.12. The following properties are equivalent for an automorphic loop
Q :

(i) Q has the left alternative property

(ii) Q has the right alternative property,

(iii) Q has the left inverse property,

(iv) Q has the right inverse property,

(v) Q is diassociative,

(vi) Q is Moufang.

Proof. Suppose that Q has the left alternative property. Then Proposition 1.4
implies that (yx · x)−1 = x−1 · x−1y−1 = x−1x−1 · y−1 = (y · xx)−1, so Q has
the right alternative property. A similar argument �nishes the equivalence of (i)
and (ii), and also proves the equivalence of (iii) and (iv). The rest follows from
[6, 33].

We conclude this section with Bruck's proof of the fact that commutative
Moufang loops are automorphic. The argument is based on nice observations
about autotopisms and companions of pseudo-automorphisms, which we review.

Let Q be a loop. A triple (f, g, h) of bijections Q → Q is an autotopism if
f(x)g(y) = h(xy) holds for every x, y ∈ Q. It is easy to see that the coordinate-
wise product (composition) of autotopisms is an autotopism.

If a bijection f of Q and c ∈ Q satisfy the identity f(x) · f(y)c = f(xy)c, then
f is called a pseudo-automorphism of Q with companion c.
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Lemma 1.13 (compare [5, Lemma VII.2.1]). Let Q be a loop and (f, g, h) an
autotopism of Q such that f(1) = 1. Then g = h and g(x) = f(x)c, where
c = g(1). Hence f is a pseudo-automorphism with companion c = g(1).

Proof. We have g(x) = f(1)g(x) = h(1 · x) = h(x), so g = h. Also, f(x)c =
f(x)g(1) = h(x) = g(x). Finally, f(x) · f(y)c = f(x)g(y) = h(xy) = g(xy) =
f(xy)c.

Proposition 1.14 ([5, Lemma VII.3.3]). Commutative Moufang loops are auto-
morphic.

Proof. Let Q be a commutative Moufang loop. Let f be a pseudo-automorphism
of Q with companion c. Then f(x) · cf(y) = f(x) · f(y)c = f(xy)c = f(yx)c =
f(y) · f(x)c = f(x)c · f(y) for every x, y ∈ Q, so c ∈ Nm(Q). Since Q is an inverse
property loop, its nuclei coincide by Proposition 1.8 and we have c ∈ Nr(Q). Then
c can be canceled in f(x) · f(y)c = f(xy)c and f ∈ Aut(Q) follows.

It therefore su�ces to prove that the mappings Lx,y are pseudo-automorphisms.
The Moufang identity (M) is equivalent to the statement that ϕx = (Lx, Rx, RxLx)
is an autotopism of Q. Then ϕ−1yxϕyϕx is an autotopism with �rst component Lx,y.
By Lemma 1.13, Lx,y is a pseudo-automorphism.

Lecture 2: Associated operations

Many of the concepts presented in this section can be traced to two in�uential
papers [20, 21] on loops of odd order written by Glauberman in the 1960s. In
his study of Moufang loops (Q, ·) of odd order [21], the most important idea was
to associate another loop (Q, •) with (Q, ·), de�ned by x • y = x1/2yx1/2, where
x1/2 is the unique square root of x in (Q, ·). The resulting loop (Q, •) is an
instance of what would nowadays be called a Bruck loop (or a K-loop). This
made Glauberman study Bruck loops of odd order and their left multiplication
groups in detail [20] and establish a number of key results for them (see Theorem
2.2). He then transferred the results from Bruck loops to Moufang loops.

We follow a similar approach but in a more general setting of twisted subgroups.
We show how to associate left Bruck loops with uniquely 2-divisible left Bol loops
and with uniquely 2-divisible automorphic loops. We then follow [22] and establish
a one-to-one correspondence between left Bruck loops of odd order and a certain
class of commutative loops containing commutative automorphic loops of odd
order. This will allow us to prove an analog of Theorem 2.2 for commutative
automorphic loops. Finally, as in [34] we establish a one-to-one correspondence
between uniquely 2-divisible automorphic loops whose associated left Bruck loop
is associative and a certain class of uniquely 2-divisible Lie rings. This eventually
leads to the Odd Order Theorem for automorphic loops. For the convenience of
the reader, the correspondence results are visualized in Figure 2.
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2.1. Bruck loops

A loop Q is a left Bol loop if it satis�es the left Bol identity

x(y(xz)) = (x(yx))z. (2.3)

It is well known that left Bol loops have the left inverse property.
The following result gives a nice axiomatization of left Bol loops in the variety

of magmas with inverses.

Lemma 2.1 ([31, (3.10)] and [42, Theorem 4.1]). Let (Q, ·) be a groupoid with an
identity element and two-sided inverses satisfying (2.3). Then (Q, ·) is a left Bol
loop.

Consequently, a nonempty subset of a left Bol loop is a subloop if it is closed
under mutiplication and inverses.

A left Bruck loop is a left Bol loop with the automorphic inverse property
(xy)−1 = x−1y−1.

Here is an omnibus result on Bruck loops of odd order compiled from [20, 21].
Recall that the left multiplication group ofQ is de�ned by Mlt`(Q) = 〈Lx : x ∈ Q〉.
Theorem 2.2 (Glauberman). Let Q be a left Bruck loop of odd order. Then Q
is solvable. If H ≤ Q then |H| divides |Q|. If p is a prime dividing |Q| then there
is x ∈ Q such that |x| = p. Sylow p-subloops and Hall π-subloops of Q exist. The
left multiplication group Mlt`(Q) of Q is of odd order.

If also |Q| = pk for an odd prime p, then Q is centrally nilpotent.

2.2. Twisted subgroups

A subset S of a group G is a twisted subgroup of G if it contains the identity
element of G, is closed under inverses, and is closed under the binary operation
(x, y) 7→ xyx.

Note that a twisted subgroup is not necessarily a subgroup, but every twisted
subgroup S is closed under powers. Indeed, it su�ces to show that all positive
powers of x ∈ S belong to S, and we get this by induction on k from xk+2 = xxkx.

Call a subset U of a loop Q uniquely 2-divisible if the squaring map Q → Q,
x 7→ x2 restricts to a bijection on U . In this case, for every x ∈ U there is
a unique element x1/2 ∈ U such that (x1/2)2 = x. If U happens to be power
associative and x ∈ U has odd order n, then x1/2 = x(n+1)/2, so the square root
of x is a positive power of x. If U happens to be closed under inverses, then
((x−1)1/2)2 = x−1 = (x1/2x1/2)−1 = (x1/2)−1(x1/2)−1 = ((x1/2)−1)2 shows that
(x−1)1/2 is equal to (x1/2)−1.

Proposition 2.3 (compare [20, Lemma 3]). Let G be a group and S a uniquely
2-divisible twisted subgroup of G. Then (S, ◦) with multiplication

x ◦ y = (xy2x)1/2

is a left Bruck loop. Moreover, the powers in (S, ·) and (S, ◦) coincide.
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Proof. If x, y ∈ S then y2 ∈ S, xy2x ∈ S and (xy2x)1/2 ∈ S. Hence (S, ◦) is a
groupoid. Since 1◦x = x = x◦1 and x−1◦x = (x−1x2x−1)1/2 = 1 = (xx−2x)1/2 =
x ◦ x−1, we see that (S, ◦) has identity element 1 and two-sided inverses. Note
that x ◦ (y ◦ x) = (xyx2yx)1/2 = ((xyx)2)1/2 = xyx. Thus x ◦ (y ◦ (x ◦ z)) =
(xyxz2xyx)1/2 = (xyx) ◦ z = (x ◦ (y ◦ x)) ◦ z. By Lemma 2.1, (S, ◦) is a left Bol
loop in which inverses coincide with those of (S, ·). It is a left Bruck loop thanks
to (x◦y)−1 = ((xy2x)1/2)−1 = ((xy2x)−1)1/2 = (x−1y−2x−1)1/2 = x−1 ◦y−1. The
inductive step x ◦ xn+1 = (xx2n+2x)1/2 = xn+2 shows that powers in (S, ·) and
(S, ◦) coincide.

A twisted subgroup of a uniquely 2-divisible group need not be uniquely 2-
divisible (consider Z in (Q,+)). But note that if G is a group of odd order then
any twisted subgroup S of G is uniquely 2-divisible.

The next result shows that in many varieties of loops the concepts �uniquely
2-divisible� and �of odd order� coincide for �nite loops.

Lemma 2.4. Let Q be a �nite power-associative loop in which |x| divides |Q| for
every x ∈ Q. Then the following conditions are equivalent:

(i) Q is uniquely 2-divisible,

(ii) |Q| is odd,

(iii) |x| is odd for every x ∈ Q.

Proof. Condition (ii) implies (iii) by the assumption that |x| divides |Q|. Con-
versely, if (iii) holds then the inversion mapping x 7→ x−1 is an involution with a
unique �xed point x = 1, so |Q| is odd.

If (i) holds then x2 = 1 implies x = 1, so (iii) holds. Conversely, if (iii) holds,
then |x| = 2n + 1 implies (xn+1)2 = x2n+2 = x, so the squaring map is onto Q.
Thanks to �niteness of Q, it is also one-to-one, and (i) follows.

2.3. Bruck loops associated with Bol and automorphic loops

If G is a uniquely 2-divisible group, Proposition 2.3 with S = G yields a uniquely
2-divisible left Bruck loop (G, ◦), the (left) Bruck loop associated with G.

Proposition 2.3 cannot be used directly to associate left Bruck loops with nonas-
sociative loops Q. The trick is to work with a certain twisted subgroup S of Mlt(Q)
instead and then project the operation ◦ from S to Q. The classical example is
that of uniquely 2-divisible left Bol loops, which we recall in Proposition 2.5.

Proposition 2.5 ([18]). Let (Q, ·) be a left Bol loop. Then LQ = {Lx : x ∈ Q}
is a twisted subgroup of Mlt`(Q) satisfying

LxLyLx = Lx(yx). (2.4)
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If (Q, ·) is also uniquely 2-divisible, then LQ is uniquely 2-divisible and (Q, ◦)
with multiplication

x ◦ y = (x(y2x))1/2 (2.5)

is a left Bruck loop in which powers coincide with those of (Q, ·). When Q is �nite
then any subloop of (Q, ·) is a subloop of (Q, ◦).

Proof. We have 1 = L1 ∈ LQ, L
−1
x = Lx−1 ∈ LQ thanks to the left inverse

property, and (2.4) follows from (2.3). Therefore LQ is a twisted subgroup of
Mlt`(Q). An easy induction with (2.4) shows that Ln

x = Lxn for every n ≥ 0.
Suppose that (Q, ·) is uniquely 2-divisible. The mapping Q → LQ, x 7→ Lx

is a bijection since Lx(1) = x. Since (Lx1/2)2 = L(x1/2)2 = Lx, it follows that

LQ is uniquely 2-divisible with L
1/2
x = Lx1/2 . By Proposition 2.3, (LQ, ◦) with

multiplication Lx ◦ Ly = (LxL
2
yLx)1/2 = L(x(y2x))1/2 is a left Bruck loop with

powers coinciding with those of Mlt`(Q).
We claim that ϕ : (LQ, ◦) → (Q, ◦), Lx 7→ x is an isomorphism of loops.

Indeed, ϕ is clearly a bijection and ϕ(Lx ◦ Ly) = ϕ(L(x(y2x))1/2) = (x(y2x))1/2 =
x ◦ y = ϕ(Lx) ◦ ϕ(Ly).

Finally, suppose that Q is �nite and S ≤ (Q, ·). To show that S is a subloop of
(Q, ◦), it su�ces to prove that it is closed under inverses and under the multipli-
cation ◦. The former is true because the inverses in (Q, ·) and (Q, ◦) coincide, and
the latter is true because (S, ·) is closed under · and square roots (being positive
integral powers in the �nite case).

A twisted subgroup in Mlt(Q) is harder to �nd for automorphic loops. For
x ∈ Q de�ne

Px = RxL
−1
x−1 .

Note that in automorphic loops we have Px = L−1x−1Rx by Proposition 1.3.

Proposition 2.6 ([34, Proposition 4.2]). Let (Q, ·) be an automorphic loop. Then
PQ = {Px : x ∈ Q} is a twisted subgroup of Mlt(Q) satisfying

PxPyPx = PPx(y) = P(x−1\y)x. (2.6)

If (Q, ·) is also uniquely 2-divisible, then PQ is uniquely 2-divisible and (Q, ◦)
with multiplication

x ◦ y = ((x−1\y2)x)1/2 = (x−1\y2x)1/2 (2.7)

is a left Bruck loop in which powers coincide with those of (Q, ·). When Q is �nite
then any subloop of (Q, ·) is a subloop of (Q, ◦).

Proof. We have 1 = P1 ∈ PQ. Proposition 1.3 and Lemma 1.7 yield

PxPx−1 = RxL
−1
x−1Rx−1L−1x = L−1x−1Rx−1L−1x Rx = Tx−1Tx = 1,
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so P−1x = Px−1 ∈ PQ. The identity (2.6) is nontrivial; see [34, Proposition 3.4] for
a proof. Therefore PQ is a twisted subgroup of Mlt(Q). An easy induction with
(2.6) yields Pn

x = Pxn for every n ≥ 0, using Px(xi) = (x−1\xi)x = xi+2.

Suppose that (Q, ·) is uniquely 2-divisible. The mapping Q → PQ, x 7→ Px is
a bijection since Px(1) = x2. Since P 2

x1/2 = P(x1/2)2 = Px, it follows that PQ is

uniquely 2-divisible with P
1/2
x = Px1/2 . By Proposition 2.3, (PQ, ◦) with multipli-

cation Px ◦ Py = (PxP
2
yPx)1/2 = P((x−1\y2)x)1/2 is a left Bruck loop with powers

coinciding with those of Mlt(Q). Note that (x−1\y)x = x−1\yx by Proposition
1.3.

We conclude as in the proof of Proposition 2.5, using the bijection Px 7→ x.

When (Q, ·) is a uniquely 2-divisible automorphic loop, we call (Q, ◦) from
Proposition 2.6 the left Bruck loop associated with (Q, ·).

It is worth noting that in left Bol loops we have x−1\y2 = xy2 thanks to the
left inverse property. So, in left Bol loops, the operation (2.5) of Proposition 2.5
coincides with the operation (2.7) of Proposition 2.6. But neither result is a special
case of the other.

We can now easily deduce Cauchy's and Lagrange's theorems for automorphic
loops of odd order from Theorem 2.2.

Theorem 2.7. Let Q be an automorphic loop of odd order. If S is a subloop of
Q then |S| divides |Q|. If p is a prime dividing |Q| then Q contains an element of
order p.

Proof. Let (Q, ◦) be the left Bruck loop associated with Q. If S ≤ Q then (S, ◦) ≤
(Q, ◦) by Proposition 2.6. By Theorem 2.2, |S| divides |Q|. Let p be a prime
dividing |Q|. Then there is x ∈ (Q, ◦) of order p by Theorem 2.2. Because powers
in Q and (Q, ◦) coincide, x has also order p in Q.

Corollary 2.8. Every automorphic loop of prime order is associative.

Note that we cannot easily use Proposition 2.6 to obtain the Odd Order The-
orem for automorphic loops from the Odd Order Theorem for Bruck loops, for
instance. The di�culty lies in the fact that it is not clear how subloops of (Q, ◦)
are related to subloops of (Q, ·).

2.4. Correspondence with Bruck loops

By Proposition 2.6, if (Q, ·) is a uniquely 2-divisible automorphic loop then PQ

is a twisted subgroup of Mlt(Q) satisfying (2.6), which induces a left Bruck loop
operation (Q, ◦) by x ◦ y = (x−1\y2x)1/2. However, there exist distinct uniquely
2-divisible automorphic loops with the same associated left Bruck loops, so it is
not possible to �nd an inverse to the mapping (Q, ·) 7→ (Q, ◦).
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Figure 1: Intersections among left Bol loops, automorphic loops and Γ-loops.

In an attempt to �nd a correspondence between uniquely 2-divisible left Bruck
loops and some class of loops, Greer [22] de�ned a technical variety of loops as
follows.

A loop Q is a Γ-loop if it is commutative, has the automorphic inverse property,
satis�es LxLx−1 = Lx−1Lx and PxPyPx = PPx(y). Note that the last condition is
just (2.6). By [22, Theorem 3.5], Γ-loops are power-associative.

Figure 1 gives a Venn diagram of intersections of the varieties of left Bol loops,
automorphic loops and Γ-loops. Here is a full justi�cation for the diagram. If Q
is an automorphic Γ-loop then it is a commutative automorphic loop; conversely,
a commutative automorphic loop is certainly automorphic and it satis�es the au-
tomorphic inverse property by Proposition 1.4, the relation LxLx−1 = Lx−1Lx by
Proposition 1.3, and (2.6) by [34, Proposition 3.4]. If Q is left Bol and automor-
phic then the antiautomorphic inverse property implies that Q is Moufang (and
automorphic); the converse is trivial. If Q is left Bol and a Γ-loop then it is a
commutative Moufang loop. If Q is Moufang and a Γ-loop then it is a commu-
tative Moufang loop. Finally, a commutative Moufang loop is automorphic by
Proposition 1.14.

When (Q, ·) is a uniquely 2-divisible Γ-loop, we can use the same construction
as in the case of uniquely 2-divisible automorphic loops to obtain the associated left
Bruck loop (Q, ◦), namely x ◦ y = (x−1\y2x)1/2. In the end, the variety of Γ-loops
was chosen so that the proof of this result can mimic the proof in the automorphic
case. (For instance, the di�cult identity (2.6) is part of the de�nition of Γ-loops.)
See [22, Theorem 4.9] for details.

Following Greer, we will now show how to construct a left Bruck loop Q from
a Γ-loop of odd order. (See the discussion after Lemma 2.11 for an obstacle in the
more general uniquely 2-divisible case.) We will actually use the twisted subgroup
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LQ again, but with a di�erent operation.
On a uniquely 2-divisible group (G, ·), let

x ∗ y = xy[y, x]1/2, (2.8)

where [x, y] = x−1y−1xy is the usual commutator.
Straightforward, albeit nontrivial calculation with the commutator in groups

yields:

Lemma 2.9 ([22, Theorem 2.5]). Let (G, ·) be a uniquely 2-divisible group. Then
(G, ∗) de�ned by (2.8) is a Γ-loop. Powers in (G, ·) and (G, ∗) coincide.

Let us now consider a twisted subgroup seemingly unrelated to LQ; see [4, 18,
20]. For a group G and τ ∈ Aut(G) let

K(τ) = {x ∈ G : τ(x) = x−1}.

We claim that K(τ) is a twisted subgroup of G. Indeed, 1 ∈ K(τ) is clear, if
x ∈ K(τ) then τ(x−1) = τ(x)−1 = (x−1)−1, so x−1 ∈ K(τ), and if x, y ∈ K(τ)
then τ(xyx) = τ(x)τ(y)τ(x) = x−1y−1x−1 = (xyx)−1, so xyx ∈ K(τ).

Lemma 2.10 (compare [18, Theorem 4.3]). Let G be a group and τ ∈ Aut(G).
Let S be a twisted subgroup of G such that S ⊆ K(τ) and 〈S〉 = G. Then {x2 :
x ∈ K(τ)} ⊆ S. In particular, if G is a uniquely 2-divisible group then S = K(τ).

Proof. Let x ∈ K(τ). Then x2 = xτ(x−1). Since 〈S〉 = G, there are x1, . . . ,
xn ∈ S such that x = x1 · · ·xn. Then xτ(x−1) = x1 · · ·xnτ(x−1n · · ·x−11 ) =
x1 · · ·xnτ(x−1n ) · · · τ(x−11 ) = x1 · · ·xnxn · · ·x1, where we have used xi ∈ S ⊆ K(τ).
An easy induction on n shows that the element x1 · · ·xnxn · · ·x1 belongs to the
twisted subgroup S.

We have proved {x2 : x ∈ K(τ)} ⊆ S ⊆ K(τ). Suppose that G is uniquely
2-divisible. The squaring map is then injective on any twisted subgroup, and we
claim that it is surjective on K(τ), so that K(τ) is uniquely 2-divisible. Indeed,
if x ∈ K(τ) then τ(x1/2) = τ(x)1/2 = (x−1)1/2 = (x1/2)−1, so x1/2 ∈ K(τ). It
follows that K(τ) = {x2 : x ∈ K(τ)}, and S = K(τ).

Lemma 2.11 (compare [22, Lemma 4.3]). Let G be a uniquely 2-divisible group
and let τ ∈ Aut(G). Then K(τ) is a subloop of the Γ-loop (G, ∗).

Proof. By Lemma 2.9, (G, ∗) is a Γ-loop. If x, y ∈ K(τ) then τ(x ∗ y) =
τ(xy[y, x]1/2) = τ(x)τ(y)[τ(y), τ(x)]1/2 = x−1y−1[y−1, x−1]1/2 = x−1 ∗ y−1 =
(x ∗ y)−1, where we have used the automorphic inverse property in the last step.

Let us now consider left division in (G, ∗). The following statements are
equivalent: x ∗ a = y, xa[a, x]1/2 = y, [a, x] = (a−1x−1y)2, ax = ya−1x−1y,
ay−1a = x−1yx−1, (ay−1)2 = x−1yx−1y−1, a = (x−1yx−1y−1)1/2y. Since this
is a term in (G, ·), we can easily show that K(τ) is closed under left division in
(G, ∗).
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We would now like to apply Lemmas 2.9 and 2.11. However, there are examples
of uniquely 2-divisible left Bruck loops Q with G = Mlt`(Q) not uniquely 2-
divisible, so the lemmas cannot be applied directly. We therefore focus on the odd
case.

Proposition 2.12 ([22]). Let (Q, ·) be a left Bruck loop of odd order and let
G = Mlt`(Q, ·). Then (LQ, ∗) is a Γ-loop, and (Q, ∗) with multiplication

x ∗ y = (Lx ∗ Ly)(1) = (LxLy[Ly, Lx]1/2)(1)

is a Γ-loop.

Proof. Proposition 2.5 shows that LQ is a twisted subgroup of Mlt`(Q, ·). Let τ
be the conjugation on Sym(Q) by the inversion map J of (Q, ·). For x, y ∈ Q, we
have JLxJ(y) = J(xy−1) = x−1y = Lx−1(y) = L−1x (y) by the automorphic inverse
property and the left inverse property. Because 〈LQ〉 = G, the established identity
τ(Lx) = JLxJ = Lx−1 = L−1x shows that τ ∈ Aut(G) and also that LQ ⊆ K(τ).

By Theorem 2.2, |G| is odd. By Lemma 2.4, G is uniquely 2-divisible. Lemma
2.10 with S = LQ then gives LQ = K(τ). By Lemma 2.11, (LQ, ∗) = (K(τ), ∗) is
a subloop of the Γ-loop (G, ∗). Finally, as usual, we transfer the operation ∗ from
(LQ, ∗) to (Q, ∗) by the isomorphism Lx 7→ x.

For a left Bruck loop (Q, ·) of odd order, we call (Q, ∗) from Proposition 2.12
the Γ-loop associated with (Q, ·).

Greer went on to establish the announced one-to-one correspondence, and
more:

Theorem 2.13 ([22, Theorem 5.2]). There is a categorical equivalence between
left Bruck loops of odd order and Γ-loops of odd order. Given a Γ-loop (Q, ·)
of odd order, we let (Q, ◦) be the associated left Bruck loop with multiplication
x ◦ y = (x−1\y2x)1/2. Conversely, given a Bruck loop (Q, ◦) of odd order, we
let (Q, ·) be the associated Γ-loop with multiplication x · y = (LxLy[Ly, Lx]1/2)(1),
where Lx is the left translation in (Q, ◦).

Solvability, Lagrange and Cauchy theorems for commutative automorphic loops
of odd order were for the �rst time established in [25]. (See Theorems 3.11 and
3.12 for the even case.) The fact that commutative automorphic loops of odd order
pk (p a prime) are centrally nilpotent was proved independently in [9] and [27].

Theorem 2.13 allows us to obtain these and additional results from Glauber-
man's Theorem 2.2 not only for commutative automorphic loops of odd order but
also for the larger class of Γ-loops of odd order.

Theorem 2.14 ([22, Section 6]). Let Q be a Γ-loop of odd order. Then Q is
solvable and the Lagrange and Cauchy theorems hold for Q. Moreover, there are
Sylow p- and Hall π-subloops in Q.

If also |Q| = pk for an odd prime p, then Q is centrally nilpotent.
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2.5. Correspondence with Lie rings

The correspondence between left Bruck loops of odd order and Γ-loops of odd
order covered all commutative automorphic loops of odd order as a subclass of Γ-
loops, but it did not cover all automorphic loops of odd order. In [34], a one-to-one
correspondence was found between uniquely 2-divisible automorphic loops whose
associated left Bruck loop is an abelian group on the one hand, and uniquely
2-divisible Lie rings satisfying conditions (2.10), (2.11) on the other hand (see
Theorem 2.18). This partial correspondence is su�cient to establish the Odd
Order Theorem for automorphic loops (Theorem 2.21). In this subsection we
sketch the proofs of these results.

We start with a construction of Wright [46]. Let us call (Q,+, [., .]) an algebra
if (Q,+) is a an abelian group and [., .] is biadditive, that is [x+y, z] = [x, z]+[y, z]
and [x, y + z] = [x, y] + [x, z] for every x, y, z ∈ Q. In this situation, for every
x ∈ Q de�ne

ad`
x : Q→ Q, ad`

x(y) = [x, y], adr
x : Q→ Q, adr

x(y) = [y, x]

to be the left and right adjoint maps of x, respectively. Note that ad`
x, adr

x are
just the left and right translations with respect to the binary operation [., .], re-
spectively. Finally, for x ∈ Q de�ne

`x = idQ − ad`
x, rx = idQ − adr

x.

Proposition 2.15 (see [46, Proposition 8] and [34, Lemma 5.1]). Let (Q,+, [., .])
be an algebra. De�ne a groupoid (Q, ·) by

x · y = x+ y − [x, y]. (2.9)

Then (Q, ·) is a loop (necessarily with identity element 0) if and only if

`x and rx are bijections of Q (2.10)

for every x ∈ Q.
When (Q, ·) is a loop with left and right translations Lx, Rx, respectively, then

Lx(y) = x+`x(y), Rx(y) = x+rx(y), L−1x (y) = `−1x (y−x), R−1x (y) = r−1x (y−x).

Moreover, Lx,y = `−1yx `y`x, Rx,y = r−1xy ryrx and Tx = `−1x rx.

Proof. We have 0 · x = x = x · 0 for every x ∈ Q. Note that x · y = x + `x(y) =
y + ry(x). Hence Lx bijects if and only if `x bijects, and Ry bijects if and only if
ry bijects.

The formulas for Lx, Rx, L
−1
x , R−1x are straightforward. Let us calculate Lx,y.

Note that every `x is additive, being a sum of two additive maps. We have

Lx,y(z) = L−1yxLyLx(z) = L−1yxLy(x+ `x(z)) = L−1yx (y + `y(x+ `x(z)))

= `−1yx (y + `y(x) + `y`x(z)− yx) = `−1yx (yx+ `y`x(z)− yx)

= `−1yx `y`x(z).

Similarly for Rx,y and Tx.
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Following Wright, we call (Q, ·) the linear groupoid of the algebra (Q,+, [., .]),
and the linear loop of (Q,+, [., .]) if (2.10) holds. In view of Proposition 2.15, it
is easy to express but di�cult to understand in terms of properties of [., .] when
the linear loop (Q, ·) is automorphic. We therefore specialize to the setting of Lie
rings.

An algebra (Q,+, [., .]) is alternating if [x, x] = 0 for every x ∈ Q. Every
alternating algebra is skew-symmetric, that is, [x, y] = −[y, x]. (Proof: Expand
0 = [x+ y, x+ y].)

We say that an algebra (Q,+, [., .]) is uniquely 2-divisible if the abelian group
(Q,+) is uniquely 2-divisible.

If (Q,+, [., .]) is alternating, then x · x = x+ x− [x, x] = 2x, so the associated
linear groupoid is uniquely 2-divisible if and only if (Q,+, [., .]) is uniquely 2-
divisible.

A Lie ring is an alternating algebra (Q,+, [., .]) in which [., .] satis�es the Jacobi
identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Even for Lie rings it is not easy to characterize when the associated linear loop
is automorphic. We therefore analyze a stronger condition, namely `x and rx being
automorphisms.

Lemma 2.16 (compare [34, Proposition 5.2]). Let (Q,+, [., .]) be a Lie ring and
let (Q, ·) be de�ned by (2.9). Then (Q, ·) is a loop and all mappings `x, rx are
automorphisms of (Q, ·) if and only if conditions (2.10) and

[[x,Q], [x,Q]] = 0 (2.11)

hold for every x ∈ Q. In such a case, (Q, ·) is automorphic.

Proof. By Proposition 2.15, (Q, ·) is a loop if and only if (2.10) holds. We therefore
assume that (2.10) holds and investigate when the bijections `x, rx are automor-
phisms of (Q, ·). Using skew-symmetry and the Jacobi identity freely, we have

`x(u)`x(v) = `x(u) + `x(v)− [`x(u), `x(v)]

= u− [x, u] + v − [x, v]− [u− [x, u], v − [x, v]]

= (u+ v − [u, v])− [x, u+ v] + ([u, [x, v]] + [[x, u], v])− [[x, u], [x, v]]

= (u+ v − [u, v])− [x, u+ v] + [x, [u, v]]− [[x, u], [x, v]]

= (u+ v − [u, v])− [x, u+ v − [u, v]]− [[x, u], [x, v]]

= uv − [x, uv]− [[x, u], [x, v]] = `x(uv)− [[x, u], [x, v]].

Therefore `x ∈ Aut(Q, ·) if and only if (2.11) holds. The calculation for rx is
similar.

By Proposition 2.15, Inn(Q, ·) ≤ 〈`x, rx : x ∈ Q〉. Therefore, if `x, rx ∈
Aut(Q, ·) for every x ∈ Q, the loop (Q, ·) is automorphic.

Our eventual goal is to prove the Odd Order Theorem for automorphic loops,
so we focus on the uniquely 2-divisible case.
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Lemma 2.17. Let (Q,+, [., .]) be a uniquely 2-divisible Lie ring satisfying (2.10)
and (2.11). Let (Q, ·) be the (uniquely 2-divisible automorphic) linear loop of
(Q,+, [., .]). Let (Q, ◦) be the (uniquely 2-divisible) left Bruck loop associated with
(Q, ·). Then (Q, ◦) = (Q,+) is an abelian group.

Proof. We have x2 = x+x− [x, x] = 2x, so x1/2 = x/2. Also, x(−x) = x+(−x)+
[x,−x] = 0 shows x−1 = −x. Then x ◦ y = (x−1\y2x)1/2 = ((−x)\(2y)x)/2.
Therefore, the condition x ◦ y = x + y is equivalent to (2y)x = (−x) · (2(x + y)),
which is equivalent to 2y + x − [2y, x] = −x + 2(x + y) − [−x, 2(x + y)], which
follows easily because [., .] is alternating and biadditive.

We have shown how to construct uniquely 2-divisible automorphic loops from
certain uniquely 2-divisible Lie rings. In order to build a correspondence, we now
need to return from uniquely 2-divisible automorphic loops (Q, ·) to Lie rings,
i.e., we need to build operations + and [., .] on (Q, ·). Lemma 2.17 suggests to
restrict our attention to the class of uniquely 2-divisible automorphic loops whose
associated left Bruck loop is an abelian group, and set x+y = x◦y. This approach
works. See [34] for a proof.

Theorem 2.18 ([34, Theorem 5.7]). Suppose that (Q,+, [·, ·]) is a uniquely 2-
divisible Lie ring satisfying (2.10) and (2.11). Then (Q, ·) de�ned by (2.9) is a
uniquely 2-divisible automorphic loop whose associated left Bruck loop (Q, ◦) is an
abelian group (in fact, (Q, ◦) = (Q,+) ).

Conversely, suppose that (Q, ·) is a uniquely 2-divisible automorphic loop whose
associated left Bruck loop (Q, ◦) is an abelian group. Then (Q, ◦, [·, ·]) de�ned by

[x, y] = x ◦ y ◦ (xy)−1 (2.12)

is a uniquely 2-divisible Lie ring satisfying (2.10) and (2.11).
Furthermore, the two constructions are inverse to one another. Subrings (resp.

ideals) of the Lie ring are subloops (resp. normal subloops) of the corresponding
automorphic loop, and subloops (resp. normal subloops) closed under square roots
are subrings (resp. ideals) of the corresponding Lie ring.

Figure 2 summarizes what we have learned so far. In the �gure, all algebras
are of odd order, left Bruck loops are blue, Γ-loops are red, automorphic loops are
green, and Lie rings satisfying (2.10) and (2.11) are cyan. Dotted lines represent
abelian groups. Automorphic loops whose associated left Bruck loops are asso-
ciative are dashed green. Shaded regions represent one-to-one correspondences.
Except for the associated operation x · y = LxLy[Ly, Lx]1/2(1), all associated op-
erations make sense in the uniquely 2-divisible case, too.

We now work toward the Odd Order Theorem for automorphic loops.

Lemma 2.19 ([34, Lemma 5.8]). Let (Q,+, [., .]) be a uniquely 2-divisible Lie
ring. Then (2.11) holds if and only if (Q,+, [., .]) is solvable of length 2, that is,
[[Q,Q], [Q,Q]] = 0.



Three lectures on automorphic loops 149
p
g
f@

st
o
p

x
◦
y

=
(x
−
1
\y

2
x

)1
/
2

x
·y

=
L
x
L
y
[L

y
,L

x
]1
/
2
(1

)

x
·y

=
x

+
y
−

[x
,y

]

x
+
y

=
x
◦
y

[x
,y

]
=
x
◦
y
◦

(x
y
)−

1

a
b
el
ia
n
g
ro
u
p
s

(Q
,◦

)

le
ft
B
ru
ck

lo
o
p
s

(Q
,·

)

Γ
-l
o
o
p
s

(Q
,·

)

a
u
to
m
o
rp
h
ic
lo
o
p
s

(Q
,+
,[
.,
.]
)

L
ie
ri
n
g
s
w
it
h
(2
.1
0
),
(2
.1
1
)

F
ig
u
re

2
:
A
ss
o
ci
a
te
d
o
p
er
a
ti
o
n
s
b
et
w
ee
n
le
ft
B
ru
ck

lo
o
p
s,

Γ
-l
o
o
p
s,
a
u
to
m
o
rp
h
ic
lo
o
p
s
a
n
d
L
ie
ri
n
g
s
o
f
o
d
d
o
rd
er
.



150 P. Vojt¥chovský

Lemma 2.20 ([34, Lemma 6.5]). Let (Q, ·) be an automorphic loop of odd order,
let (Q, ◦) be the associated left Bruck loop, and let S be a characteristic subloop of
(Q, ◦). Then S is a normal subloop of (Q, ·).

Proof. Since x ◦ y = (x−1\y2x)1/2, we have Aut(Q, ·) ≤ Aut(Q, ◦). Thus S is
invariant under Inn(Q, ·) ≤ Aut(Q, ·). Let u, v ∈ S. We will show that vu and
v/u ∈ S. Let w = v1/2. Since powers in (Q, ·) and (Q, ◦) coincide, w ∈ S. Then
Tu((u ◦ w)2) = (Tu(u ◦ w))2 = (Tu(u) ◦ Tu(w))2 = (u ◦ Tu(w))2 = u−1\Tu(w)2u =
u−1\Tu(v)u = L−1u−1RuTu(v) = L−1u−1L

−1
u R2

u(v) is an element of S, where we have
used Proposition 1.3 in the last equality. Since LuLu−1 ∈ Inn(Q, ·), it follows
that R2

u(v) ∈ S. By induction, R2m
u (v) ∈ S for every m. By Lemma 2.4, |u| =

2m + 1 for some m. Then R2m+1
u ∈ Inn(Q, ·), so also R−2mu R2m+1

u (v) = vu and
R−2m−2u R2m+1

u (v) = v/u ∈ S. By the antiautomorphic inverse property for (Q, ·),
v\u ∈ S, too.

We have shown that S is a subloop of (Q, ·). It is a normal subloop because S
is invariant under Inn(Q, ·).

Theorem 2.21 ([34, Theorem 6.6]). Automorphic loops of odd order are solvable.

Proof. Let (Q, ·) be a minimal counterexample. If S is a nontrivial, proper normal
subloop of (Q, ·) then, by minimality, both S and (Q, ·)/S are solvable automorphic
loops of odd order. This contradicts the nonsolvability of (Q, ·). Therefore (Q, ·)
is simple.

Let (Q, ◦) be the associated left Bruck loop. By Theorem 2.2, (Q, ◦) is solvable
and so the derived subloop D = (Q, ◦)′ is a proper subloop of (Q, ◦). Since D is
a characteristic subloop of (Q, ◦), Lemma 2.20 shows that D is normal in (Q, ·).
Since (Q, ·) is simple, D = 1 and (Q, ◦) is an abelian group.

Recall that powers in (Q, ·) and (Q, ◦) agree. Let p be a prime divisor of |Q|
and let Qp = {x ∈ Q : xp = 1}. Then Qp is a characteristic subloop of (Q, ◦),
hence a normal subloop of (Q, ·). By Theorem 2.7, Qp is nontrivial, so Qp = Q
because (Q, ·) is simple. Thus (Q, ·) has exponent p, (Q, ◦) has exponent p, and
(Q, ◦) is an elementary abelian p-group.

By Theorem 2.18, (Q, ◦, [·, ·]) de�ned by (2.12) is a Lie ring satisfying (2.10)
and (2.11). By Lemma 2.19, (Q, ◦, [·, ·]) is solvable (of class 2). Since (Q, ◦) is
an elementary abelian p-group, we may view (Q, ◦, [·, ·]) as a �nite dimensional
Lie algebra over GF (p). Since (Q, ·) is simple, Theorem 2.18 also implies that
(Q, ◦, [·, ·]) is either a simple Lie algebra or an abelian Lie algebra (that is, [Q,Q] =
0). The former case contradicts solvability of (Q, ◦, [·, ·]), and so (Q, ◦, [·, ·]) is an
abelian Lie algebra. But then x · y = x ◦ y ◦ [x, y] = x ◦ y, so (Q, ·) is an abelian
group, a contradiction with nonsolvability of (Q, ·).

Lecture 3: Enumerations and constructions

In this section we �rst show how to e�ciently search for �nite simple automorphic
loops, temporarily suspending the notation ◦ and ∗ from previous sections. Then
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we discuss (commutative) automorphic loops of order pq and p3. Finally, we give
two useful constructions of automorphic loops.

3.1. Enumerating all left automorphic loops

Let G be a permutation group on a �nite set Q = {1, . . . , d}, and let H ≤ G. The
�rst goal of this section is to present a naive algorithm for constructing all loops
(Q, ∗) on Q with identity element 1 so that Mlt`(Q, ∗) ≤ G and H ≤ Aut(Q, ∗).
Since Mlt`(Q, ∗) acts transitively on Q and ϕ(1) = 1 holds for every ϕ ∈ H, let us
assume from the start that G is transitive on Q and H ≤ G1.

We then specialize this algorithm to construct all left automorphic loops (Q, ∗)
on Q satisfying Mlt`(Q, ∗) = G. In the next subsection we will add the requirement
that (Q, ∗) be simple. The exposition follows [29].

Lemma 3.1. Let Q = {1, . . . , d} be a �nite set and let L = {`x : x ∈ Q} be a
subset of Sym(Q). Then (Q, ∗) de�ned by x ∗ y = `x(y) is a loop with identity
element 1 if and only if

(i) `1 is the identity mapping on Q, and

(ii) `x(1) = x for every x ∈ Q, and

(iii) `−1x `y is �xed-point free for every x, y ∈ Q with x 6= y.

Proof. Condition (i) holds i� x = `1(x) = 1 ∗ x for every x ∈ Q. Condition (ii)
hold i� x = `x(1) = x∗1 for every x ∈ Q. So (i) and (ii) together are equivalent to
(Q, ∗) having 1 as the identity element. Since L ⊆ Sym(Q), all the left translations
of (Q, ∗) are bijections. Let z ∈ Q. Then z is not a �xed point of `−1x `y if and only
if x ∗ z 6= y ∗ z. Therefore condition (iii) holds if and only if all right translations
of (Q, ∗) are one-to-one. We are done by �niteness of Q.

We therefore have the following naive algorithm for constructing all loops on
Q with identity element 1: Construct all subsets {`x : x ∈ Q} of Sym(Q) and
check that conditions (i)− (iii) of Lemma 3.1 hold.

We will show how to speed up the algorithm if we are only interested in left
automorphic loops, essentially by adding left translation not one at a time but
rather one conjugacy class at a time.

Lemma 3.2. Let Q be a loop.

(i) A bijection ϕ : Q → Q is an automorphism of Q if and only if ϕLxϕ
−1 =

Lϕ(x) for every x ∈ Q.

(ii) If ϕ ∈ Aut(Q) �xes x then Lxϕ = ϕLx.

Proof. The following conditions, universally quanti�ed for y ∈ Q, are equivalent:
ϕLxϕ

−1 = Lϕ(x), ϕ(xϕ−1(y)) = ϕ(x)y, ϕ(xy) = ϕ(x)ϕ(y). To prove (ii), consider
ϕ ∈ Aut(Q) that �xes x, and note that Lxϕ(y) = xϕ(y) = ϕ(x)ϕ(y) = ϕ(xy) =
ϕLx(y) for every y ∈ Q.
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Algorithm 3.3.

Input: A set Q = {1, . . . , d}, a transitive permutation group G on Q, and H ≤ G1.

Output: All loops (Q, ∗) on Q with identity element 1 such that Mlt`(Q, ∗) ≤ G
and H ≤ Aut(Q, ∗).

Step 1: Let `1 = 1G, and let X ⊆ Q \ {1} be a set of orbit representatives for
the natural action of H on Q \ {1}. (The condition `1 = 1G is forced by Lemma
3.1(i).)

Step 2: For all x ∈ X, let

Lx = {`x ∈ G : `x(1) = x, `x is �xed-point free, and `x ∈ CG(Hx)}.

If Lx = ∅, stop with failure. (This is a set of candidates for `x. The �rst two
conditions are necessary by Lemma 3.1. The last condition is necessary by Lemma
3.2(ii). Note that if Lx is nonempty, it su�ces to �nd one ` ∈ Lx and set Lx =
`(CG(Hx)1).)

Step 3: For all x ∈ X, let

Lx = {`Hx : `x ∈ Lx, |`Hx | = |H(x)|,
`−1x ` is �xed-point free for every ` ∈ `Hx with ` 6= `x}.

If Lx = ∅, stop with failure. (By Lemma 3.2, the desired L = {`x : x ∈ Q} is
a union of H-conjugacy classes in G. The set Lx is a set of candidates for the
H-conjugacy class containing `x. The condition |`Hx | = |H(x)| is forced by Lemma
3.2(i). The second condition is forced by Lemma 3.1(iii).)

Step 4: Construct a graph Γ on V =
⋃

x∈X Lx by letting (`Hx , `
H
y ) ∈ Lx × Ly

to be an edge if and only if (`Hx )−1(`Hy ) consists of �xed-point free permutations.

(Note that it su�ces to check that `−1x `Hy consists of �xed-point free permuta-
tions. Indeed, if ψ`xψ

−1(z) = ϕ`yϕ
−1(z) for some z ∈ Q, then `x(ψ−1(z)) =

(ψ−1ϕ)`y(ψ−1ϕ)−1(ψ−1(z)).)

Step 5: Find all subsets C of V such that C is a clique in Γ and
∑

v∈C |v| = |Q|−1.
If there are no such C, stop with failure. Else return all loops Q(L) = (Q, ∗), where
L = L(C) = {`1}∪

⋃
v∈C v = {`x : x ∈ Q} and x∗y = `x(y). (The clique property

accounting for |Q| − 1 left translations is at this stage necessary and su�cient by
Lemmas 3.1 and 3.2.)

Denote by A≤` (Q,G) all left automorphic loops (Q, ∗) de�ned on Q with iden-
tity element 1 and satisfying Mlt`(Q, ∗) ≤ G, by A=

` (Q,G) all loops (Q, ∗) ∈
A≤` (Q,G) with Mlt`(Q, ∗) = G, and by A=(Q,G) all loops (Q, ∗) ∈ A≤` (Q,G)
that are automorphic and satisfy Mlt(Q, ∗) = G. Let also C(Q,G,H) be the set
of all loops (Q, ∗) obtained by Algorithm 3.3 with input Q, G and H.
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Lemma 3.4. Let G be a transitive permutation group on Q = {1, . . . , d}. Then

A=
` (Q,G) ⊆ C(Q,G,G1) ⊆ A≤` (Q,G). Moreover, A=(Q,G) ⊆ C(Q,G,G1).

Proof. First let (Q, ∗) ∈ A=
` (Q,G). Then Inn`(Q, ∗) = Mlt`(Q, ∗)1 = G1, and

therefore (Q, ∗) ∈ C(Q,G,G1). Now let (Q, ∗) ∈ C(Q,G,G1). Then Mlt`(Q, ∗) ≤
G because every left translation of (Q, ∗) is in G. Since Inn`(Q, ∗) = Mlt`(Q, ∗)1 ≤
G1 ≤ Aut(Q, ∗), the loop (Q, ∗) is left automorphic. Finally, let (Q, ∗) ∈ A=(Q,G).
Then Mlt`(Q, ∗) ≤ G and G1 = Mlt(Q, ∗)1 = Inn(Q, ∗) ≤ Aut(Q, ∗). Thus
(Q, ∗) ∈ C(Q,G,G1).

Lemma 3.4 can be used to �nd all left automorphic loops on the set Q =
{1, . . . , d} with identity element 1. It su�ces to apply the lemma to all transitive
groups G in Q and discard duplicate loops.

3.2. Searching for �nite simple automorphic loops

Recall that a loop Q is said to be simple if it has no normal subloops except for
Q and 1.

In principle, Algorithm 3.3 returns all �nite left automorphic loops, and hence
also all �nite simple automorphic loops. In practice, the algorithm is too slow to
get to even moderately large orders. In this section we will describe improvements
to the algorithm so that it can check for simple automorphic loops of order up to
several thousands.

The key results are due to Albert and Vesanen. Albert's result is easy to prove,
Vesanen's not so much.

Theorem 3.5 ([3, Theorem 8]). A loop Q is simple if and only if its multiplication
group Mlt(Q) acts primitively on Q.

Theorem 3.6 ([45]). Let Q be a �nite loop. If Mlt(Q) is solvable then Q is
solvable.

Recall that a partition of Q is said to be trivial if it is of the form {Q} or of the
form {{x} : x ∈ Q}. A group G ≤ Sym(Q) preserves a partition {B1, . . . , Bn} of
Q if for every ϕ ∈ G and every 1 ≤ i ≤ n there is 1 ≤ j ≤ n such that ϕ(Bi) = Bj .
A transitive permutation group G ≤ Sym(Q) is primitive if it does not preserve
any nontrivial partition of Q. The degree of G is the cardinality of Q.

It is easy to see that every 2-transitive group G ≤ Sym(Q) is primitive. (Con-
sider a nontrivial partition {B1, . . . , Bn} with n ≥ 1, B1 containing distinct ele-
ments x, y, and let z ∈ B2. Let ϕ ∈ G be such that ϕ(x) = x and ϕ(y) = z. Then
ϕ(B1) 6= Bj for every 1 ≤ j ≤ n.) Unlike �nite 2-transitive groups, �nite primitive
groups are not classi�ed [13]. GAP contains a library of all primite groups of degree
< 2500. MAGMA [12] contains a library of all primitive groups of degree < 4096.

Lemma 3.7. If Q is a loop of order bigger than 4 and H ≤ Aut(Q) then H is
not 3-transitive on Q \ {1}.
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Proof. Suppose that H is 3-transitive on Q \ {1}. Let x, y ∈ Q be such that |{1,
x, y}| = 3 and z = xy 6= 1. Then {x, y, z} is a subset of Q \ {1} of cardinality 3.
Let ϕ ∈ H be such that ϕ(x) = x, ϕ(y) = y and ϕ(z) 6= z. (Here we use |Q| > 4.)
We reach a contradiction with ϕ(z) = ϕ(xy) = ϕ(x)ϕ(y) = xy = z.

Proposition 3.8. All �nite simple nonassociative automorphic loops are found
in the set

⋃
C(Q,G,G1), where the union is taken over sets Q of even order and

over primitive groups G ≤ Sym(Q) that are not solvable and not 4-transitive.

Proof. Let (Q, ∗) be a �nite simple nonassociative automorphic loop of order d > 1
with the identity element 1. Let G = Mlt(Q, ∗). If (Q, ∗) is solvable then it is an
abelian group, a contradiction. By Theorem 2.21, we can assume that d is even.
By Theorem 3.6, G is not solvable. If G is 4-transitive, then G1 ≤ Aut(Q, ∗) is
3-transitive on Q \ {1}, a contradiction with Lemma 3.7. It remains to show that
(Q, ∗) ∈ C(Q,G,G1). This follows from Lemma 3.4.

Let (Q, ∗) ∈
⋃
C(Q,G,G1), where the union is as in Proposition 3.8. Suppose

that we run the algorithm by incrementally increasing the cardinality of Q, and,
for a �xed d = |Q|, by incrementally increasing the order of G. When should
we catalog (Q, ∗) as a newly found �nite simple nonassociative automorphic loop?
We �rst calculate the order of M = Mlt(Q, ∗) ≤ G. If |M | < |G| then (Q, ∗) is
guaranteed to be automorphic (since Inn(Q, ∗) = M1 ≤ G1 ≤ Aut(Q, ∗)) but either
M is not as in Proposition 3.8 or we have already seen (Q, ∗) in C(Q,M,M1), so we
do not store (Q, ∗). If |M | > |G| then (Q, ∗) is either not automorphic (checking
this is expensive), or we will see the same loop later in C(Q,M,M1), so we again do
not store it. If |M | = |G| then (Q, ∗) is a �nite simple nonassociative automorphic
loop and we store it (upon checking for isomorphism against all already stored
loops with the same multiplication group).

This search has been carried out in [29] for d < 2500 and recently by Cameron
and Leemans [7] for d < 4096. The result is somewhat surprising:

Proposition 3.9. There are no �nite simple nonassociative automorphic loops of
order less than 4096.

We remark that Algorithm 3.3 �nds numerous �nite simple nonassociative left
automorphic loops.

Are there any �nite simple nonassociative commutative automorphic loops?
The search for �nite simple commutative automorphic loops can be reduced to
orders 2k by the following result (whose proof, incidentally, required another as-
sociated operation to show that a product of two squares is a square):

Theorem 3.10 ([25]). Let Q be a �nite commutative automorphic loop. Then
Q is a direct product A × B, where A = {x ∈ Q : |x| = 2n for some n} and
B = {x ∈ Q : |x| is odd}. Morever, |A| = 2m for some m and |B| is odd.

With this decomposition at hand, we easily get:
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Theorem 3.11 ([25]). Let Q be a �nite commutative automorphic loop. Then the
Cauchy and Lagrange theorems hold for Q.

It is much harder to deduce solvability in the even case. Grishkov, Kinyon and
Nagy used advanced results on Lie algebras to prove:

Theorem 3.12 ([23]). Every �nite commutative automorphic loop is solvable.

Thus there are no �nite simple nonassociative commutative automorphic loops.

3.3. Commutative automorphic loops of order pq

Recall that a power-associative loop Q is a p-loop if every element of Q has order
that is a power of p. From Theorem 3.11 we easily deduce that, for an odd prime
p, a �nite automorphic loop is a p-loop if and only if |Q| is a power of p.

Let us now consider �nite commutative automorphic loops. Unlike in abelian
groups, the direct factor B from Theorem 3.10 does not necessarily decompose
as a direct product of p-loops. In fact, for certain odd primes p > q, Drápal
constructed a nonassociative commutative automorphic loop Q of order pq, which
therefore does not factor as a direct product of an automorphic loop of order p
and an automorphic loop of order q. We will discuss his construction at the end of
this subsection. First we have a look at commutative automorphic loops of order
pq in general.

Lemma 3.13. Let Q be a power-associative loop. Then Q/Z(Q) is never a non-
trivial cyclic group.

Proof. Suppose that Q/Z(Q) is cyclic of order m > 1. Then there is x ∈ Q \Z(Q)
such that xZ(Q) has order m in Q/Z(Q) and Q =

⋃
0≤i<m xiZ(Q). Therefore any

element of Q can be written as xia for some 0 ≤ i < m and a ∈ Z(Q). With three
elements of Q written in this form, we calculate

(xia · xjb) · xkc = (xixj)xk · abc = xi(xjxk) · abc = xia · (xjb · xkc),

where we have used a, b, c ∈ Z(Q) and power-associativity for 〈x〉. Hence Q is a
group, and the result follows from the well-known fact that, in groups, Q/Z(Q) is
never a nontrivial cyclic group.

Niederreiter and Robinson proved the following result while studying Bol loops
of order pq:

Proposition 3.14 ([40]). Let Q be a left Bol loop of order pq with odd primes
p > q. Then Q contains a unique subloop of order p.

Lemma 3.15. Let Q be a nonassociative commutative automorphic loop of order
pq with odd primes p > q. Then Z(Q) = 1, Q contains a normal subgroup S of
order p, and all elements of Q \ S have order q.
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Proof. We have Z(Q) < Q by assumption. If 1 < Z(Q) then Q/Z(Q) is isomorphic
to Zp or to Zq by Corollary 2.8, a contradiction with Lemma 3.13. Hence Z(Q) = 1.

By Theorem 2.14, Q is solvable. Let S = Q′ < Q. We have 1 < S, else Q is an
abelian group. Let |S| = s and {s, t} = {p, q}. Then |Q/S| = t, and both S and
Q/S are cyclic groups of prime order. Let x ∈ Q \ S. Then |〈xS〉| = |Q/S| = t,
so t divides |x|. By Theorem 2.7, either |x| = st = pq or |x| = t. If |x| = pq then
Q = 〈x〉 is a group, a contradiction. Hence |x| = t.

Let (Q, ◦) be the associated left Bruck loop. By Proposition 3.14, (Q, ◦) con-
tains a unique subloop of order p. Since powers in (Q, ◦) and (Q, ·) coincide, it
follows that Q contains precisely p− 1 elements of order p. Hence s = p.

We will need the following two results:

Theorem 3.16 ([30]). Let Q be a loop such that Inn(Q) is a cyclic group. Then
Q is an abelian group.

Theorem 3.17 (Albert). Let S be a normal subgroup of Q, and let LS = {Lx :
x ∈ S}. For a permutation group G on Q, let GS = {ϕ ∈ G : ϕ|S = idS} and
GQ/S = {ϕ ∈ G : ϕ(xS) = xS for every x ∈ Q}. Then Mlt(Q)S = LS · Inn(Q),
Mlt(Q)Q/S = LS · Inn(Q)Q/S and Inn(Q/S) ∼= (Mlt(Q)S)/(Mlt(Q)Q/S).

Proposition 3.18. Let Q be a nonassociative commutative automorphic loop of
order pq with odd primes p > q. Then there is a normal subgroup C ∼= Zp of
Inn(Q) such that Inn(Q)/C is a cyclic group of order dividing p− 1.

Proof. Let S be the unique normal subgroup of order p in Q, whose existence
is guaranteed by Lemma 3.15. Consider the mapping f : Inn(Q) → Aut(S),
f(ϕ) = ϕ|S . Since ϕ|Sψ|S(x) = ϕ|S(ψ(x)) = ϕ(ψ(x)) = (ϕψ)|S(x) for every
x ∈ S, the mapping f is a homomorphism. Its kernel is equal to C = {ϕ ∈ Inn(Q) :
ϕ|S = idS}. Now, Aut(S) ∼= Aut(Zp) ∼= Zp−1 is cyclic, so Inn(Q)/C ≤ Aut(S) is
a cyclic group of order dividing p − 1. If C is trivial, we deduce that Inn(Q) is
cyclic and Theorem 3.16 then implies that Q is an abelian group, a contradiction.
Thus C is nontrivial.

Let S = 〈s〉 and �x t ∈ Q\S. Since Ls(St) = s(St) = (sS)t = St, the mapping
ψ = Ls|St is a bijection on St. We claim that ψ is a p-cycle. Suppose this is not
the case. Since ψ has no �xed points and p is a prime, ψ must contain nontrivial
cycles of distinct lengths. Then a suitable power of ψ, say ψi, has more than 1
but less than p �xed points. Without loss of generality, let t be a �xed point of
ψi. Then α = L−1t Li

sLt ∈ Mlt(Q) �xes 1. Thus α ∈ Inn(Q) ≤ Aut(Q), and
α|S ∈ Aut(S). Moreover, since α|S is conjugate to ψi, they have the same cycle
structure. The �xed points of α|S then determine a nontrivial proper subgroup of
S ∼= Zp, a contradiction.

Since Q/S is of prime order q, it is an abelian group and Inn(Q/S) = 1.
Then Theorem 3.17 gives 1 = Inn(Q/S) ∼= (LS · Inn(Q))/(LS · Inn(Q)Q/S), so
Inn(Q) = Inn(Q)Q/S . In other words, every ϕ ∈ Inn(Q) satis�es ϕ(xS) = xS for
every x ∈ Q.
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Consider 1 6= ϕ ∈ C. Then ϕ is determined by the value on t, and t 6= ϕ(t) ∈ St.
Because ψ = Ls|St is a p-cycle, there exists some 0 < j < p such that ψj(t) = ϕ(t).
Furthermore, ϕ(skt) = skϕ(t) = Lskψ

j(t) = ψjLsk(t) = ψj(skt) by Proposition
1.3, so ϕ|St = ψj . Because ψj is a p-cycle and ϕk|St = ψjk for every k, the
elements ϕ, ϕ2, . . . , ϕp = 1 are distinct and account for all elements of C. Hence
C ∼= Zp.

Construction 3.19 ([16, Propositions 3.1 and 3.6]). Let p be an odd prime and
t ∈ Zp. De�ne a partial map ft : Zp → Zp by ft(x) = (x+ 1)(tx+ 1)−1. Suppose
that for every i ≥ 1 the value f it (0) is de�ned and there is a unique x ∈ Zp such
that f it (x) = 0. Let d = |{f it (0) : i ≥ 1}|. Then Zp × Zd with multiplication

(i, a)(j, b) = (i+ j, (a+ b)(1 + tf it (0)f jt (0))−1)

is a commutative automorphic loop.

Proposition 3.20 ([28]). Construction 3.19 yields a nonassociative commutative
automorphic loop of order pq for odd primes p > q if and only if q divides p2 − 1,
in which case it yields only one such loop up to isomorphism.

Thanks to Proposition 3.18, all commutative automorphic loops of order pq
could be classi�ed by the tour de force of classifying all loops with trivial center and
metacyclic inner mapping group, a program of Drápal that is nearing completion
(see, for instance, [15]). Another, perhaps easier approach, is to classify all left
Bruck loops of order pq, and then use Theorem 2.13. In particular, if there is a
unique nonassociative left Bruck loop of order pq and q divides p2−1, then it must
correspond to a unique nonassociative commutative automorphic loop of order pq,
constructed by Construction 3.19.

3.4. Commutative automorphic loops of order p3

Proposition 3.21 ([26]). Let p be an odd prime and Q a commutative automor-
phic loop. If |Q| ∈ {p, 2p, 4p, p2, 2p2, 4p2} then Q is an abelian group.

Proof. By Theorem 3.10, it su�ces to prove that all commutative automorphic
loops Q of odd order p and p2 are groups. For |Q| = p this is a special case of
Corollary 2.8, for instance. When |Q| = p2 then Z(Q) is nontrivial by Theorem
2.14, and the case |Z(Q)| = p is excluded by Lemma 3.13.

In view of Proposition 3.21, commutative automorphic loops of order p3 (for
any prime p) are of interest. As above, we can easily show that if such a loop is
nonassociative of odd order p3 then Z(Q) ∼= Zp and Q/Z(Q) ∼= Zp × Zp. There
are commutative automorphic loops of order 8 with trivial center [26].

Consider the following construction of [26]. Let n ≥ 2 be an integer. The
over�ow indicator (., .)n : Zn × Zn → {0, 1} is de�ned by

(x, y)n =

{
1, if x+ y ≥ n,
0, otherwise.
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For a, b ∈ Zn, de�ne Qa,b(Zn) on Zn × Zn × Zn by

(x1, x2, x3)(y1, y2, y3)

= (x1 + y1 + (x2 + y2)x3y3 + a(x2, y2)n + b(x3, y3)n, x2 + y2, x3 + y3).

Then Qa,b(Zn) is a commutative automorphic loop of order n3, Z(Q) = N`(Q) =
Zn × 0× 0, and Nm(Q) = Zn × Zn × 0.

It turns out that all nonassociative commutative automorphic loops of odd
order p3 are of the form Qa,b(Zp). This was shown by De Barros, Grishkov and
the author, who studied quotients of free 2-generated nilpotent class 2 commutative
automorphic loops and also proved:

Theorem 3.22 ([10]). For every prime p, there are precisely 7 commutative au-
tomorphic loops of order p3 up to isomorphism, including the three abelian groups
Zp3 , Zp2 × Zp and Zp × Zp × Zp.

The structure of the free 2-generated commutative automorphic loop of nilpo-
tency class 2 can be found in [10, Theorem 2.3], which is proved by careful asso-
ciator calculus. Lemma 3.23 below gives some insight, and once again shows that
the middle nucleus is of key importance in automorphic loops.

Recall that the associator (x, y, z) is de�ned by (xy)z = x(yz) · (x, y, z).

Lemma 3.23 ([10, Lemmas 2.1 and 2.2]). Let Q be a commutative loop of nilpo-
tency class 2 (that is, Q/Z(Q) is an abelian group). Then (x, y, x) = 1, (x, y, z) =
(z, y, x)−1 and (x, y, z)(y, z, x)(z, x, y) = 1 for every x, y, z ∈ Q. Moreover, Q is
automorphic if and only if (xy, u, v) = (x, u, v)(y, u, v) for every x, y, u, v ∈ Q.

In the automorphic case, we have (xy, u, v) = (x, u, v)(y, u, v), (x, y, uv) =
(x, y, u)(x, y, v), and (x, yu, v) = (x, v, y)(x, v, u)(y, x, v)(u, x, v).

The structure of the free 2-generated commutative automorphic loop of nilpo-
tency class 3 is also known, cf. [11, Theorem 5.4].

3.5. Two constructions of automorphic loops

We conclude the lecture notes with two constructions of automorphic loops.

Construction 3.24 ([24]). Let R be a commutative ring, V an R-module and
E = EndR(V ) the ring of R-endomorphisms of V . Let (W,+) ≤ (E,+) be such
that

(i) ab = ba for every a, b ∈W , and

(ii) 1 + a is invertible for every a ∈W .

De�ne multiplication on W × V by

(a, u)(b, v) = (a+ b, (1 + b)(u) + (1− a)(v)).

Then (W × V, ·) is an automorphic loop.
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A special case of this construction was �rst given in [27] in an e�ort to shed
some light on automorphic loops of order p3. (Automorphic loops of order p2

are known to be groups by [8] or by [34, Theorem 6.1].) A slight variation on
Construction 3.24 was also given in [37] in characteristic 2.

An important special case of Construction 3.24 can be given as follows: Let
R = k < K = V , where k < K is a �eld extension. Let W be a k-subspace of
K such that k1 ∩W = 0. We can identify a ∈ W with the k-endomorphism of
K given by b 7→ ba (the right translation by a in (K, ·)). Then it is easy to see
(cf. [24]) that the conditions (i) and (ii) of Construction 3.24 are satis�ed, and we
obtain an automorphic loop Qk<K(W ) = QR,V (W ) on W ×K.

Let us come back to automorphic loops of order p3. In order to obtain them
as loops Qk<K(W ), we choose k = Fp to be the �eld of order p and K = Fp2 a
quadratic �eld extension of k. If p is odd, we can �nd all suitable k-subspaces W
as follows: The �eld K can be identi�ed with {x+ y

√
d : x, y ∈ k}, where d ∈ k

is not a square. Let

W0 = k
√
d and Wa = k(1 + a

√
d) for 0 6= a ∈ k.

Then every Wa is a 1-dimensional k-subspace of K such that k1 ∩Wa = 0. Con-
versely, if W is a 1-dimensional k-subspace of K such that k1 ∩ W = 0, there
is a + b

√
d in W with a, b ∈ k, b 6= 0. If a = 0 then W = W0. Otherwise

a−1(a + b
√
d) = 1 + a−1b

√
d ∈ W , and W = Wa−1b. Hence there is a one-to-one

correspondence between the elements of k and 1-dimensional k-subspaces W of K
satisfying k1 ∩W = 0, given by a 7→Wa.

Proposition 3.25 ([24]). Let p be a prime and Fp = k < K = Fp2 .

(i) Suppose that p is odd. If a, b ∈ k, then the automorphic loops Qk<K(Wa),
Qk<K(Wb) of order p3 are isomorphic if and only if a = ±b. In particular,
there are (p+ 1)/2 pairwise nonisomorphic automorphic loops of order p3 of
the form Qk<K(W ), where we can take W ∈ {Wa : 0 ≤ a ≤ (p− 1)/2}.

(ii) Suppose that p = 2. Then there are 2 pairwise nonisomorphic automorphic
loops of order p3 of the form Qk<K(W ).

We do not claim that Proposition 3.25 accounts for all automorphic loops of
order p3.

Finally, we present a construction reminiscent of generalized dihedral groups.

Construction 3.26 ([1]). Let (G,+) be an abelian group and m > 1 an even
integer. Let α ∈ Aut(G). De�ne multiplication on Zm ×G by

(i, u)(j, v) = (i+ j, αij((−1)ju+ v)).

Then the resulting loop Dih(m,G,α) is automorphic if and only ifm = 2 or α2 = 1.
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Aboras [2] obtained many structural properties of the dihedral-like automor-
phic loops Dih(m,G,α), which are of interest because they account for many small
automorphic loops.

The special case of Construction 3.26 with m = 2 was originally introduced in
[34], and the following result was obtained there:

Theorem 3.27 ([34, Corollary 9.9]). Let p be an odd prime, and let Q be a loop
of order 2p. Then Q is automorphic if and only if it is isomorphic to the cyclic
group Z2p or to a dihedral-like loop Dih(2,Zp, α) for some α ∈ Aut(Zp). There
are precisely p pairwise nonisomorphic automorphic loops of order 2p.

Coming back full circle, the automorphic loop Q6 from the introduction is iso-
morphic to the loop Dih(2,Z3, α), where α is the unique nontrivial automorphism
of Z3.

4. Open problems

Problem 4.1. Is there a �nite simple nonassociative automorphic loop?

Problem 4.2. Is there an automorphic loop of odd order with trivial middle nu-
cleus?

Problem 4.3. If Q is a �nite automorphic loop and H ≤ Q, does |H| divide |Q|?

Let p be a prime.

Problem 4.4. Find an elementary proof of the fact that automorphic loops of
order p2 are groups.

Problem 4.5. Classify automorphic loops of order p3.

Problem 4.6. Classify commutative automorphic loops of order p4.

Problem 4.7. Classify left Bruck loops of order pq and p2q, where p, q are distinct
odd primes.

Problem 4.8. Classify (commutative) automorphic loops of order pq and p2q,
where p, q are distinct odd primes.

Problem 4.9. Study free commutative automorphic loops with k free generators
and of nilpotency class n. Already the cases (k, n) = (2, 4) and k ≥ 3 are open.

Problem 4.10. Study in detail the mapping Φ : (Q, ·) 7→ (Q, ◦) that associates
a uniquely 2-divisible left Bruck loop (Q, ◦) to a uniquely 2-divisible automorphic
loop (Q, ·) via x ◦ y = (x−1\y2x)1/2. In particular, what is the image of Φ? If
(Q, ◦) ∈ im(Φ), is there also a commutative automorphic loop (Q, ·) such that
(Q, ◦) = Φ(Q, ·)?
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Problem 4.11. Can Proposition 2.12 be extended from left Bruck loops of odd
order to uniquely 2-divisible left Bruck loops, perhaps under di�erent correspon-
dence?

Problem 4.12. Let (Q,+, [., .]) be an algebra in which the condition (2.10) holds,
and let (Q, ·) be the associated linear loop with multiplication x · y = x+ y− [x, y].
Characterize when (Q, ·) is an automorphic loop (beyond the obvious equational
characterization). Are there interesting classes of algebras for which (Q, ·) is al-
ways automorphic?

Problem 4.13. Let (Q,+, [., .]) be a Lie ring satisfying (2.10). Characterize when
the associated linear loop (Q, ·) is automorphic (beyond the obvious equational
characterization).

An alternative theory of solvability in loop theory has been developed in [44],
based on concepts from universal algebra (congruence modular varieties). Let us
call this solvability congruence solvability. Congruence solvability is in general a
stronger concept than solvability. To see whether congruence solvability is the
right concept for loops, theorems previously proved for (classical) solvability in
loops should be revisited. In particular:

Problem 4.14. Are left Bruck (Moufang, commutative automorphic, automorphic)
loops of odd order congruence solvable?

Acknowledgment. I thank Michael Kinyon for useful conversations on the
Greer correspondence, P°emysl Jedli£ka for comments on Construction 3.19, Ale²
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