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Note on the power graph of �nite simple groups

Narges Akbari and Ali Reza Ashra�

Abstract. A graph Γ is said to be 2−connected if Γ does not have a cut vertex. The power graph

P(G) of a group G is the graph which has the group elements as vertex set and two elements

are adjacent if one is a power of the other. In an earlier paper, it is conjectured that there is

no non-abelian �nite simple group with a 2−connected power graph. Bubboloni et al. [3] and

independently Doostabadi and Farrokhi D. G. [11], presented counterexamples for this conjecture.

The aim of this paper is to �rst modify this conjecture and then prove this modi�ed conjecture

for the sporadic groups, Ree groups 2F4(q) and 2G2(q), the Chevalley groups A1(q), B2(q), C3(q)

and F4(q), the unitary group U3(q), the symplectic group S4(q) and the projective special linear

group PSL(3, q), where q is a prime power.

1. Introduction

The investigation of graphs related to groups is an important topic in algebraic
combinatorics. This paper is devoted to the study of power graphs, which were
introduced by Kelarev and Quinn in [13]. These authors in [16, 14, 15] studied the
same structures on a semigroup. The power graph P(G) of a �nite group G is a
simple graph in which V (P(G)) = G and two vertices are adjacent if and only if
one of them is a power of the other. We encourage the interested reader to consult
[1] for a survey of all recent results on this topic.

Let us review some facts on power graphs of a �nite group. Chakrabarty et al.
[6] classi�ed the complete power graphs and obtained a formula for the number
of edges in a power graph. Cameron and Ghosh [4] proved that non-isomorphic
�nite groups may have isomorphic power graphs, but that �nite abelian groups
with isomorphic power graphs must be isomorphic. It is also conjectured that [4]
two �nite groups with isomorphic power graphs have the same number of elements
of each order. Later Cameron [5] responded a�rmatively to this conjecture.

Mirzargar et al. [20] considered some graph invariants of the power graphs
into account and conjectured that the power graph of a cyclic group of order n has
the maximum number of edges between the power graphs of all groups of order n.
This conjecture recently proved by Curtin and Pourgholi [9]. Moghaddamfar et
al. [21] de�ned the proper power graph P?(G) as a graph constructed from P(G)
by deleting the identity element of G. They provided necessary and su�cient
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conditions for a proper power graph P?(G) to be a strongly regular graph, a
bipartite graph or a planar graph. In a recent paper [22], the authors determined,
up to isomorphism, the structure of a �nite group G whose power graph has exactly
n spanning trees, n < 53, and obtained a new characterization of the alternating
group A5 by tree-number of its power graph. Finally in [19], the second author
of the present paper computed the automorphism group of the power graphs of
cyclic groups.

A graph Γ is said to be 2−connected if Γ does not have a cut vertex. It is easy
to see that P?(G) is connected if and only if P(G) is 2−connected. Pourgholi et
al. [23], proved some results about characterization of simple groups by power
graphs. They proposed the following open question:

Question. Does there exist a non-abelian simple group with a 2−connected power

graph?

Following Bubboloni et al. [3], we assume that P is the set of prime numbers
and b, c ∈ N, where N denotes the set of all positive integers. Set

bP + c = {x ∈ N | x = bp+ c, for some p ∈ P}
and de�ne

A = P ∪ (P + 1) ∪ (P + 2) ∪ (2P ) ∪ (2P + 1).

They proved that P(An) is 2−connected if and only if n = 3 or n 6∈ A. In
Theorems 3.6 and 3.7 of [11], the authors proved that the proper power graphs of
the projective special linear group PSL(2, q), q is prime power, and the Suzuki
group Sz(22n+1) are disconnected. This shows that their power graphs are not
2−connected. They also reproved [3, Theorem A] with a di�erence in the case
that n−2

2 is prime. We conjecture that:

Conjecture. The power graph of a non-abelian simple group G is 2−connected if

and only if G is isomorphic to the alternating group An, where n = 3 or n 6∈ A.

The aim of this paper is to prove this conjecture for some classes of �nite simple
groups. For a �nite group G, we denote by πe(G) a set of all element orders of
group G. This set is closed under divisibility and hence is uniquely determined by
a set µ(G) of elements in πe(G) which are maximal under the divisibility relation.
The set of all divisors of a natural number n is denoted by β(n). Our other
notations are standard and taken mainly from [8].

We will prove the following theorem:

Main Theorem. Let q be a power of a prime number. The proper power graphs

of the sporadic groups, Ree groups 2F4(q) and 2G2(q), the Chevalley groups A1(q),
A2(q), B2(q), C3(q) and F4(q), the projective unitary group U3(q) and the projec-

tive symplectic group S4(q) are disconnected.



Note on the power graph of �nite simple groups 167

2. Proof of the main theorem

The aim of this section is to prove our main theorem. We separated our proof into
four subsections. In the �rst subsection, it is proved that the power graph of spo-
radic groups are not 2−connected. In the second subsection, the 2−connectivity
of P(2F4(q)) and P(2G2(q)) are investigated. Our third subsection is devoted to
connectedness of the proper power graph of the Chevalley groups A1(q), A2(q),
B2(q), C2(q) and F4(2m). In our �nal subsection, the power graphs of U3(q) and
S4(q) are taken into account.

2.1. The sporadic groups

Two positive integers r and s are said to be incomparable if r is not divisible by
s and s is not divisible by r. Suppose G is a �nite group and G \ {e} can be
partitioned into two subsets A and B such that for each element a ∈ A and b ∈ B,
|a| and |b| are coprime. Then the proper power graph P?(G) will be disconnected.
We apply this simple fact to prove that the power graphs of the sporadic groups
are not 2−connected.

De�ne S(M11) = S(M12) = S(M22) = S(McL) = {11}, S(M23) = S(M24) =
{23}, S(J1) = S(J3) = S(HN) = {19}, S(J2) = {7}, S(He) = {17}, S(J4) =
{23, 29, 31, 37, 43}, S(Co1) = S(Co3) = {23}, S(Co2) = {11, 23}, S(O′N) =
{31}, S(Ly) = {67}, S(Ru) = S(Fi24) = {29}, S(HS) = {7, 11}, S(Th) =
{13, 19, 31}, S(Suz) = {11, 13}, S(B) = {31, 47}, S(M) = {41, 71}, S(Fi22) =
{13, 17}, S(Fi23) = {17, 23}. For an arbitrary sporadic group G, we assume
that A(G) = {g ∈ G | |g| ∈ S(G)} and B(G) = G \ (A(G) ∪ {e}). We now apply
computer algebra system GAP [12] to prove that for each x ∈ A(G) and y ∈ B(G),
|x| and |y| are coprime, proving the following result:

Theorem 1. The power graphs of the sporadic groups are not 2−connected.

2.2. The power graph of the Ree groups 2F4(q) and
2G2(q)

The aim of this section is to prove the power graph of 2F4(q) and 2G2(q) are not
2−connected. Suppose µ(G) denotes the set of all maximal elements of πe(G) with
divisibility order. We �rst consider the group 2F4(q), where q = 22m+1 and m > 1.
Deng and Shi [10, Lemma 3] proved that

πe(
2F4(q)) = {1, 2, 4, 8, 12, 16} ∪ β(2(q + 1)) ∪ β(4(q − 1))

∪ β(4(q +
√

2q + 1)) ∪ β(4(q −
√

2q + 1)) ∪ β(q2 − 1) ∪ β(q2 + 1)

∪ β(q2 − q + 1) ∪ β((q − 1)(q +
√

2q + 1)) ∪ β((q − 1)(q −
√

2q + 1))

∪ β(q2 + q
√

2q + q +
√

2q + 1) ∪ β(q2 − q
√

2q + q −
√

2q + 1).

Set α = q2 + q
√

2q + q +
√

2q + 1, X = β(α) \ {1}, Y = πe(G) \ (X ∪ {1}) and
Z = {q+1, q−1, q2+1, q+

√
2q+1, q−

√
2q+1, q2−q+1, q2−q

√
2q+q−

√
2q+1}.
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We claim that for integer γ ∈ Z, (α, γ) = 1. To prove this, it is enough to notice
that by simple divisions of appropriate components, we have:

α = (q +
√

2q)(q + 1) + 1

= (q +
√

2q + 2)(q − 1) + (2
√

2q + 3)

= q(q +
√

2q + 1) + (
√

2q + 1)

= (q2 − q + 1) +
√

2q(q +
√

2q + 1) (1)

= (q2 − q
√

2q + q −
√

2q + 1) + 2
√

2q(q + 1)

= (q + 2
√

2q + 4)(q −
√

2q + 1) + (3
√

2q − 3)

= (1 +
√

2q)(q2 + 1) + (q
√

2q + q − q2
√

2q).

To explain, we choose the case of q −
√

2q + 1. If the prime p divides α and
q −
√

2q + 1 then by the fourth equation in (1),

α = (3
√

2q − 3) + (q + 2
√

2q + 4)(q −
√

2q + 1).

This shows that p|3
√

2q−3 = 3×2m+1−3 and so p|3×22m+1. Since p is odd, p = 3
and 3|q −

√
2q + 1 = 22m+1 − 2m+1 + 1. Thus, 22m+1 − 2m+1 ≡ −1( mod 3). On

the other hand, for each positive integer k, 22k+1 ≡ 2 ( mod 3) which implies that
3|2m+1, a contradiction. Using a similar argument, all cases lead to contradiction.
Hence, we obtain a partition πe(G)X ∪ Y ∪ {1} such that elements of X and Y
are mutually coprime. Therefore, we have proved the following result:

Theorem 2. The power graph of the Ree group 2F4(q) is not 2−connected.

We now consider the groups 2G2(q), where q = 32m+1 and m ≥ 0. It is well-
known that 2G2(3) ∼= Aut(SL(2, 8)) and for m > 1 the groups 2G2(q) are simple.
Staroletove [26, Lemma 3.5], proved that

µ(2G2(q)) =

{
q +

√
3q + 1, q −

√
3q + 1, q − 1,

q + 1

2
, 6

}
.

Set α = q +
√

3q + 1 and T = {q −
√

3q + 1, q − 1, q+1
2 , 6}. We prove that α

does not have a common prime factor with an element of T . This is an immediate
consequence of the fact that α = (q −

√
3q + 1) + 2

√
3q = (q − 1) + (2 +

√
3q)

= 2 q+1
2 +

√
3q. This shows that by removing the identity element, the resulting

graph will be disconnected. We have proved the following result:

Theorem 3. The power graph of the Ree group 2G2(q) is not 2−connected.

2.3. The power graphs of A1(q), A2(q), B2(q), C2(q) and F4(2
m)

In this section, it is proved that the power graphs of the groups A1(q), A2(q),
B2(q), C2(q) and F4(2m) are not 2−connected. We start by the simple group
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G = A1(q), where q is an odd prime power. Staroletove [26, Lemma 3.5], proved

that µ(A1(q)) =

{
q + 1

2
,
q − 1

2
, p

}
. Since p 6 | q+1

2 and p 6 | q−1
2 , by removing the

identity element, the elements of order p will be separate from other elements.
Thus, we proved the following:

Theorem 4. The graph P(A1(q)) is not 2−connected.
We now consider the simple group A2(q), where q is a prime power. Simpson

[24] proved that

µ(A2(q)) =



{
q − 1, p(q−1)3 , q

2−1
3 , q

2+q+1
3

}
d = 3 and q is odd,{

p(q − 1), q2 − 1, q2 + q + 1
}

d = 1 and q is odd,{
4, q − 1, 2(q−1)3 , q

2−1
3 , q

2+q+1
3

}
d = 3 and q is even,{

4, 2(q − 1), q2 − 1, q2 + q + 1
}
d = 1 and q is even,

where d = (3, q − 1).
We �rst assume that q is odd and d = 3. Set

α =
q2 + q + 1

3
and X =

{
q − 1,

p(q − 1)

3
,
q2 − 1

3

}
.

Since α = (q + 2) q−1
3 + 1 = q q−1

3 + 2q+1
3 , by a similar argument as Proposition

2, α and elements of X are coprime. Hence P(A2(q)) is not 2−connected. Next
assume that q is odd, d = 1, α = q2 + q + 1 and X = {p(q − 1), q2 − 1}. Again
since α = q(q − 1) + (2q + 1), α is coprime with p(q − 1) and q2 − 1 which shows
that P(A2(q)) is not 2−connected.

We now assume that q = 2m and d = 3. De�ne:

α =
q2 + q + 1

3
and X =

{
4,
q − 1

3
,
q2 − 1

3

}
.

Since α = (q + 2) q−1
3 + 1, it can easily prove that α is coprime to all elements of

X which implies that the proper power graph of A2(q) is disconnected. Finally, if
q = 2m, d = 1, α = q2 + q + 1 and X = {4, q − 1, q2 − 1}, then α an elements of
X are coprime. Therefore, we have proved the following:

Theorem 5. The proper power graph of A2(q) is not connected.

We now proceed to consider the simple group G = B2(q), where q is a prime
power. Srinivasan [25] proved that:

µ(B2(q)) =


q2+1

(2,q−1) ,
q2−1

(2,q−1) , p(q + 1), p(q − 1) p > 3

q2+1
(2,q−1) ,

q2−1
(2,q−1) , p(q + 1), p(q − 1), p2 p ∈ {2, 3}

We consider three cases as follows:
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a. q = pm, where p > 3 is prime and m is a natural number. In this case

(2, q − 1) = 2. De�ne α = q2+1
2 and X = {p(q + 1), p(q − 1), q

2−1
2 }. Then α

is coprime with all elements of X and by a similar argument as Proposition
2, P(B2(q)) is not 2−connected.

b. q = 3m, where m is a natural number. In this case we have again (2, q−1) = 2

and by choosing α = q2+1
2 and X = {3(q + 1), 3(q − 1), q

2−1
2 , 9}, we can see

that α does not have a common divisor with an element of X. So, P(B2(q))
is not 2−connected.

c. q = 2m, where m is a natural number. In this case, (2, q − 1) = 1. Set
α = q2 + 1 and X = {p(q + 1), p(q − 1), q2 − 1, 4}. Then a similar argument
as Cases a and b shows that P(B2(q)) is not 2−connected.

Thus, we have proved the following result:

Theorem 6. The proper power graph of B2(q) is not connected.

We now consider the group C2(q), where q is an odd prime power. Staroletove
[26, Lemma 3.5] proved that:

µ(C2(q)) =


{

q2+1
2 , q

2−1
2 , p(q + 1), p(q − 1)

}
p 6= 3,{

q2+1
2 , q

2−1
2 , p(q + 1), p(q − 1), 9

}
p = 3.

We consider two separate cases as follows:

a. q = pm, where p > 3 is prime and m is a natural number. In this case, we

de�ne α = q2+1
2 and X = {p(q+1), p(q−1), q

2−1
2 }. Some similar calculations

as above show that α is coprime with all elements of X and so P(B2(q)) is
not 2−connected.

b. q = 3m, where m is a natural number. A similar argument as Case b in the
proof of Proposition 6 completes this case.

Hence, we have proved the following result:

Theorem 7. The proper power graph of C2(q) is not connected.

We end this subsection by investigation of the power graph of the group F4(q),
q = 2m and m ≥ 1. Coa et al. [7, Lemma 1.6] proved that:

µ(F4(q)) = {16, 8(q− 1), 8(q+ 1), 4(q2 − 1), 4(q2 + 1), 4(q2 − q+ 1), 4(q2 + q+ 1),
2(q− 1)(q2 + 1), 2(q+ 1)(q2 + 1), 2(q3− 1), 2(q3 + 1), (q2− 1)(q2− q+ 1), q4− q2 +
1, (q2 − 1)(q2 + q + 1), q4 − 1, q4 + 1}.

De�ne α = q4 − q2 + 1 and

X = {q − 1, q + 1, q2 + 1, q2 − q + 1, q2 + q + 1, q4 − 1, q4 + 1}.
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By using a similar argument as above, one can see that it is possible to partition
the group F4(2m) into the set of all elements that their orders are divisors of α
and its complement. Again by deleting the identity element, the resulting graph
will be disconnected. So, we have:

Theorem 8. The proper power graph of F4(2m) is not connected.

2.4. The power graphs of U3(q) and S4(q)

The aim of this section is to prove the proper power graph of U3(q) and S4(q)
are disconnected. We start by the simple groups U3(q), where q is an odd prime

power. This group is de�ned as U3(q) = SU3(q)
Z(SU3(q))

, where SU3(q) is the set of

all invertible 3× 3 matrices A on GF (q2) such that detA = 1 and AAT = I, and

Z(SU3(q)) denotes its center. It is well-known that |U3(q)| = q3(q3+1)(q2−1)
d , where

d = (3, q − 1). Aleeva [2, Lemma 10] proved that if q is odd then the maximal
element orders of this group is as follows:

µ(U3(q)) =

{{
q2−q+1

3 , q
2−1
3 , p(q+1)

3 , q + 1
}
d = 3,{

q2 − q + 1, q2 − 1, p(q + 1)
}
d = 1.

We now consider the following two cases:

1. d = 3. Suppose α = q2−q+1
3 and X =

{
q + 1, p(q+1)

3 , q
2−1
3

}
. If we partition

U3(q) into the set of all elements such that their orders are divisors of α and
its complement, then by removing the identity element the resulting graph
will be disconnected.

2. d = 1. In this case by choosing α = q2 + q + 1 and X =
{
p(q + 1), q2 − 1

}
,

one can easily prove that α and elements of X are coprime. Thus, U3(q) is
not 2−connected.

We have proved the following:

Theorem 9. The proper power graph of U3(q) is not connected.

We end this paper by considering the simple group S4(q), q = pm and p is an
odd prime. Srinivasan [25] proved that:

πe(S4(q)) = β(
q2 + 1

2
) ∪ β(

q2 − 1

2
) ∪ β(p(q + 1)) ∪ β(p(q − 1)); p 6= 3,

µ(S4(q)) =

{
q2 + 1

2
,
q2 − 1

2
, 3(q + 1), 3(q − 1), 9

}
; p = 3.

We consider two separate cases as follows:
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1. Set α = q2+1
2 and X =

{
q2−1

2 , p(q + 1), p(q − 1)
}
. Then

A = {x ∈ S4(q) | o(x)|α} and B = S4(q) \A

is a partition of S4(q) such that by removing the identity element, the re-
sulting graph will disconnected. This proves that P(S4(q)) is 2−connected.

2. Set α = q2+1
2 and X =

{
q2−1

2 , 3(q + 1), 3(q − 1), 9
}
. A similar argument as

Case (1), completes our argument.

Therefore, the following result is proved.

Theorem 10. The proper power graph of S4(q), q = pm and p is an odd prime,

is not connected.

The proof of the main theorem follows from Theorems 1− 10.
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The Coxeter group G5,5,12

Muhammad Ashiq and Tahir Imran

Abstract. The groups Gl,m,n are studied extensively by Coxeter. Higman has posed the

question that how small l,m, n can be made while maintaining the property that all but �nitely

many alternating and symmetric groups are quotients of Gl,m,n. In this paper, by using the

coset diagrams, we have proved that for all but �nitely many positive integers n either An or Sn

are quotients of G5,5,12.

1. Introduction

The groups Gl,m,n are studied by Coxeter. He has de�ned it as

〈R,S, T : Rl = Sm = Tn = (RS)2 = (ST )2 = (TR)2 = (RST )2 = 1〉

in his paper [4] published in 1939. This group can take another presentation

〈x, y, t : x2 = yl = t2 = (xt)2 = (yt)2 = (xy)m = (xyt)n = 1〉

by replacing x = RS, y = R and t = ST . He has revealed that these groups are
in�nite and insoluble if 1

l + 1
m + 1

m 6 1 and are �nite or Euclidean triangle group
if 1

l + 1
m + 1

m > 1, which are soluble. Conder [3] has used coset diagrams to prove
the fact that An is a Hurwitz group for all n > 168, and for all but 64 integers n in
the range 3 6 n 6 167. He has shown that "all but �nitely many positive integers
n the alternating group An and the symmetric group Sn are homomorphic images
of the group G6,6,6 having the presentation

〈R,S, T : R6 = S6 = T 6 = (RS)2 = (ST )2 = (TR)2 = (RST )2 = 1〉 or

〈x, y, t : x2 = y6 = t2 = (xt)2 = (yt)2 = (xy)6 = (xyt)6 = 1〉

by replacing x = RS, y = R and t = ST . As a corollary of the proof it is
shown that a similar theorem for the triangle group ∆(2, 6, 6) is given by the
presentation 〈x, y : x2 = y6 = (xy)6 = 1〉. In [7] it was shown by Q. Mushtaq,
M. Ashiq that same result is true for the group G5,5,24. It was also explained
by Conder [3] that "we lose no generality in assuming that l 6 m 6 n because
Gl,m,n is isomorphic to Gp,q,r for any rearrangement (p, q, r) of (l,m, n). The

2010 Mathematics Subject Classification: Primary 20F05, Secondary 20G40
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group H = 〈x, y : x2 = yl = (xy)m = 1〉 is of index 1 or 2 in Gl,m,n = 〈x, y, t :
x2 = yl = t2 = (xt)2 = (yt)2 = (xy)m = (xyt)n = 1〉 and is isomorphic to
∆(2, l,m; q) = 〈x, y, : x2 = yl = (xy)m = (x−1y−1xy)q = 1〉 where q = n if n
is odd and q = p

2 if n is even. It was the question asked by Higman that how
small the integers l,m, n can be made while maintaining the property that all but
�nitely many An and Sn are factor groups of Gl,m,n. In many cases Gl,m,n is
isomorphic to PSL(2, q) or PGL(2, q) for some prime power q, when l,m, n are
small. For all values of n, Coxeter [4] has mentioned that: G5,5,m is trivial when
m = 1 or 2. G5,5,3 is homomorphic to PSL(2, 5).

In this paper, we use pictorial argument to show that alternating groups An

and symmetric groups Sn of degree n can be obtained as quotients of the group
G5,5,12 = 〈x, y, t : x2 = y5 = t2 = (xt)2 = (yt)2 = (xy)5 = (xyt)12 = 1〉 for all but
�nitely many positive integers n.

2. Diagrams for G5,5,12

To prove our result for the group G5,5,12 we will use coset diagrams as used in
[3], [6] and [7]. We also need a method for combination of smaller diagrams
in order to make large diagrams of desired type. A coset diagram for G5,5,12

with n vertices is the action of its generators on the cosets of some particular
subgroup in the usual right representation. Generators x, y, t are used to draw
the coset diagrams. The coset diagrams, accredited to Higman show an action
of G5,5,12 = 〈x, y, t : x2 = y5 = t2 = (xt)2 = (yt)2 = (xy)5 = (xyt)12 = 1〉 on
a �nite set and de�ned as follows: Pentagons represents cycles of y and vertices
of pentagons permuted anti-clockwise by y. An edge denotes those vertices of x
which are interchanged by involution while re�ection about vertical line of axis
represents action of t. A method is also required to connect smaller diagrams to
obtain a larger diagram of same condition.

1

9

10

52

3 4

6

7

8
 

Figure 1: Basic Example
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For example, Figure 1 is transitive depiction of G = 〈x, y, t : x2 = y5 = t2 =
(xt)2 = (yt)2 = (xy)5 = 1〉 of degree 10. In this diagram, x act as: (5 6) (2 8) (1)
(3) (4) (7) (9) (10); y act as: (1 2 3 4 5) (6 7 8 9 10); t act as: (2 5) (3 4) (6 8)
(9 10) (1) (7).

For proof of we will need basic diagrams and portion of a coset diagram for
connecting them in di�erent ways and in di�erent numbers. This fragment is
known as handle and is denoted as [A,B] as shown in Figure 2 which means a
coset diagram containing vertices A and B �xed by x while vertex A is mapped
onto B by both y and t and A is �xed by xyt.

AB

 

Figure 2: 1-handle

We can combine two coset diagrams namely R and S by placing them one
above the other on common vertical axis of symmetry and then by joining them
as shown in Figure 3:

AB 

A B

 

Figure 3: 2-Handle

The diagram thus we get is again a coset diagram for G5,5,12 because it satis�es
the relation x2 = y5 = t2 = (xt)2 = (yt)2 = 1. Also, if (A,B, b1, b2, b3) and
(A,B, b′1, b

′
2, b
′
3) are the suitable 5-cycles of xy then since we have

(B,B′)(A,A′)(A,B, b1, b2, b3)(A,B, b′1, b
′
2, b
′
3) = (A,B′, b1, b2, b3)(A′, B, b′1, b

′
2, b
′
3)

the two afterward 5-cycles will be cycles of xy while other cycles remains una�ected
in the new diagram. So in resulting diagram xy is of order 5. The cycles ending
in A and A′ will be juxtaposed to form a single cycle if B and B′ will be joined in
same way.
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3. Jordan's Theorem

Let p be a prime number and G is a primitive group of degree n = p + k, k = 3.
If G contains an element of degree and order p, then G is either alternating or
symmetric (Theorem 3.9 [8]).

4. Basic Diagrams

To prove our result, we will need three basic diagrams and fragment of a coset
diagram in order to connect them in di�erent ways and in di�erent numbers.
Speci�cation is given to each diagram consisting of the degree of the corresponding
permutation representation of the group G5,5,12, number of handles to be used,
parity of action of t and the cycle organization of xyt and xy2t. Let we have a
coset diagram of n vertices denoted by D(n) and here we need copies of three
diagrams D(20), D(21) and D(10) for the construction of required diagram of n
vertices.

7

8 9

10

13

15

14

11

12

17

18 19

20

16

52

6

3 4

1

A B

B‘‘A

 

Figure 4: D(20)

Speci�cation of D(20) as in Figure 4: 2(1)-handles: x even, y even, t even.
xyt : AA′(B3B′3)2.42, xy2t : (A3A′3)(B1B′1)22.4, which means that on 20 points
of the diagram, t is even and xyt has 5 cycles namely two of length 1 corresponding
to A and A′, one containing both the points B and B′ is of length 8, one of length
2 and two of length 4. Similarly xy2t has �ve cycles namely one containing points
A and A′ is of length 8, one of length 2 corresponding to point B, one of length 2
corresponding to point B′, two of lengths 2 and one of length 4.

Speci�cation of D(21) as in Figure 5: 1(1)-handle: x even, y even, t even.
xyt : A(B7)2.6.4, xy2t : (A6)(B1)2.5. which means that on 21 points of the
diagram, t is even and xyt has 5 cycles namely one corresponding to A is of length
1, one corresponding to B is having length 8, one of length 2, one of length 4 and
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one of length 6.
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A B

λ 

 

Figure 5: D(21)

Similarly xy2t has 4 cycles namely one of length 7 containing point A, one of
length 2 containing points B two of lengths 5 and one of length 2.

Speci�cation of D(10) as in Figure 6: 2(1)-handles: x even, y even, t even.
xyt : AA′(B1B′1)4, xy2t : (B1)(A1A′1)(B′1).2.

1

9

10

A B

B‘‘A

52

3 4

6

7

8

 

Figure 6: D(10)

Theorem. For all but �nitely many positive integers n, the alternating group An

and the symmetric group Sn can be obtained as a quotient of the group G5,5,12.

Proof. Take P copies of D(20), Q copies of D(10) and R copies of D(21) and then
connect P copies of D(20) with Q copies of D(10) where P,Q are positive integers.
Now join R copies of D(21) with D(10) where R = 1 or 2. However we cannot
connect any copy of D(21) with D(20). The diagram thus obtained will have n
vertices and is a coset diagram of group G5,5,12. Depending upon the values of
P,Q,R re�ection t will act as even or odd permutation. The diagram D(n) gives a
permutation depiction of group G5,5,12 because every cycle of xyt divide 12. Also,
we noticed that xy2t has cycle lengths 2, 4, 5, 7, 8 with the exception 5, all lengths
of xy2t are divisors of 56, thus the element (xy2t)56 produces exponent of the cycle,
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�xing the remaining n− 5 vertices.Now, we have to show that the representation
G5,5,12 is primitive on the vertices of D(n). By contradiction, suppose that G5,5,12

is not primitive then since (xy2t)12 �xes n− 5 vertices, then 5 vertices of the cycle
should lie down in the same area, say Z, of imprimitivety. Amongst the vertices
in this cycle are the ones labeled λ and µ . But, x takes λ to µ and µ lies on
the vertical line of axis. Thus, Z is conserved by all generators x, y and t. By
transitivity it implies that Z has n number of vertices, which is a contradiction
to assumption of imprimitivety. Hence, the depiction is primitive. Hence by
Jordan's Theorem (Theorem 3.9, [8]), permutation representation is alternating
or symmetric of degree n. Thus either An or Sn is homomorphic image of G5,5,12.
Since y and xy is odd order, they yield even permutations and as a result, x will
also be even. Depending upon the values of P,Q and R, t is even or odd and
in the case t produces an even permutation, we get An and if t produces odd
permutation, we will get Sn. In either case, An is the group ∆(2, 5, 5; 6) and is of
index 2 in the group G5,5,12. Hence for all but �nitely many positive integers n the
alternating group An and the symmetric group Sn can be obtained as a quotient
of the group G5,5,12.

Corollary. For all but �nitely many positive integers n, the groups An and Sn

have the presentation 〈x, y : x2 = y5 = (x−1y−1xy)6 = 1〉.
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On generalized bi-Γ-ideals in Γ-semigroups

Abul Basar and Mohammad Yahya Abbasi

Abstract. We study generalized bi-Γ-ideals, prime, semiprime and irreducible generalized bi-Γ-

ideals in Γ-semigroups.

1. Introduction

Let S and Γ be two nonempty sets. Then a triple of the form (S,Γ, ·) is called a
Γ-semigroup, where · is a ternary operation S×Γ×S → S such that (x·α·y)·β ·z =
x · α · (y · β · z) for all x, y, z ∈ S and all α, β ∈ Γ.

We will denote (S,Γ, ·) by S and a · γ · b by aγb.

De�nition 1.1. A nonempty subset B of S is called

• a sub-Γ-semigroup of S if aγb ∈ B, for all a, b ∈ B and γ ∈ Γ,

• a generalized bi-Γ-ideal of S if BΓSΓB ⊆ B,
• a bi-Γ-ideal of S if BΓSΓB ⊆ B and BΓB ⊂ B.

A Γ-semigroup S is called a gb-simple if it does not contain the proper gener-
alized bi-Γ-ideal.

De�nition 1.2. A generalized bi-Γ-ideal B of a Γ-semigroup S is

• prime if B1ΓB2 ⊆ B implies B1 ⊆ B or B2 ⊆ B,
• strongly prime if B1ΓB2 ∩B2ΓB1 ⊆ B implies B1 ⊆ B or B2 ⊆ B,
• irreducible if B1 ∩B2 = B implies B1 = B or B2 = B,

• strongly irreducible if B1 ∩B2 ⊆ B implies B1 ⊆ B or B2 ⊆ B
for any generalized bi-Γ-ideals B1 and B2 of S.

A quasi Γ-ideal is prime if it is prime as a bi-Γ-ideal.

De�nition 1.3. A generalized bi-Γ-ideal B of S is

• semiprime if B1ΓB1 ⊆ B implies that B1 ⊆ B
for any bi-Γ-ideal B1 of S.

Other de�nition one can �nd in [1] and [2].

2010 Mathematics Subject Classi�cation: 16D25, 20M12
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2. Properties of generalized bi-Γ-ideals

Lemma 2.1. The smallest generalized bi-Γ-ideal of a Γ-semigroup S containing

a nonempty subset T of S has the form T ∪ TΓSΓT

Proof. Let B = T ∪ TΓSΓT . Then T ⊆ B. So,

BΓSΓB = (T ∪ TΓSΓT )ΓSΓ(T ∪ TΓSΓT )

⊆ [T (ΓSΓ)(T ∪ TΓSΓT )] ∪ [TΓSΓT (ΓSΓ)(T ∪ TΓSΓT )]

⊆ [T (ΓSΓ)T∪ T (ΓSΓ)TΓSΓT ]∪[TΓSΓT (ΓSΓ)T∪ TΓSΓT (ΓSΓ)TΓSΓT ]

⊆ [TΓSΓT∪ TΓSΓT ] ∪ [TΓSΓT ∪ TΓSΓT ]

= TΓSΓT ⊆ T ∪ TΓSΓT = B.

Hence B = T ∪ TΓSΓT is a generalized bi-Γ-ideal of S.
To prove that B is the smallest generalized bi-Γ-ideal of S containing T suppose

that G is a generalized bi-Γ-ideal of S containing T . Then TΓSΓT ⊆ GΓSΓG ⊆ G.
Therefore, B = T ∪ TΓSΓT ⊆ G. Hence B is the smallest generalized bi-Γ-ideal
of S containing T .

The smallest generalized bi-Γ-ideal of S containing T will be denoted by (T ).

Lemma 2.2. Suppose that A is a sub-Γ-semigroup of a Γ-semigroup S, s ∈ S and

(sΓAΓs) ∩A 6= ∅. Then (sΓAΓs) ∩A is a generalized bi-Γ-ideal of A.

Proof. Indeed,

(sΓAΓs ∩A)ΓAΓ(sΓAΓs ∩A) ⊆ [(sΓAΓs)ΓA ∩AΓA]Γ(sΓAΓs ∩A)

⊆ [(sΓAΓs)ΓA ∩A]Γ(sΓAΓs ∩A)

⊆ [[(sΓAΓsΓA)Γ(sΓAΓs)] ∩ [AΓ(sΓAΓs ∩A)]]

⊆ [(sΓAΓs) ∩ (AΓsΓAΓs)] ∩A
⊆ (sΓAΓs) ∩A.

Hence (sΓAΓs) ∩A is a generalized bi-Γ-ideal of A.

Theorem 2.3. For a Γ-semigroup S the following assertions are equivalent:

(i) S is a gb-simple Γ-semigroup,

(ii) sΓSΓs = S for all s ∈ S,

(iii) (s) = S for all s ∈ S.

Proof. (i)⇒ (ii). Let S be a gb-simple Γ-semigroup and s ∈ S. Then sΓSΓs is a
generalized bi-Γ-ideal of S. As S is a gb-simple Γ-semigroup, sΓSΓs = S.

(ii)⇒ (iii). If sΓSΓs = S for all s in S, then, (s) = {s}∪sΓSΓs = {s}∪S = S.
(iii)⇒ (i). Let (s) = S, for all s ∈ S, and assume B is a generalized bi-Γ-ideal

of S and s ∈ B. Then (s) ⊆ B. By our hypothesis, we obtain S = (s) ⊆ B ⊆ S.
So, S = B. Hence S is a gb-simple Γ-semigroup.
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Theorem 2.4. A bi-Γ-ideal B of a Γ-semigroup S is a minimal generalized bi-Γ-
ideal of S if and only if B is a gb-simple Γ-semigroup.

Proof. Let B be a minimal generalized bi-Γ-ideal of S. By our hypothesis, B is a
Γ-semigroup. SupposeD is a generalized bi-Γ-ideal of B. ThenDΓBΓD ⊆ D ⊆ B.
As B is a generalized bi-Γ-ideal of S, we obtain DΓBΓD is a generalized bi-Γ-ideal
of S. As B is a minimal generalized bi-Γ-ideal of S, we obtain DΓBΓD = B. So,
we have B = D. Therefore, B is a gb-simple Γ-semigroup.

Conversely, let B be a gb-simple Γ-semigroup. Suppose D is a generalized bi-
Γ-ideal of S so that D ⊆ B. Then DΓBΓD ⊆ DΓSΓD ⊆ D. So D is a generalized
bi-Γ-ideal of B. As B is a gb-simple Γ-semigroup, we obtain B = D. Hence B is
a minimal generalized bi-Γ-ideal of S.

Theorem 2.5. Every generalized bi-Γ-ideal of a Γ-semigroup S is a bi-Γ-ideal of
S if and only if xαy ∈ {x, y}ΓSΓ{x, y}, for every x, y ∈ S and α ∈ Γ.

Proof. Suppose S is a Γ-semigroup in which every generalized bi-Γ-ideal is a bi-
Γ-ideal. Then, for every x, y ∈ S, the generalized bi-Γ-ideal generated by subset
{x, y} is given by {x, y} ∪ {x, y}ΓSΓ{x, y} which is a bi-Γ-ideal of S, so we have
xαy ∈ {x, y}ΓSΓ{x, y}.

Conversely, if x, y are elements of a generalized bi-Γ-ideal B of S, then we have
xαy ∈ BΓSΓB ⊆ B. Hence B is a bi-Γ-ideal of S.

3. Prime and irreducible generalized bi-Γ-ideals

Proposition 3.1. A semiprime generalized bi-Γ-ideal of S is a quasi-Γ-ideal of
S.

Proof. Suppose that B is semiprime and let x ∈ (SΓB ∩ BΓS). Then xΓSΓx ⊆
(BΓS)ΓSΓ(SΓB) = BΓSΓB ⊆ B and since B is semiprime, we obtain x ∈ B.
Hence B = SΓB ∩BΓS.

Proposition 3.2. A Γ-semigroup S is regular if and only if every generalized

bi-Γ-ideal of S is semiprime.

Proof. Let S be regular and suppose that B is any generalized bi-Γ-ideal of S.
If b /∈ B, then b ∈ sΓSΓs, so we obtain sΓSΓs * B and hence B is semiprime.
Conversely, if every generalized bi-Γ-ideal of S is semiprime, then so is B = sΓSΓs
for any s ∈ S. As sΓSΓs ⊆ B, we obtain b ∈ B and hence S is regular.

Proposition 3.3. The intersection of any nonempty family of prime generalized

bi-Γ-ideals of a Γ-semigroup is a semiprime bi-Γ-ideal.

Proof. Suppose that S is a Γ-semigroup and P = {P | P is a prime generalized
bi-Γ-ideal of S}. As 0 ∈ P , for all P ∈ P, we obtain 0 ∈

⋂
P. Thus

⋂
P 6= ∅.

Suppose q ∈ (
⋂
P)ΓSΓ(

⋂
P). Then q = q1αsβq2, for some q1, q2 ∈

⋂
P,s ∈ S
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and α, β, γ ∈ Γ. Thus q = q1αsβq2 ∈ PΓSΓP ⊆ P , for all P ∈ P. Therefore,
q ∈

⋂
P. So (

⋂
P)ΓSΓ(

⋂
P) ⊆

⋂
P. Therefore,

⋂
P is a generalized bi-Γ-ideal

of S. Suppose B be a generalized bi-Γ-ideal of S such that B2 ⊆
⋂
P. We have

B2 ⊆P, for all P ∈ P. As P is a prime generalized bi-Γ-ideal of S, we obtain
B ⊆ P , for all P ∈ P. Thus B ⊆

⋂
P. Hence

⋂
P is a semiprime generalized

bi-Γ-ideal of S.

Proposition 3.4. A prime generalized bi-Γ-ideal is a prime one-sided Γ-ideal.

Proof. Let SΓB * B and BΓS * B. Since B is prime, it follows that BΓSΓB =
(BΓS)ΓSΓ(SΓB) * B, which is a contradiction. Hence B is a prime one-sided
Γ-ideal.

Corollary 3.5. A quasi-Γ-ideal of S is a prime one-sided Γ-ideal of S.

Proposition 3.6. A generalized bi-Γ-ideal B of a Γ-semigroup S is prime if and

only if RΓL ⊆ B implies R ⊆ B or L ⊆ B, where R and L are right and left

Γ-ideal of S.

Proof. If B is prime and RΓL ⊆ B with R * B, then for every r ∈ R \ B,
rΓSΓl ⊆ B, for all l ∈ L, therefore L ⊆ B. Conversely, if B is not prime,
there exists a, b /∈ B such that aΓSΓb ⊆ B. But then (aΓS)Γ(SΓb) ⊆ B and
aΓS, SΓb * B.

Proposition 3.7. If a bi-Γ-ideal B of S is prime, then

I(B) = {s ∈ B | SΓsΓS ⊆ B}
is a prime Γ-ideal of S.

Proof. Suppose B is prime and let J1ΓJ2 ⊆ I(B), for two-sided ideals J1 and J2.
Then, since J1ΓJ2 ⊆ B, by Proposition 3.6, J1 ⊆ B or J2 ⊆ B. Now I(B) is the
largest Γ-ideal in B, it follows that J1 ⊆ I(B) or J2 ⊆ I(B).

Theorem 3.8. Every strongly irreducible, semiprime generalized bi-Γ-ideal of a
Γ-semigroup S is a strongly prime generalized bi-Γ-ideal.

Proof. Let B be a strongly irreducible semiprime generalized bi-Γ-ideal of S. Sup-
pose that B1, B2 are generalized bi-Γ-ideals of S such that B1ΓB2 ∩B2ΓB1 ⊆ B.
As (B1 ∩ B2)2 ⊆ B1ΓB2 and (B1 ∩ B2)2 ⊆ B2ΓB1, it follows that (B1 ∩ B2)2 ⊆
B1ΓB2 ∩B2ΓB1 ⊆ B. As B is semiprime, we obtain B1 ∩B2 ⊆ B and since B is
strongly irreducible, we obtain B1 ⊆ B or B2 ⊆ B. Hence B is a strongly prime
generalized bi-Γ-ideal of S.

Theorem 3.9. For any generalized bi-Γ-ideal B of a Γ-semigroup S and any

s ∈ S \B there exists an irreducible generalized bi-Γ-ideal J of S such that B ⊆ J
and s /∈ J .



Generalized bi-Γ-ideals 185

Proof. Suppose GBB = {B1 | B1 is a generalized bi-Γ-ideal of S and B ⊆ B1

and s /∈ B1}. Obviously, B ∈ GBB and so GBB 6= ∅. We have GBB is a
partially ordered set under inclusion. Suppose C is a chain of GBB . Suppose
c ∈ (

⋃
C)ΓSΓ(

⋃
C). Then c = c

′
αsβc

′′
, for some c

′
, c

′′ ∈
⋃
C, s ∈ S and α, β ∈ Γ.

Therefore, c
′ ∈ B1 and c

′′ ∈ B2, for some B1, B2 ∈ C. As C is a chain of GBB ,
we obtain B1 and B2 are comparable. Thus B1 ⊆ B2 or B2 ⊆ B1; so c

′
, c

′′ ∈ B1

or c
′
, c

′′ ∈ B2. As B1 and B2 are generalized bi-Γ-ideals of S, it follows that
c = c

′
αsβc

′′ ∈ B1ΓSΓB1 ⊆ B1 ⊆
⋃
C or c = c

′
αsβc

′′ ∈ B2ΓSΓB2 ⊆ B2 ⊆
⋃
C.

Therefore, c ∈
⋃
C, so

⋃
C is a generalized bi-Γ-ideal of S. As s /∈ C, for all

c ∈ C, we obtain s /∈
⋃
C. Obviously, B ⊆

⋃
C. Therefore,

⋃
C ∈ GBB . We have

C ⊆
⋃
C, for any c ∈ C. Therefore

⋃
C is an upper bound C in GBB . By Zorn's

Lemma, there exists a maximal element J ∈ GBB . Therefore, J is a generalized
bi-Γ-ideal of S such that B ⊆ J and b /∈ J . Suppose P and Q are generalized
bi-Γ-ideals of S such that P ∩Q = J . Let P 6= J and Q 6= J . Then J = P ∩Q ⊆ P
and J = P ∩ Q ⊆ Q. So B ⊆ J ⊂ P and B ⊆ J ⊂ Q. If s /∈ P , then C ∈ GBB .
This is a contradiction since J is a maximal element of GBB , therefore s ∈ P . In
a similar fashion, we obtain s ∈ Q. Thus s ∈ P ∩ Q = J which is not possible.
Therefore, P = J or Q = J . Hence J is an irreducible generalized bi-Γ-ideal.

Theorem 3.10. For a Γ-semigroup S the following statements are equivalent:

(i) S is regular and intra-regular Γ-semigroup.

(ii) BΓB = B for every generalized bi-Γ-ideal B of S.

(iii) B1 ∩B2 = B1ΓB2 ∩B2ΓB1 for all generalized bi-Γ-ideals B1 and B2 of S.

(iv) Every generalized bi-Γ-ideal of S is semiprime.

(v) Every proper generalized bi-Γ-ideal B of S is the intersection of irreducible

semiprime generalized bi-Γ-ideals of S containing B.

Proof. It follows by Theorem 3.9 [3].

Theorem 3.11. A generalized bi-Γ-ideal of a regular and intra-regular Γ-semigroup

is strongly irreducible if and only if it is strongly prime.

Proof. Follows by Proposition 3.10 [3].

Theorem 3.12. In a Γ-semigroup S each generalized bi-Γ-ideal is strongly prime

if and only if S is regular, intra-regular and the set of generalized bi-Γ-ideals of S
is a totally ordered under inclusion.

Proof. If each generalized bi-Γ-ideal of S be strongly prime, then each generalized
bi-Γ-ideal of S is semiprime. Hence, by Theorem 3.10, S is a regular and intra-
regular Γ-semigroup. Thus the set of all its generalized bi-Γ-ideals is partially
ordered by inclusion. If B1 and B2 are generalized bi-Γ-ideals of S, then B1∩B2 =
B1ΓB2 ∩B2ΓB1, by Theorem 3.10. As B1 ∩B2 is a strongly prime generalized bi-
Γ-ideal, we obtain B1 ⊆ B1∩B2 or B2 ⊆ B1∩B2. If B1 ⊆ B1∩B2, then B1 ⊆ B2.
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If B2 ⊆ B1 ∩B2, then B2 ⊆ B1. Thus the set of all generalized bi-Γ-ideals of S is
totally ordered by inclusion.

The converse statement is a consequence of Theorem 3.12 in [3].

Theorem 3.13. If the set of all generalized bi-Γ-ideals of a Γ-semigroup S is a

totally ordered by inclusion, then S is both regular and intra-regular if and only if

each generalized bi-Γ-ideal of S is prime.

Proof. By Theorem 3.13 in [3], each generalized bi-Γ-ideal of S is prime.
Conversely, if each generalized bi-Γ-ideal of S is prime, then it is semiprime.

Theorem 3.10 completes the proof.

Theorem 3.14. For a Γ-semigroup S the following statements are equivalent:

(i) The set of all generalized bi-Γ-ideals of S is totally ordered by inclusion.

(ii) Every generalized bi-Γ-ideal of S is strongly irreducible.

(iii) Every generalized bi-Γ-ideal of S is irreducible.

Proof. (i)⇒ (ii). Let B,B1, B2 be generalized bi-Γ-ideals of S such that B1∩B2 ⊆
B. Then by (i) we obtain B1 ⊆ B2 or B2 ⊆ B1. Therefore B1 = B1 ∩ B2 ⊆ B or
B2 = B1 ∩B2 ⊆ B. Hence S is strongly irreducible.

(ii)⇒ (iii). Let B1, B2 be generalized bi-Γ-ideals of S such that B1 ∩B2 = B
for some strongly irreducible generalized bi-Γ-ideal B. Then B ⊆ B1 and B ⊆ B2.
By the hypothesis, we obtain B1 ⊆ B or B2 ⊆ B. So B1 = B or B2 = B. Hence
B is irreducible.

(iii)⇒ (i). Suppose that B1, B2 are generalized bi-Γ-ideals of S. Then B1∩B2

also is a generalized bi-Γ-ideal of S and by the assumption, B1 = B1 ∩ B2 ⊆ B2

or B2 = B1 ∩B2 ⊆ B1. Therefore B1 ⊆ B2 or B2 ⊆ B1. This proves (i).
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Finite 2-generated entropic quasigroups

with a quasi-identity

Grzegorz Bi«czak and Joanna Kaleta

Abstract. We describe all 2-generated entropic quasigroups with a quasi-identity.

1. Introduction

Entropic quasigroups with a quasi-identity are term equivalent to abelian groups
with involution (i.e., every fundamental operation of abelian groups with involution
is the composition of fundamental operations of corresponding entropic quasigroup
with a quasi-identity and conversely).

Obviously every �nite abelian group with involution is isomorphic to a �nite
product of directly indecomposable �nite abelian groups with involution. This
decomposition is unique up to reindexing and isomorphism of factors (cf. [6],
Theorem 6.39 ).

Hence to obtain structural theorem describing �nite abelian groups with in-
volution it remains to �nd all �nite directly indecomposable abelian groups with
involution.

We have already described (in [2]) directly indecomposable �nite one-generator
abelian groups with involution.

There exists an in�nite family of non-isomorphic two-generated abelian groups
with involution which are directly indecomposable (see [3]). Exact describtion of
�nite abelian groups with involution by indecomposable �nite abelian groups with
involution is di�cult.

In this paper we propose another method. First we give some fundamental
de�nitions and facts. Next, we prove several technical results which will be used
later. In the main theorems we characterize �nite two-generated abelian groups
with involution and �nite two-generated quasigroups with a quasi-identity.

Finally using the equivalence between abelian groups with involution and en-
tropic quasigroup with a quasi-identity we obtain characterization of 2-generated
�nite entropic quasigroups with a quasi-identity .

2010 Mathematics Subject Classi�cation: 20N05.
Keywords: quasigroup, entropic quasigroup, abelian group, involution.
Research supported by the Warsaw University of Technology under grant number
504G/1120/0054/000.
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De�nition 1.1. An abelian group (G,+,−, 0) is called an abelian group with

involution if there is an unary operation ∗ : G→ G such that

∀a, b ∈ G 0∗ = 0, a∗∗ = a, (a+ b)∗ = a∗ + b∗.

We denote the variety of all abelian groups with involution by AGI.

De�nition 1.2. An algebra (Q, ·, /, \, 1) is an entropic quasigroup with a quasi-

identity if it satis�es the following axioms:

(1) a · (a\b) = b, (b/a) · a = b,

(2) a\(a · b) = b, (b · a)/a = b,

(3) (a · b) · (c · d) = (a · c) · (b · d),

(4) a · 1 = a, 1 · (1 · a) = a.

One-generated entropic quasigroups with a quasi-identity are called monogenic

or cyclic.
Let us observe that the identities (1), (2) and (3) de�ne entropic quasigroups,

whereas the identities (4) de�ne the quasi-identity. We denote the variety of all
entropic quasigroups with a quasi-identity by EQ1.

More information on entropic quasigroups may be found in [4], [5], [7] and [8].
In the paper [1], it is proved that abelian groups with involution are equivalent (in
the sense of Theorems: 1.3 � 1.6) to entropic quasigroups with a quasi-identity.

Theorem 1.3. If G = (G,+,−, 0,∗ ) is an abelian group with involution, then

Ψ(G) = (G, ·, /, \, 1) is an entropic quasigroup with a quasi-identity, where a · b :=
a+ (b∗), a\b := b∗ + (−a∗), a/b := a+ (−b∗), 1 := 0.

Theorem 1.4. If Q =(Q, ·, /, \, 1) is an entropic quasigroup with a quasi-identity,

then Φ(Q) = (Q,+,−, 0,∗ ) is an abelian group with involution, where a + b :=
a · (1 · b), (−a) := 1/(1 · a), 0 := 1, a∗ := 1 · a.

Theorem 1.5. If Q =(Q, ·, /, \, 1) is an entropic quasigroup with a quasi-identity,

then Ψ(Φ(Q)) = Q.

Theorem 1.6. If G = (G,+,−, 0,∗ ) is an abelian group with involution, then

Φ(Ψ(G)) = G.

Let Q = (Q, ·, /, \, 1) be a monogenic entropic quasigroup with a quasi-identity.
Let Q = 〈x〉 and let Φ(Q) = (Q,+,−, 0, ∗) be the abelian group with involution
equivalent to (Q, ·, /, \, 1).

We will consider three types of rank of the generator x:
r+(x) = min {n ∈ N | nx = 0, n > 1}, (additive rank)
r∗(x) = min {n ∈ N | n > 1, ∃k ∈ Z nx∗ = kx},
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r∗+(x) = min {n ∈ N | r∗(x)x∗ = (r∗(x) + n)x}.

Then we de�ne

r+(Q) = r+(x), r∗(Q) = r∗(x), r∗+(Q) = r∗+(x).

This de�nition does not depend on the choice of the generator x (see [1]).

Theorem 1.7. (cf. [1]) If Q = (Q, ·, /, \, 1) is a �nite monogenic entropic quasi-

group with a quasi-identity, then:

(a) r∗(Q) is a divisor of r+(Q),

(b) r∗(Q) is a divisor of r∗+(Q),

(c) 0 6 r∗+(Q) < r+(Q),

(d) r+(Q) is a divisor of 2r∗+(Q) + r∗+(Q)2

r∗(Q) .

Proposition 1.8. (cf. [1]) Let Q =(Q, ·, /.\, 1) be a �nite cyclic entropic quasi-

group with a quasi-identity and Q = 〈a〉 for some a ∈ Q. If c ∈ Z then ca = 0 ⇔
r+(Q)|c.

Let E(a) be the integer part of a, (a)b � the remainder obtained after dividing
a by b, Zn = {0, 1, . . . , n− 1}.

Proposition 1.9. (cf. [1]) Let b, t, y ∈ Z and b ≥ 1. Then

E

(
t

b

)
+ E

(
y + (t)b

b

)
= E

(
y + t

b

)
, (1)

(y + (t)b)b = (y + t)b . (2)

2. Auxiliary results

Abelian groups with involution generated by x can be described by three ranks:
r+(x), r∗(x) and r∗+(x) (cf. [1]). Abelian groups with involution generated by
two elements x1, x2 will be described by ten ranks de�ned below.

De�nition 2.1. Let Q = (Q, ·, /, \, 1) = 〈x1, x2〉 be a 2-generated �nite entropic
quasigroup with a quasi-identity. Let A = Φ(Q). Let

a1 = min{n ∈ N \ {0} |nx1 ∈ 〈x2〉},
b1 = min{n ∈ N \ {0} | ∃m ∈ Z nx∗1 −mx1 ∈ 〈x2〉},
k1 = min{n ∈ N ∪ {0} | b1x∗1 − (b1 + n)x1 ∈ 〈x2〉},
a2 = min {n ∈ N \ {0} |nx2 = 0},
b2 = min {n ∈ N \ {0} | ∃k ∈ Z nx∗2 − kx2 = 0},
k2 = min {n ∈ N ∪ {0} | b2x∗2 − (b2 + n)x2 = 0}.
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Then there exist a12, a
′
12 ∈ Za2 , b12, b′12 ∈ Zb2 such that

a1x1 = a12x2 + b12x
∗
2 ∈ 〈x2〉, b1x

∗
1 − (b1 + k1)x1 = a′12x2 + b′12x

∗
2 ∈ 〈x2〉.

So, to every �nite entropic quasigroup with a quasi-identity generated by x1, x2
we assign ten parameters:

ψ(A, x1, x2) = (a1, b1, k1, a12, b12, a
′
12, b

′
12, a2, b2, k2) ∈ Z10.

Example 2.2. Let n,m ∈ Z, m > 1 and n > 1 be �xed. Consider Wn,m =
(Z2m × Z2 × Z2n ,+,−, (0, 0, 0), ∗), where

(y1, y2, y3) + (y′1, y
′
2, y
′
3) = ((y1 + y′1 + E(

y2+y
′
2

2 )2)2m , (y2 + y′2)2, (y3 + y′3)2n),

−(y1, y2, y3) = ((−y1 + E(−y22 )2)2m , (−y2)2, (−y3)2n),

(y1, y2, y3)∗ =

{
((y2 + E(y12 )2)2m , (y1)2, y3) for 2|y3,

((y2 + 2m−1 + E(y12 )2)2m , (y1)2, y3) for 2 - y3.

Then, by Theorem 9 in [3], Wn,m = 〈x1, x2〉 = Wn,(2m−1,0)(Q
0
2m,2) ∈ AGI,

where x1 = (1, 0, 0), x2 = (0, 0, 1). So x∗1 = (0, 1, 0), x∗2 = (2m−1, 0, 1) and

• 2m−1x1 = (2n − 1)x2 + x∗2,

• 2x∗1 = 0,

• 2nx2 = 0,

• 2x∗2 − 2x2 = 0.

Thus a1 = 2m−1, b1 = 2, k1 = 0, a12 = 2n − 1, b12 = 1, a′12 = 0, b′12 = 0, a2 = 2n,
b2 = 2, k2 = 0.

De�nition 2.3. For t = (a1, b1, k1, a12, b12, , a
′
12, b

′
12, a2, b2, k2) ∈ Z10 let γt be the

function Z4 → Za1 × Zb1 × Za2 × Zb2 such that

π1(γt(y)) = (π1(y) + E(π2(y)
b1

)(b1 + k1))a1 ,

π2(γt(y)) = (π2(y))b1 ,

π3(γt(y)) = (π3(y)+E(π2(y)
b1

)a′12 +αa12 +E

(
π4(y)+E(

π2(y)
b1

)b′12+αb12

b2

)
(b2 +k2))a2 ,

π4(γt(y)) =
(
π4(y) + E(π2(y)

b1
)b′12 + αb12

)
b2

for every y ∈ Z4, where α = E

(
π1(y)+E(

π2(y)
b1

)(b1+k1)

a1

)
and πi(y1, y2, y3, y4) = yi

for i = 1, 2, 3, 4 and (y1, y2, y3, y4) ∈ Z4.

De�nition 2.4. For t = (a1, b1, k1, a12, b12, a
′
12, b

′
12, a2, b2, k2) ∈ Z10 we de�ne

Qt = (Za1 × Zb1 × Za2 × Zb2 ,+t,−t, 0, ∗t), and
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• (y1, y2, y3, y4) +t (z1, z2, z3, z4) = γt(y1 + z1, y2 + z2, y3 + z3, y4 + z4),

• −t(y1, y2, y3, y4) = γt(−y1,−y2,−y3,−y4), 0 = (0, 0, 0, 0),

• (y1, y2, y3, y4)∗ = (y2, y1, y4, y3),

• (y1, y2, y3, y4)∗t = γt(y2, y1, y4, y3), i.e., y∗t = γt(y
∗).

De�nition 2.5. Let D be the set of tuples (a1, b1, k1, a12, b12, a
′
12, b

′
12, a2, b2, k2)

such that:

b1|a1, b1|k1, a1|
(

2k1 +
k21
b1

)
, a1 > 1, b1 > 1, 0 6 k1 < a1,

b2|a2, b2|k2, a2|
(

2k2 +
k22
b2

)
, a2 > 1, b2 > 1, 0 6 k2 < a2,

b2|
(
a12 − (1 + k1

b1
)b12 − a1

b1
b′12

)
, b2|

(
a′12 + (1 + k1

b1
)b′12 +

2k1+
k21
b1

a1
b12

)
,

a2|
(
b12 − (1 + k1

b1
))a12 − a1

b1
a′12 + (1 + k2

b2
)(a12 − (1 + k1

b1
)b12 − a1

b1
b′12

)
,

a2|
(
b′12 + (1 + k1

b1
))a′12 +

2k1+
k21
b1

a1
a12 + (1 + k2

b2
)(a′12 + (1 + k1

b1
)b′12 +

2k1+
k21
b1

a1
b12

)
,

a12, a
′
12 ∈ Za2 , b12, b′12 ∈ Zb2 .

Lemma 2.6. If G = 〈x〉 is a �nite abelian group with involution, a = r+(〈x〉),
b = r∗(〈x〉), k = r∗+(〈x〉), m,n ∈ Z and mx+nx∗ = 0, then b|n and a|m+(1+ k

b )n.

Proof. If mx+nx∗ = 0, then mx+ (E(nb )b+ (n)b)x
∗ = 0. Thus we have (n)bx

∗ =
(−m− E(nb )b)x and 0 6 (n)b < b. By de�nition of b we obtain (n)b = 0 so b|n.

Moreover, mx = −nx∗ = −nb bx
∗ = −nnb (b+ k)x, so (m+ n

b (b+ k))x = 0 and

by Proposition 1.8 we have a|(m+ n
b (b+ k)). Thus a|m+ (1 + k

b )n.

Proposition 2.7. If G = 〈x1, x2〉 is a �nite abelian group with involution, then

t = ψ(G, x1, x2) ∈ D.

Proof. LetG=〈x1, x2〉 be a �nite abelian group with involution and t=ψ(G, x1, x2)
= (a1, b1, k1, a12, b12, a

′
12, b

′
12, a2, b2, k2). Then a2 = r+(〈x2〉), b2 = r∗(〈x2〉) and

k2 = r∗+(〈x2〉), a1 = r+(G/〈x2〉), b1 = r∗(G/〈x2〉), k1 = r∗+(G/〈x2〉).
By Theorem 1.7 we have b1|a1, b1|k1, a1|(2k1+k21

b1
), a1 > 1, b1 > 1, 0 6 k1< a1,

b2|a2, b2|k2, a2|(2k2 +
k22
b2

), a2 > 1, b2 > 1, 0 6 k2 < a2.
Now we prove that

b2|(a′12 + (1 + k1
b1

)b′12 +
2k1+

k21
b1

a1
b12) and

a2|(b′12 + (1 + k1
b1

))a′12 +
2k1+

k21
b1

a1
a12 + (1 + k2

b2
)(a′12 + (1 + k1

b1
)b′12 +

2k1+
k21
b1

a1
b12).

By de�nition of t we obtain

a1x1 = a12x2 + b12x
∗
2 ∈ 〈x2〉, (3)
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b1x
∗
1 − (b1 + k1)x1 = a′12x2 + b′12x

∗
2 ∈ 〈x2〉. (4)

So, (b1 + k1)x∗1 = (1 + k1
b1

)b1x
∗
1

(4)
= (1 + k1

b1
)((b1 + k1)x1 + a′12x2 + b′12x

∗
2) and

(b1 + k1)x∗1 = ((b1 + k1)x1)∗
(4)
= (b1x

∗
1 − a′12x2 − b′12x∗2)∗ = b1x1 − a′12x∗2 − b′12x2.

Hence 0 = ((1+ k1
b1

)(b1+k1)−b1)x1+(b′12+(1+ k1
b1

)a′12)x2+(a′12+(1+ k1
b1

)b′12)x∗2 and

((1 + k1
b1

)(b1 +k1)− b1)x1 = (2k1 +
k21
b1

)x1 =
2k1+

k21
b1

a1
a1x1

(3)
=

2k1+
k21
b1

a1
(a12x2 + b12x

∗
2).

So, 0 = (b′12 + (1 + k1
b1

)a′12 +
2k1+

k21
b1

a1
a12)x2 + (a′12 + (1 + k1

b1
)b′12 +

2k1+
k21
b1

a1
b12)x∗2.

From this, applying Lemma 2.6, we obtain b2|(a′12 + (1 + k1
b1

)b′12 +
2k1+

k21
b1

a1
b12)

and a2|(b′12 + (1 + k1
b1

))a′12 +
2k1+

k21
b1

a1
a12 + (1 + k2

b2
)(a′12 + (1 + k1

b1
)b′12 +

2k1+
k21
b1

a1
b12).

Now we prove that b2|(a12 − (1 + k1
b1

)b12 − a1
b1
b′12) and a2|(b12 − (1 + k1

b1
))a12 −

a1
b1
a′12 + (1 + k2

b2
)(a12 − (1 + k1

b1
)b12 − a1

b1
b′12).

Let us observe that a12x
∗
2 + b12x2 = (a12x2 + b12x

∗
2)∗

(3)
= a1x

∗
1 = a1

b1
b1x
∗
1

(4)
=

a1
b1

((b1 + k1)x1 + a′12x2 + b′12x
∗
2) = (1 + k1

b1
) a1x1 + a1

b1
a′12x2 + a1

b1
b′12x

∗
2

(3)
= (1 +

k1
b1

)(a12x2 + b12x
∗
2) + a1

b1
a′12x2 + a1

b1
b′12x

∗
2.

Thus 0 = (b12 − (1 + k1
b1

)a12 − a1
b1
a′12)x2 + (a12 − (1 + k1

b1
)b12 − a1

b1
b′12)x∗2.

After applying Lemma 2.6 we conclude that b2|(a12− (1 + k1
b1

)b12− a1
b1
b′12) and

a2|(b12 − (1 + k1
b1

))a12 − a1
b1
a′12 + (1 + k2

b2
)(a12 − (1 + k1

b1
)b12 − a1

b1
b′12).

The following two lemmas and proposition serve as technical help to prove the
Theorem 3.1.

Lemma 2.8. If t = (a1, b1, k1, a12, b12, a
′
12, b

′
12, a2, b2, k2) ∈ D, x, y ∈ Z4, then

γt(x+ y) = γt(x+ γt(y)). (5)

If x ∈ Za1 × Zb1 × Za2 × Zb2 , then

γt(x) = x. (6)

Proof. Let t = (a1, b1, k1, a12, b12, a
′
12, b

′
12, a2, b2, k2) ∈ D, x, y ∈ Z4. We show that

πi(γt(x+ γt(y))) = πi(γt(x+ y)) for i = 1, 2, 3, 4.
We have

• π1(γt(x+ γt(y))) = (π1(x+ γt(y)) + E(π2(x+γt(y))
b1

)(b1 + k1))a1

= (π1(x) + π1(γt(y)) + E(π2(x)+π2(γt(y))
b1

)(b1 + k1))a1

= (π1(x) + (π1(y) + E(π2(y)
b1

)(b1 + k1))a1 + E(
π2(x)+(π2(y))b1

b1
)(b1 + k1))a1

(1),(2)
= (π1(x)+π1(y)+E(π2(y)

b1
)(b1+k1)+(E(π2(x)+π2(y)

b1
)−E(π2(y)

b1
))(b1+k1))a1

= (π1(x) + π1(y) + (E(π2(x)+π2(y)
b1

))a1 = π1(γt(x+ y)),
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• π2(γt(x+ γt(y)) = (π2(x+ γt(y)))b1 = (π2(x) + π2(γt(y)))b1

= (π2(x)+(π2(y)b1))b1
(2)
= (π2(x)+π2(y))b1 = π2(γt(x+y)).

• Let us introduce the following abbreviations:

α1 = π1(y) + E(π2(y)
b1

)(b1 + k1),

α2 = E

(
π1(x+γt(y))+E(

π2(x+γt(y))
b1

)(b1+k1)

a1

)
= E

(
π1(x)+(α1)a1+E(

π2(x)+(π2(y))b1
b1

)(b1+k1)

a1

)
,

α3 = π4(y) + E(π2(y)
b1

)b′12 + E(α1

a1
)b12,

α4 = E

(
π4(x)+(α3)b2+E(

π2(x)+(π2(y))b1
b1

)b′12+α2b12

b2

)
,

α′2 = E

(
π1(x)+π1(y)+E(

π2(x)+π2(y)
b1

)(b1+k1)

a1

)
,

α′4 = E

(
π4(x)+π4(y)+α

′
2b12+E(

π2(x)+π2(y)
b1

)b′12
b2

)
.

By Proposition 1.9 we have

E(α1

a1
) + α2 = E(α1

a1
) + E

(
π1(x)+(α1)a1+E(

π2(x)+(π2(y))b1
b1

)(b1+k1)

a1

)
(1)
= E

(
π1(x)+π1(y)+E(

π2(y)
b1

)(b1+k1)+E(
π2(x)+(π2(y))b1

b1
)(b1+k1)

a1

)

= E

π1(x)+π1(y)+

(
E(

π2(y)
b1

)+E(
π2(x)+(π2(y))b1

b1
)

)
(b1+k1)

a1


(1)
= E

(
π1(x)+π1(y)+E(

π2(x)+π2(y)
b1

)(b1+k1)

a1

)
= α′2,

so
E(

α1

a1
) + α2 = α′2. (7)

Moreover,

E(α3

b2
) + α4 = E(α3

b2
) + E

(
π4(x)+(α3)b2+E(

π2(x)+(π2(y))b1
b1

)b′12+α2b12

b2

)
(1)
= E

(
π4(x)+α3+E(

π2(x)+(π2(y))b1
b1

)b′12+α2b12

b2

)

+E

(
π4(x)+π4(y)+E(

π2(y)
b1

)b′12+E(
α1
a1

)b12+E(
π2(x)+(π2(y))b1

b1
)b′12+α2b12

b2

)
(7)
= E

(
π4(x)+π4(y)+E(

π2(y)
b1

)b′12+α
′
2b12+E(

π2(x)+(π2(y))b1
b1

)b′12
b2

)
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(1)
= E

(
π4(x)+π4(y)+α

′
2b12+E(

π2(x)+π2(y)
b1

)b′12
b2

)
= α′4,

so

E(
α3

b2
) + α4 = α′4. (8)

Hence,

π3(γt(x+ γt(y))) =(
π3(x+γt(y))+E(π2(x+γt(y))

b1
)a′12+α2a12+E

(
π4(x+γt(y))+E(

π2(x+γt(y))
b1

)b′12+α2b12

b2

)
(b2+k2)

)
a2

=

(
π3(x)+

(
π3(y)+E(π2(y)

b1
)a′12+E(α1

a1
)a12+E(α3

b2
)(b2+k2)

)
a2

+E(
π2(x)+(π2(y))b1

b1
)a′12

+α2a12 +E(
π4(x)+(α3)b2+E(

π2(x)+(π2(y))b1
b1

)b′12+α2b12

b2
)(b2 +k2)

)
a2

(2)
=

(
π3(x) + π3(y) + a′12

(
E(π2(y)

b1
) + E(

π2(x)+(π2(y))b1
b1

)
)

+ a12(E(α1

a1
) + α2)+

(b2 + k2)(α4 +E(α3

b2
))

)
a2

(1),(7),(8)
=

(
π3(x) + π3(y) + a′12E(π2(x)+π2(y)

b1
) + a12α

′
2 + (b2 + k2)α′4

)
a2

=

(
π3(x+y)+a′12E(π2(x+y)

b1
)+a12α

′
2+(b2+k2)E

(
π4(x+y)+α

′
2b12+E(

π2(x+y)
b1

)b′12
b2

))
a2

= π3(γt(x+ y))

• Let β1 = π1(y)+ E(π2(y)
b1

)(b1+k1), β2 = E

(
π1(x+γt(y))+E(

π2(x+γt(y))
b1

)(b1+k1)

a1

)
= E

(
π1(x)+(β1)a1+E(

π2(x)+(π2(y))b1
b1

)(b1+k1)

a1

)
.

Then

E(β1

a1
) + β2

(1)
= E

(
π1(x)+β1+E(

π2(x)+(π2(y))b1
b1

)(b1+k1)

a1

)

= E

(
π1(x)+π1(y)+E(

π2(y)
b1

)(b1+k1)+E(
π2(x)+(π2(y))b1

b1
)(b1+k1)

a1

)
(1)
= E

(
π1(x)+π1(y)+E(

π2(x)+π2(y)
b1

)(b1+k1)

a1

)
.

Therefore

E(
β1
a1

) + β2 = E

(
π1(x) + π1(y) + E(π2(x)+π2(y)

b1
)(b1 + k1)

a1

)
. (9)

So we conclude that
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π4(γt(x+ γt(y)))

=

(
π4(x+ γt(y)) + E(π2(x+γt(y))

b1
)b′12 + E(

π1(x+γt(y))+E(
π2(x+γt(y)

b1
)(b1+k1)

a1
)b12

)
b2

=

(
π4(x) +

(
π4(y) + E(π2(y)

b1
)b′12 + E(

π1(y)+E(
π2(y)
b1

)(b1+k1)

a1
)b12

)
b2

+

E(
π2(x)+(π2(y))b1

b1
)b′12 + β2b12

)
b2

(2)
=

(
π4(x) + π4(y) + (E(π2(y)

b1
) + E(

π2(x)+(π2(y))b1
b1

))b′12 + (E(β1

a1
) + β2)b12

)
b2

(1)
=

(
π4(x) + π4(y) + (E(π2(x)+π2(y)

b1
))b′12 + (E(β1

a1
) + β2)b12

)
b2

(9)
=

(
π4(x+ y) + (E(π2(x+y)

b1
))b′12 + E

(
π1(x)+π1(y)+E(

π2(x)+π2(y)
b1

)(b1+k1)

a1

)
b12

)
b2

= π4(γt(x+ y)).

Let x = (x1, x2, x3, x4) ∈ Za1 ×Zb1 ×Za2 ×Zb2 . It is clear that if y ∈ Zn, then
(y)n = y and E( yn ) = 0. So,

• π1(γt(x)) = (x1 + E(x2

b1
)(b1 + k1))a1 = (x1)a1 = x1,

• π2(γt(x)) = (x2)b1 = x2,

• π3(γt(x)) = (x3 + E(x2

b1
)a′12 + αa12 + E

(
x4+E(

x2
b1

)b′12+αb12

b2

)
(b2 + k2))a2

= (x3)a2 = x3 since α = E

(
x1+E(

x2
b1

)(b1+k1)

a1

)
= E(x1

a1
) = 0,

• π4(γt(x)) = (x4 + E(x2

b1
)b′12 + αb12)b2 = (x4)b2 = x4.

Hence γt(x) = x.

Proposition 2.9. If x, y, b ∈ Z and b > 1 is a divisor of x− y, then

E
(x
b

)
− E

(y
b

)
=
x− y
b

.

Proof. It is obvious.

Lemma 2.10. For t ∈ D and y ∈ Z4 we have

γt(y
∗) = γt((γt(y))∗), (10)

where y∗ = (y1, y2, y3, y4)∗ = (y2, y1, y4, y3).

Proof. Let y ∈ Z4, t = (a1, b1, k1, a12, b12, a
′
12, b

′
12, a2, b2, k2) ∈ D and

• π1(γt(y
∗)) = (L1)a1 , π2(γt(y

∗)) = (L2)b1 ,
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• π3(γt(y
∗)) = (L3)a2 , π4(γt(y

∗)) = (L4)b2 ,

• π1(γt((γt(y))∗)) = (R1)a1 , π2(γt((γt(y))∗)) = (R2)b1 ,

• π3(γt((γt(y))∗)) = (R3)a2 , π4(γt((γt(y))∗)) = (R4)b2 .

We show that a1|R1 − L1, b1|R2 − L2, a2|R3 − L3 and b2|R4 − L4. Let

β1 = π1(y) + E(π2(y)
b1

)(b1 + k1),

β2 = E(
(π2(y))b1+E(

(β1)a1
b1

)(b1+k1)

a1
),

β3 = E(
π4(y)+E(

π2(y)
b1

)b′12+E(
β1
a1

)b12

b2
),

β4 = π3(y) + E(π2(y)
b1

)a′12 + E(β1

a1
)a12 + β3(b2 + k2),

β′1 = π2(y) + E(π1(y)
b1

)(b1 + k1).

First we show that

E

(
(β1)a1
b1

)
− E

(
π1(y)

b1

)
= (1 +

k1
b1

)E

(
π2(y)

b1

)
− a1
b1
E

(
β1
a1

)
, (11)

β2 − E
(
β′1
a1

)
=

2k1 +
k21
b1

a1
E

(
π2(y)

b1

)
− (1 +

k1
b1

)E

(
β1
a1

)
. (12)

E

(
(β4)a2+E(

(β1)a1
b1

)b′12+β2b12

b2

)
− E

(
π3(y)+E(

π1(y)
b1

)b′12+E(
β′1
a1

)b12

b2

)
=

(
E(π2(y)

b1
)(a′12 + (1 + k1

b1
)b′12 +

2k1+
k21
b1

a1
b12)+

E(β1

a1
)(a12 − (1 + k1

b1
)b12 − a1

b1
b′12) + (b2 + k2)β3 − E(β4

a2
)a2

)
1
b2
.


(13)

• Let us observe that

(β1)a1−π1(y)=β1−E(β1

a1
)a1−π1(y)= π1(y)+E(π2(y)

b1
)(b1+k1)−E(β1

a1
)a1−π1(y)

= E(π2(y)
b1

)(b1 +k1)−E(β1

a1
)a1 so b1|(β1)a1−π1(y), and by Proposition 2.9 we

conclude E
(

(β1)a1
b1

)
−E

(
π1(y)
b1

)
=

(β1)a1−π1(y)

b1
=

E(
π2(y)
b1

)(b1+k1)−E(
β1
a1

)a1

b1
=

(1 + k1
b1

)E
(
π2(y)
b1

)
− a1

b1
E
(
β1

a1

)
. So, we obtain (11).

• (π2(y))b1 + E(
(β1)a1
b1

)(b1 + k1)− (π2(y) + E(π1(y)
b1

)(b1 + k1))

= −E(π2(y)
b1

) + (b1 + k1)(E
(

(β1)a1
b1

)
− E

(
π1(y)
b1

)
)

(11)
= −E(π2(y)

b1
) + (b1 + k1)((1 + k1

b1
)E
(
π2(y)
b1

)
− a1

b1
E
(
β1

a1

)
)

= E(π2(y)
b1

)(2k1 +
k21
b1

)− a1(1 + k1
b1

)E
(
β1

a1

)
is divided by a1 since a1|(2k1 +

k21
b1

).
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By Proposition 2.9 we have

β2 − E
(
β′1
a1

)
=

(π2(y))b1+E(
(β1)a1
b1

)(b1+k1)−(π2(y)+E(
π1(y)
b1

)(b1+k1))

a1
=

E(
π2(y)
b1

)(2k1+
k21
b1

)−a1(1+ k1
b1

)E
(
β1
a1

)
a1

=
2k1+

k21
b1

a1
E
(
π2(y)
b1

)
− (1 + k1

b1
)E
(
β1

a1

)
,

so we obtain (12).

• (β4)a2 + E(
(β1)a1
b1

)b′12 + β2b12 −
(
π3(y) + E(π1(y)

b1
)b′12 + E(

β′1
a1

)b12

)
= (β4)a2 − π3(y) + b′12(E(

(β1)a1
b1

)− E(π1(y)
b1

)) + b12(β2 − E(
β′1
a1

))

(11),(12)
= β4 − E(β4

a2
)a2 − π3(y) + b′12

(
(1 + k1

b1
)E(π2(y)

b1
)− a1

b1
E(β1

a1
)

)
+

b12

(
2k1+

k21
b1

a1
E(π2(y)

b1
)−(1+ k1

b1
)E(β1

a1
)

)
= π3(y) + E(π2(y)

b1
)a′12 + E(β1

a1
)a12 + β3(b2 + k2)− π3(y)− E(β4

a2
)a2+

b′12

(
(1 + k1

b1
)E(π2(y)

b1
)− a1

b1
E(β1

a1
)

)
+ b12

(
2k1+

k21
b1

a1
E(π2(y)

b1
)− (1 + k1

b1
)E(β1

a1
)

)
= E(π2(y)

b1
)(a′12 + (1 + k1

b1
)b′12 +

2k1+
k21
b1

a1
b12)+

E(β1

a1
)(a12− (1+ k1

b1
)b12− a1

b1
b′12)+(b2 +k2)β3−E(β4

a2
)a2)

is divided by b2 because b2|a2, b2|(b2+k2), b2|(a′12+(1+ k1
b1

)b′12+
2k1+

k21
b1

a1
b12),

b2|(a12 − (1 + k1
b1

)b12 − a1
b1
b′12), whereas last two divisions are consequence of

the assumption that t ∈ D.

By Lemma 2.9 we have

E

(
(β4)a2+E(

(β1)a1
b1

)b′12+β2b12

b2

)
− E

(
π3(y)+E(

π1(y)
b1

)b′12+E(
β′1
a1

)b12

b2

)
= 1

b2

(
(β4)a2 + E(

(β1)a1
b1

)b′12 + β2b12 − (π3(y) + E(π1(y)
b1

)b′12 + E(
β′1
a1

)b12)

)
=

(
E(π2(y)

b1
)(a′12 + (1 + k1

b1
)b′12 +

2k1+
k21
b1

a1
b12) + E(β1

a1
)(a12 − (1 + k1

b1
)b12

−a1b1 b
′
12) + (b2 +k2)β3−E(β4

a2
)a2

)
1
b2
.

So we obtain (13).

In this part of the proof we show that a1|(R1 − L1). Indeed:

R1 − L1 = (π1(γt(y)∗) + E(π2(γt(y)
∗)

b1
)(b1 + k1))− π2(y) + E(π1(y)

b1
)(b1 + k1)

= ((π2(y))b1 +E(
(π1(y)+E(

π2(y)
b1

)(b1+k1))a1
b1

)(b1 +k1))−π2(y)−E(π1(y)
b1

)(b1 +k1)

= −E(π2(y)
b1

)b1 + E(
(β1)a1
b1

)(b1 + k1)− E(π1(y)
b1

)(b1 + k1)
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(11)
= −E(π2(y)

b1
)b1 + (b1 + k1)

(
(1 + k1

b1
)E
(
π2(y)
b1

)
− a1

b1
E
(
β1

a1

))
= E(π2(y)

b1
)(2k1 +

k21
b1

)− (1 + k1
b1

)a1E
(
β1

a1

)
is divided by a1 since a1|(2k1 +

k21
b1

).

Now we show that b1|(R2 − L2):

R2 − L2 = π2(γt(y)∗)− π2(y∗) = (π1(y) + E(π2(y)
b1

)(b1 + k1))a1 − π1(y)

= π1(y) + E(π2(y)
b1

)(b1 + k1)− E(
π1(y)+E(

π2(y)
b1

)(b1+k1)

a1
)a1 − π1(y)

= E(π2(y)
b1

)(b1 + k1) − E(
π1(y)+E(

π2(y)
b1

)(b1+k1)

a1
)a1 is divided by b1 since b1|a1

and b1|k1.

The third our task is to show that a2|(R3 − L3):

L3 = π3(y∗) + E(π2(y
∗)

b1
)a′12 + αa12 + E

(
π4(y

∗)+E(
π2(y∗)
b1

)b′12+αb12

b2

)
(b2 + k2),

where α = E

(
π1(y

∗)+E(
π2(y∗)
b1

)(b1+k1)

a1

)
= E

(
π2(y)+E(

π1(y)
b1

)(b1+k1)

a1

)
= E(

β′1
a1

). So,

L3 = π4(y) + E(π1(y)
b1

)a′12 + E(
β′1
a1

)a12 + E

(
π3(y)+E(

π1(y)
b1

)b′12+E(
β′1
a1

)b12

b2

)
(b2 + k2).

R3 =π3(γt(y)∗)+E(π2(γt(y)
∗)

b1
)a′12+α′a12+E

(
π4(γt(y)

∗)+E(
π2(γt(y)

∗)
b1

)b′12+α
′b12

b2

)
(b2+k2),

where α′ = E

(
π1(γt(y)

∗)+E(
π2(γt(y)

∗)
b1

)(b1+k1)

a1

)
= E

(
π2(γt(y))+E(

π1(γt(y))
b1

)(b1+k1)

a1

)
=

E

(
(π2(y))b1+E(

(β1)a1
b1

)(b1+k1)

a1

)
= β2.

Moreover,

π3(γt(y)) =(
π3(y) + E(π2(y)

b1
)a′12 + α′′a12 + E

(
π4(y)+E(

π2(y)
b1

)b′12+α
′′b12

b2

)
(b2 + k2)

)
a2

= (β4)a2

 (14)

where

α′′ = E

(
π1(y)+E(

π2(y)
b1

)(b1+k1)

a1

)
= E(β1

a1
).

Hence

R3 =π4(γt(y))+E(π1(γt(y))
b1

)a′12 +β2a12 +E

(
π3(γt(y))+E(

π1(γt(y))
b1

)b′12+β2b12

b2

)
(b2 +k2)

=
(
π4(y) + E(π2(y)

b1
)b′12 + E(β1

a1
)b12

)
b2

+ E(
(β1)a1
b1

)a′12 + β2a12+

E

(
π3(γt(y))+E(

(β1)a1
b1

)b′12+β2b12

b2

)
(b2 + k2)

(14)
=
(
π4(y) + E(π2(y)

b1
)b′12 + E(β1

a1
)b12

)
b2

+ E(
(β1)a1
b1

)a′12 + β2a12+
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E

(
(β4)a2+E(

(β1)a1
b1

)b′12+β2b12

b2

)
(b2 +k2).

Thus
R3 − L3

(
π4(y) + E(π2(y)

b1
)b′12 + E(β1

a1
)b12

)
b2

+ E(
(β1)a1
b1

)a′12 + β2a12+

E

(
(β4)a2+E(

(β1)a1
b1

)b′12+β2b12

b2

)
(b2 + k2)−

(
π4(y) + E(π1(y)

b1
)a′12 + E(

β′1
a1

)a12+

E

(
π3(y)+E(

π1(y)
b1

)b′12+E(
β′1
a1

)b12

b2

)
(b2 + k2)

)
= π4(y) + E(π2(y)

b1
)b′12 + E(β1

a1
)b12 −

E

(
π4(y)+E(

π2(y)
b1

)b′12+E(
β1
a1

)b12

b2

)
b2 + a′12(E(

(β1)a1
b1

)−E(π1(y)
b1

)) + a12(β2 −E(
β′1
a1

))+

(b2+k2)(E

(
(β4)a2+E(

(β1)a1
b1

)b′12+β2b12

b2

)
−E

(
π3(y)+E(

π1(y)
b1

)b′12+E(
β′1
a1

)b12

b2

)
)−π4(y)

(11),(12)
=

E(π2(y)
b1

)b′12 + E(β1

a1
)b12 − β3b2 + a′12((1 + k1

b1
)E
(
π2(y)
b1

)
− a1

b1
E
(
β1

a1

)
)+

a12(
2k1+

k21
b1

a1
E
(
π2(y)
b1

)
−(1+ k1

b1
)E
(
β1

a1

)
)+(b2+k2)(E

(
(β4)a2+E(

(β1)a1
b1

)b′12+β2b12

b2

)
−

E

(
π3(y)+E(

π1(y)
b1

)b′12+E(
β′1
a1

)b12

b2

)
)
(13)
= a′12((1 + k1

b1
)E
(
π2(y)
b1

)
− a1

b1
E
(
β1

a1

)
)+

a12(
2k1+

k21
b1

a1
E
(
π2(y)
b1

)
− (1 + k1

b1
)E
(
β1

a1

)
) + (b2 + k2)

(
E(π2(y)

b1
)(a′12 + (1 + k1

b1
)b′12 +

2k1+
k21
b1

a1
b12) + E(β1

a1
) (a12 − (1 + k1

b1
)b12 − a1

b1
b′12) + (b2 + k2)β3 − E(β4

a2
)a2

)
1
b2

+

E(π2(y)
b1

) b′12 + E(β1

a1
) b12 − β3b2 = E(π2(y)

b1
)

(
b′12 + (1 + k1

b1
) a′12 +

2k1+
k21
b1

a1
a12 +

(1 + k2
b2

)(a′12 + (1 + k1
b1

)b′12 +
2k1+

k21
b1

a1
b12)

)
+E(β1

a1
)

(
b12 − (1 + k1

b1
) + a12 − a1

b1
a′12 +

(1 + k2
b2

)(a12 − (1 + k1
b1

) b12 − a1
b1
b′12)

)
+ β3((b2 + k2)2 1

b2
− b2) − b2+k2

b2
E(β4

a2
)a2 =

E(π2(y)
b1

)

(
b′12 + (1 + k1

b1
)a′12 +

2k1+
k21
b1

a1
a12 + (1 + k2

b2
)(a′12(1 + k1

b1
)b′12 +

2k1+
k21
b1

a1
b12)

)
+

E(β1

a1
)

(
b12− (1+ k1

b1
) a12− a1

b1
a′12 +(1+ k2

b2
)(a12− (1+ k1

b1
) b12− a1

b1
b′12)

)
+β3(2k2 +

k22
b2

) − (1 + k2
b2

)E(β4

a2
)a2 is divided by a2 because we have a2|(2k2 +

k22
b2

) and

a2|
(
b′12 + (1 + k1

b1
)a′12 +

2k1+
k21
b1

a1
a12 + (1 + k2

b2
)(a′12 + (1 + k1

b1
)b′12 +

2k1+
k21
b1

a1
b12)

)
,

a2|
(

(b12 − (1 + k1
b1

)a12 − a1
b1
a′12 + (1 + k2

b2
)(a12 − (1 + k1

b1
)b12 − a1

b1
b′12)

)
, where two

last divisions are consequence of the assumption on t ∈ D.
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It remains to show that b2|(R4 − L4):

R4 = π4(γt(y)∗) + E(π2(γt(y)
∗)

b1
)b′12 + E

(
π1(γt(y)

∗)+E(
π2(γt(y)

∗)
b1

)(b1+k1)

a1

)
b12

= π3(γt(y)) + E(π1(γt(y))
b1

)b′12 + E

(
π2(γt(y))+E(

π1(γt(y))
b1

)(b1+k1)

a1

)
b12

(14)
= (β4)a2 + E(

(β1)a1
b1

)b′12 + E

(
(π2(y))b1+E(

(β1)a1
b1

)(b1+k1)

a1

)
b12

= (β4)a2 + E(
(β1)a1
b1

)b′12 + β2b12.

L4 = π4(y∗) + E(π2(y
∗)

b1
)b′12 + E

(
π1(y

∗)+E(
π2(y∗)
b1

)(b1+k1)

a1

)
b12

= π3(y) + E(π1(y)
b1

)b′12 + E

(
π2(y)+E(

π1(y)
b1

)(b1+k1)

a1

)
b12

= π3(y) + E(π1(y)
b1

)b′12 + E
(
β′1
a1

)
b12.

Hence
R4 − L4 = (β4)a2 + E(

(β1)a1
b1

)b′12 + β2b12 − (π3(y) + E(π1(y)
b1

)b′12 + E
(
β′1
a1

)
b12)

= β4 − E(β4

a2
)a2 − π3(y) + b′12(E(

(β1)a1
b1

)− E(π1(y)
b1

)) + b12(β2 − E(
β′1
a1

))
(11),(12)

= −E(β4

a2
)a2 + π3(y) + E(π2(y)

b1
)a′12 + E(β1

a1
)a12 + β3(b2 + k2)− π3(y)

+b′12

(
(1+ k1

b1
)E(π2(y)

b1
)− a1

b1
E(β1

a1
)
)

+ b12

(
2k1+

k21
b1

a1
E(π2(y)

b1
)−(1+ k1

b1
)E(β1

a1
)
)

= −E(β4

a2
)a2 + β3(b2 + k2) + E(π2(y)

b1
)(a′12 + b′12(1 + k1

b1
) + b12

2k1+
k21
b1

a1
)

+E(β1

a1
)(a12 − b′12 a1b1 − b12(1 + k1

b1
))

is divided by b2 because b2|a2, b2|k2 and b2|(a′12 + (1 + k1
b1

)b′12 +
2k1+

k21
b1

a1
b12),

b2|(a12 − (1 + k1
b1

)b12 − a1
b1
b′12), where last two divisions are consequence of the

assumption on t ∈ D.
Therefore γt(y

∗) = γt(γt(y)∗) and the proof of Lemma 2.10 is �nished.

3. Main results

Theorem 3.1. If t ∈ D, then Qt is a 2-generated abelian group with involution.

Proof. Obviously the operation +t is commutative. We show that +t is associative:

x+t (y +t z) = x+t γt(y + z) = γt(x+ γt(y + z))
(5)
= γt(x+ (y + z))

= γt((x+ y) + z)
(5)
= γt(γt(x+ y) + z)) = γt((x+t y) + z) = (x+t y) +t z).

If x ∈ Za1 × Zb1 × Za2 × Zb2 then γt(x)
(6)
= x, so x+t 0 = γt(x+ 0) = γt(x) = x.

Moreover, x +t (−tx) = γt(x + (−tx)) = γt(x + γt(−x))
(5)
= γt(x + (−x)) =

γt(0) = 0.
Hence the group reduct of Qt is an abelian group.



Finite 2-generated entropic quasigroups with a quasi-identity 201

If x ∈ Za1 × Zb1 × Za2 × Zb2 then (x∗t)∗t = γt((x
∗t)∗) = γt(γt(x

∗)∗)
(10)
=

γt((x
∗)∗) = γt(x)

(6)
= x.

If x, y ∈ Za1×Zb1×Za2×Zb2 then (x+ty)∗t = γt((x+ty)∗) = γt((γt(x+y))∗)
(10)
=

γt((x + y)∗) = γt(x
∗ + y∗)

(5)
= γt(γt(x

∗) + γt(y
∗) = γt(x

∗t + y∗t) = (x∗t +t y
∗t).

Also 0∗t = γt(0
∗) = γt(0) = 0. Thus Qt is an abelian group with involution.

Let x1 = (1, 0, 0, 0) and x2 = (0, 0, 1, 0), thenQt = 〈x1, x2〉 since (y1, y2, y3, y4) =
y1x1+y2x

∗
1+y3x2+y4x

∗
2 for every (y1, y2, y3, y4) ∈ Za1×Zb1×Za2×Zb2 . Therefore

Qt is 2-generated.

Proposition 3.2. If G = 〈x1, x2〉 is a �nite abelian group with involution and

φ : Z4 → G is such that φ(y1, y2, y3, y4) = y1x1 + y2x
∗
1 + y3x2 + y4x

∗
2, then

γtφ = φ

for t = ψ(G, x1, x2) = (a1, b1, k1, a12, b12, a
′
12, b

′
12, a2, b2, k2).

In other words, if Z = Za1 × Zb1 × Za2 × Zb2 , then the following diagram

Z4 -φ G

?

γt

Z
�� - Z4

6φ

is commutative.

Proof. LetG = 〈x1, x2〉 be a �nite abelian group with involution and t = ψ(G, x1, x2)
= (a1, b1, k1, a12, b12, a

′
12, b

′
12, a2, b2, k2). Then

a1x1 = a12x2 + b12x
∗
2 ∈ 〈x2〉, (15)

b1x
∗
1 − (b1 + k1)x1 = a′12x2 + b′12x

∗
2 ∈ 〈x2〉, (16)

a2x2 = 0, (17)

b2x
∗
2 = (b2 + k2)x2. (18)

For α1 = y1 + E(y2b1 )(b1 + k1) and β = y4 + E(y2b1 )b′12 + E(α1

a1
)b12, where

y = (y1, y2, y3, y4) ∈ Z4, we obtain

φ(y)=y1x1 + y2x
∗
1 + y3x2 + y4x

∗
2 = y1x1 + (E(y2b1 )b1 + (y2)b1)x∗1 + y3x2 + y4x

∗
2

(16)
= y1x1 + E(y2b1 )((b1 + k1)x1 + a′12x2 + b′12x

∗
2) + (y2)b1x

∗
1 + y3x2 + y4x

∗
2

= (y1 +E(y2b1 )(b1 +k1))x1 + (y2)b1x
∗
1 + (y3 +E(y2b1 )a′12)x2 + (y4 +E(y2b1 )b′12)x∗2

= α1x1 + (y2)b1x
∗
1 + (y3 + E(y2b1 )a′12)x2 + (y4 + E(y2b1 )b′12)x∗2

= (E(α1

a1
)a1 + (α1)a1)x1 + (y2)b1x

∗
1 + (y3 +E(y2b1 )a′12)x2 + (y4 +E(y2b1 )b′12)x∗2
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(15)
= E(α1

a1
)(a12x2+b12x

∗
2)+(α1)a1x1+(y2)b1x

∗
1+(y3+E(y2b1 )a′12)x2+(y4+E(y2b1 )b′12)x∗2

= (α1)a1x1+(y2)b1x
∗
1+(y3+E(y2b1 )a′12+E(α1

a1
)a12)x2+(y4+E(y2b1 )b′12+E(α1

a1
)b12)x∗2

= (α1)a1x1 + (y2)b1x
∗
1 + (y3 + E(y2b1 )a′12 + E(α1

a1
)a12)x2 + βx∗2

= (α1)a1x1 + (y2)b1x
∗
1 + (y3 + E(y2b1 )a′12 + E(α1

a1
)a12)x2 + (E( βb2 )b2 + (β)b2)x∗2

(18)
= (α1)a1x1+(y2)b1x

∗
1+(y3+E(y2b1 )a′12+E(α1

a1
)a12)x2+E( βb2 )(b2+k2)x2+(β)b2x

∗
2

= (α1)a1x1 + (y2)b1x
∗
1 +
(
y3 +E(y2b1 )a′12 +E(α1

a1
)a12 +E( βb2 )(b2 +k2)

)
x2 + (β)b2x

∗
2

(17)
= (α1)a1x1+(y2)b1x

∗
1 +
(
y3+E(y2b1 )a′12+E(α1

a1
)a12+E( βb2 )(b2+k2)

)
a2
x2+(β)b2x

∗
2

= φ(γt(y)).

The main theorem of this paper is formulated in the following way:

Theorem 3.3. If G = 〈x1, x2〉 is a �nite abelian group with involution, then

G ∼= Qt for t = ψ(G, x1, x2).

Proof. Indeed, let t = ψ(G, x1, x2) = (a1, b1, k1, a12, b12, a
′
12, b

′
12, a2, b2, k2) ∈ Z10

and Z = Za1 × Zb1 × Za2 × Zb2 . Consider the map φ : Z4 → G de�ned by

φ(y1, y2, y3, y4) = y1x1 + y2x
∗
1 + y3x2 + y4x

∗
2.

Then φ|Z is an isomorphism of Qt and G.

In fact,

• φ|Z is onto: if g ∈ G then there exist y1, y2, y3, y4 ∈ Z such that

g = y1x1 + y2x
∗
1 + y3x2 + y4x

∗
2 = φ(y1, y2, y3, y4) = φ(γt(y1, y2, y3, y4)) and

γt(y1, y2, y3, y4) ∈ Z.

• φ|Z is injective: if φ(y1, y2, y3, y4) = φ(y′1, y
′
2, y
′
3, y
′
4), then

y1x1 + y2x
∗
1 + y3x2 + y4x

∗
2 = y′1x1 + y′2x

∗
1 + y′3x2 + y′4x

∗
2.

Thus (y2−y′2)x∗1− (y′1−y1)x1 ∈ 〈x2〉 and |y2−y′2| ∈ Zb1 , which by de�nition
of b1, implies y2 = y′2. Hence (y′1 − y1)x1 ∈ 〈x2〉 and |y1 − y′1| ∈ Za1 , and
by de�nition of a1, we have y1 = y′1. So y3x2 + y4x

∗
2 = y′3x2 + y′4x

∗
2 and

(y4 − y′4)x∗2 = (y′3 − y3)x2 and |y4 − y′4| ∈ Zb2 . This by de�nition of b2 gives
y4 = y′4. Therefore, (y′3 − y3)x2 = 0 and |y′3 − y3| ∈ Za2 , which by de�nition
of a2 implies y3 = y′3. This shows that φ|Z is injective.

• φ|Z is a homomorphism since for all y, y′ ∈ Z we have

φ(y +t y
′) = φ(γt(y + y′)) = φ(y + y′) = φ(y) + φ(y′).
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Moreover, for all (y1, y2, y3, y4) ∈ Z we also have:

φ((y1, y2, y3, y4)∗t) = φ(γt(y2, y1, y4, y3)) = φ(y2, y1, y4, y3)

= y2x1 +y1x
∗
1 +y4x2 +y3x

∗
2 = (y1x1 +y2x

∗
1 +y3x2 +y4x

∗
2)∗

= (φ(y1, y2, y3, y4))∗.

Corollary 3.4. G is a 2-generated �nite abelian group with involution if and only

if G ∼= Qt for some t ∈ D.

Proof. If G is a 2-generated �nite abelian group with involution, then by Theorem
3.3 we have G ∼= Qt, where t = ψ(G, x1, x2) and t ∈ D by Proposition 2.7.

The converse statement is a consequence of Theorem 3.1.

Corollary 3.5. Q is a 2-generated �nite entropic quasigroup with a quasi-identity

if and only if G ∼= Ψ(Qt) for some t ∈ D.
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K-loops from classical subgroups of GL(H),
H being a separable Hilbert space

Alper Bulut

Abstract. We study some examples of in�nite dimensional K-loops from subgroups of invert-

ible bounded linear operators GL(H), where H is in�nite dimensional separable Hilbert space.

We use Kreuzer and Wefelscheid method given in [10] to show that if G is one of the classi-

cal complex Banach Lie group in {GL(H), O(H, JR), Sp(H, JQ)}, then the intersection of G and

the set of positive self-adjoint operators form a K-loop with respect to a new binary operation

induced by the group operation in G.

1. Introduction

A Bol loop satisfying the automorphic inverse property is called a K-loop. Karzel
introduced the notion of near-domain (F,⊕, ·) in [4], [5] which is a generalization
of a near-�eld where the additive structure of a near-domain is not necessarily
associative. Kerby and Wefelsheid investigated the additive structure of a near-
domain (F,⊕) with extra axioms, and then they called the new structure a K-loop,
but according to [6], they used the term K-loop only in talks in 1970's and the
beginning of 1980's. On the other hand, the �rst appearance of the term K-loop

in literature goes back to A.A. Ungar's paper in [15].
The early history of the "K-loop" notion, with K named after Karzel, is un-

folded in [12]. For di�erent purposes, the term "K-loop" was already in use earlier
by L.R. Soikis, in 1970 [13], and later but independently by A.S. Basarab, in 1992
[1]. The origin of the "K" in the term K-loop coined by Soikis and by Basarab,
which certainly does not refer to "Karzel", is unclear.

Ungar investigated the Einsten's velocity addition binary operation ⊕ over R3
c .

The elements of R3
c are called relativistically admissible velocities that are vectors

in R3 whose norms are strictly less than c, where c is the vacuum speed of light.
The Einstein velocity addition of x and y in R3

c is given by

x⊕ y =
1

1 + x.y
c2

{
x+ y +

1

c2
γx

1 + γx
(x× (x× y))

}
(1)

In (1) "." and "×" stand for inner product and cross product respectively, and
γx = 1√

1−( ‖x‖
c )2

is called Lorentz factor [15, 17].

2010 Mathematics Subject Classi�cation: Primary 20N05, 22E65; Secondary 46C05
Keywords: K-loops, Banach Lie groups, Hilbert space, polar decomposition theorem.
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Ungar showed in [15] that Einstein's velocity addition over the R3
c has un-

usual algebraic properties. For instance (R3
c ,⊕) is a non-associative and non-

commutative loop. Ungar stated that this loop can be placed in the context of
K-loop, see [15], that was studied by Kerby and Wefelscheid. In literature, K-loops
are also known as gyrocommutative gorogroups, see [16]. The non-associativity
and non-commutativity of Einstein velocity addition in R3

c can be upgraded to a
weak form of associativity and commutativity by a linear map in End(R3) that is
called Thomas Rotation, see [14].

The weak forms of associativity and commutativity for the x, y, z ∈ R3
c are

given by
x⊕ (y ⊕ z) = (x⊕ y)⊕ tom[x; y](z) (2)

x⊕ y = tom[x; y](y ⊕ x) (3)

Thomas precession (or Thomas rotation) is also called Thomas gyration and de-
noted by gyr[x, y] for x, y ∈ R3

c , and 2 and 3 are called gyroassociative and gy-
rocommutative laws respectively in [16]. It is quiet interesting that some of the
properties of Thomas gyration are identical with the properties of a bijective map
in the de�nition of a near-domain (F,⊕, .), namely da,b : F → F where a, b ∈ F ,
and da,b sends the element x to da,b.x such that a ⊕ (b ⊕ x) = (a ⊕ b) ⊕ +da,b.x
[9]. Ungar's example in physics motivated many people to investigate K-loop
structures, hence many K-loop examples were derived. Kreuzer and Wefelscheid
pioneered an abstract way to construct a K-loop from group transversals [10], and
Kiechle in [7] gave many examples of K-loops derived from classical groups over
ordered �elds. Kiechle showed that

Theorem 1.1. Let R be n-real, and G ≤ GL(n,K) with G = LGΩG, then there

are A ⊕ B ∈ LG and dA,B ∈ ΩG with AB = (A ⊕ B)dA,B such that (LG,⊕) is a

K-loop.

Here R is an ordered �eld and K = R(i), where i2 = −1. L is the set of
positive de�nite hermitian n × n matrices over K and Ω is the unitary group as
given below.

L =
{
A ∈ Kn×n : A = A∗,∀v ∈ Kn\ {0} : v∗Av > 0

}
, (4)

Ω =
{
U ∈ Kn×n : UU∗ = In

}
. (5)

Moreover, LG = L ∩ G and ΩG = Ω ∩ G. Kiechle remarks in [7] that the
construction of K-loops from classical groups over ordered �elds can be generalized
to K-loops from GL(H) by using the polar decomposition theorem, where GL(H)
is the unit group of bounded linear operators over the Hilbert space H.

In the second section we summarize Kerby and Wefelscheid's method in [10]
to form K-loops from group transversals. This method enable us to extend the
examples of K-loops not only from the purely algebraic groups, but also algebraic
groups with additional structures such as groups with di�erentiable manifolds or
topological groups.
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In the third section we form in�nite dimensional K-loops refer to Kiechle's
remark not only from GL(H), but also from some subgroups of GL(H) such as
symplectic and orthogonal classical Banach Lie groups.

2. Preliminaries

Let Q be a nonempty set and let ⊕ : Q×Q→ Q be a binary operation. Consider
the following axioms:

1. For all a, b ∈ Q there exists a unique x ∈ Q such that a⊕ x = b.

2. For all a, b ∈ Q there exists a unique y ∈ Q such that y ⊕ a = b

3. There exists an e ∈ Q satisfying a⊕ e = e⊕ a = a for all a ∈ Q.
(Q,⊕) is called a right loop if (1) and (3) are satis�ed, is called a left loop if (2)
and (3) are satis�ed. (Q,⊕) is a loop if (1), (2), and (3) are satis�ed. A K-loop,
(Q,⊕), is a loop which satis�es (6) (the left Bol identity) and (7) (the automorphic
inverse property) for all a, b and c in Q.

a⊕ (b⊕ (a⊕ c)) = (a⊕ (b⊕ a))⊕ c, (6)

(a⊕ b)−1 = a−1 ⊕ b−1. (7)

Kreuzer and Wefelscheid [10] undertook an axiomatic investigation and provided
a new construction method for K-loops from the groups as follow:

Theorem 2.1. Let G be a group. Let A be a subgroup of G and let K be a subset

of G such that:

1. G = KA is an exact decomposition, i.e., for every element g ∈ G there are

unique elements k ∈ K and a ∈ A such that g = ka.

2. If e is the neutral element of G, then e ∈ K.

3. For each x ∈ K, xKx ⊆ K.

4. For each y ∈ A, yKy−1 ⊆ K.

5. For each k1, k2 ∈ K and α ∈ A, if k1k2α ∈ K, then there exists β ∈ A such

that k1k2α = βk2k1.

Then for all a, b ∈ K there exists unique a ⊕ b ∈ K and da,b ∈ A such that

ab = (a⊕ b)da,b. Moreover, (K,⊕) is a K-loop.

2.1. Classical Banach-Lie Groups of bounded operators

In this section, we follow Pierre de la Harpe [3].
Let H be an in�nite dimensional separable Hilbert space over C. A semi-linear

operator J : H → H is called conjugation if 〈Jx, Jy〉 = 〈x, y〉 and J2 = I.
A semi-linear operator is called anti-conjugation if the last axiom is replaced

by J2 = −I. The conjugation and anti-conjugations will be denoted by JR and JQ
respectively.
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Examples of in�nite dimensional classical complex Banach-Lie groups of bound-
ed operators are given in [3]. Here we only focus GL(H), O(H, JR) and Sp(H, JQ).
Let L(H) be the set of bounded linear operators on H, and let GL(H) be the group
of invertible operators in L(H). We use Pos(H) and U(H) to denote positive
self-adjoint and unitary operators respectively. The Orthogonal and Symplectic
Banach-Lie groups consist of those operators in GL(H) that leave invariant the
following bilinear forms respectively: H×H −→ C; (x, y) 7→ 〈x, JRy〉 and (x, y) 7→
〈x, JQy〉. Therefore the orthogonal and symplectic complex Banach-Lie groups can
be de�ned by

1. O(H, JR) := {T ∈ GL(H) : 〈Tx, JRTy〉 = 〈x, JRy〉},

2. Sp(H, JQ) := {T ∈ GL(H) : 〈Tx, JQTy〉 = 〈x, JQy〉}.

An operator T ∈ L(H) is called self-adjoint if T = T ∗ i.e., 〈Tx, y〉 = 〈x, Ty〉 for
all x, y ∈ H. If T is self-adjoint, then 〈Tx, x〉 is real for each x ∈ H. If T is a
self-adjoint operator we say that T is positive, T > 0, if and only if 〈Tx, x〉 > 0
for all x ∈ H.

Theorem 2.2 ([11]). Let T ∈ L(H). Then there is a U ∈ L(H) such that:

1. T = UA, where A =
√
TT ∗,

2. ‖Ux‖ = ‖x‖ for x ∈ R(A),

3. Ux = 0 for x ∈ R(A)
⊥
.

Remark 2.3. The closure of the range of A is closed, so H = R(A)⊕ R(A)
⊥
. If

T is invertible, then TT ∗ and its positive square root are both invertible, hence

U as well. Therefore, the only solution of Ux = 0 is x = 0, i.e., R(A)
⊥

= {0},
hence H = R(A). That is U is an isometry on H (or U is unitary). The polar
decomposition theorem is unique if T is invertible. There is also reverse polar
decomposition theorem, i.e., for any T ∈ GL(H) there exists unique Q ∈ Pos(H)
and R ∈ U(H) such that T = QR. In this paper we always use the reverse (or
left) polar decomposition theorem.

Corollary 2.4. Let T ∈ Sp(H, JQ), then there exists unique U ∈ U(H)∩Sp(H, JQ)
and P ∈ Pos(H) ∩ Sp(H, JQ) such that T = PU .

Proof. Let T ∈ Sp(H, JQ) ⊆ GL(H), then the reverse polar decomposition theo-
rem for invertible operators indicates that T has already a unique decomposition
T = PU , where P =

√
TT ∗ ∈ Pos(H) and U ∈ U(H). We only need to check that

P and U are also elements of Symplectic Banach Lie group. If T ∈ Sp(H, JQ), then
〈Tx, JQTy〉 = 〈x, JQy〉 for all x, y ∈ H. Letting x = y and using the linearity of the
inner product yield that T ∗JQT = JQ, and this is equivalent to T = J−1Q (T ∗)−1JQ.
Replacing T with PU gives that

T = J−1Q ((PU)∗)−1JQ = J−1Q P−1(U∗)−1JQ = [J−1Q P−1JQ][JQ
−1(U∗)−1JQ].
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It can be easily veri�ed that J−1Q P−1JQ ∈ Pos(H) and JQ
−1(U∗)−1JQ ∈ U(H) by

using the facts that JQJ
∗
Q = I and J∗Q = −JQ. Uniqueness of the polar decompo-

sition theorem forces that J−1Q P−1JQ = P and JQ
−1(U∗)−1JQ = U , so P and U

are in Sp(H, JQ).

Corollary 2.5. Let T ∈ O(H, JR), then there exists unique U ∈ U(H)∩O(H, JR)
and P ∈ Pos(H) ∩O(H, JR) and such that T = PU .

3. Main results

Theorem 3.1. Let G be one of the classical complex Banach-Lie groups in

{GL(H), O(H, JR), Sp(H, JQ)}, and let Pos(H) and U(H) are collection of pos-

itive self-adjoint operators and unitary operators respectively over C. Let PG :=
G ∩ Pos(H), and UG := G ∩ U(H). Then for all A,B ∈ PG there exist unique

A⊕ B ∈ PG and dA,B ∈ UG such that AB = (A⊕ B)dA,B. Moreover, (PG,⊕) is

a K-loop.

Proof. Let A,B ∈ PG, then A,B ∈ G. G is a group, so AB ∈ G. By polar decom-
position theorem there exists unique M ∈ PG and N ∈ UG such that AB = MN .
If we letM := A⊕B and N := dA,B , then AB = (A⊕B)dA,B . This decomposition
is exact due to uniqueness of M and N .

It is clear that A⊕B = (AB)d−1A,B for all A,B ∈ PG, hence ⊕ is a new binary
operation for PG induced by the group operation in G. We use the Theorem 2.1
to see (PG,⊕) is a K-loop.

1. G = PGUG is an exact decomposition by Theorem 2.2, Corollary 2.4, and
Corollary 2.5.

2. The identity operator I ∈ G since G is a group, and 〈Ix, x〉 = 〈x, x〉 =

‖x‖2 > 0 for all x ∈ H, so I is positive. On the other hand 〈x, x〉 = 〈Ix, x〉 =
〈x, Ix〉 = 〈x, I∗x〉 for all x ∈ H. The last equality indicates that I = I∗,
thus I is self-adjoint, thus I ∈ PG.

3. 〈(PQP )(x), x〉 = 〈Q(P (x)), P ∗(x)〉 = 〈Q(P (x)), P (x)〉 > 0 for P,Q ∈ PG

since Q is positive. Moreover, (PQP )∗ = (P ∗)(Q∗)(P ∗) = PQP . Therefore,
PPGP ⊆ PG for all P ∈ PG.

4. Let T ∈ UG and let P ∈ PG. T ∈ UG implies that T ∗ = T−1. To
see TPT−1 ∈ PG, observe that 〈(TPT−1)(x), x〉 = 〈P (T−1(x)), T ∗(x)〉 =
〈P (T−1(x)), T−1(x)〉 > 0 since P is positive operator, and (TPT−1)∗ =
(T−1)∗P ∗T ∗ = (T ∗)∗PT−1 = TPT−1, thus TPT−1 is positive and self-
adjoint. Therefore, TPGT

−1 ⊆ PG for all T ∈ UG.

5. Let P,Q ∈ PG and let U ∈ UG. Notice that U∗ = U−1 ∈ UG since U
is unitary and UG is a group. We want to show that if PQU ∈ PG, then
there exist β ∈ UG such that PQU = βQP . Assume that PQU ∈ PG, so
(PQU)∗ = PQU = U∗Q∗P ∗ = U∗QP where U∗ ∈ UG.

We conclude that (PG,⊕) is a K-loop.
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A note on (m,n)-ideals in regular duo

ordered semigroups

Limpapat Bussaban and Thawhat Changphas

Abstract The purpose of this note is to prove that, for a regular duo ordered semigroup, every

(m,n)-ideal is a two-sided ideal. The result obtained is more general than that of the result for

regular duo semigroups (without order) proved by Lajos.

1. Introduction

Let S be a semigroup (without order). Then S is said to be regular if a ∈ aSa
for any a ∈ S, i.e., if for any a ∈ S there exists x ∈ S such that a = axa. The
semigroup S is called a duo semigroup if every one-sided (left or right) ideal of S
is a two-sided ideal of S. In [9], S. Lajos introduced the concept of (m,n)-ideal of
S as follows: let m,n be non-negative integers. A subsemigroup A of S is called
an (m,n)-ideal of S if

AmSAn ⊆ A.

Here, A0S = SA0 = S. The author proved in [10] that every (m,n)-ideal of a
regular duo semigroup is two-sided ideal.

In this paper, using the concept of (m,n)-ideals for ordered semigroups intro-
duced and studied by J. Sanborisoot and the second author in [11], we extend the
results obtained by S. Lajos in [10] to ordered semigroups.

A semigroup (S, ·) together with a partial order 6 that is compatible with the
semigroup opration, that is, for any a, b, c in S,

a 6 b⇒ ac 6 bc, ca 6 cb,

is called an ordered semigroup.
The subset (A] of S is de�ned to be the set of all elements x ∈ S such that

x 6 a for some a ∈ A, that is,

(A] = {x ∈ S | x 6 a for some a ∈ A}.

2010 Mathematics Subject Classi�cation: 20M12, 20M17, 06F05
Keywords: semigroup, ordered semigroup, regular duo ordered semigroup, (m,n)-ideal, bi-
ideal, π-ideal
The research was supported by the National Research Council of Thailand (NRCT), Project
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Note that the following conditions hold: (1) A ⊆ (A]; (2) (A](B] ⊆ (AB]; (3) If
A ⊆ B, then (A] ⊆ (B] (cf. [6]).

A non-empty subset A of an ordered semigroup (S, ·,6) is called a left (resp.
right) ideal of S if it satis�es the following conditions:

(i) SA ⊆ A (resp. AS ⊆ A);
(ii) (A] = A.

And, A is called a two-sided ideal, or simply an ideal of S if it is both a left and a
righ ideal of S [6, 8].

A subsemigroup B of an ordered semigroup (S, ·,6) is called a bi-ideal [7] of S
if it satis�es the following conditions:

(i) BSB ⊆ B;

(ii) (B] = B.

Let m,n be non-negative integers. A subsemigroup A of an ordered semigroup
(S, ·,6) is called an (m,n)-ideal of S if it satis�es the following conditions:

(i) AmSAn ⊆ A;
(ii) (A] = A.

Here, let A0S = SA0 = S [11].
An ordered semigroup (S, ·,6) is regular if, for every a ∈ S, a ∈ (aSa], i.e., if

for any a ∈ S, a ≤ axa for some x ∈ S [7]. It was proved in [3] that the following
holds for a regular ordered semigroup.

Theorem 1.1. Let (S, ·,6) be a regular ordered semigroup. Then a non-empty

subset A of S is a bi-ideal of S if and only if there exists a left ideal L of S and a

right ideal R of S such that A = (RL].

As in [9], the concept of π-ideal of an ordered semigroup (S, ·,6) are de�ned
by: a subsemigroup Sn of S will be called attainable if there are subsemigroups Si

(i = 1, 2, . . . , n− 1) of S such that

Sn ⊆ Sn−1 ⊆ . . . ⊆ S2 ⊆ S1 ⊆ S0 = S

holds, where Si (i = 1, 2, . . . , n) is an one-sided (left or right) ideal of Si−1. With
every such chain above, we use the letters l (resp. r) in which the i-th for a
subsemigroup Si of S which is contained in Si−1 is a left (resp. a right) ideal of
Si−1. If Si is a two-sided ideal of Si−1, then either of l and of r can be choosen.
And, a product of the letters l and r will be denoted by π. Now, a subsemigroup
A of S will be called a π-ideal of S if A is attainable.

In what follows, for the product π, we let m and n be the numbers of the
factors l and r, respectively. The following two theorems can be found in [2].

Theorem 1.2. Let A be a subset of an ordered semigroup (S, ·,6). Then the

following three statements are equivalent:

(1) A is an lr-ideal of S;



A note on (m,n)-ideals in regular duo ordered semigroups 213

(2) A is an rl-ideal of S;

(3) A is an (1, 1)-ideal of S.

Consequently,

Corollary 1.3. Let A be a subset of an ordered semigroup (S, ·,6). Then A is a

π-ideal of S if and only if A is an rmln-ideal of S.

Theorem 1.4. Let (S, ·,6) be an ordered semigroup. Then a subset A of S is a

π-ideal of S if and only if A is an (m,n)-ideal of S.

2. Main results

An ordered semigroup (S, ·,6) will be called a duo ordered semigroup if every one-
sided (left or right) ideal of S is a two-sided ideal of S. An ordered semigroup S
will be called a regular duo ordered semigroup if it is both regular and duo [3].

Example 2.1. Let S = {a, b, c, d} be an ordered semigroup such that the multi-
plication and the partial order are de�ned by:

· a b c d
a c d d d
b c c d d
c d d d d
d d d d d

≤= {(a, a), (b, b), (c, c), (d, d), (a, d), (b, d), (c, d)}

We give a covering relation and the �gure of S by:

≺= {(a, d), (b, d), (c, d)}

d

a
b

c

Then we obtain (S, ·,6) is a regular duo ordered semigroup.

Example 2.2. Let S = {a, b, c, d} be an ordered semigroup such that the multi-
plication and the partial order are de�ned by:

· a b c d
a d b b d
b b b b b
c b b c b
d d b b d
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≤= {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (b, c), (d, b), (d, c)}

We give a covering relation and the �gure of S by:

≺= {(a, b), (d, b), (b, c)}

c

b

a d

Then we obtain (S, ·,6) is a regular duo ordered semigroup.

Example 2.3. Let S = {a, b, c, d} be an ordered semigroup such that the multi-
plication and the partial order are de�ned by:

· a b c d
a a a a a
b a b b d
c a b b d
d a d d d

≤= {(a, a), (b, b), (c, c), (d, d), (a, d), (b, d), (c, d)}

We give a covering relation and the �gure of S as follows:

≺= {(a, d), (b, d), (c, d)}

d

a
b

c

Then we obtain that (S, ·,6) is a regular duo ordered semigroup.

The following theorem was shown in [3].

Theorem 2.4. Let (S, ·,6) be a regular duo ordered semigroup. Then every bi-

ideal of S is a two-sided ideal of S.

We now present the main result of this paper.

Theorem 2.5. Let (S, ·,6) be a regular duo ordered semigroup, and let m,n be

non-negative integers such that m + n > 0. Then every (m,n)-ideal of S is a

two-sided ideal of S.
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Proof. Let A be an (m,n)-ideal of S; thus AmSAn ⊆ A and (A] = A. There are
four cases to consider:
Case 1: m = 0, n 6= 0. If n = 1, then A is a left ideal of S; hence A is a two-sided
ideal of S, since S is a regular duo ordered semigroup. Suppose that every (0, k)-
ideal of S is a two-sided ideal of S for integers k ≥ 1. Assume now that A is an
(0, k + 1)-ideal of S. By Theorem 1.4, there are subsemigroups Li(i = 1, 2, . . . , k)
of S such that

A = Lk+1 ⊆ Lk ⊆ Lk−1 ⊆ . . . ⊆ L2 ⊆ L1 ⊆ L0 = S

where Li−1Li ⊆ Li(i = 1, 2, 3, . . . , k + 1).
We have

SAk = SAAk−1 ⊆ S(ASA]Ak−1 ⊆ (SASAk] ⊆ (L1A
k] ⊆ (L1L2A

k−1]

⊆ (L2A
k−1] ⊆ . . . ⊆ (LkA] ⊆ (A] = A.

Hence A is an (0, k)-ideal of S, and so A is a two-sided ideal of S.
Case 2: m 6= 0, n = 0. This can be proceed as the case before.
Case 3: m 6= 0, n 6= 0. Let A be an (1, n)-ideal of S. If n = 1, then A is a

bi-ideal of S. By Theorem 2.4, A is a two-sided ideal of S.
Let n > 1. By Theorem 1.4, there are subsemigroups R,Li(i = 1, 2, . . . , n− 1)

of S such that

A = Ln ⊆ Ln−1 ⊆ Ln−2 ⊆ . . . ⊆ L2 ⊆ L1 ⊆ R ⊆ S

where Li−1Li ⊆ Li (i = 2, 3, . . . , n), RL1 ⊆ L1, RS ⊆ S.
We consider

SAn ⊆ S(ASA]An−1 ⊆ (SASAn] ⊆ (RAn] ⊆ (RL1A
n−1]

⊆ (L1A
n−1] ⊆ . . . ⊆ (Ln−1A] ⊆ (A] = A.

Then A is an (0, n)-ideal of S, and so A is a two-sided ideal of S.
Suppose that every (k, n)-ideal of S is a two-sided ideal of S for integer k > 1.

Assume that A is an (k+1, n)-ideal of S. By Theorem 1.4, there are subsemigroups
Rj (j = 1, 2, . . . , k + 1), Li (i = 1, 2, . . . , n− 1) of S such that

A = Ln ⊆ Ln−1 ⊆ Ln−2 ⊆ . . . ⊆ L2 ⊆ L1

⊆ Rk+1 ⊆ Rk ⊆ . . . ⊆ R2 ⊆ R1 ⊆ R0 = S,

where

Li−1Li ⊆ Li (i = 2, 3, . . . , n),

Rk+1L1 ⊆ L1,

RjRj−1 ⊆ Rj (j = 1, 2, . . . , k + 1).
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Consider:

AkSAn ⊆ Ak−1(ASA]SAn ⊆ (AkSASAn] ⊆ (AkR1A
n] ⊆ (Ak−1R2R1A

n]

⊆ (Ak−1R2A
n] ⊆ . . . ⊆ (Rk+1A

n] ⊆ (Rk+1L1A
n−1] ⊆ (L1A

n−1]

⊆ (L1L2A
n−2] ⊆ (L2A

n−2] ⊆ . . . ⊆ (Ln−1A] ⊆ (A] = A.

Hence A is an (k, n)-ideal of S. Therefore, A is a two-sided ideal of S.
This completes the proof of the theorem.
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Autotopisms of some quasigroups

Ivan I. Deriyenko

Abstract. We present one method of construction of some autotopisms for quasigroups satisfy-

ing the identity α(x) · β(x · y) = γ(y).

Denote by Sn the set of all permutations of the set Q = {1, 2, . . . , n}. The
triplet A = (ω, ϕ, ψ), where ω, ϕ, ψ ∈ Sn, is called an autotopism of a quasigroup
(Q, ·) if

ω(x · y) = ϕ(x) · ψ(y)
holds for all x, y ∈ Q.

The set of all autotopisms of a quasigroup of order n form a group. The
order of this group is a divisor of (n!)3 but it cannot exceed (n!)2. Moreover, two
components of an autotopism determine the third one uniquely (see [1] or [5]).
There are quasigroups that have only one (trivial) autotopism. Such quasigroups
are called super rigid. The smallest super rigid quasigroups has 7 elements [3].

In this note we will consider quasigroups satisfying the identity

α(x) · β(x · y) = γ(y), (1)

where α, β, γ ∈ Sn. Such triplet of permutations will be denoted by R = (α, β, γ).
Note that parastrophes of a quasigroup satisfying (1) are pairwise isotopic [4].

Theorem 1. A quasigroup (Q, ·) satisfying the identity (1) has an autotopism of

the form (γβ, α2, βγ).

Proof. Indeed, (1) implies

β(α(x) · β(x · y)) = βγ(y).

Multiplying this identity by α2(x) we obtain

α2(x) · β(α(x) · β(x · y)) = α2(x) · βγ(y).

From this, applying (1) to the left side, we get

γβ(x · y) = α2(x) · βγ(y). (2)

So, A = (γβ, α2, βγ) is an autotopism of (Q, ·).
2010 Mathematics Subject Classi�cation: 20N05, 05B15
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Theorem 2. A quasigroup (Q, ·) satisfying (1) satis�es the identity

αk(x) · βk(x · y) = γk(y) (3)

with αk = α3k , βk = β(γβ)
3k−1

2 , γk = γ(βγ)
3k−1

2 , where k = 0, 1, . . . , p − 1 and

αp = α, βp = β, γp = γ.

Proof. Since a quasigroup (Q, ·) satisfying (1) has an autotopism A = (γβ, α2, βγ),
from (1) we obtain

γβγ(y) = γβ(α(x) · β(x · y)) = α2(α(x)) · βγ(β(x · y)) = α3(x) · βγβ(x · y),

which means that in this quasigroup

α1(x) · β1(x · y) = γ1(y),

where α1 = α3, β1 = βγβ, γ1 = γβγ.
Thus, (Q, ·) has an autotopism A1 = (γ1β1, α

2
1, β1γ1) and satis�es the identity

α2(x) · β2(x · y) = γ2(y),

where α2 = α3
1 = α32 , β2 = β(γβ)

32−1
2 , γ2 = γ(βγ)

32−1
2 , and so on.

Corollary. A quasigroup satisfying the identity (1) has an autotopism of the form

Ak = (ωk, ϕk, ψk) with ωk = γkβk = (γβ)3
k

, ϕk = α2
k = α2·3k , ψk = βkγk =

(βγ)3
k

, where k = 0, 1, . . . , p − 1 and ωp = ω, ϕp = ϕ, ψp = ψ. Moreover, then

αk+1 = ϕkαk, βk+1 = ψkβk, γk+1 = ωkγk.

Example. A quasigroup determined by the table

· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 8 5 6 4 3 1 7
3 3 6 1 8 7 2 5 4
4 4 5 7 2 1 8 6 3
5 5 1 6 7 8 4 3 2
6 6 3 4 5 2 7 8 1
7 7 4 8 1 3 5 2 6
8 8 7 2 3 6 1 4 5

is an isotope of a quasigroup de�ned in [2]. This quasigroup satis�es (1) with
α = (1287465.3.), β = (18.46.2.357.), γ = (175.28.34.6.), where (175.28.34.6.)
means that this permutation is a composition of cycles (175), (28) and (34).

Let R = (α, β, γ), where α, β, γ are as in the above. According to Theorem 1
this quasigroup has an autotopism A = (ω, ϕ, ψ) such that

ω = γβ = (1287463.5.), ϕ = α2 = (1845276.3.), ψ = βγ = (1364582.7.).



Autotopims of some quasigroups 219

By Theorem 2, this quasigroup satis�es (3) with R1 = (α1, β1, γ1), where, in
view of Corrollary, α1, β1, γ1 have the form

α1 = ϕα = (1758624.3.), β1 = ψβ = (12.38.4.576.), γ1 = ωγ = (14.275.36.8.).

Then we compute A1 = (ω1, ϕ1, ψ1) and R2 = (α2, β2, γ2):
ω1 = γ1β1 = (1738624.5.),

ϕ1 = α2
1 = (1564782.3.),

ψ1 = β1γ1 = (1426835.7.),

and


α2 = ϕ1α1 = (1845276.3.),

β2 = ψ1β1 = (16.24.3.578.),

γ2 = ω1γ1 = (1.23.475.68.).

A2 = (ω2, ϕ2, ψ2) and R3 = (α3, β3, γ3):
ω2 = γ2β2 = (1843276.5.),

ϕ2 = α2
2 = (1426857.3.),

ψ2 = β2γ2 = (1652348.7.),

and


α3 = ϕ2α2 = (1564782.3.),

β3 = ψ2β2 = (157.28.34.6.),

γ3 = ω2γ2 = (18.2.3.46.375.).

A3 = (ω3, ϕ3, ψ3) and R4 = (α4, β4, γ4):
ω3 = γ3β3 = (1364782.5.),

ϕ3 = α2
3 = (1672548.3.),

ψ3 = β3γ3 = (1285463.7.),

and


α4 = ϕ3α3 = (1426857.3.),

β4 = ψ3β3 = (14.257.36.8.),

γ4 = ω3γ3 = (12.38.4.567.).

A4 = (ω4, ϕ4, ψ4) and R5 = (α5, β5, γ5):
ω4 = γ4β4 = (1426837.5.),

ϕ4 = α2
4 = (1287465.3.),

ψ4 = β4γ4 = (1538624.7.),

and


α5 = ϕ4α4 = (1672548.3.),

β5 = ψ4β4 = (1.23.457.68.),

γ5 = ω4γ4 = (16.24.3.587.).

A5 = (ω5, ϕ5, ψ5) and R6 = (α6, β6, γ6):
ω5 = γ5β5 = (1672348.5.),

ϕ5 = α2
5 = (1758624.3.),

ψ5 = β5γ5 = (1843256.7.),

and


α6 = ϕ5α5 = (1287465.3.) = α,

β6 = ψ5β5 = (18.46.2.357.) = β,

γ6 = ω5γ5 = (175.28.34.6.) = γ.

Relationships between Ai and Ri we can present by the following graph.
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The set autotopisms A,A1, A2, A3, A4, A5 together with the identity auto-
topism E = (ε, ε, ε) forma a cyclic group of order 7. The group of all autotopisms
of this quasigroup has 42 elements.

Note also that in this quasigroup the identity (1) also is satis�ed with α = ε (the
identity permutation) and β = γ = (13.48.26.57.). So, in this case R = (ε, β, β),
and consequently A = (ε, ε, ε), R1 = R, A1 = A.

Remark. A similar results can be obtained for quasigroups satisfying one of the
identities

α(x) · β(yx) = γ(y), (4)

β(xy) · α(x) = γ(y), (5)

β(yx) · α(x) = γ(y), (6)

β(xy) = γ(y) · α(x), (7)

where α, β, γ are �xed permutations of the set Q, used in [4] to the description of
isotopy classes of parastrophes.
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Parastrophes of quasigroups

Wieslaw A. Dudek

Abstract. Parastrophes (conjugates) of a quasigroup can be divided into separate classes con-

taining isotopic parastrophes. We prove that the number of such classes is always 1, 2, 3 or 6.

Next we characterize quasigroups having a �xed number of such classes.

1. Introduction

Denote by SQ the set of all permutations of the set Q. We say that a quasigroup
(Q, ·) is isotopic to (Q, ◦) if there are α, β, γ ∈ SQ such that α(x) ◦ β(y) = γ(x · y)
for all x, y ∈ Q. The triplet (α, β, γ) is called an isotopism. Quasigroups (Q, ·)
and (Q, ◦) for which there are α, β, γ ∈ SQ such that α(x) ◦ β(y) = γ(y · x) for all
x, y ∈ Q are called anti-isotopic. This fact is denoted by (Q, ·) ∼ (Q, ◦). In the
case when (Q, ·) and (Q, ◦) are isotopic we write (Q, ·) ≈ (Q, ◦). It is clear that
the relation ≈ is an equivalence and divides all quasigroups into disjoint classes
containing isotopic quasigroups.

Each quasigroup Q = (Q, ·) determines �ve new quasigroups Qi = (Q, ◦i) with
the operations ◦i de�ned as follows:

x ◦1 y = z ←→ x · z = y
x ◦2 y = z ←→ z · y = x
x ◦3 y = z ←→ z · x = y
x ◦4 y = z ←→ y · z = x
x ◦5 y = z ←→ y · x = z

Such de�ned (not necessarily distinct) quasigroups are called parastrophes or con-
jugates of Q. Traditionally they are denoted as

Q1 = Q−1 = (Q, \), Q2 = −1Q = (Q, /), Q3 = −1(Q−1) = (Q1)2,

Q4 = (−1Q)−1 = (Q2)1 and Q5 = (−1(Q−1))−1 = ((Q1)2)1 = ((Q2)1)2.

Each parastrophe Qi can be obtained from Q by the permutation σi, where
σ1 = (23), σ2 = (13), σ3 = (132), σ4 = (123), σ5 = (12).

Generally, parastrophesQi do not save properties ofQ. Parastrophes of a group
are not a group, but parastrophes of an idempotent quasigroup also are idempotent

2010 Mathematics Subject Classi�cation: 20N05, 05B15
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quasigroups. Moreover, in some cases (described in [7]) parastrophes of a given
quasigroup Q are pairwise equal or all are pairwise distinct (see also [2] and [8]). In
[7] it is proved that the number of distinct parastrophes of a quasigroup is always
a divisor of 6 and does not depend on the number of elements of a quasigroup.

Parastrophes of each quasigroup can be divided into separate classes containing
isotopic parastrophes. We prove that the number of such classes is always 1, 2, 3
or 6. The number of such classes depends on the existence of an anti-isotopism of
a quasigroup and some parastrophe of it.

2. Classi�cation of parastrophes

As it is known (see for example [1]) a quasigroup (Q, ·) can be considered as an
algebra (Q, ·, \, /) with three binary operations satisfying the following axioms

x(x\z) = z, (z/y)y = z, x\xy = y, xy/y = x,

where
x\z = y ←→ xy = z and z/y = x←→ xy = z.

We will use these axioms to show the relationship between parastrophes. But
let's start with the following simple observation.

Lemma 2.1. Let Q be a quasigroup. Then

(a) xy = y ◦5 x, x ◦1 y = y ◦3 x, x ◦2 y = y ◦4 x,
(b) Q ∼ Q5, Q1 ∼ Q3, Q2 ∼ Q4,

(c) xy = yx←→ Q = Q5 ←→ Q1 = Q3 ←→ Q2 = Q4,

(d) Q1 = Q←→ Q2 = Q3 ←→ Q4 = Q5,

(e) Q2 = Q←→ Q1 = Q4 ←→ Q3 = Q5.

To describe the relationship between the parastrophes, we will need these two
simple lemmas.

Lemma 2.2. Let A,B,C,D be quasigroups. Then

(a) A ∼ B, B ∼ C −→ A ≈ C,

(b) A ∼ B, B ≈ C −→ A ∼ C,

(c) A ≈ B, B ∼ C −→ A ∼ C.

Lemma 2.3. Let Q◦i be the i-th parastrophe of the quasigroup Q◦ = (Q, ◦). Then

(a) Q ≈ Q◦ implies Qi ≈ Q◦i for each i = 1, 2, 3, 4, 5,

(b) Qi ≈ Q◦i for some i = 1, 2, 3, 4, 5 implies Q ≈ Q◦.

(c) Moreover, if Q ≈ Q◦, then for each i = 1, . . . , 5

Q ∼ Qi ←→ Q◦ ∼ Q◦i , and Q ≈ Qi ←→ Q◦ ≈ Q◦i .
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Now we will present a series of lemmas about anti-isotopies of quasigroups and
their parastrophes.

Lemma 2.4. Q ∼ Q←→ Q ≈ Q5 ←→ Q1 ≈ Q3 ←→ Q2 ≈ Q4.

Proof. Indeed,

Q ∼ Q←→ γ(xy) = α(y)β(x)←→ γ(xy) = β(x) ◦5 α(y)←→ Q ≈ Q5.

Also

Q ∼ Q←→ γ(xy) = α(y)β(x)←→ γ(z) = α(y)β(z/y)←→ α(y)\γ(z) = β(z/y).

Thus Q ∼ Q←→ Q1 ∼ Q2. Moreover,

Q1 ∼ Q2 ←→ α(y)\γ(z) = β(z/y)←→ γ(z) = α(y)β(z/y)

←→ β(z/y) = γ(z) ◦4 α(y)←→ Q2 ≈ Q4.

Similarly, for some α′, β′, γ′ ∈ SQ we have

Q1 ∼ Q2 ←→ γ′(x/y) = α′(y)/β′(x)←→ γ′(x\y)β′(x) = α′(y)

←→ γ′(x\y) = β′(x) ◦3 α′(y)←→ Q1 ≈ Q3.

This completes the proof.

Lemma 2.5. Q ∼ Q1 ←→ Q ∼ Q2 ←→ Q1 ≈ Q2.

Proof. Indeed, according to the de�nition of the operations \ and /, we have

γ(x\z) = α(z)β(x)←→ γ(y) = α(xy)β(x)←→ α(xy) = γ(y)/β(x).

So, Q1 ∼ Q←→ Q ∼ Q2, which by Lemma 2.2 implies Q1 ≈ Q2.

Conversely, if Q1 ≈ Q2, then γ(x\y) = α(x)/β(y), i.e., γ(x\y)β(y) = α(x)
for some α, β, γ ∈ SQ. From this, for y = xz, we obtain γ(z)β(xz) = α(x), i.e.,
β(xz) = γ(z)\α(x). Thus, Q ∼ Q1, and consequently, also Q ∼ Q2.

Lemma 2.6. For any quasigroup Q

(a) Q1 ∼ Q←→ Q1 ∼ Q3 ←→ Q ≈ Q3 ←→ Q1 ≈ Q5,

(b) Q2 ∼ Q←→ Q2 ∼ Q4 ←→ Q ≈ Q4 ←→ Q2 ≈ Q5.

Proof. Replacing in Lemma 2.5 a quasigroup Q by Q1 we get the �rst two equi-
valences. The third equivalence is a consequence of Lemma 2.3.

Similarly, replacing Q by Q2 we obtain (b).

Lemma 2.7. Q3 ∼ Q←→ Q ≈ Q2 ←→ Q1 ≈ Q4 ←→ Q3 ≈ Q5.
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Proof. Obviously Q3 ∼ Q←→ Q3 ≈ Q5. Moreover,

Q3 ∼ Q←→ γ(xy)α(y) = β(x)←→ γ(xy) = β(x)/α(y)←→ Q ≈ Q2.

Analogously, xy = z we obtain

Q3 ∼ Q←→ γ(z)α(x\z) = β(x)←→ Q1 ≈ Q4.

This completes the proof.

Lemma 2.8. Q4 ∼ Q←→ Q ≈ Q1 ←→ Q2 ≈ Q3 ←→ Q4 ≈ Q5.

Proof. Of course Q4 ∼ Q←→ Q4 ≈ Q5. Since Q4 ∼ Q←→ β(x)γ(xy) = α(y), we
obtain Q4 ∼ Q←→ Q ≈ Q1 and Q4 ∼ Q←→ Q2 ≈ Q3 for x = z/y.

Theorem 2.9. All parastrophes of a quasigroup Q are isotopic to Q if and only

if Q ∼ Q and Q ∼ Qi for some i = 1, 2, 3, 4.

Proof. If Q ∼ Q, then, by Lemma 2.4, we have Q ≈ Q5, Q1 ≈ Q3 and Q2 ≈ Q4.
This for Q ∼ Qi, i = 1, 2, 3, 4, by Lemmas 2.6, 2.7 and 2.8, gives Q ≈ Q1 ≈ Q2 ≈
Q3 ≈ Q4 ≈ Q5. So, in this case all parastrophes are isotopic to Q.

The converse statement is obvious.

Corollary 2.10. If Q ∼ Q and Q ∼ Qi for some i = 1, 2, 3, 4, then also Q ∼ Qi

for other i = 1, 2, 3, 4, 5.

Theorem 2.11. A quasigroup Q has exactly two classes of isotopic parastrophes

if and only if

(1) Q 6∼ Q, Q ∼ Q1 and Q 6∼ Qi for i = 2, 3, 4, or equivalently,

(2) Q 6∼ Q, Q ∼ Q2 and Q 6∼ Qi for i = 1, 3, 4.

In this case Q ≈ Q3 ≈ Q4 and Q1 ≈ Q2 ≈ Q5.

Proof. Let Q have exactly two classes of isotopic parastrophes. Then it must be
true that Q ≈ Qi for some i = 1, 2, 3, 4, 5 because Q 6≈ Qi for all i = 1, 2, 3, 4, 5
gives Q1 ≈ Qj for some j which by previous lemmas implies Q ≈ Qk for some k.

Case Q ≈ Q1. In this case Q2 ≈ Q3 and Q4 ≈ Q5 (Lemma 2.8). So, the
following classes of isotopic parastrophes are possible:

1) {Q,Q1, Q2, Q3}, {Q4, Q5},
2) {Q,Q1, Q4, Q5}, {Q2, Q3},
3) {Q,Q1}, {Q2, Q3, Q4, Q5}.
In the �rst case from Q1 ≈ Q3, by Lemma 2.4, we conclude Q ≈ Q5 which

shows that in this case we have only one class. This contradics our assumption on
the number of classes. So, this case is impossible.

In the second case, Q ≈ Q5, by the same lemma, implies Q2 ≈ Q4 which
(similarly as in previous case) is impossible. Also the third case is impossible
because Q2 ≈ Q4 leads to Q1 ≈ Q3. Hence must be Q 6≈ Q1.



Parastrophes of quasigroups 225

Case Q ≈ Q2. Then, according to Lemma 2.7, Q1 ≈ Q4 and Q3 ≈ Q5. Thus

1) {Q,Q1, Q2, Q4}, {Q3, Q5}, or
2) {Q,Q2, Q3, Q5}, {Q1, Q4}, or
3) {Q,Q2}, {Q1, Q3, Q4, Q5}.
Using the same argumentation as in the case Q ≈ Q1 we can see that the case

Q ≈ Q2 is impossible.

Case Q ≈ Q3. By Lemmas 2.1, 2.2 and 2.5 only the following classes are
possible: {Q,Q3, Q4} and {Q1, Q2, Q5}. In this case Q 6∼ Q (Lemma 2.4) and
Q ∼ Q1 (Lemma 2.6). Then also Q ∼ Q2 (Lemma 2.5).

Case Q ≈ Q4. Analogously as Q ≈ Q3.

Case Q ≈ Q5. Then Q1 ≈ Q3 and Q2 ≈ Q4. Is a similar way as for Q ≈ Q1

we can verify that this case is not possible.

So, if Q has exactly two classes of isotopic parastrophes, then Q 6∼ Q and
Q ∼ Q1, or Q 6∼ Q and Q ∼ Q2.

Conversely, if Q 6∼ Q and Q ∼ Q1, or equivalently, Q 6∼ Q and Q ∼ Q2, then
by Lemmas 2.5 and 2.6 we have two classes: {Q,Q3, Q4} and {Q1, Q2, Q5}. Since
Q1 6≈ Q3 (Lemma 2.4), these classes are disjoint.

Theorem 2.12. A quasigroup Q has exactly three classes of isotopic parastrophes

if and only if

(1) Q 6∼ Q, Q ∼ Q3 and Q 6∼ Qi for i = 1, 2, 4, or

(2) Q 6∼ Q, Q ∼ Q4 and Q 6∼ Qi for i = 1, 2, 3, or

(3) Q ∼ Q, Q ∼ Q5 and Q 6∼ Qi for i = 1, 2, 3, 4.

In the �rst case we have {Q,Q2}, {Q1, Q4} and {Q3, Q5}; in the second {Q,Q1},
{Q2, Q3} and {Q4, Q5}; in the third {Q,Q5}, {Q1, Q3} and {Q2, Q4}.

Proof. Suppose that a quasigroup Q has exactly three classes of isotopic parastro-
phes. From the above lemmas it follows that in this case Q ≈ Qi for some i.

Case Q ≈ Q1. Then, by Lemma 2.8, we have three classes {Q,Q1}, {Q2, Q3},
{Q4, Q5} and Q ∼ Q4. Since Q1 6≈ Q3 we also have Q 6∼ Q (Lemma 2.4).

Case Q ≈ Q2. In this case {Q,Q2}, {Q1, Q4}, {Q3, Q5} and Q ∼ Q3 (Lemma
2.7). Analogously as in the previous case Q1 6≈ Q3 gives Q 6∼ Q.

Case Q ≈ Q3. This case is impossible because by Lemmas 2.5 and 2.6 it leads
to two classes.

Case Q ≈ Q4. Analogously as Q ≈ Q3.

Case Q ≈ Q5. Then Q1 ≈ Q3, Q2 ≈ Q4 and Q ∼ Q. Since classes {Q,Q5},
{Q1, Q3}, {Q2, Q5} are disjoint Q 6∼ Qi for each i = 1, 2, 3, 4.

The converse statement is obvious.

As a consequence of the above results we obtain
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Corollary 2.13. Parastrophes of a quasigroup Q are non-isotopic if and only if

Q 6∼ Q and Q 6∼ Qi for all i = 1, 2, 3, 4.

Corollary 2.14. The number of non-isotopic parastrophes of a quasigroup Q is

always 1, 2, 3, or 6.

Depending on the relationship between parastrophes quasigroups can be di-
vided into six types presented below.

type classes of isotoipic parastrophes

A {Q,Q1, Q2, Q3, Q4, Q5}
B {Q,Q3, Q4}, {Q1, Q2, Q5}
C {Q,Q2}, {Q1, Q4}, {Q3, Q5}
D {Q,Q1}, {Q2, Q3}, {Q4, Q5}
E {Q,Q5}, {Q1, Q3}, {Q2, Q4}
F {Q}, {Q1}, {Q2}, {Q3}, {Q4}, {Q5}

Our results are presented in the following table where "+" means that the
corresponding relation holds. The symbol "−" means that this relation has no
place.

Q ∼ Q + − − − − + − Q ≈ Q5

Q ∼ Q1 + + − − − − − Q ≈ Q3

Q ∼ Q2 + − + − − − − Q ≈ Q4

Q ∼ Q3 + − − + − − − Q ≈ Q2

Q ∼ Q4 + − − − + − − Q ≈ Q1

type A B B C D E F

The parastrophe Q5 plays no role in our research since always is Q ∼ Q5.

3. Parastrophes of selected quasigroups

In this section we present characterizations of parastrophes of several classical
types of quasigroups. We start with parastrophes of IP-quasigroups.

As a consequence of our results, we get the following well-known fact (see for
example [1])

Proposition 3.1. All parastrophes of an IP -quasigroup are isotopic.

Proof. Indeed, in any IP -quasigroup Q there are permutations α, β ∈ SQ such
that α(x) · xy = y = yx · β(x) for all x, y ∈ Q. So, Q ≈ Q1 ≈ Q2, i.e., Q is a
quasigroup of type A.
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Corollary 3.2. Parastrophes of a group are isotopic.

The same is true for the parastrophes of Moufang quasigroups since groups
and Moufang quasigroups are IP-quasigroups.

Also parastrophes of T-quasigroups, linear and alinear quasigroups (studied in
[3]) are isotopic. This fact follows from more general result proved below.

Theorem 3.3. All parastrophes of a quasigroup isotopic to a group are isotopic.

Proof. Let G = (G, ◦) be a group. Then ϕ(x ◦ y) = ϕ(y) ◦ ϕ(x) for ϕ(x) = x−1.
Since (Q, ·) ≈ (G, ◦), for some α, β, γ we have

γ(xy) = α(x) ◦ β(y) = ϕ−1(ϕβ(y) ◦ ϕα(x)) = ϕ−1γ
(
α−1ϕβ(y) · β−1ϕα(x)

)
.

Thus γ−1ϕγ(xy) = α−1ϕβ(y) · β−1ϕα(x). So, Q ∼ Q.
Moreover, from γ(xy) = α(x) ◦ β(y) for xy = z we obtain

α(x)\\γ(z) = β(x\z) and γ(z)//β(y) = α(z/y),

where \\ and // are inverse operations in a group G. Thus Q1 ≈ G1 and Q2 ≈ G2.
Since G ≈ G1 ≈ G2, also Q ≈ Q1 ≈ Q2. This shows that a quasigroup isotopic
to a group is a quasigroup of type A. Hence (Lemma 2.3) all its parastrophes are
isotopic.

D-loops (called also loops with anti-automorphic property) are de�ned as loops
with the property (xy)−1 = y−1x−1, where x−1 denotes the inverse element [5].

Theorem 3.4. Let Q be a D-loop. Then

(1) all parastrophes of Q coincide with Q, or

(2) Q has three classes of isotopic parastrophes: {Q,Q5}, {Q1, Q3}, {Q2, Q4}.
The second case holds if and only if Q 6∼ Q1 or Q 6≈ Q1.

Proof. Let Q be a D-loop. Then Q ∼ Q. Thus all its parastrophes are isotopic to
Q or they are divided into three classes {Q,Q5}, {Q1, Q3}, {Q2, Q4} (see Table).
By Lemmas 2.6 and 2.8 they are disjoint if and only if Q 6∼ Q1 or Q 6≈ Q1.

Corollary 3.5. A D-loop Q has three classes of isotopic parastrophes if and only

if Q 6∼ Q2 or Q 6≈ Q2.

In [5] is proved that parastrophes of a D-loop Q are isomorphic to one of the
quasigroups Q, Q1, Q2. Comparing this fact with our results we obtain

Theorem 3.6. For a D-loop Q the following conditions are equivalent:

(1) all parastrophes of Q are isomorphic,

(2) Q and Q1 are isomorphic,

(3) Q and Q2 are isomorphic,

(4) Q1 and Q2 are isomorphic.
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Example 3.7. Consider the following three loops.

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 6 5 3 4
3 3 6 1 2 4 5
4 4 5 2 1 6 3
5 5 3 4 6 1 2
6 6 4 5 3 2 1

◦1 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 5 6 4 3
3 3 4 1 5 6 2
4 4 3 6 1 2 5
5 5 6 2 3 1 4
6 6 5 4 2 3 1

◦2 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 4 3 6 5
3 3 5 1 6 2 4
4 4 6 5 1 3 2
5 5 4 6 2 1 3
6 6 3 2 5 4 1

The �rst loop is a D-loop, the second and the third are parastrophes of the �rst.
They are not D-loops and are not isotopic to the �rst. So this D-loop has three
classes of isotopic parastrophes. In this case Q = Q5, Q1 = Q3 and Q2 = Q4.

4. Some consequences

Note �rst of all that the proofs of our results remain true also for the case when α =
β = γ. In this case an anti-isotopism is an anti-isomorphism and an isotopism is an
isomorphism. So, the above results will be true if we replace an anti-isotopism by
an anti-isomorphism, and an isotopism by an isomorphism. Moreover, an isotopism
of parastrophes can be characterized by the identities:

α1(x) · β1(yx) = γ1(y), (1)

β2(xy) · α2(x) = γ2(y), (2)

β3(yx) · α3(x) = γ3(y), (3)

α4(x) · β4(xy) = γ4(y), (4)

β5(xy) = γ5(y) · α5(x), (5)

where αi, βi, γi are �xed permutations of the set Q.

Namely, from our results it follows that

Q satisfies (1)←→ Q1 ∼ Q←→ Q3 ≈ Q,
Q satisfies (2)←→ Q2 ∼ Q←→ Q4 ≈ Q,
Q satisfies (3)←→ Q3 ∼ Q←→ Q2 ≈ Q,
Q satisfies (4)←→ Q4 ∼ Q←→ Q1 ≈ Q,
Q satisfies (5)←→ Q ∼ Q←→ Q5 ≈ Q.

Lemma 2.3 shows that these identities are universal in some sense, i.e., if one of
these identities is satis�ed in a quasigroup Q, then in a quasigroup isotopic to Q is
satis�ed the identity of the same type, i.e., it is satis�ed with other permutations.

Since Q ∼ Q1 ←→ Q ∼ Q2 we have
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Proposition 4.1. A quasigroup Q satis�es for some α1, β1, γ1 ∈ SQ the identity

(1) if and only if for some α2, β2, γ2 ∈ QS it satis�es the identity (2).

As a consequence we obtain the following classi�cation of quasigroups>

Theorem 4.2. Let Q be a quasigroup. Then

• Q is type A if and only if it satis�es all of the identities (1)− (5),

• Q is type B if and only if it satis�es only (1) and (2),

• Q is type C if and only if it satis�es only (3),

• Q is type D if and only if it satis�es only (4),

• Q is type E if and only if it satis�es only (5),

• Q is type F if and only if it satis�es none of the identities (1)− (5).

If all permutations used in (1)− (5) are the identity permutations, then these
equations have of the form:

x · yx = y, (6)

xy · x = y, (7)

yx · x = y, (8)

x · xy = y, (9)

xy = yx. (10)

Basing on our results we conclude that

Q satisfies (6)←→ Q = Q4,

Q satisfies (7)←→ Q = Q3,

Q satisfies (8)←→ Q = Q2,

Q satisfies (9)←→ Q = Q1,

Q satisfies (10)←→ Q = Q5.

Since Q satis�es (7)←→ Q5 = Q2 ←→ ((Q1)2)1 = Q2 ←→ Q1 = ((Q2)1)2 ←→
Q1 = Q5 ←→ Q satis�es (6), we see that identities (7) and (6) are equivalent, i.e.,
Q satis�es (7) if and only if it satis�es (6).

As a consequence we obtain the stronger version of Theorem 4 in [7].

Theorem 4.3. Parastrophes of a quasigroup Q can be characterized by the iden-

tities (6)− (10) in the following way:

• Q = Qi for 1 6 i 6 5 if and only if it satis�es all of the identities (6)− (10),
• Q = Q3 = Q4, Q1 = Q2 = Q5 if and only if Q satis�es only (7) and (6),

• Q = Q2, Q1 = Q4, Q3 = Q5 if and only if Q satis�es only (8),

• Q = Q1, Q2 = Q3, Q4 = Q5 if and only if Q satis�es only (9),

• Q = Q5, Q1 = Q3, Q2 = Q4 if and only if Q satis�es only (10),

• Q 6= Qi 6= Qj for all 1 6 i < j 6 5 if and only if Q satis�es none of the

identities (6)− (10).
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Corollary 4.4. Parastrophes of a commutative quasigroup Q coincide with Q or

are divided into three classes: {Q = Q5}, {Q1 = Q3}, {Q2 = Q4}.
Corollary 4.5. For a commutative quasigroup Q the following conditions are

equivalent:

(1) all parastrophes of Q coincide with Q,

(2) Q = Q1,

(3) Q = Q2,

(4) Q1 = Q2,

(5) Q satis�es at least one of the identities (6)− (9).

Proof. We prove only the equivalence (1) ←→ (2). Other equivalences can be
proved in a similar way.

For a commutative Q we have Q = Q5, Q1 = Q3, Q2 = Q4. If Q = Q1, then
Q = Q1 = Q3 = Q5. Hence Q1 = Q5 = ((Q2)1)2 which gives (Q1)2 = (Q2)1. So,
Q3 = Q4, i.e., (2) implies (1). The converse implication is obvious.

Corollary 4.6. Parastrophes of a boolean group coincide with this group.

Note �nally that identities (6)−(10) can be used to determine some autotopisms
of quasigroups [4].
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Eventually regular perfect semigroups

Roman S. Gigo«

Abstract. A congruence ρ on a semigroup S is called perfect if (aρ)(bρ) = (ab)ρ for all a, b ∈ S,
as sets, and S is said to be perfect if each of its congruences is perfect. We show that all eventually

regular perfect semigroups are necessarily regular. Finally, we apply our result to perfect group-

bound semigroups.

1. Introduction and preliminaries

The concept of a perfect semigroup was introduced by Vagner [12]. Groups are very
well-known examples of perfect semigroups. Another examples of such semigroups
are congruence-free semigroups S with the property S = S2 (i.e., S is globally

idempotent ; note that perfect semigroups have this property). Perfect semigroups
were studied first by Fortunatov (see e.g. [4, 5]) and then by Hamilton and Tamura
[8], Hamilton [7], and by Goberstein [6]. In [1] the authors gave an example of a
cancellative simple perfect semigroup without idempotents.

It is known that any commutative perfect semigroup is inverse, and that all finite
perfect semigroups are regular ; recall that a semigroup S is regular if S coincides
with the set Reg(S) of its regular elements, where

Reg(S) = {s ∈ S : s ∈ sSs}.

We extend the last result for eventually regular semigroups (a semigroup S is even-
tually regular if every element of S has a regular power, that is, for all a ∈ S there
is a positive integer n = n(a) such that an ∈ Reg(S) [3]). Moreover, we apply this
result to perfect group-bound semigroups (Corollary 2.2, below). Before we start
our study, we recall some definitions and facts. For undefined terms, we refer the
reader to the books [2, 9, 10].

Denote the set of all idempotents of a semigroup S by ES , that is,

ES = {e ∈ S : e2 = e}.

If A is an ideal of a semigroup S, i.e., AS ∪ SA ⊆ A, then the relation

ρA = (A×A) ∪ 1S ,

2010 Mathematics Subject Classification: Primary 20M99, Secondary 06B10

Key words and phrases: perfect semigroup, eventually regular semigroup, group-bound semi-

group, intra-regular semigroup, completely semisimple semigroup.
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where 1S is the identity relation on S, is a congruence on S (the so-called Rees

congruence on S). It is obvious that A is an idempotent ρA-class of S. Finally, we
shall write S/A instead of S/ρA.

A generalization of the concept of regularity will also prove convenient. Define a
semigroup S to be idempotent-surjective if and only if whenever ρ is a congruence on
S and aρ is an idempotent of S/ρ, then aρ contains some idempotent of S. Edwards
showed that eventually regular semigroups are idempotent-surjective [3].

Let S be a semigroup and let a ∈ S. Denote by S1 the semigroup obtained
from S by adjoining an identity if necessary. Then S1aS1 is the least ideal of S
containing a. Denote it by J(a). We shall say that the elements a, b of S are J -

related if J(a) = J(b). Also, an equivalence J -class containing a will be denoted by
Ja. We can define a partial order on S/J by the rule:

Ja ≤ Jb ⇐⇒ J(a) ⊆ J(b)

for all a, b ∈ S (a similar notation may be used for the Green's relations L and R,
cf. Section 2.1 of [10]).

We say that a semigroup S without zero is simple if and only if it has no proper
ideals, that is, if and only if SaS = S for every a of S. Further, a semigroup S
with zero is called 0-simple if S is not null (i.e., S2 6= {0}) and S contains exactly
two ideals (namely: {0} and S). Clearly, S is 0-simple if and only if S2 6= {0} and
S/J = {{0}, S \ {0}}.

By a 0-minimal ideal of a semigroup S we shall mean an ideal of S that is a
minimal element in the set of all non-zero ideals of S.

The following result of Clifford is well-known.

Lemma 1.1. [2] Any 0-minimal ideal of a semigroup is either null, or it is a 0-
simple semigroup.

Let a be an element of a semigroup S. Suppose first that Ja is minimal among
the J -classes of S. Then J(a) = Ja is the least ideal of S. On the other hand, if Ja
is not minimal in S/J , then the set

I(a) = {b ∈ J(a) : Jb ≤ Ja & Jb 6= Ja}

is an ideal of S such that J(a) = I(a)∪ Ja (and this union is disjoint), and if B is a
proper ideal of J(a) and I(a) ⊆ B, then I(a) = B. This implies that J(a)/I(a) is a
0-minimal ideal of S/I(a), i.e., J(a)/I(a) is either null, or it is a 0-simple semigroup
(Lemma 1.1). For convenience, we shall write J(a)/∅ = J(a). The semigroups
J(a)/I(a) (a ∈ S) are the so-called principal factors of S. Remark that we can
think of the principal factor J(a)/I(a) as consisting of the J -class Ja = J(a) \ I(a)
with zero adjoined (if I(a) 6= ∅). Clearly, J(a)/I(a) is null if and only if the product
of any two elements of Ja always falls into a lower J -class. In particular, if Ja
is a subsemigroup of S, then the principal factor J(a)/I(a) is not null. Finally,
J(a)/I(a) is simple if and only if I(a) is empty.
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Recall that among idempotents in an arbitrary semigroup there is a natural

partial order relation defined by the rule that

e 6 f ⇔ e = ef = fe.

We say that an idempotent e 6= 0 of a semigroup S is primitive if it is minimal
(with respect to the natural partial order) within the set of non-zero idempotents
of S. Also, a (0)-simple semigroup is called completely (0)-simple if it is (0)-simple
and contains a primitive idempotent. Notice that in the both cases each non-zero
idempotent of S is primitive. For some equivalent definitions of these notions, we
refer the reader to the book [10] (cf. Section 3.2). Munn showed that a (0)-simple
semigroup S is completely (0)-simple if and only if it is group-bound (a semigroup
S is called group-bound if every element of S has a power which belongs to some
subgroup of S). Obviously, group-bound semigroups are eventually regular.

A semigroup is called (completely) semisimple if each of its principal factors
is either (completely) 0-simple or (completely) simple. Recall that a semigroup is
semisimple if and only if all its ideals are globally idempotent (see e.g. [2]).

Observe that every idempotent congruence class of a perfect semigroup S is
globally idempotent. In particular, all ideals of S are globally idempotent, that is,
S is semisimple.

Recall that an idempotent commutative semigroup is semilattice. Clearly, the
least semilattice congruence η on an arbitrary semigroup S exists (note that J ⊆
η). This relation induces the greatest semilattice decomposition of S, say [Y ;Sα]
(α ∈ Y ), where Y ∼= S/η, each Sα is an η-class and S =

⋃
{Sα : α ∈ Y }. To

indicate this fact we shall always write S = [Y ;Sα] (α ∈ Y ) or briefly S = [Y ;Sα].
Notice that SαSβ ⊆ Sαβ for all α, β ∈ Y , where αβ is the product of α and β in the
semilattice Y .

We say that a semigroup S is intra-regular if for every a ∈ S, aJ a2 [2]. It is
easy to see that if S is intra-regular, then J is a semilattice congruence on S, so we
have the following well-known result [2].

Lemma 1.2. A semigroup S is intra-regular if and only if η = J , where every

J -class is a simple semigroup.

We say that a J -class J of a semigroup is regular if consists entirely of regular
elements.

The following result, which is contained in the paper of Jones et al. [11], is due
to Ciri£.

Lemma 1.3. Let a J -class J of an eventually regular semigroup contains an idem-

potent. Then J is regular. Equivalently, 0-simple eventually regular semigroups are

regular.

We recall now some known results concerning perfect semigroups in general. For
beginning, from the First and Second Isomorphism Theorems we obtain the following
result [5].
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Lemma 1.4. Every homomorphic image of a perfect semigroup is a perfect semi-

group.

An ideal A of a semigroup S is called completely prime if ab ∈ A implies that
a ∈ A or b ∈ A.

The following fact [5] follows from the definition of a Rees congruence.

Lemma 1.5. Every non-zero ideal of a perfect semigroup is completely prime.

It is not difficult to see that every chain is perfect. Also, if the elements a, b of
a semilattice A are incomparable, then the congruence induced by the ideal aA is
not perfect.

Lemma 1.6. [5] A semilattice is perfect if and only if it is a chain.

Let S = [Y ;Sα]. Assume that S is perfect. In the light of Lemmas 1.4 and 1.6,
Y is a chain. Moreover, from [5] we can extract the following result. We give a
simple proof for the sake of completeness.

Corollary 1.7. Let S = [Y ;Sα] be a perfect semigroup. Then Y is a chain and the

following statements hold:
(a) if S does not have a zero, then each Sα is simple and Y ∼= S/J ;
(b) if S contains a zero 0, then Y has a least element 0Y , Sα is a simple semi-

group for α 6= 0Y , and either S0Y = {0} (then Y ∼= S/J ) or S0Y is a 0-sim-

ple semigroup whose zero is not adjoined (and Ja = aη \ {0} if a 6= 0).

Proof. (a). Suppose first that S has no a zero element. As a2 ∈ S1a2S1, a ∈ S1a2S1

(Lemma 1.5) and so S is intra-regular. Thus every Sα is a simple semigroup and
Y ∼= S/J (Lemma 1.2).

(b). Let now S contains a zero 0, say 0 ∈ S0Y . Because S0Y Sα ⊆ S0Y for all
α ∈ Y , then S0Y Sα = S0Y for all α ∈ Y (since S is perfect). This implies that Y
has a least element 0Y .

Since Y is a chain and every Sα is a semigroup, then the condition a2 = 0 implies
that a ∈ S0Y . Thus Sα is a simple semigroup for all α 6= 0Y .

If S0Y 6= {0}, then S2
0Y = S0Y 6= {0}, since it is clear that S0Y is an ideal of

S, i.e., S0Y is not null. Suppose that A ⊆ S0Y is a non-zero ideal of S. Then A
is completely prime (by Lemma 1.5). It follows that A is a non-zero completely
prime ideal of S0Y . Hence the partition {A,S0Y \ A} of S0Y induces a semilattice
congruence on S0Y . On the other hand, it is well-known that every η-class of S
has no semilattice congruences except the universal relation. In particular, S0Y

possesses this property. It follows that A = S0Y , i.e., S0Y is a 0-minimal ideal of S.
Finally, observe that if 0 is adjoined to S0Y , then the partition

{Sα (α 6= 0Y ), S0Y \ {0}, {0}}

of S induces a semilattice congruence on S which is properly contained in the least
semilattice congruence η, a contradiction, so S0Y is a 0-minimal ideal of S whose
zero is not adjoined. Consequently, S0Y is a 0-simple semigroup whose zero is not
adjoined (Lemma 1.1). Clearly, Ja = aη \ {0} if a 6= 0.
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2. The main results

Remark that if ρ is a semilattice congruence on an eventually regular semigroup S,
then every ρ-class of S is eventually regular.

Theorem 2.1. Every eventually regular perfect semigroup S is regular.

Proof. Suppose first that S has no a zero. Then S is a semilattice Y of simple
semigroups Sα (α ∈ Y ), where each Sα is a J -class of S (cf. Corollary 1.7). Since
each Sα is an idempotent J -class, then it contains an idempotent element of S
(because S is idempotent-surjective). In the light of Lemma 1.3, S is regular.

Let S has a zero. In view of Corollary 1.7, Y has a least element 0Y . Put A =
S\S0Y . It is evident that the semigroupA is a semilattice of simple semigroups. Take
any a ∈ A. Then the elements a and a2 belong to the same simple subsemigroup B
of A. Hence a ∈ Ba2B ⊆ Aa2A. Thus A is intra-regular. By the above A is regular.
Finally, consider a 0-simple semigroup S0Y (see Corollary 1.7). This semigroup is
also eventually regular, so S0Y is regular (by Lemma 1.3). Consequently, S is a
regular semigroup.

A semigroup is called completely regular if it is a union of groups. Recall from [9]
that a semigroup is completely regular if and only if it is a semilattice of completely
simple semigroups.

Corollary 2.2. Let S = [Y ;Sα] be a perfect group-bound semigroup. Then S is

regular, Y is a chain and the following statements hold:
(a) if S does not have a zero, then every Sα is a completely simple semigroup

(and Y ∼= S/J ), that is, S is completely regular;
(b) if S contains a zero, say 0, then Y has a least element 0Y , Sα is completely

simple for α 6= 0Y , and either S0Y = {0} (then clearly Y ∼= S/J ) or S0Y is

a completely 0-simple semigroup whose zero 0 is not adjoined (and then Ja =
aη \ {0} if a 6= 0).
In the former case, S is a completely regular semigroup with 0 adjoined.

Proof. (a). Indeed, every Sα is a simple (regular) group-bound semigroup, so each
Sα is a completely simple semigroup.

(b). It is sufficient to show that if S0Y 6= {0}, then S0Y is a completely 0-simple
semigroup. In that case, S0Y is a 0-simple (regular) group-bound semigroup. Thus
S0Y is completely 0-simple semigroup.

Corollary 2.3. Every perfect group-bound semigroup is completely semisimple.

Finally, we shall show that an eventually regular perfect semigroup satisfying
one of the following minimal conditions is group-bound (note that any group-bound
semigroup meets both of these conditions). We shall say that a semigroup S satisf

ies the condition min∗L (resp. min∗R) if and only if for every J -class J of S, the set
of all L-classes (resp. R-classes) contained in J has a minimal element (for more
details cf. Section 6.6 [2]). Recall only that a regular semigroup satisfies min∗L if
and only if it meets min∗R.
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Proposition 2.4. Let S be an eventually regular perfect semigroup satisfying min∗L
or min∗R. Then S is completely semisimple. In particular, S is group-bound.

Proof. Indeed, in that case, S is regular (Theorem 2.1), so every η-class of S is a
regular subsemigroup of S. In view of the above remark, S satisfies min∗L and min∗R
(cf. also Corollary 1.7). As S is semisimple, S is completely semisimple (see Theorem
6.45 in [2]). In particular, S is group-bound.
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Semidirect extensions of the Klein group

leading to automorphic loops of exponent 2

P°emysl Jedli£ka

Abstract. In this paper we study automorphic loops of exponent 2 which are semidirect products

of the Klein group with an elementary abelian group. It turns out that they fall into two classes:

extensions of index 2 and extension using a symmetric bilinear form.

1. Introduction

A loop is called automorphic if all inner mappings are automorphisms. An auto-
morphic loop of exponent 2 is always commutative due to the anti-automorphic
inverse property [7]. There are several papers dealing with the structure of com-
mutative automorphic loops, e.g. [1], [4] or [6]. It turns out that the structure
of commutative automorhic 2-loops di�ers much from the theory of commutative
automorphic p-loops, for odd primes p, and it is less understood.

The structure of commutative automorhic 2-loops is based on the structure of
automorphic loops of exponent 2. It is already known that they are solvable [2]
and that they need not be nilpotent [5]. Some constructions of automorphic loops
of exponent 2 appeared in [5] and [8].

In this paper we construct automorphic loops of exponent 2 via the nuclear
semidirect product de�ned in [3]. More precisely, we describe all the automorphic
loops of exponent 2 that are nuclear semidirect extensions of the Klein group by
an elementary abelian 2-group.

Theorem 1.1. Let Q be an automorphic loop of exponent 2, let K / Q be a 4-
element subgroup of Nµ(Q) and let H be a subgroup of Q such that KH = Q and

|K ∩H| = 1. Then one of the following situations occurs:

(a) Q is a group;

(b) [Q : Nµ(Q)] = 2 and we can use Proposition 2.2;

(c) Q is a semidirect product based on a symmetric bilinear form described in

Proposition 2.3.

2010 Mathematics Subject Classi�cation: 20N05
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The paper is organized as follows: in Section 2 we present the notion of the
nuclear semidirect product of automorphic loops and also two situations when
the semidirect product gives a loop of exponent 2. In Section 3 we analyze the
semidirect product in the case when the image of the auxiliary mapping is a three-
element group. Finally, in Section 4 we focus on the case when the image is a
subgroup of order 2.

2. Preliminaries

We start our paper by recalling the notion of the nuclear semidirect product de�ned
in [3] and by presenting two constructions that yield loops of exponent 2. Unlike
in most loop theory papers, we shall use the additive notation here rather than
the multiplicative one; the reason is that subgroups of our loops will appear as
additive groups of vector spaces.

A semidirect product is a con�guration of subloops in a loop (Q,+): we have
H < Q and K /Q such that K +H = Q and K ∩H = 0. In [3] an external point
of view was given, assuming additionally that K 6 Nµ(Q) and K being an abelian
group. Such loops can be constructed given a special mapping ϕ.

Proposition 2.1 ([3]). Let H and K be abelian groups and let us have a mapping

ϕ : H2 → Aut(K). We de�ne an operation ∗ on Q = K ×H as follows:

(a, i) ∗ (b, j) = (ϕi,j(a+ b), i+ j) .

This loop is denoted by K oϕ H. Let us denote ϕi,j,k = ϕi,j+k ◦ ϕj,k. Then Q is

a commutative A-loop if and only if the following properties hold:

ϕi,j = ϕj,i (1)

ϕ0,i = idK (2)

ϕi,j ◦ ϕk,n = ϕk,n ◦ ϕi,j (3)

ϕi,j,k = ϕj,k,i = ϕk,i,j (4)

ϕi,j+k + ϕj,i+k + ϕk,i+j = idK + 2 · ϕi,j,k (5)

Moreover, K × 0 is a normal subgroup of Q, 0 × H is a subgroup of Q and

(K × 0) ∩ (0×H) = 0× 0 and (K × 0) + (0×H) = Q.
Q is associative if and only if ϕi,j = idK , for all i, j ∈ H. The nuclei are

Nµ(Q) = K × {i ∈ H; ∀j ∈ H : ϕi,j = idK} and
Nλ = {a ∈ K; ∀j, k ∈ H : ϕj,k(a) = a} × {i ∈ H; ∀j ∈ H : ϕi,j = idK}.

On the other hand, if Q is a commutative automorphic loop, K/Q is a subgroup

of Nµ(Q) and H is a subgroup of Q such that K +H = Q and K ∩H = {0} then
there exists ϕ : H2 → AutK such that Q ∼= K oϕ H.

The conditions (1)− (5) are not too transparent and therefore it is worthwhile
to present some special cases which are easier to describe. The simplest such a
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situation is probably the middle nucleus of index 2 which was described already
in [5], not using the notion of a semidirect product.

Proposition 2.2 ([5], [3], exponent 2 version). Let K be an elementary abelian

2-group and let H be a two-element group. Then a mapping ϕ : H2 → AutK
satis�es the conditions (1)− (5) if and only if ϕ satis�es (2).

On the other hand, if an automorphic loop Q has exponent 2 and [Q : Nµ(Q)] =
2 then there exists such a ϕ with Q ∼= K oϕ H.

In this paper, we are interested in loops of exponent 2. Among several con-
�gurations described in [3], there is one more that yields loops of exponent two:
when the mapping ϕ is a symmetric bilinear form.

Proposition 2.3 ([3], exponent p version). Let K and H be elementary abelian

p groups and let f ∈ AutK be an automorphism of order p. Let ϕ : H2 → 〈f〉 be
a symmetric bilinear form. Then ϕ satis�es conditions (1)− (5).

In the rest of the paper we analyze the mapping ϕ when K is the Klein group.
It will eventually turn out that all the possible solutions of ϕ are already described
in Propositions 2.2 and 2.3.

3. Order 3 case

The automorphism group of the Klein group has only two non-trivial commutative
subgroups, up to conjugacy. Each case will be analyzed separately. In this section
we shall suppose that some of ϕi,j is an automorphism of order 3. All the results
can be proved under more general conditions.

Lemma 3.1. Let K, H be elementary abelian 2-groups and let ϕ : H2 → AutK
satisfy (1)− (5). Then, for all i, j ∈ H,

ϕi,i + ϕj,j + ϕi+j,i+j = idK (6)

ϕi,i+j = ϕi,i ◦ ϕ−1i,j (7)

ϕ2
i,j = ϕi,i ◦ ϕj,j ◦ ϕ−1i+j,i+j (8)

Proof. (6) is obtained from (5) via k = i+ j. Then (4) gives

ϕi,i ◦ idK = ϕi,i ◦ ϕ0,j = ϕi,i,j = ϕi,j ◦ ϕi,i+j

which is (7). Finally (4) again gives

ϕi+j,i+j ◦ ϕi,j = ϕi,j,i+j = ϕi,i+j ◦ ϕj,j

and substituting (7) yields (8).

If an automorphism of order 3 is contained within Imϕ, it turns out that the
whole mapping ϕ is determined by its behavior on the planes of H.
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Lemma 3.2. Let K, H be elementary abelian 2-groups and let ϕ : H2 → AutK
satisfy (1) − (5). Let Imϕ ⊆ {idK , f, f2}, for some f ∈ AutK with f3 = idK ,
f 6= idK . Then, for all i, j ∈ H,

(i) |{α ∈ {ϕi,i, ϕj,j , ϕi+j,i+j}; α = f}| ∈ {0, 2};

(ii) there exists k ∈ 〈i, j〉 and g ∈ {idK , f, f2} such that, for all v, w ∈ 〈i, j〉,

ϕv,w =

{
idK if v ∈ 〈k〉 or w ∈ 〈k〉,
g if v /∈ 〈k〉 and w /∈ 〈k〉.

Proof. (i) We �nd all the possible solutions of (6) within {idK , f, f2}. They are,
up to reordering, (idK , idK , idK), (idK , f, f) and (idK , f

2, f2).
(ii) We know from (i) all the possible choices of ϕi,i, ϕj,j and ϕi+j,i+j . We

put g to be that automorphism that appears at least twice within ϕi,i, ϕj,j and
ϕi+j,i+j and we choose k ∈ {i, j, i+ j} such that ϕk,k = idK .

Then (8) gives

ϕ2
k,u = ϕk,k ◦ ϕu,u ◦ ϕ−1k+u,k+u = idK ,

for each u ∈ 〈i, j〉, since ϕu,u = ϕk+u,k+u = g and hence ϕk,u = idK . On the other
hand, if u, v /∈ 〈k〉 then

ϕ2
u,v = ϕu,u ◦ ϕv,v ◦ ϕ−1u+v,u+v = g2,

for each u ∈ 〈i, j〉, since u+ v ∈ 〈k〉 and therefore ϕu,v = g.

Proposition 3.3. Let K, H be elementary abelian 2-groups and let ϕ : H2 →
AutK satisfy (1) − (5). Let Imϕ ⊆ {idK , f, f2}, for some f ∈ AutK with f3 =
idK . Then

(i) ϕi,j 6= idK if and only if ϕi,i = ϕj,j 6= idK and then ϕi,j = ϕi,i;

(ii) | Imϕ| < 3;

(iii) the set M = {k; ϕk,k = idK} is a subspace of H of Co-dimension at most 1;

(iv) the middle nucleus of K oϕ H is a subloop of index at most 2.

Proof. For (i) we can restrict our focus to the subspace of dimension 2 and this
was solved in Lemma 3.2.

(ii) Suppose ϕi,j = f and ϕk,m = f2. Due to (i) we can suppose j = i and
m = k. But this situation contradicts Lemma 3.2 (ii).

(iii) The setM is closed on addition due to Lemma 3.2 (ii). Moreover, every 2-
dimensional subspace of H intersectsM non-trivially and henceM is a hyperplane
or M = H.

(iv) According to to Proposition 2.1, we have Nµ(K oϕ H) = K ×M .
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4. Involutory case

In this section we analyze the second case, namely some ϕi,j being an involution.
Most lemmas can be pronounced in a more general setting again.

Lemma 4.1. Let K, H be elementary abelian 2-groups and let ϕ : H2 → AutK
satisfy (1)− (5). Moreover, let ϕ2

i,j = idK , for each i, j ∈ H. Then

ϕi,j + ϕi,k + ϕj,k = ϕi,j,k (9)

ϕi,j+k = (ϕi,j + ϕi,k + ϕj,k) ◦ ϕj,k (10)

for all i, j, k ∈ H.

Proof. When we multiply (5) by ϕi,j,k, we obtain

ϕi,j,k ◦ ϕi,j+k + ϕi,j,k ◦ ϕj,i+k + ϕi,j,k ◦ ϕk,i+j = ϕi,j,k

which is (9) since ϕi,j,k ◦ ϕi,j+k = ϕj,k due to (4). And plugging (9) into (4),
namely ϕi,j+k = ϕi,j,k ◦ ϕj,k, gives (10).

Corollary 4.2. Let K and H be elementary abelian 2-groups and let B be a basis

of H. Suppose that we have a mapping ϕ′ : B2 → AutK such that (ϕ′i,j)
2 = idK ,

for each i, j ∈ B. Then there exists at most one mapping ϕ : H2 → AutK,

satisfying (1)− (5) such that ϕ2
i,j = idK , for each i, j ∈ H, and ϕ|B2 = ϕ′.

Proof. By an induction using (10).

Corollary 4.2 claims that ϕ is uniquely determined whenever we know its values
on a basis. It need not exist though, e.g. conditions (1) or (3) may be violated
already by ϕ′. But it exists if ϕ′ is a symmetric matrix with two di�erent entries.

Proposition 4.3. Let K and H be two elementary abelian 2-groups and let

ϕ : H2 → AutK satisfy (1) − (5). Suppose that Imϕ = {idK , f}, for some

involutory f ∈ AutK. Then ϕ is a bilinear mapping.

Proof. Let us take a basis B of the space H. The restriction ϕ|B2 is symmetric and
hence induces a symmetric bilinear form, let us say ϕ′, from H2 to {idK , f} ∼= Z2.
According to Proposition 2.3, the mapping ϕ′ satis�es the conditions (1) − (5).
Since ϕ′|B2 = ϕ|B2 , Corollary 4.2 gives ϕ = ϕ′.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Conditions of Proposition 2.1 are met and hence there ex-
ists a mapping ϕ : H2 → AutK satisfying (1)�(5).

If ϕi,j is an involution, for some i, j ∈ H, then | Imϕ| = 2, due to (1), since
involutions in AutZ2

2 commute only with themselves and with the identity. Then
Proposition 4.3 gives that ϕ is bilinear.

On the other hand, if no involution appears in Imϕ then Imϕ ⊆ {idK , f, f2},
where f and f2 are the automorphisms of order 3. And Proposition 3.3 states
that the middle nucleus is a subgroup of index at most 2.
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What if K is a larger elementary abelian group? There are three more types
of subgroups even in AutZ3

2 and therefore it is likely that some new construction
type will be needed.
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Subquasigroups in the framework of fuzzy points

Young Bae Jun, Seok Zun Song and Ghulam Muhiuddin

Abstract. A relation between (∈, ∈ ∨ q)-fuzzy subquasigroups and (q, ∈ ∨ q)-fuzzy subquasi-

groups is provided, and conditions for an (∈,∈∨ q)-fuzzy subquasigroup to be a (q,∈∨ q)-fuzzy
subquasigroup are considered. Conditions for the t-q-set (resp., the t-∈ ∨ q-set) to be a sub-

quasigroup are provided. The notion of (ε, δ)-characteristic fuzzy sets is introduced. Given a

subquasigroup S of a quasigroup Q, conditions for the (ε, δ)-characteristic fuzzy set in Q to be an

(∈,∈∨ q)-fuzzy subquasigroup, an (∈, q)-fuzzy subquasigroup, an (∈,∈∧ q)-fuzzy subquasigroup,
a (q, q)-fuzzy subquasigroup, a (q,∈)-fuzzy subquasigroup, a (q,∈∨ q)-fuzzy subquasigroup and

a (q,∈∧ q)-fuzzy subquasigroup are provided. Using the notions of (α, β)-fuzzy subquasigroup

µ
(ε,δ)
S , conditions for the S to be a subquasigroup of Q are investigated where (α, β) is one of

(∈,∈∨ q), (∈,∈∧ q), (∈, q), (q,∈∨ q), (q,∈∧ q), (q,∈) and (q, q).

1. Introduction

Quasigroups has useful applications in cryptography, physics and geometry etc. In
mathematics, especially in abstract algebra, a quasigroup is an algebraic structure
resembling a group in the sense that �division� is always possible. Quasigroups
di�er from groups mainly in that they need not be associative. The fuzzy sub-
quasigroup of a quasigroup is studied by W. A. Dudek in the paper [3]. M. Akram
andW. A. Dudek [1] introduced the notion of (α, β)-fuzzy subquasigroups where α,
β ∈ {∈, q , ∈∨ q , ∈∧ q } and α 6= ∈∧ q , and investigated some related properties.
They characterized (∈,∈∨ q )-fuzzy subquasigroups by their level subquasigroups,
and studied fuzzy subquasigroups with thresholds.

In this paper, we discuss a relation between (∈, ∈ ∨ q )-fuzzy subquasigroups
and (q, ∈∨ q )-fuzzy subquasigroups, and provide conditions for an (∈,∈∨ q )-fuzzy
subquasigroup to be a (q,∈∨ q )-fuzzy subquasigroup. We consider conditions for
the t- q -set (resp., the t-∈∨ q -set) to be a subquasigroup. We introduce the notion
of (ε, δ)-characteristic fuzzy sets in quasigroups. Given a subquasigroup S of a
quasigroup Q, we provide conditions for the (ε, δ)-characteristic fuzzy set in Q to
be an (∈,∈∨ q)-fuzzy subquasigroup, an (∈, q)-fuzzy subquasigroup, an (∈,∈∧ q)-
fuzzy subquasigroup, a (q, q)-fuzzy subquasigroup, a (q,∈)-fuzzy subquasigroup,
a (q,∈∨ q)-fuzzy subquasigroup and a (q,∈∧ q)-fuzzy subquasigroup. Using the

notions of (α, β)-fuzzy subquasigroup µ
(ε,δ)
S , we investigate conditions for the S

2010 Mathematics Subject Classi�cation: 20N15, 94D05
Keywords: (fuzzy) subquasigroup, (α, β)-fuzzy subquasigroup, t-q-set, t-∈∨ q-set.
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to be a subquasigroup of Q where (α, β) is one of (∈,∈ ∨ q), (∈,∈ ∧ q), (∈, q),
(q,∈∨ q), (q,∈∧ q), (q,∈) and (q, q).

2. Preliminaries

A quasigroup (Q, ·) is a set Q with a binary operation � ·� such that for each a and
b in Q there exist unique elements x and y in Q such that a · x = b and y · a = b.
The unique solutions to these equations are denoted by x = a\b and y = b/a. The
operations �\� and �/� denote the de�ned binary opersations of left and right di-
vision (sometimes called parastrophe), respectively. This axiomatization of quasi-
groups requires existential quanti�cation and hence �rst order logic. The second
de�nition of a quasigroup is grounded in universal algebra, which prefers that
algebraic structures be varieties, i.e., that structures be axiomatized solely by
identities. An identity is an equation in which all variables are tacitly univer-
sally quanti�ed, and the only operations are the primitive operations proper to
the structure. Quasigroups can be axiomatized in this manner if left and right
division are taken as primitive.

A quasigroup Q = (Q, ·, \, /) is a type (2, 2, 2) algebra satisfying the identities:

(x · y)/y = x, x\ (x · y) = y, (x/y) · y = x, x · (x\y) = y

(cf. [2] or [4]). Hence if (Q, ·) is a quasigroup according to the �rst de�nition,
then Q = (Q, ·, \, /) is an equivalent quasigroup in the universal algebra sense. We
say also that (Q, ·, \, /) is an equasigroup (i.e. equationally de�nable quasigroup)
[4] or a primitive quasigroup [2]. The equasigroup Q = (Q, ·, \, /) corresponds to
quasigroup (Q, ·) where

x\ y = z ⇐⇒ x · z = y, x/y = z ⇐⇒ z · y = x.

A nonempty subset S of a quaisgroup Q = (Q, ·, \, /) is called a subquasigroup of
Q if it is closed with respect to these three operations, i.e., x∗y ∈ S for all x, y ∈ S
and ∗ ∈ {·, \, /}.

A fuzzy set µ in a set X of the form

µ(y) :=

{
t ∈ (0, 1] if y = x,
0 if y 6= x,

is said to be a fuzzy point with support x and value t and is denoted by xt.
For a fuzzy point xt and a fuzzy set µ in a set X, Pu and Liu [5] introduced the

symbol xtαµ, where α ∈ {∈, q ,∈∨ q ,∈∧ q }. To say that xt ∈ µ (resp. xt q µ), we
mean µ(x) > t (resp. µ(x) + t > 1), and in this case, xt is said to belong to (resp.
be quasi-coincident with) a fuzzy set µ. To say that xt ∈∨ q µ (resp. xt ∈∧ q µ),
we mean xt ∈ µ or xt q µ (resp. xt ∈ µ and xt q µ). To say that xt αµ, we mean
xtαµ does not hold, where α ∈ {∈, q,∈∨ q ,∈∧ q }.
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De�nition 2.1. ([3, De�nition 3.2]) A fuzzy set µ in a quasigroup Q is called a
fuzzy subquasigroup of Q if it satis�es:

µ(x ∗ y) > min{µ(x), µ(y)} (1)

for all x, y ∈ Q and ∗ ∈ {·, \, /}.

We have the following characterization of a fuzzy subquasigroup.

Proposition 2.2. Let Q be a quasigroup. A fuzzy set µ in Q is a fuzzy subquasi-

group of Q if and only if the following assertion is valid.

xt ∈ µ, ys ∈ µ =⇒ (x ∗ y)min{t,s} ∈ µ (2)

for all x, y ∈ Q, t, s ∈ (0, 1] and ∗ ∈ {·, \, /}.

Proof. Straightforward.

3. Subquasigroups in the framework of

(α, β)-type fuzzy sets

In what follows, let Q = (Q, ·, \, /) be a quasigroup unless otherwise speci�ed.

De�nition 3.1. ([1, De�nition 3.1]) A fuzzy set µ in Q is said to be an (α, β)-fuzzy
subquasigroup of Q, where α, β ∈ {∈, q ,∈∨ q ,∈∧ q } and α 6= ∈∧ q , if it satis�es
the following condition:

xt1αµ, yt2αµ ⇒ (x ∗ y)min{t1,t2} β µ. (3)

for all x, y ∈ Q, t1, t2 ∈ (0, 1] and ∗ ∈ {·, \, /}.

Lemma 3.2. ([1, Theorem 3.13]) A fuzzy set µ in Q is an (∈,∈∨ q )-fuzzy sub-

quasigroup of Q if and only if it satis�es:

(∀x, y ∈ Q) (µ(x ∗ y) > min{µ(x), µ(y), 0.5}) (4)

where ∗ ∈ {·, \, /}.

We know that there are twelve di�erent types of (α, β)-fuzzy subquasigroups
in Q, that is, (α, β) is any one of (∈,∈), (∈, q), (∈, ∈ ∧ q ), (∈, ∈ ∨ q ), (q,∈),
(q, q), (q,∈∧ q ), (q,∈∨ q ), (∈∨ q ,∈), (∈∨ q , q), (∈∨ q ,∈∧ q ), and (∈∨ q ,∈∨ q ).
Clearly, we have relations among these types which are described in the following
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diagrams.

(∈,∈)

#+

(∈,∈∧ q )ks +3

��

(∈, q)

s{
(∈,∈∨ q )

(∈∨ q ,∈∨ q )

KS

(∈∨ q ,∈)

3;

(∈∨ q ,∈∧ q )ks

KS

+3 (∈∨ q , q)

ck

(5)

and

(q,∈)

!)

(q,∈∧ q )ks +3

��

(q, q)

v~
(q,∈∨ q )

(6)

If there exists x ∈ Q such that µ(x) > 0.5, then we have the following relation:

(∈∧ q ,∈)

#+

(∈∧ q ,∈∧ q )ks +3

��

(∈∧ q , q )

s{
(∈∧ q ,∈∨ q )

(∈,∈∨ q )

KS
(7)

We provide a relation between (∈, ∈∨ q )-fuzzy subquasigroups and (q, ∈∨ q )-
fuzzy subquasigroups.

Theorem 3.3. Every (q,∈ ∨ q )-fuzzy subquasigroup is an (∈,∈ ∨ q )-fuzzy sub-

quasigroup.

Proof. Let µ be a (q,∈ ∨ q )-fuzzy subquasigroup of Q. Let ∗ ∈ {·, \, /} and let
x, y ∈ Q and t1, t2 ∈ (0, 1] be such that xt1 ∈ µ and yt2 ∈ µ. Then µ(x) > t1 and
µ(y) > t2. Suppose (x ∗ y)min{t1,t2} ∈∨ q µ. Then

µ(x ∗ y) < min{t1, t2}, (8)

µ(x ∗ y) + min{t1, t2} 6 1. (9)
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It follows that

µ(x ∗ y) < 0.5. (10)

and from (8) and (10) that

µ(x ∗ y) < min{t1, t2, 0.5}.

Thus

1− µ(x ∗ y) > 1−min{t1, t2, 0.5} > max{1− µ(x), 1− µ(y), 0.5},

and so there exists δ ∈ (0, 1] such that

1− µ(x ∗ y) > δ > max{1− µ(x), 1− µ(y), 0.5}. (11)

The right inequality in (11) induces µ(x) + δ > 1 and µ(y) + δ > 1, that is,
xδ q µ and yδ q µ. Since µ is a (q,∈∨ q )-fuzzy subquasigroup of Q, it follows that
(x ∗ y)δ = (x ∗ y)min{δ,δ} ∈ ∨ q µ. But, from the left inequality in (11), we get
µ(x ∗ y) + δ 6 1, that is, (x ∗ y)δ q µ, and µ(x ∗ y) 6 1− δ < 1− 0.5 = 0.5 < δ, i.e.,
(x∗y)δ ∈µ. Hence (x∗y)δ ∈∨ q µ, a contradiction. Therefore (x∗y)min{t1,t2} ∈∨ q µ,
and thus µ is an (∈, ∈∨ q )-fuzzy subquasigroup of Q.

Regarding (α, β)-fuzzy subquasigroups, Theorem 3.3 and �gure (6) induces the
the following relations.

(q,∈)

!)

(q,∈∧ q )ks +3

��

(q, q)

u}
(q,∈∨ q )

��
(∈,∈∨ q )

(12)

The converse of Theorem 3.3 is not true in general (see [1, Example 3.6]).
We provide conditions for an (∈,∈∨ q )-fuzzy subquasigroup to be a (q,∈∨ q )-

fuzzy subquasigroup.

Theorem 3.4. If µ is an (∈,∈∨ q )-fuzzy subquasigroup of Q in which µ(x) 6 0.5
for all x ∈ Q, then µ is a (q,∈∨ q )-fuzzy subquasigroup of Q.

Proof. Let µ be an (∈,∈∨ q )-fuzzy subquasigroup of Q such that µ(x) 6 0.5 for
all x ∈ Q. Let ∗ ∈ {·, \, /}, x, y ∈ Q and t1, t2 ∈ (0, 0.5] be such that xt1 q µ
and yt2 q µ. Then µ(x) > 1 − t1 > t1 and µ(y) > 1 − t2 > t2, that is, xt1 ∈ µ
and yt2 ∈ µ. Since µ is an (∈,∈ ∨ q )-fuzzy subquasigroup of Q, it follows that
(x ∗ y)min{t1,t2} ∈∨ q µ. Consequently, µ is a ( q ,∈∨ q )-fuzzy subquasigroup.
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The �gure (5) and Theorem 3.4 induces the following corollary.

Corollary 3.5. Let µ be an (α, β)-fuzzy subquasigroup of Q where (α, β) is any

one of (∈,∈), (∈, q), (∈,∈∧ q ), (∈∨ q ,∈), (∈∨ q , q), (∈∨ q , ∈∧ q ), and (∈∨ q ,
∈∨ q ). If every fuzzy point has the value t in (0, 0.5], then µ is a (q,∈∨ q )-fuzzy
subquasigroup of Q.

For a fuzzy set µ in Q and t ∈ (0, 1], consider the q-set and ∈ ∨ q -set with
respect to t (brie�y, t-q-set and t-∈∨ q -set, respectively) as follows:

Qtq := {x ∈ Q | xt q µ} and Qt∈∨ q := {x ∈ Q | xt ∈∨ q µ}.

Note that, Qrq ⊆ Qtq and Qr∈∨ q ⊆ Qt∈∨ q for all t, r ∈ (0, 1] with t > r. Obviously,
Qt∈∨ q = U(µ; t) ∪Qtq, where

U(µ; t) := {x ∈ Q | µ(x) > t}.

Theorem 3.6. If µ is an (∈,∈)-fuzzy subquasigroup of Q, then the t-q-set Qtq is

a subquasigroup of Q for all t ∈ (0, 1] whenever it is nonempty.

Proof. Let ∗ ∈ {·, \, /} and x, y ∈ Qtq. Then xt q µ and yt q µ, that is, µ(x) + t > 1
and µ(y) + t > 1. It follows that

µ(x ∗ y) + t > min{µ(x), µ(y)}+ t = min{µ(x) + t, µ(y) + t} > 1

and so that (x∗y)t q µ. Hence x∗y ∈ Qtq, and therefore Qtq is a subquasigroup.

Corollary 3.7. If µ is an (∈,∈∧ q )-fuzzy subquasigroup of Q, then the t-q-set Qtq
is a subquasigroup of Q for all t ∈ (0, 1] whenever it is nonempty.

Theorem 3.8. If µ is a (q,∈∨ q )-fuzzy subquasigroup of Q, then the t-q-set Qtq
and the t-∈∨ q -set Qt∈∨ q are subquasigroups of Q for all t ∈ (0.5, 1] whenever it

is nonempty.

Proof. Let ∗ ∈ {·, \, /} and µ a (q,∈∨ q )-fuzzy subquasigroup of Q. Let x, y ∈ Q
be such that x ∈ Qtq and y ∈ Qtq for all t ∈ (0.5, 1]. Then xt q µ and yt q µ, which
imply that (x ∗ y)t ∈ ∨ q µ, i.e., (x ∗ y)t ∈ µ or (x ∗ y)t q µ. If (x ∗ y)t q µ, then
x∗y ∈ Qtq. If (x∗y)t ∈ µ, then µ(x∗y) > t > 1− t since t > 0.5. Hence (x∗y)t q µ,
that is, x ∗ y ∈ Qtq. Therefore Qtq is a subquasigroup of Q. Now, let x, y ∈ Qt∈∨ q .
Then xt ∈∨ q µ and yt ∈∨ q µ. Hence we have the following four cases:

(i) xt ∈ µ and yt ∈ µ,

(ii) xt ∈ µ and yt q µ,

(iii) xt q µ and yt ∈ µ,

(iv) xt q µ and yt q µ.
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For the �rst case, we have µ(x) + t > 2t > 1 and µ(y) + t > 2t > 1, that is, xt q µ
and yt q µ. It follows that (x ∗ y)t ∈∨ q µ and so that x ∗ y ∈ Qt∈∨ q . In the case
(ii), xt ∈ µ implies µ(x) + t > 2t > 1, that is, xt q µ. Hence (x ∗ y)t ∈∨ q µ and
so x ∗ y ∈ Qt∈∨ q . Similarly, the third case implies x ∗ y ∈ Qt∈∨ q . The last case
implies (x ∗ y)t ∈∨ q µ and so x ∗ y ∈ Qt∈∨ q . Consequently, t-∈∨ q -set Qt∈∨ q is a
subquasigroup of Q for all t ∈ (0.5, 1].

Corollary 3.9. If µ is any one of a (q,∈)-fuzzy subquasigroup, a (q,∈∧ q )-fuzzy
subquasigroup and a (q, q)-fuzzy subquasigroup of Q, then the t-q-set Qtq and the t-
∈∨ q -set Qt∈∨ q are subquasigroups of Q for all t ∈ (0.5, 1] whenever it is nonempty.

Proof. It follows from the �gure (6) and Theorem 3.8.

Lemma 3.10. ([1, Theorem 3.12]) For a subquasigroup S of Q, let µ be a fuzzy

set in Q such that

(1) µ(x) > 0.5 for all x ∈ S,

(2) µ(x) = 0 for all x ∈ Q \ S.

Then µ is a (q,∈∨ q )-fuzzy subquasigroup of Q.

Using Theorem 3.8 and Lemma 3.10, we have the following result.

Theorem 3.11. For a subquasigroup S of Q, if µ is a fuzzy set in Q such that

(1) µ(x) > 0.5 for all x ∈ S,

(2) µ(x) = 0 for all x ∈ Q \ S,

then the nonempty t-q-set Qtq and the t-∈∨ q -set Qt∈∨ q are subquasigroups of Q
for all t ∈ (0.5, 1].

Theorem 3.12. If µ is an (∈,∈∨ q )-fuzzy subquasigroup of Q, then the nonempty

t-q-set Qtq is a subquasigroup of Q for all t ∈ (0.5, 1].

Proof. Let ∗ ∈ {·, \, /}. Assume that Qtq 6= ∅ for all t ∈ (0.5, 1]. Let x, y ∈ Qtq.
Then xt q µ and yt q µ, that is, µ(x) + t > 1 and µ(y) + t > 1. It follows from
Lemma 3.2 that

µ(x ∗ y) + t > min {µ(x), µ(y), 0.5}+ t

= min {µ(x) + t, µ(y) + t, 0.5 + t}
> 1.

So (x ∗ y)t q µ. Hence x ∗ y ∈ Qtq, and therefore Qtq is a subquasigroup.
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In what follows, let ε, δ ∈ [0, 1] be such that ε > δ unless otherwise speci�ed.

For a nonempty subset S of Q, de�ne a fuzzy set µ
(ε,δ)
S in Q as follows:

µ
(ε,δ)
S (x) :=

{
ε if x ∈ S,
δ otherwise.

We say that µ
(ε,δ)
S is an (ε, δ)-characteristic fuzzy set in Q over S. In particular,

the (1, 0)-characteristic fuzzy set µ
(1,0)
S in Q over S is the characteristic function

χS of S.

Theorem 3.13. For any nonempty subset S of Q, the following are equivalent:

(1) S is a subquasigroup of Q.

(2) The (ε, δ)-characteristic fuzzy set µ
(ε,δ)
S is a fuzzy subquasigroup of Q.

Proof. Assume that S is a subquasigroup of Q and let x, y ∈ Q. If x, y ∈ S, then
x ∗ y ∈ S and so

µ
(ε,δ)
S (x ∗ y) = ε = min

{
µ
(ε,δ)
S (x), µ

(ε,δ)
S (y)

}
.

If x /∈ S or y /∈ S, then µ(ε,δ)
S (x) = δ or µ

(ε,δ)
S (y) = δ. Hence

µ
(ε,δ)
S (x ∗ y) > δ = min

{
µ
(ε,δ)
S (x), µ

(ε,δ)
S (y)

}
.

Therefore µ
(ε,δ)
S is a fuzzy subquasigroup of Q.

Conversely, suppose that µ
(ε,δ)
S is a fuzzy subquasigroup of Q. Let x, y ∈ S.

Then µ
(ε,δ)
S (x) = ε and µ

(ε,δ)
S (y) = ε. It follows that

µ
(ε,δ)
S (x ∗ y) ≥ min

{
µ
(ε,δ)
S (x), µ

(ε,δ)
S (y)

}
= ε.

Thus x ∗ y ∈ S, and therefore S is a subquasigroup of Q.

Theorem 3.14. If S is a subquasigroup of Q, then the (ε, δ)-characteristic fuzzy

set µ
(ε,δ)
S is an (∈, ∈∨ q )-fuzzy subquasigroup of Q.

Proof. Assume that S is a subquasigroup of Q and let x, y ∈ Q. If x, y ∈ S, then
x ∗ y ∈ S and so

µ
(ε,δ)
S (x ∗ y) = ε > min

{
µ
(ε,δ)
S (x), µ

(ε,δ)
S (y), 0.5

}
.

If x /∈ S or y /∈ S, then µ(ε,δ)
S (x) = δ or µ

(ε,δ)
S (y) = δ. Hence

µ
(ε,δ)
S (x ∗ y) > δ > min

{
µ
(ε,δ)
S (x), µ

(ε,δ)
S (y), 0.5

}
.

It follows from Lemma 3.2 that µ
(ε,δ)
S is an (∈,∈∨ q )-fuzzy subquasigroup.
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In order to consider the converse of Theorem 3.14, we need additional condi-
tions.

Theorem 3.15. For any nonempty subset S of Q, if δ < 0.5 and the (ε, δ)-

characteristic fuzzy set µ
(ε,δ)
S is an (∈,∈∨ q )-fuzzy subquasigroup of Q, then S is

a subquasigroup of Q.

Proof. Assume that δ < 0.5 and the (ε, δ)-characteristic fuzzy set µ
(ε,δ)
S is an

(∈,∈∨ q )-fuzzy subquasigroup of Q. Let x, y ∈ S. Then µ(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y).

Using Lemma 3.2, we have

µ
(ε,δ)
S (x ∗ y) > min

{
µ
(ε,δ)
S (x), µ

(ε,δ)
S (y), 0.5

}
= min{ε, 0.5}

=

{
0.5 if ε > 0.5,
ε otherwise,

and so that µ
(ε,δ)
S (x ∗ y) = ε. Thus x ∗ y ∈ S, and S is a subquasigroup of Q.

Corollary 3.16. A nonempty subset S of Q is a subquasigroup of Q if and only if

the characteristic function χS of S is an (∈,∈∨ q )-fuzzy subquasigroup of Q.

Theorem 3.17. If S is a subquasigroup of Q, then the (ε, δ)-characteristic fuzzy

set µ
(ε,δ)
S is an (∈, q )-fuzzy subquasigroup of Q whenever if any element t in (0, 1]

satis�es xt ∈ µ(ε,δ)
S for x ∈ Q then δ < t and 1− t < ε.

Proof. Let ∗ ∈ {·, \, /} and let x, y ∈ Q and t1, t2 ∈ (0, 1] be such that xt1 ∈ µ
(ε,δ)
S

and yt2 ∈ µ
(ε,δ)
S . Then µ

(ε,δ)
S (x) > t1 > δ and µ

(ε,δ)
S (y) > t2 > δ. It follows that

µ
(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y), and so x, y ∈ S. Since S is a subquasigroup of Q, we

have x ∗ y ∈ S. Hence µ
(ε,δ)
S (x ∗ y) = ε, and thus µ

(ε,δ)
S (x ∗ y) + min{t1, t2} =

ε+min{t1, t2} > 1 which shows that (x ∗ y)min{t1,t2} q µ
(ε,δ)
S . Therefore µ

(ε,δ)
S is an

(∈, q )-fuzzy subquasigroup of Q.

Corollary 3.18. If S is a subquasigroup of Q, then the (ε, δ)-characteristic fuzzy

set µ
(ε,δ)
S is an (∈,∈∨ q )-fuzzy subquasigroup of Q whenever if any element t in

(0, 1] satis�es xt ∈ µ(ε,δ)
S for x ∈ Q then δ < t and 1− t < ε.

Theorem 3.19. Let S be a nonempty subset of Q. If ε + δ 6 1 and the (ε, δ)-

characteristic fuzzy set µ
(ε,δ)
S is an (∈, q)-fuzzy subquasigroup of Q, then S is a

subquasigroup of Q.

Proof. Let ∗ ∈ {·, \, /}. Assume that ε+ δ 6 1 and the (ε, δ)-characteristic fuzzy

set µ
(ε,δ)
S is an (∈, q)-fuzzy subquasigroup of Q. Let x, y ∈ S. Then µ(ε,δ)

S (x) = ε =

µ
(ε,δ)
S (y), and so xε ∈ µ(ε,δ)

S and yε ∈ µ(ε,δ)
S . Hence (x∗ y)ε = (x∗ y)min{ε,ε} q µ

(ε,δ)
S ,



252 Y. B. Jun, S. Z. Song and G. Muhiuddin

which implies that µ
(ε,δ)
S (x ∗ y) + ε > 1. Therefore µ

(ε,δ)
S (x ∗ y) > 1 − ε > δ, and

thus µ
(ε,δ)
S (x ∗ y) = ε, that is, x ∗ y ∈ S. Consequently, S is a subquasigroup.

Corollary 3.20. Let S be a nonempty subset of Q. If ε + δ 6 1 and the (ε, δ)-

characteristic fuzzy set µ
(ε,δ)
S is an (∈,∈∧ q )-fuzzy subquasigroup of Q, then S is

a subquasigroup of Q.

If we take ε = 1 and δ = 0 in Theorems 3.17 and 3.19, then we have the
following corollary.

Corollary 3.21. A nonempty subset S of Q is a subquasigroup of Q if and only

if the characteristic function χS of S is an (∈, q)-fuzzy subquasigroup of Q.

Theorem 3.22. If S is a subquasigroup of Q, then the (ε, δ)-characteristic fuzzy

set µ
(ε,δ)
S is a (q, q)-fuzzy subquasigroup of Q whenever if any element t in (0, 1]

satis�es xt ∈ µ(ε,δ)
S for x ∈ Q then δ 6 1− t < ε.

Proof. Let ∗ ∈ {·, \, /}. Let x, y ∈ Q and t1, t2 ∈ (0, 1] be such that xt1 q µ
(ε,δ)
S

and yt2 q µ
(ε,δ)
S . Then µ

(ε,δ)
S (x) + t1 > 1 and µ

(ε,δ)
S (y) + t2 > 1, which imply that

µ
(ε,δ)
S (x) > 1 − t1 > δ and µ

(ε,δ)
S (y) > 1 − t2 > δ. It follows that µ

(ε,δ)
S (x) = ε =

µ
(ε,δ)
S (y) and so that x, y ∈ S. Since S is a subquasigroup of Q, we have x ∗ y ∈ S

and so µ
(ε,δ)
S (x ∗ y) = ε. Thus

µ
(ε,δ)
S (x ∗ y) + min{t1, t2} = ε+min{t1, t2} > 1,

that is, (x ∗ y)min{t1,t2} q µ
(ε,δ)
S . This shows that µ

(ε,δ)
S is a (q, q)-fuzzy subquasi-

group.

Corollary 3.23. If S is a subquasigroup of Q, then the (ε, δ)-characteristic fuzzy

set µ
(ε,δ)
S is a (q,∈ ∨ q )-fuzzy subquasigroup of Q whenever if any element t in

(0, 1] satis�es xt ∈ µ(ε,δ)
S for x ∈ Q then δ 6 1− t < ε.

Theorem 3.24. Let S be a nonempty subset of Q. Assume that ε > max{δ, 0.5}
and ε+ δ 6 1. If the (ε, δ)-characteristic fuzzy set µ

(ε,δ)
S is a (q, q)-fuzzy subquasi-

group of Q, then S is a subquasigroup of Q.

Proof. Let ∗ ∈ {·, \, /} and let x, y ∈ S. Then µ
(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y), which

implies that

µ
(ε,δ)
S (x) + ε = ε+ ε > 1 and µ

(ε,δ)
S (y) + ε = ε+ ε > 1,

that is, xε q µ
(ε,δ)
S and yε q µ

(ε,δ)
S . Since µ

(ε,δ)
S is a (q, q)-fuzzy subquasigroup of Q,

it follows that (x∗y)ε = (x∗y)min{ε,ε} q µ
(ε,δ)
S . Hence µ

(ε,δ)
S (x∗y) > 1− ε > δ, and

therefore µ
(ε,δ)
S (x∗y) = ε. This proves that x∗y ∈ S, and S is a subquasigroup.
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Corollary 3.25. Let S be a nonempty subset of Q. Assume that ε > max{δ, 0.5}
and ε + δ 6 1. If the (ε, δ)-characteristic fuzzy set µ

(ε,δ)
S is a (q,∈ ∧ q )-fuzzy

subquasigroup of Q, then S is a subquasigroup.

If we take ε = 1 and δ = 0 in Theorems 3.22 and 3.24, then we have the
following corollary.

Corollary 3.26. A nonempty subset S of Q is a subquasigroup of Q if and only

if the characteristic function χS of S is a (q, q)-fuzzy subquasigroup of Q.

Theorem 3.27. For any nonempty subset S of Q and the (ε, δ)-characteristic

fuzzy set µ
(ε,δ)
S , assume that if any element t in (0, 1] satis�es xt ∈ µ

(ε,δ)
S for

x ∈ Q then δ 6 1 − t and t < ε. If S is a subquasigroup of Q, then µ
(ε,δ)
S is a

(q,∈)-fuzzy subquasigroup of Q.

Proof. Let ∗ ∈ {·, \, /}. Let x, y ∈ Q and t1, t2 ∈ (0, 1] be such that xt1 q µ
(ε,δ)
S

and yt2 q µ
(ε,δ)
S . Then µ

(ε,δ)
S (x) + t1 > 1 and µ

(ε,δ)
S (y) + t2 > 1, which imply that

µ
(ε,δ)
S (x) > 1 − t1 > δ and µ

(ε,δ)
S (y) > 1 − t2 > δ. Hence µ

(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y),

and so x, y ∈ S. Since S is a subquasigroup of Q, we have x ∗ y ∈ S and thus

µ
(ε,δ)
S (x ∗ y) = ε > min{t1, t2},

that is, (x ∗ y)min{t1,t2} ∈ µ
(ε,δ)
S . This shows that µ

(ε,δ)
S is a (q,∈)-fuzzy subquasi-

group of Q.

Corollary 3.28. For any nonempty subset S of Q and the (ε, δ)-characteristic

fuzzy set µ
(ε,δ)
S , assume that if any element t in (0, 1] satis�es xt ∈ µ

(ε,δ)
S for

x ∈ Q then δ 6 1 − t and t < ε. If S is a subquasigroup of Q, then µ
(ε,δ)
S is a

(q,∈∨ q )-fuzzy subquasigroup of Q.

Theorem 3.29. Let S be a nonempty subset of Q. Assume that ε > max{δ, 0.5}.
If the (ε, δ)-characteristic fuzzy set µ

(ε,δ)
S is a (q,∈)-fuzzy subquasigroup of Q, then

S is a subquasigroup of Q.

Proof. Let ∗ ∈ {·, \, /} and let x, y ∈ S. Then µ
(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y), which

implies that

µ
(ε,δ)
S (x) + ε = ε+ ε > 1 and µ

(ε,δ)
S (y) + ε = ε+ ε > 1,

that is, xε q µ
(ε,δ)
S and yε q µ

(ε,δ)
S . Since µ

(ε,δ)
S is a (q,∈)-fuzzy subquasigroup of Q,

it follows that (x ∗ y)ε = (x ∗ y)min{ε,ε} ∈ µ
(ε,δ)
S and so that µ

(ε,δ)
S (x ∗ y) = ε, that

is, x ∗ y ∈ S. Therefore S is a subquasigroup of Q.

Corollary 3.30. Let S be a nonempty subset of Q. Assume that ε > max{δ, 0.5}.
If the (ε, δ)-characteristic fuzzy set µ

(ε,δ)
S is a (q,∈∧ q )-fuzzy subquasigroup of Q,

then S is a subquasigroup of Q.
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If we take ε = 1 and δ = 0 in Theorems 3.27 and 3.29, then we have the
following corollary.

Corollary 3.31. A nonempty subset S of Q is a subquasigroup of Q if and only

if the characteristic function χS of S is a (q,∈)-fuzzy subquasigroup of Q.

Theorem 3.32. If S is a subquasigroup of Q, then the (ε, δ)-characteristic fuzzy

set µ
(ε,δ)
S is an (∈,∈∧ q )-fuzzy subquasigroup of Q whenever if any element t in

(0, 1] satis�es xt ∈ µ(ε,δ)
S for x ∈ Q then δ < t and 1− t < ε.

Proof. Let x, y ∈ Q and t1, t2 ∈ (0, 1] be such that xt1 ∈ µ
(ε,δ)
S and yt2 ∈ µ

(ε,δ)
S .

Then µ
(ε,δ)
S (x) > t1 > δ and µ

(ε,δ)
S (y) > t2 > δ, which imply that x, y ∈ S and ε >

min{t1, t2}. Since S is a subquasigroup ofQ, we have x∗y ∈ S. Hence µ(ε,δ)
S (x∗y) =

ε > min{t1, t2}, i.e., (x ∗ y)min{t1,t2} ∈ µ
(ε,δ)
S . Now, µ

(ε,δ)
S (x ∗ y)+min{t1, t2} = ε+

min{t1, t2} > 1 and so (x∗y)min{t1,t2} q µ
(ε,δ)
S . Therefore (x∗y)min{t1,t2} ∈∧ q µ

(ε,δ)
S ,

and consequently µ
(ε,δ)
S is an (∈,∈∧ q )-fuzzy subquasigroup of Q.

Corollary 3.33. If S is a subquasigroup of Q, then the (ε, δ)-characteristic fuzzy

set µ
(ε,δ)
S is both an (∈,∈∨ q )-fuzzy subquasigroup and an (∈, q )-fuzzy subquasi-

group of Q whenever if any element t in (0, 1] satis�es xt ∈ µ(ε,δ)
S for x ∈ Q then

δ < t and 1− t < ε.

Theorem 3.34. Let S be a nonempty subset of Q. If ε + δ 6 1 and the (ε, δ)-

characteristic fuzzy set µ
(ε,δ)
S is an (∈,∈∧ q )-fuzzy subquasigroup of Q, then S is

a subquasigroup of Q.

Proof. Assume that ε + δ 6 1 and the (ε, δ)-characteristic fuzzy set µ
(ε,δ)
S is an

(∈,∈∧ q )-fuzzy subquasigroup of Q. Let x, y ∈ S. Then µ(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y),

and so xε ∈ µ(ε,δ)
S and yε ∈ µ(ε,δ)

S . Hence (x ∗ y)ε = (x ∗ y)min{ε,ε} ∈∧ q µ
(ε,δ)
S , that

is, (x ∗ y)ε = (x ∗ y)min{ε,ε} ∈ µ
(ε,δ)
S and (x ∗ y)ε = (x ∗ y)min{ε,ε} q µ

(ε,δ)
S . Hence

µ
(ε,δ)
S (x ∗ y) > ε and µ

(ε,δ)
S (x ∗ y) + ε > 1. If µ

(ε,δ)
S (x ∗ y) > ε, then µ

(ε,δ)
S (x ∗ y) = ε

and thus x ∗ y ∈ S. If µ(ε,δ)
S (x ∗ y) + ε > 1, then µ

(ε,δ)
S (x ∗ y) > 1 − ε > δ and so

µ
(ε,δ)
S (x ∗ y) = ε, which shows that x ∗ y ∈ S. Therefore S is a subquasigroup of
Q.

If we take ε = 1 and δ = 0 in Theorems 3.32 and 3.34, then we have the
following corollary.

Corollary 3.35. A nonempty subset S of Q is a subquasigroup of Q if and only if

the characteristic function χS of S is an (∈,∈∧ q )-fuzzy subquasigroup of Q.

Theorem 3.36. If S is a subquasigroup of Q, then the fuzzy set µ
(ε,δ)
S is a (q,

∈∧ q )-fuzzy subquasigroup of Q under the condition that if any element t in (0, 1]

satis�es xt ∈ µ(ε,δ)
S for x ∈ Q then δ 6 1− t and t < ε.
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Proof. Let x, y ∈ Q and t1, t2 ∈ (0, 1] be such that xt1 q µ
(ε,δ)
S and yt2 q µ

(ε,δ)
S . Then

µ
(ε,δ)
S (x)+t1 > 1 and µ

(ε,δ)
S (y)+t2 > 1, which imply that µ

(ε,δ)
S (x) > 1−t1 > δ and

µ
(ε,δ)
S (y) > 1− t2 > δ. Hence µ

(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y) and ε > max{1− t1, 1− t2},

and so x, y ∈ S. Since S is a subquasigroup of Q, we have x ∗ y ∈ S and thus

µ
(ε,δ)
S (x ∗ y) = ε > min{t1, t2},

that is, (x∗y)min{t1,t2} ∈ µ
(ε,δ)
S . Now, µ

(ε,δ)
S (x∗y)+min{t1, t2} = ε+min{t1, t2} > 1,

and so (x ∗ y)min{t1,t2} q µ
(ε,δ)
S . Hence (x ∗ y)min{t1,t2} ∈ ∧ q µ

(ε,δ)
S , and µ

(ε,δ)
S is a

(q,∈∧ q )-fuzzy subquasigroup of Q.

Corollary 3.37. If S is a subquasigroup of Q, then the fuzzy set µ
(ε,δ)
S is a (q,

∈∨ q )-fuzzy subquasigroup of Q under the condition that if any element t in (0, 1]

satis�es xt ∈ µ(ε,δ)
S for x ∈ Q then δ 6 1− t and t < ε.

Theorem 3.38. Let S be a nonempty subset of Q. Assume that ε > max{δ, 0.5}.
If the fuzzy set µ

(ε,δ)
S is a (q, ∈ ∧ q )-fuzzy subquasigroup of Q, then S is a sub-

quasigroup of Q.

Proof. Let x, y ∈ S. Then µ(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y), which implies that

µ
(ε,δ)
S (x) + ε = ε+ ε > 1 and µ

(ε,δ)
S (y) + ε = ε+ ε > 1,

that is, xε q µ
(ε,δ)
S and yε q µ

(ε,δ)
S . Since µ

(ε,δ)
S is a (q,∈∧ q )-fuzzy subquasigroup of

Q, it follows that (x ∗ y)ε = (x ∗ y)min{ε,ε} ∈∧ q µ
(ε,δ)
S and so that µ

(ε,δ)
S (x ∗ y) > ε.

Hence x ∗ y ∈ S and S is a subquasigroup of Q.

If we take ε = 1 and δ = 0 in Theorems 3.36 and 3.38, then we have the
following corollary.

Corollary 3.39. A nonempty subset S of Q is a subquasigroup of Q if and only

if the characteristic function χS of S is a (q,∈∧ q )-fuzzy subquasigroup of Q.

Theorem 3.40. Let S be a nonempty subset of Q. Assume that if any element t

in (0, 1] satis�es xt ∈ µ(ε,δ)
S for x ∈ Q then δ 6 1 − t. If S is a subquasigroup of

Q, then the fuzzy set µ
(ε,δ)
S is a (q,∈∨ q )-fuzzy subquasigroup of Q.

Proof. Let x, y ∈ Q and t1, t2 ∈ (0, 1] be such that xt1 q µ
(ε,δ)
S and yt2 q µ

(ε,δ)
S . Then

µ
(ε,δ)
S (x)+t1 > 1 and µ

(ε,δ)
S (y)+t2 > 1, which imply that µ

(ε,δ)
S (x) > 1−t1 > δ and

µ
(ε,δ)
S (y) > 1−t2 > δ. Hence µ

(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y), and so ε > max{1−t1, 1−t2}

and x, y ∈ S. Since S is a subquasigroup of Q, we have x ∗ y ∈ S and thus

µ
(ε,δ)
S (x∗y) = ε which implies that µ

(ε,δ)
S (x∗y)+min{t1, t2} = ε+min{t1, t2} > 1,

i.e., (x ∗ y)min{t1,t2} q µ
(ε,δ)
S . It follows that (x ∗ y)min{t1,t2} ∈∨ q µ

(ε,δ)
S . Therefore

µ
(ε,δ)
S is a (q,∈∨ q )-fuzzy subquasigroup of Q.
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Theorem 3.41. Let S be a nonempty subset of Q. Assume that ε > max{δ, 0.5}
and ε+ δ 6 1. If the fuzzy set µ

(ε,δ)
S is a (q,∈∨ q )-fuzzy subquasigroup of Q, then

S is a subquasigroup of Q.

Proof. Let x, y ∈ S. Then µ(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y), which implies that

µ
(ε,δ)
S (x) + ε = ε+ ε > 1 and µ

(ε,δ)
S (y) + ε = ε+ ε > 1,

that is, xε q µ
(ε,δ)
S and yε q µ

(ε,δ)
S . Since µ

(ε,δ)
S is a (q,∈∨ q )-fuzzy subquasigroup of

Q, it follows that (x ∗ y)ε = (x ∗ y)min{ε,ε} ∈∨ q µ
(ε,δ)
S , that is, µ

(ε,δ)
S (x ∗ y) > ε or

µ
(ε,δ)
S (x∗ y)+ ε > 1. If µ

(ε,δ)
S (x∗ y) > ε, then x∗ y ∈ S. If µ(ε,δ)

S (x∗ y)+ ε > 1, then

µ
(ε,δ)
S (x ∗ y) > 1− ε > δ and so µ

(ε,δ)
S (x ∗ y) = ε. Thus x ∗ y ∈ S, and therefore S

is a subquasigroup of Q.

Corollary 3.42. Let S be a nonempty subset of Q. Assume that ε > max{δ, 0.5}
and ε + δ 6 1. If the fuzzy set µ

(ε,δ)
S is an (α, β)-fuzzy subquasigroup of Q for

(α, β) ∈ {(q,∈), (q,∈∧ q ), (q, q)}, then S is a subquasigroup of Q.

If we take ε = 1 and δ = 0 in Theorems 3.40 and 3.41, then we have the
following corollary.

Corollary 3.43. A nonempty subset S of Q is a subquasigroup of Q if and only

if the characteristic function χS of S is a (q,∈∨ q )-fuzzy subquasigroup of Q.
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Actions over monoids and hypergroups

Abolghasem Karimi Feizabadi and Hamid Rasouli

Abstract. We construct the hypergroups by actions over monoids. Particularly, some non-unital

hypergroups are constructed. Here, hypergroups are obtained by orbit neighborhood collections

that make a complete lattice.

1. Introduction and preliminaries

A generating technique of examples in a theory can be very useful, in particular if
it is not given various fundamental examples in that theory. One of these theories
is the theory of hypergroups which was introduced in 1934 by Marty [3].

A hyperoperation on a set H is a map · : H × H → P ∗(H), where P ∗(H) is
the set of all non-empty subsets of H. The set H with a hyperoperation · is called
a hypergroup if for every x, y, z ∈ H, x · (y · z) = (x · y) · z (association law), and
x ·H = H · x = H. For more information, see [1] and [4].

In the sense of category theory, an action over monoids is a monoid in the
category T -Act of all T -acts for a monoid T . Let M be a monoid with no zero
element. For any monoid T , a homomorphism of monoids:

Φ : T → H(M); t 7→ ϕt : M →M,

where H(M) denotes the monoid of all endomorphisms ofM is said to be an action

over monoids. Note that H(M) has a (unique) zero element which is a constant
mapping equals 1. If T has a zero element 0, we impose the assumption that
T\{0} is a monoid. So letting ϕ0 be the zero element of H(M), Φ : T → H(M) is
a homomorphism of semigroups. In this case, mϕ0 = 1 for every m ∈M and then
Φ is called a zero faithful action.

In this paper a generating technique for constructing hypergroups is presented.
Using neighborhood collections, we construct a class of hypergroups, and describe
how an action over monoids can be applied to obtain a hypergroup. We consider
hypergroup actions over monoids, which are those actions Φ : T → H(M) over
monoids for which (M, •) is a hypergroup. It is obtained a necessary and su�cient
condition for a hypergroup action over monoids to be unital, that is, 1 ∈ x • y for
all x, y ∈M .

2010 Mathematics Subject Classi�cation: 20N20, 20M30, 20M32, 20M50, 20M99

Keywords:Action over monoids, hypergroup, orbit neighborhood collection.
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For a monoidM , on the monoid H(M) of all endomorphisms ofM we consider
the operation ? : M → M de�ned by σ ? µ := µ ◦ σ, for each µ, σ ∈ H(M). To
denote the image of x ∈M under σ we will use the post�x notation. Also Sub(M)
denotes the set of all submonoids of M . Throughout M stands for a monoid with
no zero element unless otherwise stated.

2. Actions over monoids

In this section �rst we give some instances of actions over monoids

Example 2.1. Each of the following is an action over monoids:
(i) For any commutative monoidM and T = (N, ·),Φ :T→ H(M);mϕk = mk.
(ii) For any submonoid T of H(M),Φ : T → H(M); Φ := idT (natural action).
(iii) For any monoid T with zero, Φ : T → H(M);ϕt := idM for each 0 6= t ∈ T .

If t = 0,mϕ0 := 1, for each m ∈M .

Let M be a monoid. By a neighborhood collection on M we mean the sequence
V = {Vx : x ∈ M} indexed by M , such that for each x ∈ M , Vx ⊆ M and
x ∈ Vx. If V is a neighborhood collection, we de�ne a hyperoperation, called the

hyperoperation induced by V in the following way: for each x, y ∈M , x•y = VxVy,
where VxVy is the usual product of subsets Vx and Vy of M . It is clear that for
every x, y ∈ M , xy ∈ x • y. For every a ∈ M and a non-empty subset X of M ,
we put a •X :=

⋃
x∈X a • x and X • a :=

⋃
x∈X x • a. Clearly, a •M = VaM and

M • a = MVa for each a ∈M . Also we have:

Lemma 2.2. If M is a group, then (M, •) is a hypergroup.

Proof. LetM be a monoid and ∅ 6= A ⊆M . If there is an invertible element a ∈ A,
then AM = M = MA. Moreover, if M is a group, then the operation on subsets
of M is also associative. Therefore, if M is a group and • is a hyperoperation
induced by any neighborhood collection, then M is a hypergroup.

De�nition 2.3. Let Φ : T → H(M) be an action over monoids. Then the set
{mϕt : t ∈ T} of all images of an element m ∈ M under the mappings Φ(t) is
usually called the orbit of m and it is denoted by OrbT (m). It is obvious that for
each m ∈M,m ∈ OrbT (m). Hence, VT = {Vm = OrbT (m) : m ∈M} is the set of
all orbits of elements from M which is called the orbit neighborhood collection.

From now on, • stands for the hyperoperation induced by orbit neighborhood
collection. Also, for a submonoid S of H(M), by VS we mean the orbit neigh-
borhood collection induced by the natural action from S to H(M). In this case,
VS = {OrbS(m) : m ∈M}, where OrbS(m) = {mσ : σ ∈ S} for each m ∈M .

De�nition 2.4. An action Φ : T → H(M) over monoids is called right (left)
multiplicative if for each m ∈ M and 0 6= t ∈ T , there exists x ∈ M such that
mϕt = mx (mϕt = xm).
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The action over monoids in Example 2.1(i) is (left and right) multiplicative.
If Φ : T → H(M) is a (left) right multiplicative zero faithful action, then M is a
group.

Proposition 2.5. Let Φ : T → H(M) be a (left) right multiplicative action over

monoids. Then (M, •) is a hypergroup if and only if M is a group.

Proof. Suppose (M, •) is a hypergroup. Let m ∈ M . By assumption, for each
t ∈ T , mϕtM = mxM ⊆ mM for some x ∈M . Thus

M = m •M = OrbT (m)M =
⋃
t∈T

mϕtM ⊆ mM.

Then M = mM. Hence, M is a group. The converse follows from Lemma 2.2.

Remark 2.6. An action Φ : T → H(M) over monoids and the natural action
Ψ = idΦ(T ) : Φ(T )→ H(M) de�ned as in Example 2.1(ii) have the same orbits of
elements from M .

Let M be a monoid and V,W be two neighborhood collections on M . We say
V ≤ W if for every x ∈M , Vx ⊆Wx. Clearly, ≤ is a partial order relation on the
set of all neighborhood collections.

A neighborhood collection V = {Vx : x ∈ M} is called a basis neighborhood

collection if for every y ∈ Vx, Vy ⊆ Vx. For instance, if Φ : T → H(M) is an action
over monoids, then the orbit neighborhood collection VT is a basis neighborhood
collection. Indeed, for any x, y ∈ M , y ∈ OrbT (x) implies that y = xϕt for some
t ∈ T and then OrbT (y) = {xϕts : s ∈ T} ⊆ OrbT (x).

Lemma 2.7. Let V = {Vx : x ∈ M} be a basis neighborhood collection and

S = {σ ∈ H(M) : xσ ∈ Vx for all x ∈M}. The following statements hold:

(i) S is a submonoid of H(M) and VS ≤ V.
(ii) For every action Φ : T → H(M) over monoids satisfying VT ≤ V, we have

VT ≤ VS.

Proof. (i) For every x ∈ M , x idM = x ∈ Vx, so idM ∈ S. Let σ, µ ∈ S. Then
xσ ∈ Vx and xσµ ∈ Vxσ for all x ∈ M , and so xσµ = (xσ)µ ∈ Vxσ ⊆ Vx because
V is a basis. Therefore, σµ ∈ S. (ii) It follows from Remark 2.6.

For a monoid M, let ONC(M) denote the set of all orbit neighborhood collec-
tions VT , for all monoids T such that there is an action over monoids T and M.

Theorem 2.8. For a monoid M , (ONC(M),≤) is a complete lattice.

Proof. Let {Ti : i ∈ I} be a non-empty family of monoids such that Φi : Ti →
H(M) is an action over monoids for all i ∈ I. For every x ∈ M , let Vx =⋂
i∈I OrbTi(x). Also take V = {Vx : x ∈ M}. It is easy to check that V is a

basis neighborhood collection. Put S := {σ ∈ H(M) : xσ ∈ Vx for all x ∈ M}.
We claim that VS =

∧
i∈I VTi . By Lemma 2.7(i), VS ≤ V. So VS ≤ VTi for all



260 A. Karimi Feizabadi and H. Rasouli

i ∈ I. Suppose VT ∈ ONC(M) and VT ≤ VTi for all i ∈ I. Let x ∈ M . We have
OrbT (x) ⊆ OrbTi(x) for all i ∈ I. Then OrbT (x) ⊆

⋂
i∈I OrbTi(x) = Vx. Since V

is a basis neighborhood collection, VT ≤ VS by Lemma 2.7(ii), as desired. Note
that V{idM} is the bottom element, and VH(M) is the top element ofONC(M).

Remark 2.9. Let {Ti : i ∈ I} be a non-empty family of submonoids of a monoid
T and Φ : T → H(M) be an action over monoids. Then, using Lemma 2.7
and Theorem 2.8, V⋂

i∈I Ti
≤

∧
i∈I VTi ≤ V, where Vx =

⋂
i∈I OrbTi(x) and V =

{Vx : x ∈ M}. But, V⋂
i∈I Ti

and V are not necessarily equal. For instance, let

M = (Z100, ·) and T = (N, ·). Consider the action Φ : T → H(M) over monoids
de�ned by aϕn := an for each n ∈ N and a ∈ Z100. Let T1 = {2k : k ∈ N ∪ {0}}
and T2 = {3k : k ∈ N ∪ {0}}. Then T1 and T2 are submonoids of T such that
T1 ∩ T2 = {1}. Let a = 5 ∈ Z100. We have a2 6= a, a3 6= a and a2 = a3.
So a2 ∈ OrbT1

(a) ∩ OrbT2
(a), but a2 6∈ OrbT1∩T2

(a). Therefore, OrbT1∩T2
(a) 6=

OrbT1(a) ∩OrbT2(a).

Question: The map ψ : Sub(H(M)) → ONC(M) given by T 7→ VT is a poset
homomorphism. Is ψ a lattice homomorphism? Generally: Let Φ : S → H(M)
be an action over monoids. When is the map φ : Sub(S) → ONC(M), given by
φ(T ) = VT , a lattice homomorphism?

3. Non-unital hypergroup actions over monoids

In this section, we introduce and study the notion of hypergroup action over
monoids and construct two kinds of non-unital hypergroup actions over monoids.

De�nition 3.1. An action over monoids Φ : T → H(M) is called a hypergroup

action over monoids if (M, •) is a hypergroup, where the hyperoperation • is
induced by orbit neighborhood collection.

In view of Lemma 2.2, any action Φ : T → H(M) is a hypergroup action over
monoids provided M is a group.

Proposition 3.2. For every monoids T and M, Φ : T → H(M) is a hypergroup

action over monoids if and only if for every m ∈M there exist s, t ∈ T such that

mϕs is right invertible and mϕt is left invertible in M .

Proof. clearly Φ : T → H(M) is a hypergroup action over monoids if and only if
for each m ∈M , OrbT (m)M = M = MOrbT (m). Then the assertion holds.

Example 3.3. Consider the monoid T = {0, 1}. For a zero faithful action Φ : T →
H(M) over monoids, (M, •) is a hypergroup by Proposition 3.2. To describe the
hyperoperation • induced by VT , let x, y ∈M . We have x•y = OrbT (x)OrbT (y) =
{1, x}{1, y} = {1, x, y, xy}.
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De�nition 3.4. Let M be a monoid without zero and � be a hyperoperation on
M . Then (M,�) is called unital if for every x, y ∈ M , 1 ∈ x � y. A hypergroup
action Φ : T → H(M) over monoids is called unital if (M, •) is unital, where • is
the hyperoperation induced by VT .

Lemma 3.5. A hypergroup action Φ : T → H(M) over monoids is unital if and

only if 1 ∈ OrbT (x) for any x ∈M .

Proof. Let Φ :T → H(M) be a hypergroup action over monoids. If Φ is non-unital,
then there are x, y ∈M such that 1 /∈ x • y ⊇ OrbT (xy) which is a contradiction.
The converse follows from the fact that x • 1 = OrbT (x) for each x ∈M .

By virtue of Proposition 3.2 and Lemma 3.5, the following is immediate:

Corollary 3.6. Every zero faithful action is a unital hypergroup action over

monoids.

Corollary 3.6 provides an easy construction of a unital hypergroup action over
monoids. But, �nding a non-unital hypergroup action over monoids is not so easy.

Let G be a non-trivial group. For any ∗ 6∈ G, put G∗ := G ∪ {∗}. De�ne
∗a = a∗ = ∗ for all a ∈ G∗. Then G∗ is a monoid in which ∗ is a zero element,
and every non-zero element is invertible. For a non-empty set X, let GX denote
the set of all mappings f : X → G∗ satisfying xf 6= ∗ for some x ∈ X. For every
f, g ∈ GX and x ∈ X, de�ne (x)fg := (xf)(xg). Under this multiplication, GX
is a monoid with no zero element. Also the identity of GX is the map IGX given
by xIGX = 1, for each x ∈ X. Note that H(GX) has a zero element given by the
endomorphism O : GX → GX such that for any f ∈ GX , fO = IGX .

Now, take a map α : X → X. De�ne α̃ : GX → GX by fα̃ := αf and put
TX := {α̃ | α : X → X is a map}. Then we get the following:

Lemma 3.7.

(i) α̃ ∈ H(GX), and TX is a submonoid of H(GX) such that O 6∈ TX .

(ii) An f ∈ GX is invertible if and only if for every x ∈ X, xf 6= ∗. In this

case, xf−1 = (xf)−1 for all x ∈ X.

Proof. (i) For every g, h ∈ GX , (gh)α̃ = α(gh) = (αg)(αh) = (gα̃)(hα̃). So α̃ is an
endomorphism of GX . To prove TX is a submonoid of H(GX), let α, β : X → X

be two maps. For every f ∈ GX we have fα̃β̃ = (αf)β̃ = β(αf) = (βα)f = fβ̃α.

Then α̃β̃ = β̃α ∈ TX . Also idGX = ĩdX ∈ TX . Finally, if O ∈ TX , then there is
a mapping α : X → X such that α̃ = O. Take an f ∈ GX satisfying xf 6= 1 for
each x ∈ X. Then αf = fα̃ = fO = IGX which is a contradiction.

(ii) Note that f ∈ GX is invertible if and only if xf is invertible for all x ∈ X.
Since every a 6= ∗ in G∗ is invertible, the assertion holds.

In light of Lemma 3.7(i), we have the natural action ΦX : TX → H(GX) over
monoids. Now the following result is obtained.
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Theorem 3.8. The natural action ΦX : TX → H(GX) is a non-unital hypergroup

action over monoids.

Proof. First we show that for every f ∈ GX there exists an endomorphism σ :
GX → GX such that σ ∈ TX and fσ is invertible. To this end, let f ∈ GX ,
Y = {x ∈ X : xf 6= ∗} 6= ∅ and α : X → X be a mapping such that Xα = Y .
Considering σ = α̃ ∈ TX , we have xfσ = xfα̃ = xαf 6= ∗ for each x ∈ X. Then it
follows from Lemma 3.7(ii) that fσ is invertible. Now, using Proposition 3.2, ΦX
is a hypergroup action over monoids. To complete the proof, using Lemma 3.5, it
su�ces to �nd an f ∈ GX such that IGX 6∈ OrbTX (f). Take any a ∈ G such that
a 6= 1, and the constant map f corresponding to a such that xf = a for all x ∈ X.
For every map α : X → X and x ∈ X, xfα̃ = xαf = a. Thus fα̃ 6= IGX , and
hence IGX 6∈ OrbTX (f).

Let M be a monoid and G be a non-trivial group. Then M × G is a monoid
without zero under the usual componentwise binary operation. De�ne ξ : M×G→
M ×G by (m, g)ξ = (1, g) for every m ∈M, g ∈ G. Clearly, ξ is an endomorphism
of M × G such that for every x ∈ M × G, xξ is invertible, and ξ2 = ξ. Now we
have the following:

Proposition 3.9. If T is a submonoid of H(M ×G) without zero that contains ξ,
then the natural action Φ : T → H(M×G) is a hypergroup action over monoids. In

particular, Φξ : Tξ → H(M ×G) is a non-unital hypergroup action over monoids,

where Tξ = {id, ξ}.

Proof. We have ξ ∈ T and xξ is invertible for all x ∈ M × G. It follows from
Proposition 3.2 that Φ : T → H(M × G) is a hypergroup action over monoids.
Consider Tξ, and let x = (1, g) ∈ M × G such that g 6= 1. Then we get (1, 1) /∈
OrbTξ(x) = {x}. Using Lemma 3.5, Φξ is a non-unital hypergroup action over
monoids.

References

[1] P. Corsini, Prolegomena of hypergroup theory, Aviani Editor, 1993.

[2] M. Kilp, U. Knauer, and A.V. Mikhalev, Monoids, Acts and Categories, de
Gruyter, Berlin, 2000.

[3] F. Marty, Sur une généralization de la notion de groupe, 8th Congress Math. Scan-
denaves, Stockholm, (1934), 45-49.

[4] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc.,
1994.

Received May 26, 2014

Revised April 7, 2015
A. Karimi Feizabadi

Department of Math., Gorgan Branch, Islamic Azad University, Gorgan, Iran

E-mail: akarimi@gorganiau.ac.ir, karimimath@yahoo.com

H. Rasouli

Department of Math., Science and Research Branch, Islamic Azad University, Tehran, Iran

E-mail: hrasouli@srbiau.ac.ir



Quasigroups and Related Systems 23 (2015), 263− 270

On intra-regular and some left regular

Γ-semigroups

Niovi Kehayopulu and Michael Tsingelis

Abstract. We characterize the intra-regular Γ-semigroups and the left regular Γ-semigroups M

in which xΓM ⊆MΓx for every x ∈M in terms of �lters and we prove, among others, that every

intra-regular Γ-semigroup is decomposable into simple components, and every Γ-semigroup M

for which xΓM ⊆MΓx is left regular, is decomposable into left simple components.

1. Introduction and prerequisites

A structure theorem concerning the intra-regular semigroups, another one con-
cerning some left regular semigroups have been given in [3]. These are the two
theorems in [3]:

Theorem II.4.9. The following conditions on a semigroup S are equivalent:

(1) Every N -class of S is simple.

(2) Every ideal of S is completely semiprime.

(3) For every x ∈ S, x ∈ Sx2S.
(4) For every x ∈ S, N(x) = {y ∈ S | x ∈ SyS}.
(5) N = I.
(6) Every ideal of S is a union of N -classes.

Theorem II.4.5. The following conditions on a semigroup S are equivalent:

(1) Every N -class of S is left simple.

(2) Every left ideal of S is completely semiprime and two-sided.

(3) For every x ∈ S, x ∈ Sx2 and xS ⊆ Sx.
(4) For every x ∈ S, N(x) = {y ∈ S | x ∈ Sy}.
(5) N = L.
(6) Every left ideal of S is a union of N -classes.

Note that we always use the term �semiprime" instead of �completely semiprime"
given by Petrich in [3]. So the condition (2) in the two theorems above should be
read as �Every ideal (resp. left ideal) of S is semiprime", meaning that if A is an
ideal (resp. left ideal) of S, then for every x ∈ S such that x2 ∈ A, we have x ∈ A.
In the present paper we generalize these results in case of Γ-semigroups.

2010 Mathematics Subject Classi�cation: 20M99, 06F99
Keywords: Γ-semigroup; left (right) congruence; semilattice congruence; left (right) ideal; left
(right) simple; simple; intra-regular; left (right) regular.
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Let M be a Γ-semigroup. An equivalence relation σ on M is called left (resp.
right) congruence (on M) if (a, b) ∈ σ implies (cγa, cγb) ∈ σ (resp. (aγc, bγc) ∈ σ)
for every c ∈ M and every γ ∈ Γ. A relation σ which is both left and right
congruence on M is called a congruence on M . A congruence σ on M is called
semilattice congruence if (aγb, bγa) ∈ σ and (aγa, a) ∈ σ for every a, b ∈ M and
every γ ∈ Γ. A nonempty subset A of M is called a left (resp. right) ideal of M if
MΓA ⊆ A (resp. AΓM ⊆ A). A subset A ofM which is both a left and right ideal
of M is called an ideal of M . For an element a of M , we denote by L(a), R(a),
I(a) the left ideal, right ideal and the ideal ofM , respectively, generated by a, and
we have L(a) = a∪MΓa, R(a) = a∪aΓM , I(a) = a∪MΓa∪aΓM ∪MΓaΓM . We
denote by L the equivalence relation on M de�ned by L := {(a, b) | L(a) = L(b)},
by R the equivalence relation on M de�ned by R := {(a, b) | R(a) = R(b)} and
by I the equivalence relation on M de�ned by I := {(a, b) | I(a) = I(b)}. A
nonempty subset A of M is called a subsemigroup of M if a, b ∈ A and γ ∈ Γ
implies aγb ∈ A, that is, AΓA ⊆ A. A subsemigroup F of M is called a �lter

of M if a, b ∈ F and γ ∈ Γ such that aγb ∈ F implies a ∈ F and b ∈ F . We
denote by N the relation on M de�ned by N := {(a, b) | N(a) = N(b)} where
N(x) is the �lter of M generated by x (x ∈M). It is well known that the relation
N is a semilattice congruence on M . So, if z ∈ M and γ ∈ Γ, then we have
(zγz, z) ∈ N , (zγzγz, zγz) ∈ N , (zγzγzγz, zγzγz) ∈ N and so on. A subset A of
M is called semiprime if a ∈ M and γ ∈ Γ such that aγa ∈ A implies a ∈ A. A
Γ-semigroup (M,Γ, .) is called left simple if for every left ideal L of M , we have
L = M , that is, M is the only left ideal of M . A subsemigroup T of M is called
left simple if the Γ-semigroup (T,Γ, .) (that is, the set T with the same Γ and the
multiplication �." on M) is left simple. Which means that for every left ideal A
of T , we have A = T . A subsemigroup of M which is both left simple and right
simple is called simple. If M is a Γ-semigroup and σ a semilattice congruence
on M , then the class (a)σ of M containing a is a subsemigroup of M for every
a ∈ M . Let now M be a Γ-semigroup and σ a congruence on M . For a, b ∈ M
and γ ∈ Γ, we de�ne (a)σγ(b)σ := (aγb)σ. Then the set M/σ := {(a)σ | a ∈ M}
is a Γ-semigroup as well. A Γ-semigroup M is said to be a semilattice of simple

semigroups if there exists a semilattice congruence σ onM such that the class (x)σ
is a simple subsemigroup of M for every x ∈M .

2. Intra-regular Γ-semigroups

We characterize here the intra-regular Γ-semigroups in terms of �ltres and we prove
that every intra-regular Γ-semigroup is decomposable into simple subsemigroups.

De�nition 1. (cf. [2]) A Γ-semigroup M is called intra-regular if

x ∈MΓxγxΓM

for every x ∈M and every γ ∈ Γ.
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Lemma 2. (cf. [1]) If M is a Γ-semigroup, then I ⊆ N .

Theorem 3. Let M be a Γ-semigroup. The following are equivalent:

(1) M is intra-regular.

(2) N(x) = {y ∈M | x ∈MΓyΓM} for every x ∈M.
(3) N = I.
(4) For every ideal I of M, we have I =

⋃
x∈I

(x)N .

(5) (x)N is a simple subsemigroup of M for every x ∈M .

(6) M is a semilattice of simple semigroups.

(7) Every ideal of M is semiprime.

Proof. (1) =⇒ (2). Let x ∈ M and T := {y ∈ M | x ∈ MΓyΓM}. T is a �lter of
M . In fact: Take an element γ ∈ Γ (Γ 6= ∅). Since M is intra-regular, we have

x ∈MΓxγxΓM = (MΓx)γxΓM ⊆ (MΓM)γxΓM ⊆MΓxΓM,

then x ∈ T , and T is a nonempty subset of M . Let a, b ∈ T and γ ∈ Γ. Then
aγb ∈ T . Indeed: Since b ∈ T , we have x ∈ MΓbΓM . Since a ∈ T , x ∈ MΓaΓM .
Since M is intra-regular, we have

x ∈MΓxγxΓM ⊆MΓ(MΓbΓM)γ(MΓaΓM)ΓM

= (MΓM)Γ(bΓMγMΓa)Γ(MΓM)

⊆MΓ(bΓMγMΓa)ΓM.

We prove that bΓMγMΓa ⊆MΓ(aγb)ΓM . Then we have

x ∈MΓ
(
MΓ(aγb)ΓM

)
ΓM ⊆MΓ(aγb)ΓM,

and aγb ∈ T . For this purpose, let bδuγvρa ∈ bΓMγMΓa, where u, v ∈ M and
δ, ρ ∈ Γ. Since M is intra-regular, bδuγvρa ∈M and γ ∈ Γ, we have

bδuγvρa ∈ MΓ(bδuγvρa)γ(bδuγvρa)ΓM

= (MΓbδuγv)ρ(aγb)δ(uγvρaΓM)

⊆MΓ(aγb)ΓM,

so bδuγvρa ∈ MΓ(aγb)ΓM . Let a, b ∈ M and γ ∈ Γ such that aγb ∈ T . Then
a, b ∈ T . Indeed: Since aγb ∈ T , we have

x ∈MΓ(aγb)ΓM = MΓaγ(bΓM) ⊆MΓaΓM and

x ∈ (MΓa)γbΓM ⊆MΓbΓM,

so a, b ∈ T . Let now F be a �lter of M such that x ∈ F . Then T ⊆ F . Indeed:
Let a ∈ T . Then x ∈ MΓaΓM , so x = uγaρv for some u, v ∈ M , γ, ρ ∈ Γ. Since
u, aρv ∈ M , uγ(aρv) ∈ F and F is a �lter of M , we have u ∈ F and aρv ∈ F .
Since a, v ∈M , aρv ∈ F and F is a �lter, we have a ∈ F and v ∈ F , so a ∈ F .
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(2) =⇒ (3). Let (a, b) ∈ N . Then a ∈ N(a) = N(b). Since a ∈ N(b), by (2), we
have b ∈ MΓaΓM ⊆ a ∪MΓa ∪ aΓM ∪MΓaΓM = I(a). Since I(a) is an ideal
of M containing b, we have I(b) ⊆ I(a). Since b ∈ N(a), by symmetry, we get
I(a) ⊆ I(b). Then I(a) = I(b), and (a, b) ∈ I. Thus we have N ⊆ I. On the
other hand, by Lemma 2, I ⊆ N . Thus N = I.
(3) =⇒ (4). Let I be an ideal of M . If y ∈ I, then y ∈ (y)N ⊆

⋃
x∈I

(x)N . Let

y ∈
⋃
x∈I

(x)N . Then y ∈ (x)N for some x ∈ I. Then, by (3), (y, x) ∈ N = I,

so I(y) = I(x). Since x ∈ I and I(x) is the ideal of M generated by x, we have
I(x) ⊆ I. Thus we have y ∈ I(y) = I(x) ⊆ I, and y ∈ I.
(4) =⇒ (5). Let x ∈ M . Since N is a semilattice congruence on M , (x)N is a
subsemigroup of M . Let I be an ideal of (x)N . Then I = (x)N . In fact: Let
y ∈ (x)N . Take an element z ∈ I and an element γ ∈ Γ (I,Γ 6= ∅). The set
MΓzγzγzΓM is an ideal of M . Indeed, it is a nonempty subset of M , and we
have

MΓ(MΓzγzγzΓM) = (MΓM)ΓzγzγzΓM ⊆MΓzγzγzΓM and

(MΓzγzγzΓM)ΓM = MΓzγzγzΓ(MΓM) ⊆MΓzγzγzΓM.

By hypothesis, we have MΓzγzγzΓM =
⋃

t∈MΓzγzγzΓM

(t)N .

Since zγzγzγzγz ∈ MΓzγzγzΓM , we have (zγzγzγzγz)N ⊆ MΓzγzγzΓM .
Since (zγz, z) ∈ N and z ∈ I ⊆ (x)N , we have (zγzγzγzγz)N = (z)N = (x)N .
Then y ∈ (x)N ⊆ MΓzγzγzΓM and y = aδzγzγzξb = (aδz)γzγ(zξb) for some
a, b ∈M , δ, ξ ∈ Γ.

We prove that aδz, zξb ∈ (x)N . Then, since I is an ideal of (x)N , we have
(aδz)γzγ(zξb) ∈ (x)NΓIΓ(x)N ⊆ I, and y ∈ I. We have

aδz ∈ (aδz)N := (a)N δ(z)N = (a)N δ(y)N (since (z)N = (x)N = (y)N )

= (a)N δ(aδzγzγzξb)N

= (a)N δ(a)N δ(zγzγzξb)N

= (a)N δ(zγzγzξb)N (since (aδa, a) ∈ N )

=
(
aδ(zγzγzξb)

)
N

= (y)N = (x)N

and

zξb ∈ (zξb)N := (z)N ξ(b)N = (y)N ξ(b)N = (aδzγzγzξb)N ξ(b)N

= (aδzγzγz)N ξ(b)N ξ(b)N

= (aδzγzγz)N ξ(bξb)N

= (aδzγzγz)N ξ(b)N

= (aδzγzγzξb)N = (y)N = (x)N .
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(5) =⇒ (6). Since N is a semilattice congruence on M .

(6) =⇒ (7). Suppose σ be a semilattice congruence on M such that (x)σ is a
simple subsemigroup of M for every x ∈ M . Let I be an ideal of M , x ∈ M and
γ ∈ Γ such that xγx ∈ I. The set I ∩ (x)σ is an ideal of (x)σ. In fact: Since
xγx ∈ I and xγx ∈ (x)σ, the set I ∩ (x)σ is a nonempty subset of (x)σ and, since
(x)σ is a subsemigroup of M , we have

(x)σΓ(I ∩ (x)σ) ⊆ (x)σΓI ∩ (x)σΓ(x)σ ⊆MΓI ∩ (x)σ ⊆ I ∩ (x)σ and

(I ∩ (x)σ)Γ(x)σ ⊆ IΓ(x)σ ∩ (x)σΓ(x)σ ⊆ IΓM ∩ (x)σ ⊆ I ∩ (x)σ.

Since (x)σ is a simple subsemigroup of M , we have I ∩ (x)σ = (x)σ, and x ∈ I.
(7) =⇒ (1). Let a ∈ M and γ ∈ Γ. Then a ∈ MΓaγaΓM . Indeed: The set
MΓaγaΓM is an ideal of M . This is because it is a nonempty subset of M and

MΓ(MΓaγaΓM) = (MΓM)ΓaγaΓM ⊆MΓaγaΓM ,

(MΓaγaΓM)ΓM = MΓaγaΓ(MΓM) ⊆MΓaγaΓM.

By hypothesis, MΓaγaΓM is semiprime. Since (aγa)γ(aγa) ∈ MΓaγaΓM , we
have aγa ∈MΓaγaΓM , and a ∈MΓaγaΓM . Thus M is intra-regular. �

3. On some left regular Γ-semigroups

Again using �lters, we characterize here the left regular Γ-semigroups M in which
xΓM ⊆ MΓx for every x ∈ M and we prove that this type of Γ-semigroups are
decomposable into left simple components. If xΓM ⊆ MΓx for every x ∈ M ,
then AΓM ⊆ MΓA for every A ⊆ M . Indeed: If a ∈ A, γ ∈ Γ and b ∈ M ,
then aγb ∈ aΓM ⊆ MΓa ⊆ MΓA. Thus if A is a left ideal of M , then A is a
right ideal of M as well. As a consequence, the left regular Γ-semigroups in which
xΓM ⊆MΓx for every x ∈M , are left regular and left duo. We also remark that
the left regular Γ-semigroups are intra-regular. Indeed: Let a ∈M . SinceM is left
regular, we have a ∈ MΓaγa ⊆ MΓ(MΓaγa)γa ⊆ MΓaγaΓM. The right regular
Γ-semigroups are also intra-regular, and the right regular Γ-semigroups for which
MΓx ⊆ xΓM for every x ∈M are right regular and right duo, and decomposable
into right simple subsemigroups.

De�nition 4. (cf. [2]) A Γ-semigroup M is called left (resp. right) regular if
x ∈MΓxγx (resp. x ∈ xγxΓM) for every x ∈M and every γ ∈ Γ.

Lemma 5. (cf. [1]) If M is a Γ-semigroup, then L ⊆ N and R ⊆ N .

Theorem 6. Let M be a Γ-semigroup. The following are equivalent:

(1) M is left regular and xΓM ⊆MΓx for every x ∈M .

(2) N(x) = {y ∈M | x ∈MΓy} for every x ∈M .

(3) N = L.
(4) For every left ideal L of M, we have L =

⋃
x∈L

(x)N .
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(5) (x)N is a left simple subsemigroup of M for every x ∈M .

(6) M is a semilattice of left simple semigroups.

(7) Every left ideal of M is semiprime and two-sided.

Proof. (1) =⇒ (2). Let x ∈ M and T := {y ∈ M | x ∈ MΓy}. The set T is a
�lter of M containing x. In fact: Take an element γ ∈ Γ (Γ 6= ∅). Since M is left
regular, we have

x ∈MΓxγx = (MΓx)γx ⊆ (MΓM)γx ⊆MΓx,

then x ∈ T , and T is a nonempty subset of M . Let a, b ∈ T and γ ∈ Γ. Then
aγb ∈ T . Indeed: Since b, a ∈ T , we have x ∈MΓb and x ∈MΓa. Since M is left
regular, we have

x ∈MΓxγx ⊆MΓ(MΓb)γ(MΓa) = (MΓM)Γ(bγMΓa)

⊆MΓ(bγMΓa).

We prove that bγMΓa ⊆MΓaγb. Then we have

x ∈MΓ(MΓaγb) = (MΓM)Γ(aγb) ⊆MΓ(aγb),

and aγb ∈ T . Let now bγuµa ∈ bγMΓa for some u ∈ M , µ ∈ Γ. Since M is left
regular, we have

bγuµa ∈ MΓ(bγuµa)γ(bγuµa) = (MΓbγu)µ(aγb)γ(uµa)

⊆MΓ
(

(aγb)ΓM
)

⊆MΓ(MΓaγb) (since xΓM ⊆MΓx ∀x ∈M)

⊆MΓaγb.

Let a, b ∈ M and γ ∈ Γ such that aγb ∈ T . Then a, b ∈ T . Indeed: Since
aγb ∈ T , we have x ∈ MΓaγb ⊆ (MΓM)Γb ⊆ MΓb, so b ∈ T . By hypothesis,
aγb ∈ aΓM ⊆ MΓa. Then x ∈ MΓaγb ⊆ MΓ(MΓa) ⊆ MΓa, so a ∈ T . Let now
F be a �lter of M such that x ∈ F . Then T ⊆ F . Indeed: Let a ∈ T . Then
x ∈ MΓa, that is x = uρa for some u ∈ M , ρ ∈ Γ. Since u ∈ M , ρ ∈ Γ, uρa ∈ F
and F is a �lter of M , we have u ∈ F and a ∈ F , then a ∈ F .
(2) =⇒ (3). Let (a, b) ∈ N . Then a ∈ N(a) = N(b). Since a ∈ N(b), by (2), we
have b ∈MΓa ⊆ a ∪MΓa = L(a), so L(b) ⊆ L(a). Since b ∈ N(a), by symmetry,
we get L(a) ⊆ L(b). Then we have L(a) = L(b), and (a, b) ∈ L. By Lemma 5,
L ⊆ N , so L = N .

(3) =⇒ (4). Let L be a left ideal of M . If y ∈ L, then y ∈ (y)N ⊆
⋃
x∈L

(x)N . Let

y ∈
⋃
x∈L

(x)N . Then y ∈ (x)N for some x ∈ L. Then, by (3), (y, x) ∈ N = L, so

L(y) = L(x). Since x ∈ L and L(x) is the left ideal of M generated by x, we have
L(x) ⊆ L. Then y ∈ L(y) = L(x) ⊆ L, so y ∈ L.
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(4) =⇒ (5). Let L be a left ideal of (x)N . Then L = (x)N . In fact: Let y ∈ (x)N .
Take an element z ∈ L and an element γ ∈ Γ (L,Γ 6= ∅). SinceMΓzγz is a left ideal
of M , by hypothesis, we have MΓzγz =

⋃
t∈MΓzγz

(t)N . Since zγzγz ∈ MΓzγz,

we have (zγzγz)N ⊆ MΓzγz. Since (zγz, z) ∈ N and z ∈ L ⊆ (x)N , we have
(zγzγz)N = (z)N = (x)N . Then y ∈ (x)N ⊆ MΓzγz, thus y = aµzγz for some
a ∈ M and µ ∈ Γ. We prove that aµz ∈ (x)N . Then, since L is a left ideal of
(x)N , we have (aµz)γz ∈ (x)NΓL ⊆ L, and y ∈ L. We have

aµz ∈ (aµz)N = (a)Nµ(z)N = (a)Nµ(y)N (since (z)N = (x)N = (y)N )

= (a)Nµ(aµzγz)N = (a)Nµ(a)Nµ(zγz)N

= (a)Nµ(zγz)N = (aµzγz)N

= (y)N = (x)N .

(5) =⇒ (6). Since N is a semilattice congruence on M .

(6) =⇒ (7). Let σ be a semilattice congruence onM such that (x)σ is a left simple
subsemigroup of M for every x ∈ M . Let L be a left ideal of M and x ∈ M ,
γ ∈ Γ such that xγx ∈ L. The set L∩ (x)σ is a left ideal of (x)σ. Indeed: The set
L ∩ (x)σ is a nonempty subset of (x)σ (since xγx ∈ L and xγx ∈ (x)σ) and

(x)σΓ(L ∩ (x)σ) ⊆ (x)σΓL ∩ (x)σΓ(x)σ ⊆MΓL ∩ (x)σ ⊆ L ∩ (x)σ.

Since (x)σ is a left simple subsemigroup of M , we have L ∩ (x)σ = (x)σ, then
x ∈ L. Thus L is semiprime. Let now L be a left ideal of M . Then LΓM ⊆ L.
Indeed: Let y ∈ L, γ ∈ Γ and x ∈ M . Since L is a left ideal of M , we have
xγy ∈MΓL ⊆ L. The set L ∩ (xγy)σ is a left ideal of (xγy)σ. Indeed:

∅ 6= L ∩ (xγy)σ ⊆ (xγy)σ (since xγy ∈ L and xγy ∈ (xγy)σ) and

(xγy)σΓ(L ∩ (xγy)σ) ⊆ (xγy)σΓL ∩ (xγy)σΓ(xγy)σ ⊆MΓL ∩ (xγy)σ.

Since (xγy)σ is left simple, we have L ∩ (xγy)σ = (xγy)σ = (yγx)σ, so yγx ∈ L.
(7) =⇒ (1). Let x ∈ M and γ ∈ Γ. Since MΓxγx is a left ideal of M , by
hypothesis it is semiprime. Since (xγx)γ(xγx) ∈MΓxγx, we have xγx ∈MΓxγx,
and x ∈ MΓxγx, thus M is left regular. Let now x ∈ M . Then xΓM ⊆ MΓx.
Indeed: Since M is left regular, we have x ∈ MΓxγx ⊆ (MΓM)Γx ⊆ MΓx, so
MΓx is a nonempty subset of M . In addition, MΓ(MΓx) = (MΓM)Γx ⊆ MΓx,
soMΓx is a left ideal ofM . By hypothesis,MΓx is a right ideal ofM as well. Since
MΓx is an ideal of M containing x, we have I(x) ⊆ MΓx. On the other hand,
xΓM ⊆ x ∪MΓx ∪ xΓM ∪MΓxΓM = I(x). Thus we obtain xΓM ⊆MΓx.

The right analogue of Theorem 6 also holds, and we have the following:

Theorem 7. Let M be a Γ-semigroup. The following are equivalent:

(1) M is right regular and MΓx ⊆ xΓM for every x ∈M .

(2) N(x) = {y ∈M | x ∈ yΓM} for every x ∈M .
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(3) N = R.
(4) For every right ideal R of M, we have R =

⋃
x∈R

(x)N .

(5) (x)N is a right simple subsemigroup of M for every x ∈M .

(6) M is a semilattice of right simple semigroups.
(7) Every right ideal of M is semiprime and two-sided.
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A new block ciphers based on wavelet

decomposition of splines

Alla B. Levina

Abstract. This paper presents the idea of using wavelet decomposition of splines in cryptog-

raphy. The cryptoalgorithms based on wavelet decomposition of splines uses just the algebraic

calculation. With the help of algebraic formulas we can code and decode information that algo-

rithms do not have the XOR using the round key, also it does not use S-boxes.

1. Introduction

The proposed paper discusses a new class of algorithms obtained using a new
theory of the spline-wavelet decompositions on nonuniform sets. The theory of
wavelet decomposition of splines has been used before to process discreet signals
but never in cryptography.

Our proposal is to create cryptoalgoritms which will use only mathematical
calculation that can process data blocks up to 2048 bits and more quickly. This
research were carried out for splines of the �rst, second and third degree. Algo-
rithms based on splines of an upper degree works slower but they remain stronger
against di�erent cryptoattacks.

The theory of wavelet-decomposition of splines can apply to di�erent areas of
cryptography. In this work we will illustrate just one way of use - creation of block
ciphers, which will be presented on splines of the third degree.

The presented algorithms do not have the XOR operation with the round key
and they do not use S-boxes as block ciphers GOST 28147-89 [10], 3DES [9], AES
[3,8] and others. At the present time, only algorithm Three�sh [11] is not using S-
boxes and can process data blocks up to 1024 bits. Di�usion over multiple rounds
we get by mathematical functions.

As a minus of the algorithms we can mention that not all the bytes are receiv-
ing enciphering on each round; some of them are just getting moved to several
positions, unlike in the Feistel Structure. Present research explores algorithms
which will cipher each byte on each round.

As a plus for the presented algorithms, we can mention that it is based only on
the mathematical calculation, however it does help in the analyzing of algorithms.

2010 Mathematics Subject Classi�cation: 11T71, 94A60, 68P25

Keywords: Block ciphers, splines, grids, formulas of decomposition and reconstruction.
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The structure of the presented algorithms is absolutely new - and has the possi-
bility for modernization of the process. The process of enciphering is based only
on mathematical formulas, the formulas of decomposition from wavelet theory,
process of deciphering is based on the formulas of reconstruction.

In this paper the basic concepts of algorithm, mathematical basics of pro-
cess of enciphering/deciphering, illustration of spline-wavelet decomposition, and
a demonstration of the work of algorithm is presented.

2. Idea of wavelet decomposition of splines

In this section we will brie�y provide a concept of wavelet decomposition of splines
[4, 5, 6]. We will illustrate spline-wavelet decomposition on the splines of the third
degree. For splines of the �rst and second degree, the same theory is used.

On the set X we build splines. Set X consists of the elements {xi}i=0,...,L−1,
where {xi}i=0,...,L−1 natural numbers. L is the number of elements in the set X.

Splines of the third degree built on the set X are presented in the formulas
below:

k∑
j=k−3

ωj(t) = 1, t ∈ [xk, xk+1)

k∑
j=k−3

1

3
(xj+1 + xj+2 + xj+3)ωj(t) = t, t ∈ [xk+1, xk+2)

k∑
j=k−3

1

3
(xj+1xj+2 + xj+1xj+3 + xj+2xj+3)ωj(t) = t2, t ∈ [xk+2, xk+3)

k∑
j=k−3

xj+1xj+2xj+3 ωj(t) = t3, t ∈ [xk+3, xk+4).

With splines de�ned as ωj(t) and xj elements of our set X.
For wavelet decomposition of splines, we take out one element xk from our set

X and we will obtain a new set X. Elements of this set can be presented with the
help of elements from the old set, as presented below:

xj = xj if j 6 k − 1, and xj = xj+1 if j > k, ξ = xk.

On the new set X, we can build new splines ωj but these new splines can be

present as a combination of splines which were built before on the set X. Also
splines ωj(t) can be obtained with the help of the new splines ωj(t) � it helps us

to restore the information.

This idea gives us two types of formulas: 1) formulas of decomposition 2)
formulas of reconstruction. Step by step we take out elements from our primary
set X and build splines which use the new set (in this realization each time we
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take out just one element we get a new set and new splines, in another realization
it can be taken a few elements each time).

The mathematical process of getting these formulas will not be introduced in
this paper, instead we will present only a �nal version to show, how these formulas
will look.

We have an information stream ci and we want to get new stream ci based on
the set X. Formulas of decomposition will reform information stream ci in to the
information stream ci and wavelet part � element b. Formulas of reconstruction
will restore stream ci, using stream ci and element b.

Formulas of decomposition:

ci = ci if 0 6 i 6 k − 5, ci = ci+1 if k − 1 6 i 6M − 2,

ck−3 =
ξ − xk
ξ − xk−3

· ck−4 +
xk − xk−3
ξ − xk−3

· ck−3,

ck−2 = (ξ − xk)(ξ − xk+1) · ck−4 + (ξ − xk+1)(xk − xk−3) · ck−3+

+(xk+1 − xk−2)(ξ − xk−3) · ck−2) · [ξ − xk−2]−1[ξ − xk−3]−1,

b = ck−1 −
xk+2 − ξ

xk+2 − xk−1
· ck−2 −

ξ − xk−1
xk+2 − xk−1

· ck−1.

Formulas of reconstruction:

ci = ci if 0 6 i 6 k − 4, ci = ci if k 6 i 6M − 1,

ck−3 =
xk − ξ

xk − xk−3
· ck−4 +

ξ − xk−3
xk − xk−3

· ck−3,

ck−2 =
xk+1 − ξ

xk+1 − xk−2
· ck−3 +

ξ − xk−2
xk+1 − xk−2

· ck−2,

ck−2 =
xk+2 − ξ

xk+2 − xk−1
· ck−2 +

ξ − xk−1
xk+2 − xk−1

· ck−1 + b.

We will now present how we can use this idea in construction of block ciphers,
for it we will illustrate these formulas in a more readable way.

3. Speci�cation

The presented algorithm is an iterated block cipher with a variable block length
and it is relative to the class of block cipher algorithms.
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3.1. Basic concepts of the algorithm

A process of enciphering and deciphering consists of K identical rounds.
This algorithm can work with the block length up to 2048 bits and more. The

number of rounds is denoted by K, KXγ is a key length, M is a block length (In
the table below M and KXγ are bytes).

Let K = (X, γ) be a key ; here X is an ordered set, X = {xj}j=0,...,L−1, where
L is a number of elements in the set X and γ is the order of ejection of elements
from the set. The key consist from two sets.

We have determined the number of rounds by looking at the maximum number
of rounds for which attacks have been found and has added a considerable level
of security and provides a higher margin of safety, in some cases there can be less
rounds held and the key will be smaller. Key length is equal to (number of rounds
+ 3)+(number of rounds) bytes.

Number of rounds and key length as a function of the block length is given in
Table 1.

K KXγ

M = 8 bytes 6 15
M = 16 bytes 14 31
M = 24 bytes 22 47
M = 32 bytes 30 63
M = 64 bytes 62 127
M = 128 bytes 126 255
M = 256 bytes 254 511

Table 1.

Number of elements in the set X as a function of the block length are presented
in the Table 2.

L
M = 8 bytes 9
M = 16 bytes 17
M = 24 bytes 25
M = 32 bytes 33
M = 64 bytes 65
M = 128 bytes 129
M = 256 bytes 257

Table 2.

The process of creating round key will be explained in section 3.2 more detailed.
A sequence C = {ci}i=0,...,M−1 is a plaintext; |C| =M is a quantity of elements

which are ciphered, C is the ordered set.
Elements {ci}i=0,...,M−1 and {xj}j=0,...,L−1 are bytes (we are working with

one-byte words, but we can also work with 4-bytes words).
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Let us suppose that the set X and C can be periodic with the period T so
xj = xj+T and ci = ci+T , ∀j ∈ Z.

The process ofenciphering bases on the formulas of decomposition from wavelet
theory, after K rounds we obtain the ciphertext. For deciphering we will use
formulas of reconstruction.

The process of enciphering and deciphering consists of two steps: 1) creation
of round key and 2) round transformation.

3.2. The round key creation

Round key transformation consist of two steps. We will now check the �rst round
� all rounds are the same.

1. We eject element xγ1 from the primary set X. The received set is de�ned as
X−1 and X−1 = {x−1,j}1 , elements of new set are equal:

x−1,j = xj if j < γ1, (1)

x−1,j = xj+1 if j > γ1. (2)

The element xγ1 which has been taken out of the set X is de�ned as ξ,
ξ = xγ1 .

In the next round we will be working with the set X−1 and xγ2 .

Example:

We will now calculate the set X−1 from the set X. For example: X consists
of 6 bytes ({1, 3, 5, 9, 10, 6} and the number of the element which will eject
is γi = 4. All numerations starts from 0, it means that our ejected element
ξ = xγi = 10 and the new set X−1 = ({1, 3, 5, 9, 6}.

2. We enter the following designations - elements which we use in the process
of enciphering we mark ...en, for deciphering ...de:

Aen−1 = ξ − x−1,γ1 , Ben−1 = ξ − x−1,γ1−1, Cen−1 = ξ − x−1,γ1−2,

Den
−1 = ξ − x−1,γ1−3, Een−1 = ξ − x−1,γ1+1, F en−1 = x−1,γ1+2 − x−1,γ1−1.

Ade−1 = x−1,γ1 − x−1,γ1−3, Bde−1 = x−1,γ1 − ξ Cde−1 = x−1,γ1+1 − x−1,γ1−2,

Dde
−1 = x−1,γ1+1 − ξ, Ede−1 = x−1,γ1+2 − x−1,γ1−1, F de−1 = x−1,γ1+2 − ξ.

These designations will help us in the future realization of the formulas. As
we can see from calculating these elements we are using our new set; X−1
and element ξ from our set X.

1. To avoid misunderstanding with numeration in this work if it's written {...}−i,j −i is a number
of the round and j is a number of the element, if it's just {...}−i −i is a number of round.
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With the help of these designations we can calculate elements of the round
key:

Ien =
Aen−1
Den
−1

(modN), IIen =
Een−1
Cen−1

(modN), IIIen =
Ben−1
F en−1

(modN).

Ide =
Bde−1
Ade−1

(modN), IIde =
Dde
−1

Cde−1
(modN), IIIde =

F de−1
Ede−1

(modN).

We use mod N, where N is a prime number and it gives us possibility to get
elements that will take one byte. All future calculations will be made by
mod, we will use the same mod as in algorithm Rijndael x8+x4+x3+x+1.

Example:

Now we will illustrate how we calculate elements Ien, IIen, IIIen, Ide, IIde,
IIIde. For it we will use set X−1 = ({1, 3, 5, 9, 6}, ξ = 10, γ1 = 4.

Aen−1 = ξ − x−1,γ1 = 10− 6 = 4, Ben−1 = ξ − x−1,γ1−1 = 10− 9 = 1,

Cen−1 = ξ − x−1,γ1−2 = 10− 5 = 5, Den
−1 = ξ − x−1,γ1−3 = 10− 3 = 7,

Een−1 = ξ−x−1,γ1+1 = 10−1 = 9, F en−1 = x−1,γ1+2−x−1,γ1−1 = 3−9 = −6.
Ade−1 = x−1,γ1 − x−1,γ1−3 = 6− 3 = 3, Bde−1 = x−1,γ1 − ξ = 6− 10 = −4,
Cde−1 = x−1,γ1+1−x−1,γ1−2 = 1−5 = −4, Dde

−1 = x−1,γ1+1−ξ = 1−10 = −9,
Ede−1 = x−1,γ1+2−x−1,γ1−1 = 3−9 = −6, F de−1 = x−1,γ1+2−ξ = 3−10 = −7.

Instead of mod N, we will use mod 11, we need a prime number, for this
example it will be easer to use 11.

Ien =
Aen−1
Den
−1

(mod11) =
4

7
(mod11) = 4 · 8(mod11) = 10,

IIen =
Een−1
Cen−1

(mod11) =
9

5
(mod11) = 9 · 9(mod11) = 4,

IIIen =
Ben−1
F en−1

(mod11) =
1

−6
(mod11) = −2(mod11) = 9.

Ide =
Bde−1
Ade−1

(mod11) =
−4
3

(mod11) = 6,

IIde =
Dde
−1

Cde−1
(mod11) =

−9
−4

(mod11) = 5,

IIIde =
F de−1
Ede−1

(mod11) =
−7
−6

(mod11) = 3.

All the calculations by mod goes by the rules of calculation in �nite �elds.

On each round, key transformation goes as it was presented.
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3.3. Process of enciphering

The process of enciphering also consists of two steps. For the encoding of infor-
mation we will use formulas of decomposition for the splines of the third degree.

On the �rst round our plaintext is {ci}i=0,...,M−1.
First round:

1. With the help of round key, we will present formulas of decomposition for
splines of the third degree, and we will code our plain text.

c−1,j = cj if 0 6 j 6 γ1 − 5, (3)

c−1,j = cj+1 if γ1 − 1 6 j 6M − 2, (4)

c−1,γ1−3 = (Ien · (cγ1−4 − cγ1−3) + cγ1−3)(modN), (5)

c−1,γ1−2 = (Ien ·IIen(cγ1−4−cγ1−3)+IIen ·(cγ1−3−cγ1−2)+cγ1−2)(modN),
(6)

b−1 = (cγ1−1 − c−1,γ1−2 + IIIen · (c−1,γ1−2 − c−1,γ1−1))(modN). (7)

As we can see from the formulas (3) − (7) on the �rst round formulas of
decomposition, we are taking out element cγ1−1 from our plain text, ele-
ments c−1,γ1−2 and c−1,γ1−3 is getting transformed, with the help of formu-
las (5) − (6) while other elements of our plain text starts from the element
γ1 − 1 that we are moving. Element b−1 is the element of a wavelet stream,
which will help us to restore the initial information.

From
c0 c1 c2 c3 c4 c5 c6 c7

we obtain

c0 c1 I
en ·(c1−c2) + c2 Ien ·IIen(c1−c2) + IIen ·(c2−c3) + c3 c5 c6 c7 b−1

Figure 1. Illustration of the process of enciphering for 8 bytes on the �rst round if γ1 = 5.

We use mod N as it will insure that we will still stay in the byte in spite of
multiplying.

2. At the end we make a shift of sequence c−1,j as follows:

c−1,0 → c−1,1 → c−1,2...→ c−1,M−1 → c−1,0.

It gives us more transformations.

From

c0 c1 I
en ·(c1−c2) + c2 Ien ·IIen(c1−c2) + IIen ·(c2−c3) + c3 c5 c6 c7 b−1

we obtain
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c7 c0 c1 Ien ·(c1−c2) + c2 Ien ·IIen(c1−c2) + IIen ·(c2−c3) + c3 c5 c6 b−1

Figure 2. Illustration of the shift.

On the next round we will be working with the set {c−1,j}j=0,...,M−2.
All rounds except the �nal round go the same, on the last round we do not do

the shift.
As a result, after K rounds we get two sequences

{b−n}n=1,2,...,K , {c−K,j}j=0,1,2,...,M−K−1.

Sequence {c−K,j , b−n}n=1,2,...,K;j=0,1,2,...,M−K−1 is the ciphertext.
Example:
We continue our previous example Ien = 10, IIen = 4, IIIen = 9.
We will use mod 11 for our calculations again.
The plain text will consist also of 6 bytes C = {4, 6, 7, 9, 1, 8}, γ1 = 4. With

the help of formulas (3)− (4) we get:
c−1,0 = c0 = 4, c−1,3 = c4 = 1, c−1,4 = c5 = 8.
Elements c−1,1 and c−1,2 we calculate by formulas (5)− (6):
c−1,1 = (10 · (4− 6) + 6))(mod11) = 8,
c−1,2 = (4 · 10(4− 6) + 4 · (6− 7) + 7)(mod11) = 0.
Element b−1 = (9− 0 + 9 · (0− 1))(mod11) = 0.
We obtain c−1 = {4, 8, 0, 1, 8}, b−1 = 0.
After the shift, our text for the next round will be {8, 4, 8, 0, 1, 8, 0}.

3.4. Process of deciphering

The process of decryption goes by analogy with the process of encryption.
For the restoring of information we will use formulas of reconstruction from

wavelet theory. For deciphering we need the reverse order of round keys.

1. We write formulas of reconstruction for the splines of third degree:

c−K+1,j = c−K,j if 0 6 j 6 γK − 4, (8)

c−K+1,j = c−K,j−1 if γK 6 j 6M −K, (9)

c−K+1,γK−3 = (Ide · (c−k,γk−4 − c−k,γk−3) + c−k,γk−3)(modN), (10)

c−k+1,γk−2 = (IIde · (c−k,γk−3 − c−k,γk−2) + c−k,γk−2)(modN), (11)

c−k+1,γk−1 = (IIIde · (c−k,γk−2− c−k,γk−1)+ c−k,γk−1+ b−k)(modN). (12)

2. At the end we make a shift of sequence c−1,i as follows:

c−1,0 ← c−1,1 ← c−1,2 . . .← c−1,M−K+1 ← c−1,0
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On the next round we will be working with the set X−K+1. We will also use
{c−K+1,i}i=0,....,M−K+1 and b−K+1, on the second round of the process of deci-
phering we get the sequence {c−K+2,i}i=0,....,M−K+2 etc.

Example:
To illustrate the process of enciphering we will restore information {4, 6, 7, 9, 1, 8},
if we know ciphertext {4, 8, 0, 1, 8}, b−1 = 0 and we know round key Ide, IIde,IIIde.

With the help of formulas (8)− (12) we get:
c0 = c−1,0 = 4,
c4 = c−1,3 = 1, c5 = c−1,4 = 8,

c1 =
(
6 · (4− 8) + 8

)
(mod11) = 6,

c2 =
(
5 · (8− 0) + 0

)
(mod11) = 7,

c3 =
(
3 · (0− 1) + 1 + 0

)
(mod11) = 9.

We obtain the plain text c = {4, 6, 7, 9, 1, 8}.
This small example just illustrated how formulas of reconstruction and decom-

position works.

4. Implementation

This algorithm has been implemented on the 32-bit processors. These results were
obtained with Java, which does not provide the best of possible results.

The speed �gures given in the Table 3 have been scaled on the Pentium 2,33
GHz. It was calculated only for blocks equal to 32, 64, 128 bytes, and it is far
from the best results which can obtained.

Block length, Encryption time Cycles per bytes
key length for the block for encryption

32 bytes, 63 bytes 0,00004 sec 2920
64 bytes, 127 bytes 0,00008 sec 2864
128 bytes, 255 bytes 0,000189 sec 3398

Table 3. Performance for the process of enciphering (Java).

Block length, Decryption time Cycles per bytes
key length for the block for encryption

32 bytes, 63 bytes 0,000051 sec 3653
64 bytes, 127 bytes 0,0001 sec 3589
128 bytes, 255 bytes 0,000238 sec 4273

Table 4. Performance for the process of deciphering (Java).
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Results which are presented in this work are very far from the results which
can be obtained, C++ will give us a much better result and the program can be
optimized.

5. Strength against known attacks

The presented algorithm has an absolutely new structure and it is di�cult to
analyze the strength of this algorithm and other algorithms based on wavelet
decomposition of splines.

5.1. Di�erential cryptanaysis

Di�erential cryptanalysis [1] attacks are possible if there are predictable di�erence
in propagations over all but a few rounds larger than 21−M , if M is the block
length. Usually they are based on the analysis of results of S-boxes, which we do
not have in these algorithms.

If we will check formulas of ciphering (5) − (7) we can see that the XOR
operation will not give us any information. Lets examine these formulas. Elements
of one plain text is ci and the other is c

′

i.

Ien · (cγ1−4 − cγ1−3) + cγ1−3 ⊗ Ien · (c
′

γ1−4 − c
′

γ1−3) + c
′

γ1−3

Ien · IIen(cγ1−4 − cγ1−3) + IIen · (cγ1−3 − cγ1−2) + cγ1−2⊗

Ien · IIen(c
′

γ1−4 − c
′

γ1−3) + IIen · (c
′

γ1−3 − c
′

γ1−2) + c
′

γ1−2

cγ1−1 − c−1,γ1−2 + IIIen · (c−1,γ1−2 − c−1,γ1−1)⊗

c
′

γ1−1 − c
′

−1,γ1−2 + IIIen · (c
′

−1,γ1−2 − c
′

−1,γ1−1)

As we can see, the data from the parts is all that we can gather; where we have
Ien, IIen, IIIen:

Ien · (cγ1−4 − cγ1−3), Ien · IIen(cγ1−4 − cγ1−3) + IIen · (cγ1−3 − cγ1−2),

IIIen · (c−1,γ1−2 − c−1,γ1−1).
These formulas do not give to us any predictable di�erence in propagations,

because in each round Ien, IIen, IIIen are di�erent and they depend only on the
round key. It depends on γi in i - th round, as they are di�erent on each round.

5.2. The Square attack

The Square attack [2] based on the analysis of chosen plaintexts of which part is
held constant and another part varies through all possibilities.

Here we can see the same situation as with the di�erential cryptanalysis. The
process of enciphering is based on the multiplication of elements of plain text
on the elements Ien, IIen, IIIen. Changes of plaintexts would not give us any
information about round key and the key.
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5.3. Linear cryptanalysis

For the linear cryptanalysis [7] we need to obtained a linear approximation of the
form:

Pi1 ⊗ Pi2 ⊗ ...⊗ Pia ⊗ cj1 ⊗ cj2 ⊗ ...⊗ cjb = Kk1 ⊗Kk2 ⊗ ...⊗Kkn

where Pn, cn,Kn bytes of plaintext, ciphertext and key.
This attack is also based on the analysis of S-boxes, which we are not consider-

ing. Yet it has not been discovered to be the way to obtain linear approximation.

5.4. Possible attack

There is an attack which is possible to apply to the algorithm in the way it appears
to look at this juncture.

As we see from formulas (5)−(7), two of equations are linear and one is square.
We will use a plain text attack and we need a possibility to get cipher bytes after
each round. If we will get such possibilities for restoring a key we will need to use
28·2·K , where K is a number of round. If we will �nd Ien we will �nd IIen, but
IIIen we can not �nd this way.

Results of this attack is presented in the Table 5.

results of attack
M = 8 bytes 296

M = 16 bytes 2224

M = 24 bytes 2352

M = 32 bytes 2480

M = 64 bytes 2992

M = 128 bytes 22016

M = 256 bytes 24064

Table 5.

We can avoid this attack if we will encipher each byte on the round; it will
require more time but it will be secure.

6. Conclusion

We have presented block cipher based on wavelet decomposition of splines of the
third degree. Research for using spline-wavelet decomposition can be applied in
di�erent areas of cryptography and the presented algorithm can be improved on
and can show better results in security and speed.

This is new way of creating block ciphers which are only based on the mathe-
matics, which can help in the analysis and proo�ng of strength.
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The categories of actions of a dcpo-monoid

on directed complete posets

Mojgan Mahmoudi and Halimeh Moghbeli-Damaneh

Abstract. In this paper, some categorical properties of the category Cpo-S of all S-cpo's;

cpo's equipped with a compatible right action of a cpo-monoid S, with strict continuous action-

preserving maps between them is considered. We also de�ne and consider similarly, the category

Dcpo-S of all S-dcpo's, and continuous action-preserving maps between them. In particular,

we characterize products and coproducts in these categories. Also, epimorphisms and monomor-

phisms inDcpo-S are studied. Further, we show that Cpo-S is not cartesian closed butDcpo-S

is cartesian closed.

1. Introduction and preliminaries

The category Dcpo of directed complete partial ordered sets plays an important
role in Theoretical Computer Science, and specially in Domain Theory (see [1]).
This category is complete and cocomplete. The completeness of Dcpo has been
proved (in a constructive way) by Achim Jung ([1]) and it is stated there that to
describe colimits is quite di�cult. In [5], Fiech characterizes and describes colimits
in Dcpo, but his construction is rather complicated. The cartesian closeness of
Dcpo has also been proved by Achim Jung (see [7]). It is also shown that the
categoryCpo of directed complete partially ordered sets with bottom elements and
strict continuous maps between them is monoidal closed, complete and cocomplete
(see [1, 7]).

In this paper, we study some categorical properties of the categories Dcpo-
S (and Cpo-S) of the actions of a dcpo(cpo)-monoid S on dcpo's (cpo's). In
particular, we show that the category Dcpo-S is complete and cocomplete, and
describe products and coproducts in these categories. Also, epimorphisms and
monomorphisms in these categories are considered. Further, we show that Cpo-S
is not cartesian closed but Dcpo-S is so.

Let us now give some preliminaries needed in the sequel.
Let Pos denote the category of all partially ordered sets (posets) with order

preserving (monotone) maps between them. A nonempty subset D of a partially
ordered set is called directed, denoted by D ⊆d P , if for every a, b ∈ D there exists

2010 Mathematics Subject Classi�cation: 06F05, 06F30, 20M30, 18A30
Keywords: Directed complete partially ordered set, product, coproduct, cartesian closed.
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c ∈ D such that a, b 6 c; and P is called directed complete, or brie�y a dcpo, if for
every D ⊆d P , the directed join

∨d
D exists in P . A dcpo which has a bottom

element ⊥ is said to be a cpo.
A dcpo map or a continuous map f : P → Q between dcpo's is a map with the

property that for every D ⊆d P , f(D) is a directed subset of Q and f(
∨d

D) =∨d
f(D). A dcpo map f : P → Q between cpo's is called strict if f(⊥) = ⊥.

Thus we have the categories Dcpo (and Cpo) of all dcpo's (cpo's) with (strict)
continuous maps between them.

The following lemmas are frequently used in this paper.

Lemma 1.1. [3, 7] Let {Ai : i ∈ I} be a family of dcpo's. Then the directed join

of a directed subset D ⊆d
∏

i∈I Ai is calculated as
∨d

D = (
∨d

Di)i∈I where

Di = {a ∈ Ai : ∃d = (dk)k∈I ∈ D, a = di}

for all i ∈ I.

Lemma 1.2. [7] Let P , Q, and R be dcpo's, and f : P ×Q→ R be a function of

two variables. Then f is continuous if and only if f is continuous in each variable;

which means that for all a ∈ P, b ∈ Q, fa : Q → R (b 7→ f(a, b)) and fb : P → R
(a 7→ f(a, b)) are continuous.

Remark 1.3. The categories Dcpo and Cpo are both complete and cocomplete.
In fact,

(i) The product of a family of dcpo's (cpo's) is their cartesian product, with
componentwise order and ordinary projection maps. In particular, the terminal
object of Dcpo (and Cpo) is the singleton poset {θ}.

The equalizer of a pair f, g : P → Q of (strict) continuous maps is given by
E = {x ∈ P : f(x) = g(x)} with the order inherited from P .

Moreover, the pullback of (strict) continuous maps f : P → R and g : Q → R
is the sub-dcpo P = {(a, b) : f(a) = g(b)} of the product P ×Q together with the
restriction of projection maps.

(ii) The coproduct of a family of dcpo's is their disjoint union, with the order
arising from each factor. In particular, the initial object of Dcpo is the empty
poset.

The coproduct of a family of cpo's is their coalesced sum. Recall that the

coalesced sum of the family {Ai : i ∈ I} of cpo's is de�ned to be⊎
i∈I

Ai = ⊥⊕
⋃̇

i∈I
(Ai \ {⊥Ai

}).

In particular, the initial object of Cpo is the singleton poset {θ}.

Recall that a po-monoid is a monoid with a partial order 6 which is compatible
with the monoid operation: for s, t, s′, t′ ∈ S, s 6 t, s′ 6 t′ imply ss′ 6 tt′.
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Similarly, a dcpo (cpo)-monoid is a monoid which is also a dcpo (cpo) whose
binary operation is a (strict) continuous map.

Now, we recall the preliminary notions of the action of a (po)monoid on a
set(poset). For more information, see [2, 4, 8].

Let S be a monoid. A (right) S-act or S-set is a set A equipped with an action
A × S → A, (a, s)  as, such that a1 = a and a(st) = (as)t, for all a ∈ A and
s, t ∈ S. Let Act-S denote the category of all S-acts with action-preserving maps
(maps f : A→ B with f(as) = f(a)s).

Also, recall that an element a of an S-act A is said to be a zero element if
as = a for all s ∈ S.

Let S be a po-monoid. A (right) S-poset is a poset A which is also an S-
act whose action λ : A × S → A is order-preserving, where A × S is considered
as a poset with componentwise order. The category of all S-posets with action-
preserving monotone maps between them is denoted by Pos-S.

Remark 1.4. Recall (see [2]) that:
(i) The product in the category of S-posets is the cartesian product with the

componentwise action and order. In particular, the terminal S-poset is the single-
ton S-poset.

Also, recall that the equalizer of a pair f, g : A → B of S-poset maps is given
by E = {a ∈ A : f(a) = g(a)} with action and order inherited from A.

The pullback of S-poset maps f : A → C and g : B → C is the sub-S-poset
P = {(a, b) : f(a) = g(b)} of A×B.

(ii) The coproduct is the disjoint union with the usual action and order. In
particular, the initial S-poset is the empty set.

Finally, we introduce the notion which we work on in this paper.

De�nition 1.5. Let S be a (cpo) dcpo-monoid. By a (right) S-dcpo (S-cpo) we
mean a dcpo (cpo) A which is also an S-act whose action λ : A×S → A is (strict)
continuous, where A× S is considered as a dcpo with componentwise order.

By an S-dcpo map (S-cpo map) between S-dcpo's (S-cpo's), we mean a map
f : A→ B which is both (strict) continuous and action-preserving.

We denote the categories of all S-dcpo's (S-cpo's) and S-dcpo (S-cpo) maps
between them by Dcpo-S (Cpo-S) .

Remark 1.6. (1) In the de�nition of an S-cpo, we can omit the property that the
action is strict. Notice that ⊥A×S = (⊥A,⊥S), and the action being strict means
that ⊥A⊥S = ⊥A. But, assumig that there is a continuous (monotone) action on
a cpo A, the fact that ⊥S 6 1 implies ⊥A⊥S 6 ⊥A1 = ⊥A. Also, since ⊥A is the
bottom element in A, we have ⊥A 6 ⊥A⊥S . Thus, ⊥A⊥S = ⊥A as required.

(2) Note that, by Lemma 1.2, the action λ : A × S → A is continuous if and
only if each λa : S → A, s 7→ as, and λs : A→ A, a 7→ as, is continuous.

(3) Notice that the above note is not true for strictness. For example, consider
the pomonoid S = {0 < 1} with the binary operation max. It is clear that max is
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strict continuous, so S is a cpo-monoid and hence an S-cpo. But the continuous
map λ1 : S → S, t 7→ max(t, 1) is not strict, because max(0, 1) = 1 6= 0 = ⊥S .

2. Limits and coproduts in Cpo-S and Dcpo-S

In this section, we give the description of products, equalizers, terminal object and
pullback in the categories Dcpo-S and Cpo-S. We also, �nd coproducts in these
two categories.

Remark 2.1. In both the categories Dcpo-S and Cpo-S, the terminal object is
the one element object.

Proposition 2.2. The product of a family of S-dcpo's (S-cpo's) is their cartesian
product with componentwise action and order.

Proof. Let {Ai : i ∈ I} be a family of S-dcpo's (S-cpo's). Let A =
∏

i∈I Ai.
First we see that A with componentwise action and order is a S-dcpo (S-cpo).
By Remark 1.4, A is an S-poset. Also, the action on A is continuous. Applying
Lemma 1.2, it is enough to check the continuity of the action in each component.
Let D ⊆d A and s ∈ S. We show that (

∨d
D)s =

∨
x∈D xs. By Lemma 1.1,∨d

D = (
∨d

Di)i∈I , where Di = {a ∈ Ai : ∃(dk)k∈I ∈ D, di = a} is a directed

subset of Ai, for all i ∈ I. Then we have (
∨d

D)s = (
∨d

Di)i∈Is = ((
∨d

Di)s)i∈I =

(
∨d

Dis)i∈I , where the latter equality is because the action on each Ai is continu-

ous. Now, we see that (
∨d

Dis)i∈I =
∨d

x∈D xs. First, notice that (
∨d

Dis)i∈I is an
upper bound of the set {xs : x ∈ D}, since for x = (di)i∈I ∈ D, we have di ∈ Di,

for all i ∈ I, and so xs = (dis)i∈I 6 ((
∨d

Di)s)i∈I = (
∨d

Dis)i∈I . Secondly, if
c = (ci)i∈I is any upper bound of the set {xs : x ∈ D}, then for i ∈ I and a ∈ Di,

taking x = (di)i∈I with di = a, we have as = dis 6 ci. Thus (
∨d

Dis)i∈I 6 c,
as required. Similarly, the action on A is continuous in the second component;
that is for T ⊆d S and a = (ai)i∈I ∈ A, a(

∨d
T ) =

∨d
t∈T at. Consequently,

A =
∏

i∈I Ai with the componentwise order and action is an S-dcpo (S-cpo).
Also, the projection maps pi : A→ Ai are S-dcpo (S-cpo) maps, since by Remark
1.3 they are (strict) continuous, also they are action-preserving (see [8]). To see
the universal property of products, notice that for every S-dcpo (S-cpo) B with
S-dcpo (S-cpo) maps fi : B → Ai, i ∈ I, the unique S-poset map f : B → A given
by f(b) = (fi(b))i∈I , b ∈ B which exists by the universal property of products
in Pos-S (see Remark 1.4), and satis�es pi ◦ f = fi, for all i ∈ I, is a (strict)
continuous map. This is because, f(⊥B) = (fi(⊥B))i∈I = (⊥Ai

)i∈I = ⊥A. Also,

it is straightforward to see that for D ⊆d B, f(
∨d

D) =
∨d

f(D).

Remark 2.3. (i) It is clear that the initial object in the category Dcpo-S is the
empty set.

(ii) The category Cpo-S has initial object if the identity of the cpo-monoid S
is its bottom element. In fact S is the initial object. Since, for every S-cpo A the
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map λ⊥ : S → A, de�ned by λ⊥(s) = ⊥As is the unique S-cpo map from S to A.
To show the uniqueness, let α : S → A be an S-cpo map, then α(s) = α(1s) =
α(1)s = ⊥As = λ⊥(s), for all s ∈ S. Thus, α = λ.

Now, we consider coproducts.

Theorem 2.4. The coproduct of a family of S-dcpo's is their disjoint union.

Proof. Let {Ai : i ∈ I} be a family of S-dcpo's. Let A =
⋃

i∈I Ai be the disjoint
union of Ai, i ∈ I. By Remark 1.4, A with the order and the action inherited from
Ai, i ∈ I; that is

x 6 y in A if and only if x 6 y in Ai, for some i ∈ I

and a.s = as for a ∈ Ai, s ∈ S, is an S-poset. Applying Lemma 1.2, we see that this
the action is also continuous. Therefore, A is an S-dcpo. Moreover, the injection
maps ui : Ai → A, de�ned by ui = idA|Ai , i ∈ I are S-poset maps, by Remark 1.4,
and they are continuous, by Remark 1.3. Finally, since A satis�es the universal
property of coproducts inPos-S, for every S-dcpoB and S-dcpo maps fi : Ai → B,
i ∈ I, the mapping f : A → B given by f(a) = fi(a) for a ∈ Ai, is the unique S-
poset map with f ◦ui = fi, for all i ∈ I. This map is also continuous, because if D
is a directed subset of A then by the de�nition of the order on A, D ⊆d Ai for some
i ∈ I, and

∨d
AD =

∨d
Ai
D. Thus f(

∨d
D) = fi(

∨d
D) =

∨d
fi(D) =

∨d
f(D).

To describe the coproduct in Cpo-S, using the coalesced sum of cpo's, we need
the following lemma.

Lemma 2.5. The coalesced sum of a family of S-cpo's in which the bottom element

is a zero element is an S-cpo.

Proof. Let {Ai : i ∈ I} be a family of S-cpo's. By Remark 1.3, the coalesced sum
A =

⊎
i∈I Ai is a cpo. De�ne the action on A as:

a · s =
{
as if as 6= ⊥Ai

⊥A if as = ⊥Ai

for a ∈ Ai, i ∈ I, s ∈ S, and ⊥A · s = ⊥A. In particular, ⊥A · 1 = ⊥A. We see that
also for a 6= ⊥A, a · 1 = a, because, for some i ∈ I, a ∈ Ai, and so a · 1 = a1 = a.
Also, a · (st) = (a · s) · t, for a ∈ A, s, t ∈ S. This is because, ⊥A · (st) = (⊥A · s) · t,
by the de�nition, and for a 6= ⊥A, a ∈ Ai for some i ∈ A. If a(st) 6= ⊥Ai

, then
as 6= ⊥Ai

, (otherwise since ⊥Ai
is a zero element, a(st) = (as)t = ⊥Ai

t = ⊥Ai
);

also (as)t = a(st) 6=⊥Ai . So (aṡ) · t = (as) · t = (as)t = a(st) = a · (st). Secondly,
if a(st) = ⊥Ai , then a · (st) = ⊥A. Now, if as = ⊥Ai then a · s = ⊥A and
so (a · s) · t = ⊥A · t = ⊥A. Also, if as 6= ⊥Ai

then a · s = as, and since
(as)t = a(st) = ⊥Ai

, (a · s) · t = ⊥A. Thus (a · s) · t = (a · s) · t = ⊥A, as required.
Now, we show that the action is continuous. Notice that D ⊆d A is directed if

and only if D ⊆d Ai, for some i ∈ I, or D = D′ ∪ {⊥A}, where D′ = ∅ or D′ is a
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directed subset of Ai, for some i ∈ I. This is because, if D ⊆d A and ⊥A /∈ D, and
on the contrary, if there exist d1, d2 ∈ D such that d1 ∈ Ai and d2 ∈ Aj , i 6= j,
then there exists d3 ∈ D such that d1 6 d3 and d2 6 d3. Also, by the de�nition of
the order on A, d3 ∈ Ai ∩Aj = ∅, which is a contradiction. So D ⊆d Ai, for some
i ∈ I. Now, let ⊥A ∈ D. We show that D′ = D−{⊥A} is a directed subset of Ai,
for some i ∈ I. On the contrary, let there exist d1

′, d2
′ ∈ D′ such that d1

′ ∈ Ai

and d2
′ ∈ Aj , i 6= j. Since D is directed, there exists d3 ∈ D such that d1

′ 6 d3
and d2

′ 6 d3. By the de�nition of the order on A, d3 ∈ Ai ∩ Aj = ∅, which is
a contradiction. So D′ ⊆d Ai, for some i ∈ I. Now, applying Lemma 1.2, we
show that the action is continuous. Let D ⊆d

⊎
i∈I Ai and s ∈ S. By the above

discussion, two cases may occur:
Case (i): D ⊆d Ai, for some i ∈ I.
Subcase (i1): If (

∨d
D)s 6= ⊥Ai

, then we have (
∨d

D) · s = (
∨d

D)s =∨d
x∈D xs, where the last equality is because Ai is an S-cpo. Now we claim that

d∨
x∈D

xs =

d∨
x∈D

x · s (∗)

Let K = {x ∈ D : xs 6= ⊥Ai
}. Then K satis�es:

(1) K 6= ∅, because otherwise (
∨d

D)s =
∨d

x∈D xs = ⊥Ai
, which is a contra-

diction.
(2) For all x ∈ K, x · s = xs, by the de�nition of the action on A.
(3) For all x ∈ K and x′ ∈ D\K, there exists x′′ ∈ K with x 6 x′′ and x′ 6 x′′,

since D is directed. But, then xs 6 x′′s, and hence x′′ ∈ K, since x ∈ K.
Now to prove (∗), �rst we see that

∨d
x∈D xs is an upper bound of the set

{x · s : x ∈ D}. Also for all x ∈ K, x · s = xs 6
∨d

x∈D xs. For x ∈ D \ K,

x · s = ⊥A 6
∨d

x∈D xs, as required. Secondly, if c is an upper bound of the set
{x · s : x ∈ D}. For all x ∈ K, we have x · s = xs 6 c . For x ∈ D \K and x′ ∈ K
(which exists, since K 6= ∅), by (3) there exists x′′ ∈ K such that x < x′′ and
x′ 6 x′′. This gives xs 6 x′′s = x′′ · s 6 c. Then for all x ∈ D, we have xs 6 c,
and so

∨d
x∈D xs 6 c, as required.

Subcase (i2): If (
∨d

D)s = ⊥Ai
, then we again have (

∨d
D)s =

∨d
x∈D xs.

This is because, the action on Ai is continuous on the second component. Also,
(
∨d

D)s = ⊥Ai gives xs = ⊥Ai , for all x ∈ D. This is because, ⊥Ai = (
∨d

D)s =∨d
x∈D xs. Hence by the de�nition of the action on A, (

∨d
D)·s =

∨d
x∈D x·s = ⊥A.

Case (ii): D = D′ ∪ ⊥A, where D
′ ⊆d Ai, for some i ∈ I.

By case (i), we have (
∨d

D′) · s =
∨d

x′∈D′ x′ · s. Also, we have (
∨d

D) · s =

(
∨d

D′) · s =
∨d

x′∈D′ x′ · s =
∨d

x∈D x · s, as required.
Now to prove that the action is continuous in the second component, let T ⊆d S

and a ∈ A. We show that a ·
∨d

T =
∨d

t∈T a · t. Consider the following two cases:

(a): If a = ⊥A, then by the de�nition of the action on A, a ·
∨d

T =
∨d

t∈T a ·t =
⊥A.



S-dcpo and S-cpo 289

(b): If a 6= ⊥A, then for some i ∈ I, a ∈ Ai. We have the following two
situations:

(b1): If a(
∨d

T ) 6= ⊥Ai
then we have a · (

∨d
T ) = a(

∨d
T ) =

∨d
t∈T at, where

the last equality is true because Ai is an S-cpo. Now, we claim that

d∨
t∈T

a · t =
d∨

t∈T
at (∗∗).

Let L = {t ∈ T : at 6= ⊥Ai
}. Then one can prove (in a similar way to the set K in

the above discussion) that L satis�es:
(1) L 6= ∅.
(2) For all t ∈ L, a · t = at.
(3) For all t ∈ L and t′ ∈ T \ L, there exists t′′ ∈ L with t 6 t′′ and t′ 6 t′′.

Now to prove (∗∗), we see that �rst
∨d

t∈T at is an upper bound of the set

{a · t : t ∈ T}. Also for all t ∈ L, a · t = at 6
∨d

t∈T at. For t ∈ T \ L,
a · t = ⊥A 6

∨d
t∈T at, as required. Secondly, if c is an upper bound of the set

{a · t : t ∈ T}, then for all t ∈ L, we have at = a · t 6 c. Now, by (3) and in the
same way of Subcase (i1), for t ∈ T \L there exists t′′ ∈ L such that at 6 at′′ 6 c.
Then for all t ∈ T , we have at 6 c, and so

∨d
t∈T at 6 c. Therefore, (∗∗) has been

proved.
(b2): If a(

∨d
T ) = ⊥Ai

, we show that a · (
∨d

T ) =
∨d

t∈T a · t. Since Ai is an

S-cpo, we have
∨d

t∈T at = a(
∨d

T ) = ⊥Ai
. So for all t ∈ T , at = ⊥Ai

. Then by

the de�nition of the action on A, a · (
∨d

T ) =
∨d

t∈T a · t = ⊥A.
Therefore, the action on A is continuous, and so A =

⊎
i∈I Ai is an S-cpo.

Theorem 2.6. Let {Ai : i ∈ I} be a family of S-cpo's whose bottom elements are

zero elements. Then their coproduct exists in Cpo-S.

Proof. Let A =
⊎

i∈I Ai. By Proposition 2.5, A is an S-cpo and by Remark 1.3,
the injections ui : Ai → A, i ∈ I, de�ned by

ui(x) =

{
x if x 6= ⊥Ai

⊥A if x = ⊥Ai

are cpo maps. Also we show that ui : Ai → A, i ∈ I are action-preserving.
First notice that ui(⊥Ais) = ui(⊥Ai

) = ⊥A = ⊥A · s = ui(⊥Ai
) · s. Now, let

⊥Ai
6= x ∈ Ai and s ∈ S. If xs = ⊥Ai

, then by the de�nition of the action on A,
x · s = ⊥A, and so ui(xs) = ⊥A = x · s = ui(x) · s. If xs 6= ⊥Ai , then x · s = xs,
and so ui(xs) = xs = x · s = ui(x) · s. Moreover for every S-cpo B with S-cpo
maps fi : Ai → B, i ∈ I, the unique cpo map f : A→ B given by

f(a) =

{
fi(a) if a ∈ Ai

⊥B if x = ⊥A
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which exists by the universal property of coproducts in Cpo, and satis�es f ◦ui =
fi for all i ∈ I, is action-preserving. First notice that since each fi is action-
preserving and ⊥Ai

is a zero element, fi(⊥Ai
) = ⊥B is a zero element. Now,

f(⊥A · s) = f(⊥A) = ⊥B = ⊥Bs = f(⊥A)s, for all s ∈ S. Also, for a 6= ⊥A, we
have a ∈ Ai, for some i ∈ I. Therefore, if as = ⊥Ai

we get a · s = ⊥A, and so
f(a · s) = f(⊥A) = ⊥B = fi(⊥Ai

) = fi(as) = fi(a)s = f(a)s. If as 6= ⊥A, then we
have a · s = as, and so f(a · s) = f(as) = fi(as) = fi(a)s = f(a)s.

Corollary 2.7. Let S be a cpo-monoid in which the identity element is the top

element. Then Cpo-S has all coproducts.

Proof. By Theorem 2.6, it is enough to show that the bottom element of every
S-cpo A is a zero element. For all s ∈ S, we have s 6 1, and so ⊥As 6 ⊥A1 = ⊥A.
But, ⊥A is the bottom element of A and so ⊥As = ⊥A.

Theorem 2.8. Pullbacks and equalizers exist in the categories Cpo-S and Dcpo-

S.

Proof. Let f, g : A→ B be S-cpo (S-dcpo) maps. Then

E = {x ∈ A : f(x) = g(x)}

is a sub S-cpo (S-dcpo) of A, and the inclusion map satis�es f ◦ i = g ◦ i. Also, if
e : K → L is an S-cpo (S-dcpo) map with f ◦ e = g ◦ e then the map γ : K → E
given by γ(x) = e(x) is the unique S-cpo (S-dcpo) map such that i ◦ γ = e.

Also, it is easily seen that the pullback of S-cpo (S-dcpo) maps f : A→ C and
g : B → C is the sub-S-cpo (S-dcpo) P = {(a, b) : f(a) = g(b)} of A×B, together
with the restricted projection maps.

As a consequence of Theorems 2.2 and 2.8, we get the following result.

Proposition 2.9. The categories Cpo-S and Dcpo-S are complete.

3. Cocompleteness and cartesian closedness

In this section, we consider some other categorical properties of Cpo-S andDcpo-
S. We show that monomorphism in Dcpo-S are exactly one-one S-dcpo maps,
while epimorphisms are not necessarily onto S-dcpo maps. Also, we prove that
Dcpo-S is a cocomplete category. Further, it is proved that Dcpo-S is cartesian
closed while Cpo-S is not so, and hence it is neither a topos nor a quasitopos (see
[9]).

Lemma 3.1. A morphism in Dcpo-S is a monomorphism if and only if it is

one-one.
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Proof. Let h : A→ B be a monomorphism inDcpo-S, and h(a) = h(a′). Consider
the S-dcpo maps f, g : S → A given by f(s) = as and g(s) = a′s, for s ∈ S. Then,
h ◦ f = h ◦ g and so f = g. Thus, a = a′.

In the following we show that the category Dcpo-S is cocomplete.
Recall that an object C of a category C is called a coseparator if the func-

tor hom(−, C) : Cop → Set is faithful; in other words, for each distinct arrows
f, g : A→ B there exists an arrow h : B → C such that h ◦ f 6= h ◦ g.

Also, recall from [6], Theorem 23.14 that a complete well-powered category
which has a coseparator, is cocomplete. Therefore, we show that Dcpo-S has a
coseparator and is well-powered.

Proposition 3.2. The forgetful functor U1 : Dcpo-S → Dcpo has a right adjoint.

Proof. We de�ne the cofree functor K1 : Dcpo → Dcpo-S as K1(P ) = P (S),
where P (S) is the set of all dcpo maps from S to P . We give it the pointwise order
and the action by (fs)(t) = f(st), for s, t ∈ S and f ∈ P (S). Then, P (S) is an
S-dcpo. We know that P (S) is a dcpo (see [7]). Now, we show that the action
de�ned above is a continuous map. Applying Lemma 1.2, let F ⊆d P (S). Then

((

d∨
F )s)(t) = (

d∨
F )(st) =

d∨
f∈F

f(st) =

d∨
f∈F

(fs)(t) = (

d∨
f∈F

fs)(t)

so we have (
∨d

F )s =
∨d

(Fs). Now, assume that T ⊆d S and f ∈ P (S), then

(f(
∨d

T ))(s) = f((
∨d

T )s) = f(
∨d

t∈T ts)

=
∨d

t∈T f(ts) =
∨d

t∈T (ft)(s) = (
∨d

t∈T ft)(s)

and so f(
∨d

T ) =
∨d

t∈T ft, as required. Consequently P
(S) is an S-dcpo.

Now, consider the cofree map (the counit of the adjunction) σ : P (S) → P ,
given by σ(f) = f(1). We show that it is continuous. Let F ⊆d P (S). Then

σ(

d∨
f∈F

f) = (

d∨
f∈F

f)(1) =

d∨
f∈F

f(1) =

d∨
f∈F

σ(f).

To see the universal property, let α : A→ P be a continuous map from an S-dcpo
A. Then the unique S-poset map α : A → P (S) given by α(a)(s) = α(as) and
satisfying σ ◦ α = α (see [2]) is continuous. To show this, let D ⊆d A and s ∈ S.
Then

α(
∨d

D)(s) = α((
∨d

D)s) = α(
∨d

x∈D xs)

=
∨d

x∈D α(xs) =
∨d

x∈D α(x)(s) = (
∨d

x∈D α(x))(s)

as required.
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Notice that the forgetful functor U : Cpo-S → Cpo does not necessarily have
a right adjoint. This is because, U does not preserve initial object in general. For
example, let S be the 2-element chain {1, a} with 1 < a, and aa = a, 1a = a = a1.
Then S is an S-cpo, and it is the initial object of Cpo-S (see Remark 2.3), whereas
the initial object in the category Cpo is the singleton cpo.

Corollary 3.3. The category Dcpo-S has a coseparator.

Proof. We show that for each dcpo P with |P | ≥ 2 and non discrete order, the
cofree object P (S) described in Proposition 3.2 is a coseparator.

Let f, g : A → B be S-dcpo maps with f 6= g. We should de�ne an S-dcpo
map h : B → P (S) with h◦f 6= h◦g. To this end, we de�ne a dcpo map k : B → P
such that k ◦ f 6= k ◦ g.

Since f 6= g, there exists a ∈ A with f(a) 6= g(a). We consider three cases

(1) f(a) < g(a) (2) g(a) < f(a) (3) f(a) ‖ g(a)

Let f(a) < g(a). Take B′ = {b ∈ B | b 6 f(a)}. De�ne k : B → P by

k(b) =

{
x if b ∈ B′
y otherwise

where x, y ∈ P and x < y (such x, y exist since |P | ≥ 2 and the order on P is
not discrete). First we show that k is order-preserving, and hence it take directed
subsets to directed ones. Let b1, b2 ∈ B with b1 6 b2. If b1 ∈ B′, then for
the case where b2 ∈ B′, x = k(b1) = k(b2); and for the case where b2 6∈ B′,
x = k(b1) < y = k(b2). Also, if b1 /∈ B′ then b2 /∈ B′, and so k(b1) = k(b2) = y.

To prove the continuity of k, let D ⊆d B. Notice that
∨d

D ∈ B′ if and only if

D ⊆ B′. Now, if
∨d

D ∈ B′, then D ⊆ B′ and so k(
∨d

D) = x =
∨d

z∈D k(z).

Also, if
∨d

D /∈ B′ then k(
∨d

D) = y, and D 6⊆ B′. Thus D \B′ 6= ∅, and

d∨
z∈D

k(z) =

d∨
z∈(D\B′)∪(B′∩D)

k(z) = y ∨ x = y

as required. Finally, since P (S) is the cofree S-dcpo on P , there exists a unique
S-dcpo map h : B → P (S) such that σ◦h = k, where σ is the cofree map de�ned in
the above proposition. This gives that h ◦ f 6= h ◦ g, and so P (S) is a coseparator.

The cases (2) and (3) are proved similarly.

Lemma 3.4. The category Dcpo-S is well-powered.

Proof. We should prove that the class of isomorphic subobjects of any S-dcpo
is a set. Let B be an S-dcpo and A be a suboject of B; that is there exists a
monomorphism f : A → B. By Lemma 3.1, f is one-one and so A is isomorphic
to a subset of B. Hence the class of isomorphic subobjects of B is a subset of the
powerset of B, and therefore is a set.
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Theorem 3.5. The category Dcpo-S is cocomplete.

Proof. By Theorem 23.14 of [6], Corollary 3.3, Lemma 3.4, and Proposition 2.9,
Dcpo-S is cocomplete.

The following example shows that epimorphisms in the categories Dcpo-S and
Cpo-S are not necessarily surjective.

Example 3.6. Let S be an arbitrary dcpo(cpo)-monoid. Take A to be the
dcpo(cpo) ⊥ ⊕ N in which the order on N is discrete and B = ⊥ ⊕ N ⊕ > in
which the order on N is the usual order. Then both of A and B with the trivial
action are S-dcpo's (cpo's). Let h : A → B be the inclusion map. Then h clearly
preserves the action. Also, h is (strict) continuous. To see this, let D ⊆d ⊥ ⊕ N.
Then D = {⊥}, or there exists n ∈ N such that D = {⊥, n}, or there exists n ∈ N
such that D = {n}. If D = {⊥, n} for some n ∈ N, then

h(
d∨
D) = h(n) = n =

d∨
{⊥, n} =

d∨
{h(⊥), h(n)} =

d∨
h(D).

This is clearly true for other kinds of D. Now we claim that h is an S-dcpo(cpo)
map which is an epimorphism but is not surjective. The latter is because > is
not in the image of h. To show that h is an epimorphism, let f1, f2 : B → P
be S-dcpo(cpo) maps with f1 ◦ h = f2 ◦ h, and P be an S-dcpo(cpo). Then
f1(⊥) = f1(h(⊥)) = f2(h(⊥)) = f2(⊥) and f1(n) = f1(h(n)) = f2(h(n)) = f2(n),
for all n ∈ N. Also

f1(>) = f1(

d∨
N) =

d∨
n∈N

f1(n) =

d∨
n∈N

f2(n) = f(

d∨
N) = f2(>).

Therefore, f1 = f2, and so h is an epimorphism.

Finally, we consider cartesian closedness. Recall that a category C which has
�nite products, is called cartesian closed if, for every pair of objects A and B of C,
an object BA and a morphism eυ : A×BA → B exist with the universal property
that for every morphism f : A × C → B in C, there exists a unique morphism
f̂ : C → BA such that eυ ◦ (idA × f̂) = f . In this de�nition, the objects BA are
called power objects or exponentials, and eυ is said to be the evaluation map, and
f̂ is called the exponential map associated to f .

Theorem 3.7. The category Cpo-S is not necessarily cartesian closed.

Proof. Let S = {1}, then the category Cpo-S is isomorphic to the category Cpo
which is not cartesian closed (See [4]).

For an example in which S is not trivial, let S be the 2-element chain {1, a}
with identity 1, 1 < a and aa = a. Then S is an S-cpo, and by Remark 2.3,
it is the initial object of Cpo-S. Then for a non trivial S-cpo A, the functor
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A×− : Cpo-S → Cpo-S does not have preserve the initial object (since |A|×2 6=
2), and so does not have a right adjoint. Therefore, the category Cpo-S is not
cartesian closed.

In the following, we show that Dcpo-S is cartesian closed.

Theorem 3.8. The category Dcpo-S is cartesian closed.

Proof. By Proposition 2.9, Dcpo-S has �nite products. Given S-dcpo's A,B, we
de�ne the exponential object BA to be Hom(S×A,B), the set of all S-dcpo maps
from the product object S ×A to B. This set is an S-dcpo with pointwise order,
and action given by (fs)(t, a) = f(st, a). The evaluation arrow eυ : A× BA → B
is de�ned by eυ(a, f) = f(1, a), is an S-dcpo map. It is an S-poset map (see [2]),
to prove continuity, let D ⊆d A and f ∈ BA, then

eυ(

d∨
D, f) = f(1,

d∨
D) =

d∨
x∈D

f(1, x) =

d∨
x∈D

eυ(x, f)

since f is continuous. Also, for F ⊆d BA and a ∈ A, we have

eυ(a,

d∨
F ) = (

d∨
F )(1, a) =

d∨
f∈F

f(1, a) =

d∨
f∈F

eυ(a, f)

To prove the universal property, take an S-dcpo C and an S-dcpo map f : A×C →
B. De�ne the map f̂ : C → BA by f̂(x)(s, a) = f(a, xs), for x ∈ C, a ∈ A, and
s ∈ S. As in the case of S-sets (see [4]), it can be shown that f̂ and f̂(x), for

each x ∈ C, preserve the action. Also, we show that each f̂(x) is continuous. Let
T ⊆d S and a ∈ A. Then

f̂(x)(

d∨
T, a) = f(a, x(

d∨
T )) = f(a,

d∨
t∈T

xt) =

d∨
t∈T

f(a, xt) =

d∨
t∈T

f̂(x)(t, a)

Now, let D ⊆d A and s ∈ S. Then

f̂(x)(s,

d∨
D) = f(

d∨
D,xs) =

d∨
d∈D

f(d, xs) =

d∨
d∈D

f̂(x)(s, d)

as required. Further, f̂ is continuous, because for every D ⊆d C and (s, a) ∈ S×A,
we have

f̂(
∨d

D)(s, a) = f(a, (
∨d

D)s) = f(a,
∨d

x∈D xs)

=
∨d

x∈D f(a, xs) =
∨d

x∈D f̂(x)(s, a)

as required.
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Remark 3.9. The above proof for the case where S is a one-element dcpo-monoid
shows that the exponential object BA in Dcpo is the set of all continuous maps
from A into B, with pointwise order (for another proof of this fact, see [7]).

Open Problems:

1. Is the category Cpo-S cocomplete? If yes, what is the description of co-

equalizers and pushouts?

2. For which class of semigroups S, the category cpo-S is cartesian closed?
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An investigation on fuzzy hyperideals

of ordered semihypergroups

Bundit Pibaljommee, Kantapong Wannatong and Bijan Davvaz

Abstract. We introduce the notions of fuzzy hyperideals, fuzzy bi-hyperideals and fuzzy quasi-

hyperideals of an ordered semihypergroup and show that every fuzzy quasi-hyperideal is a fuzzy

bi-hyperideal and in a regular ordered semihypergroup, fuzzy quasi-hyperideals and fuzzy bi-

hyperideals coincide. Moreover, we show that in an ordered semihypergroup every fuzzy quasi-

hyperideal is an intersection of a fuzzy right hyperideal and a fuzzy left hyperideal.

1. Introduction

The concept of algebraic hyperstructures was introduced in 1934 by Marty [13].
The concept of a semihypergroup is a generalization of the concept of a semi-
group. Semihypergroups are studied by many authors, for example, Bonansinga
and Corsini [1], Davvaz [4, 5], De Salvo et al. [6], Freni [7], Hila et al. [9], Leore-
anu [14], and many others. In [8], Heidari and Davvaz studied a semihypergroup
(H, ◦) with a binary relation 6, where 6 is a partial order so that the monotony
condition is satis�ed. This structure is called an ordered semihypergroup. The
study of fuzzy algebras was started in [15] by Rosenfeld. In [10], the relationships
between some types of fuzzy ideals in ordered semigroups were investigated. In
[11], some equivalent de�nitions of fuzzy ideals of ordered semigroups were given.
In [3], Davvaz introduced the concept of a fuzzy right (resp. left, two-sided) hy-
perideal of a semihypergroup and proved some results in this respect. Now, in this
paper we study the notions of fuzzy hyperideals of ordered semihypergroups.

The paper is structured as follows. After an introduction, in Section 2 we
present some basic notions and examples on ordered semihypergroups. In Section
3, we introduce the notions of fuzzy hyperideals, fuzzy bi-hyperideals and fuzzy
quasi-hyperideals of an ordered semihypergroup and we give some results in this
respect. In particular, we show that every fuzzy quasi-hyperideal is a fuzzy bi-
hyperideal and in a regular ordered semihypergroup, fuzzy quasi-hyperideals and
fuzzy bi-hyperideals coincide. Moreover, we show that in an ordered semihyper-
group every fuzzy quasi-hyperideal is an intersection of a fuzzy right hyperideal
and a fuzzy left hyperideal.

2010 Mathematics Subject Classi�cation: 20N20, 20N25, 06F05
Keywords: Ordered semihypergroup, regular ordered semihypergroup, fuzzy hyperideal, fuzzy
bi-hyperideal, fuzzy quasi-hyperideal.
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2. Preliminaries

A hypergroupoid consists of a non-empty set H and a mapping ◦ : H×H → P∗(H)
called a hyperoperation, where P∗(H) denotes the set of all non-empty subsets of
H. We denote by a ◦ b the image of the pair (a, b) in H ×H.

A hypergroupoid (H, ◦) is called a semihypergroup if it satis�es the associative
property, namely,

(a ◦ b) ◦ c = a ◦ (b ◦ c).

For any non-empty subsets A,B of H, we denote

A ◦B :=
⋃

a∈A,b∈B
a ◦ b.

Instead of {a} ◦A and B ◦ {a}, we write a ◦A and B ◦ a, respectively.

De�nition 2.1. Let H be a non-empty set and 6 be an ordered relation on H.
The triplet (H, ◦,6) is called an ordered semihypergroup if the following conditions
are satis�ed.

(1) (H, ◦) is a semihypergroup,

(2) (H,6) is a partially order set,

(3) for every a, b, c ∈ H, a 6 b implies a ◦ c 6 b ◦ c and c ◦ a 6 c ◦ b, where
a ◦ c 6 b ◦ c means that for every x ∈ a ◦ c there exists y ∈ b ◦ c such that
x 6 y.

A non-empty subset A of an ordered semihypergroup (H, ◦,6) is called a subsemi-
hypergroup of H if (A, ◦,6) is an ordered semihypergroup.

We note that for every a, b, c, d, e, f ∈ H with a◦ b 6 c◦d and e 6 f , we obtain
a ◦ b ◦ e 6 c ◦ d ◦ f .

For K ⊆ H, we denote

(K] := {a ∈ H | a 6 k for some k ∈ K}.

De�nition 2.2. A non-empty subset A of an ordered semihypergroup (H, ◦,6)
is called a right (resp. left) hyperideal of H if

(1) A ◦H ⊆ A (resp. H ◦A ⊆ A),

(2) for every a ∈ H, b ∈ A and a 6 b implies a ∈ A.

If A is both right hyperideal and left hyperideal of H, then A is called a
hyperideal (or two-side hyperideal) of H.

De�nition 2.3. A subsemihypergroup A of an ordered semihypergroup (H, ◦,6)
is called a bi-hyperideal of H if
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(1) A ◦H ◦A ⊆ A,

(2) for every a ∈ H, b ∈ A and a 6 b implies a ∈ A.

De�nition 2.4. A non-empty subset Q of an ordered semihypergroup (H, ◦,6)
is called a quasi-hyperideal of H if

(1) (Q ◦H] ∩ (H ◦Q] ⊆ Q,

(2) for every a ∈ H, b ∈ Q and a 6 b implies a ∈ Q.

Example 2.5. The set H = {a, b, c, d, e} and the hyperoperation de�ned by the
table

◦ a b c d e
a a {a, b, d} a {a, b, d} {a, b, d}
b a b a {a, b, d} {a, b, d}
c a {a, b, d} {a, c} {a, b, d} {a, b, c, d, e}
d a {a, b, d} a {a, b, d} {a, b, d}
e a {a, b, d} {a, c} {a, b, d} {a, b, c, d, e}

is a semihypergroup (cf. [2]).
We de�ne order relation 6 as follows:

6:= {(a, a), (b, b), (c, c), (d, d), (e, e), (a, c), (a, d), (a, e), (b, d), (b, e), (c, e), (d, e)}.

We give the covering relation ≺ and the �gure of H:

≺= {(a, c), (a, d), (b, d), (c, e), (d, e)}.

S
S
S

�
�
�

�
�
�
��

ra r b
rc r d

re

Now, (H, ◦,6) is an ordered semihypergroup, {a, b, d} is a hyperideal and {a}, {a, c}
are left hyperideals and also bi-hyperideals of (H, ◦,6).

Now, we use the ordered semigroup de�ned in Example 3.3 in [16] to construct
a semihypergroup in a similarly way of Example 3.10 in [2] and give an example
of quasi-hyperideals of an ordered semihypergroup.

Example 2.6. Let H = {a, b, c, d, e}. De�ne the hyperoperation ◦ on H by the
following table.



300 B. Pibaljommee, K. Wannatong and B. Davvaz

◦ a b c d e
a a a a a a
b a {a, b} a {a, d} a
c a {a, e} {a, c} {a, c} {a, e}
d a {a, b} {a, d} {a, d} {a, b}
e a {a, e} a {a, c} a

Suppose that the order relation 6 as follows:

6:= {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, d), (a, e)}.

We give the covering relation ≺ and the �gure of H:

≺= {(a, b), (a, c), (a, d), (a, e)}.
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Now, (H, ◦,6) is an ordered semihypergroup. It is easy to show that all proper
quasi-hyperideals ofH are {a}, {a, b}, {a, c}, {a, d}, {a, e}, {a, b, d}, {a, c, d}, {a, b, e}
and {a, c, e}.

Let (H, ◦,6) be an ordered semihypergroup and a ∈ H. We denote

Aa := {(b, c) ∈ H ×H | a 6 b ◦ c}.

A fuzzy subset µ of a semihypergroup (H, ◦) is a function µ : H → [0, 1]. Let
t ∈ [0, 1] and µ be a fuzzy subset of H. The set µt = {a ∈ H | µ(a) > t} is called a
level subset of µ. For fuzzy subsets µ and ν of H, we de�ne the fuzzy subset µ ◦ ν
of H by letting a ∈ H,

(µ ◦ ν)(a) :=

 sup
(b,c)∈Aa

{min{µ(b), ν(c)}}, if Aa 6= ∅,

0, otherwise.

At the end of this section, we recall the notions of a fuzzy subsemihypergroup
of a semihypergroup introduced by Davvaz in [5] as the following. A fuzzy sub-
set µ of a semihypergroup is called a fuzzy subsemihypergroup if inf

x∈a◦b
µ(x) >

min{µ(a), µ(b)} for all a, b ∈ H.
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3. Fuzzy hyperideals of ordered semihypergroups

In this section, we de�ne the concepts of a fuzzy right (left) hyperideal, a fuzzy
bi-hyperideal and a fuzzy quasi-hyperideal and give relationships between them.

De�nition 3.1. Let (H, ◦,6) be an ordered semihypergroup. A fuzzy subset
µ : H → [0, 1] is called a fuzzy right (resp. left) hyperideal of H if

(1) µ(a) 6 inf
c∈a◦b

{µ(c)} (resp. µ(b) 6 inf
c∈a◦b

{µ(c)} for every a, b ∈ H,

(2) for every a, b ∈ H, a 6 b implies µ(b) 6 µ(a).

If µ is both fuzzy right hyperideal and fuzzy left hyperideal of H, then µ is
called a fuzzy hyperideal (or fuzzy two-sided hyperideal) of H.

Example 3.2. Consider the ordered semihypergroup (H, ◦,6) de�ned in Example
2.5. We de�ne two fuzzy subset µ and λ of H as follows:

µ(x) =

{
0.7 if x = a, b, d
0.3 if x = c, e.

λ(x) =

 0.9 if x = a
0.8 if x = c
0.5 if x = b, d, e

Then, µ is a fuzzy hyperideal and λ is a fuzzy left hyperideal of H.

De�nition 3.3. Let (H, ◦,6) be an ordered semihypergroup. A fuzzy subsemi-
hypergroup µ : H → [0, 1] is called a fuzzy bi-hyperideal of H if the following
assertions are satis�ed:

(1) min{µ(b), µ(d)} 6 inf
a∈b◦c◦d

{µ(a)} for every b, c, d ∈ H,

(2) for every a, b ∈ H, a 6 b implies µ(b) 6 µ(a).

De�nition 3.4. Let (H, ◦,6) be an ordered semihypergroup. A fuzzy subset
µ : H → [0, 1] is called a fuzzy quasi-hyperideals of H if the following assertions
are satis�ed:

(1) (µ ◦ 1) ∩ (1 ◦ µ) ⊆ µ,

(2) for every a, b ∈ H, a 6 b implies µ(b) 6 µ(a),

where 1 : H → [0, 1] is a constant function de�ned by 1(a) = 1 for all a ∈ H.

Lemma 3.5. Let (H, ◦,6) be an ordered semihypergroup and µ be a fuzzy subset
of H. Then, µ is a fuzzy right (resp. left) hyperideal of H if and only if for every
t ∈ [0, 1], the non-empty level subset µt is a right (resp. left) hyperideal of H.
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Proof. Assume that µ is a fuzzy right hyperideal of H. Let t ∈ [0, 1] with µt 6= ∅.
Let a ∈ µt ◦ H. We have a ∈ b ◦ h for some b ∈ µt, h ∈ H. By assumption,
t 6 µ(b) 6 inf

a∈b◦h
{µ(a)}, we have µ(a) > t. This implies µt ◦ H ⊆ µt. Let

x ∈ µt, y ∈ H with y 6 x. Since t 6 µ(x) 6 µ(y), we obtain y ∈ µt. Therefore, µt
is a right hyperideal of H.

Conversely, we assume that for every t ∈ [0, 1], µt is a right hyperideal ofH. We
show that µ(a) 6 inf

c∈a◦b
{µ(c)} for all a, b ∈ H. We put t0 = µ(a). By assumption

µt0 is a right hyperideal of H. Since a ∈ µt0 , a ◦ b ⊆ µt0 . Then, for every c ∈ a ◦ b,
we obtain t0 6 µ(c) and hence, µ(a) = t0 6 inf

c∈a◦b
{µ(c)}. Let a, b ∈ H with a 6 b.

Since a 6 b, b ∈ µµ(b) and µµ(b) is a right hyperideal of H, we get a ∈ µµ(b). So,
µ(b) 6 µ(a). Therefore, µ is a fuzzy right hyperideal of H.

Corollary 3.6. Let (H, ◦,6) be an ordered semihypergroup and χI be the charac-
teristic function of I. Then, I is a left (resp. right) hyperideal of H if and only if
χI is a fuzzy left (resp. right) hyperideal of H.

Example 3.7. Let H = {a, b, c, d}. We consider the ordered semihypergroup
(H, ◦,6), where the hyperoperation ◦ and the order relation 6 on H are de�ned
as follows:

◦ a b c d
a a {a, b} {a, c} a
b a {a, b} {a, c} a
c a {a, b} {a, c} a
d a {a, b} {a, c} a

6:= {(a, a), (b, b), (c, c), (d, d), (b, a), (c, a)}.

We give the covering relation ≺ and the �gure of H:

≺= {(b, a), (c, a)}.
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Now, we de�ne the fuzzy subset µ of H as follows:

µ(x) =

{
0.8 if x = a, b, c,
0.3 if x = d.

Then, µ is a fuzzy hyperideal of H.
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Lemma 3.8. Let (H, ◦,6) be an ordered semihypergroup and µ be a fuzzy subset
of H. Then, µ is a fuzzy bi-hyperideal of H if and only if for every t ∈ [0, 1], the
non-empty level subset µt is a bi-hyperideal of H.

Proof. Assume that µ is a fuzzy bi-hyperideal of H. Let t ∈ [0, 1] with µt 6= ∅.
Let a ∈ µt ◦ H ◦ µt. We have a ∈ b ◦ h ◦ c for some b, c ∈ µt, h ∈ H. Since t 6
min{µ(b), µ(c)} 6 inf

a∈b◦h◦c
{µ(a)}, we have µ(a) > t. This implies µt ◦H ◦ µt ⊆ µt.

Let x ∈ µt, y ∈ H with y 6 x. Since t 6 µ(x) 6 µ(y), we obtain y ∈ µt. Therefore,
µt is a bi-hyperideal of H.

Conversely, we assume that for every t ∈ [0, 1], µt is a bi-hyperideal of H.
We show that min{µ(b), µ(c)} 6 inf

a∈b◦h◦c
{µ(a)} for all b, c, h ∈ H. We choose

t0 = min{µ(b), µ(c)}. By assumption µt0 is a bi-hyperideal of H. Since b, c ∈
µt0 , b ◦ h ◦ c ⊆ µt0 . Then, for every a ∈ b ◦ h ◦ c, we have t0 6 µ(a) and so
min{µ(b), µ(c)} = t0 6 inf

a∈b◦h◦c
{µ(a)}. Let a, b ∈ H with a 6 b. Since a 6 b,

b ∈ µµ(b) and µµ(b) is a bi-hyperideal of H, we get a ∈ µµ(b). So, µ(b) 6 µ(a).
Therefore, µ is a bi-hyperideal of H.

Corollary 3.9. Let (H, ◦,6) be an ordered semihypergroup and χI be the charac-
teristic function of I. Then, I is a bi-hyperideal of H if and only if χI is a fuzzy
bi-hyperideal of H.

Lemma 3.10. Let (H, ◦,6) be an ordered semihypergroup and µ be a fuzzy subset
of H. Then, µ is a fuzzy quasi-hyperideal of H if and only if for every t ∈ [0, 1],
the non-empty level subset µt is a quasi-hyperideal of H.

Proof. Assume that µ is a fuzzy quasi-hyperideal of H. Let t ∈ [0, 1] with µt 6= ∅.
We show that (µt◦H]∩(H ◦µt] ⊆ µt. Let a ∈ (µt◦H]∩(H ◦µt]. Then, a ∈ (µt◦H]
and a ∈ (H ◦ µt], i.e., a 6 b ◦ h and a 6 k ◦ c for some b, c ∈ µt, h, k ∈ H, i.e.,
(b, h), (k, c) ∈ Aa. This implies (µ ◦ 1)(a) = sup

(x,y)∈Aa

{min{µ(x), 1(y)}} > t and

(1 ◦ µ)(a) = sup
(x,y)∈Aa

{min{1(x), µ(y)}} > t. By assumption, we obtain µ(a) >

min{(µ◦1)(a), (1◦µ)(a)} > t. Therefore, (µt◦H]∩(H◦µt] ⊆ µt. Let x ∈ µt, y ∈ H
with y 6 x. Since t 6 µ(x) 6 µ(y), we obtain y ∈ µt. Therefore, µt is a quasi-
hyperideal of H.

Conversely, we assume that for every t ∈ [0, 1], µt is a quasi-hyperideal of H.
We show that (µ ◦ 1) ∩ (1 ◦ µ) ⊆ µ. Let a ∈ H. If Aa = ∅, then it is clear that
min{(µ ◦ 1)(a), (1 ◦ µ)(a)} 6 µ(a). If Aa 6= ∅, then there exist x, y ∈ H such that
a 6 x ◦ y. Let t0 = min{µ(x), µ(y)}. Since µt0 is a quasi-hyperideal, a 6 x ◦ y and
x, y ∈ µt0 , we have a ∈ (µt0 ◦H] ∩ (H ◦ µt0 ] ⊆ µt0 . Then, µ(a) > t0. This means
µ(a) > min{µ(x), µ(y)} for all (x, y) ∈ Aa. Now, we have:

((µ ◦ 1) ∩ (1 ◦ µ))(a) = min{(µ ◦ 1)(a), (1 ◦ µ)(a)}
= min{ sup

(x,y)∈Aa

{min{µ(x), 1(y)}}, sup
(x,y)∈Aa

{min{1(x), µ(y)}}}
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= min{ sup
(x,y)∈Aa

{µ(x)}, sup
(x,y)∈Aa

{µ(y)}}

= sup
(x,y)∈Aa

{min{µ(x), µ(y)}}

6 µ(a).

Thus, (µ ◦ 1) ∩ (1 ◦ µ) ⊆ µ. Let a, b ∈ H with a 6 b. Since a 6 b, b ∈ µµ(b) and
µµ(b) is a quasi-hyperideal of H, we get a ∈ µµ(b). So, µ(b) 6 µ(a). Therefore, µ
is a qausi-hyperideal of H.

Corollary 3.11. Let (H, ◦,6) be an ordered semihypergroup and χI be the char-
acteristic function of I. Then, I is a qausi-hyperideal of H if and only if χI is a
fuzzy quasi-hyperideal of H.

Example 3.12. Consider the ordered semihypergroup (H, ◦,6) de�ned in Exam-
ple 2.5. De�ne fuzzy subsets µ and ν of H by letting x ∈ H,

µ(x) =

 0.7 if x = a,
0.5 if x = b, d,
0.3 if x = c, e,

ν(x) =

 0.8 if x = a,
0.6 if x = c,
0.2 if x = b, d, e.

By Lemma 3.5, µ is a fuzzy left hyperideal of H, since every non-empty level subset
of µ is a left hyperideal of H. Similarly, by Lemma 3.8, ν is a fuzzy bi-hyperideal
of H.

Example 3.13. Consider the ordered semihypergroup (H, ◦,6) de�ned in Exam-
ple 2.6. De�ne a fuzzy subset ρ : H → [0, 1] by letting x ∈ H,

ρ(x) =


0.9 if x = a
0.8 if x = c
0.5 if x = d
0 if x = b, e.

By Lemma 3.10, ρ is a fuzzy quasi-hyperideal of H, since every non-empty level
subset of ρ is a quasi-hyperideal of H.

Theorem 3.14. Let (H, ◦,6) be an ordered semihypergroup. Then, every fuzzy
right (resp. left) hyperideal of H is a fuzzy quasi-hyperideal of H.

Proof. Let µ be a fuzzy right hyperideal of H and a ∈ H. We have

((µ ◦ 1) ∩ (1 ◦ µ))(a) = min{(µ ◦ 1)(a), (1 ◦ µ)(a)}.

If Aa = ∅, then it is clear that min{(µ ◦ 1)(a), (1 ◦ µ)(a)} ⊆ µ.
Let Aa 6= ∅. Let (x, y) ∈ Aa. We have a 6 x ◦ y. This means a 6 z for some

z ∈ x ◦ y. Since µ is a fuzzy right hyperideal of H, µ(a) > µ(z) > inf
z∈x◦y

{µ(z)} >
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µ(x). It follows

µ(a) > sup
a6x◦y

{µ(x)}

= sup
(x,y)∈Aa

{min{µ(x), 1(y)}} = (µ ◦ 1)(a)

> min{(µ ◦ 1)(a), (1 ◦ µ)(a)}
= ((µ ◦ 1) ∩ (1 ◦ µ))(a).

Therefore, µ is a fuzzy quasi-hyperideal of H.

Theorem 3.15. Let (H, ◦,6) be an ordered semihypergroup. Then, every fuzzy
quasi-hyperideal of H is a fuzzy bi-hyperideal of H.

Proof. Let µ be a fuzzy quasi-hyperideal of H and x, y, z ∈ H. We show that
min{µ(x), µ(z)} 6 inf

a∈x◦y◦z
{µ(a)}. Since a ∈ x ◦ y ◦ z 6 x ◦ (y ◦ z), we obtain

(µ ◦ 1)(a) = sup
(u,v)∈Aa

{min{µ(u), 1(v)}} > min{µ(x), 1(w)} = µ(x), ∀w ∈ y ◦ z.

Since a ∈ x ◦ y ◦ z 6 (x ◦ y) ◦ z, we obtain

(1 ◦ µ)(a) = sup
(u,v)∈Aa

{min{1(u), µ(v)}} > min{1(t), µ(z)} = µ(z), ∀t ∈ x ◦ y.

By assumption, we have

µ(a) > ((µ ◦ 1) ∩ (1 ◦ µ))(a) = min{(µ ◦ 1)(a), (1 ◦ µ)(a)}.

Hence,

inf
a∈x◦y◦z

{µ(a)} > min{(µ ◦ 1)(a), (1 ◦ µ)(a)} > min{µ(x), µ(z)}.

Therefore, µ is a bi-hyperideal of H.

An ordered semihypergroup (H, ◦ 6) is called regular, if for every a ∈ H, there
exists x ∈ H such that a 6 a ◦ x ◦ a.

Theorem 3.16. Let (H, ◦,6) be a regular ordered semihypergroup and µ is a
fuzzy subset of H. Then, µ is a fuzzy quasi-hyperideal if and only if µ is a fuzzy
bi-hyperideal.

Proof. Let µ is a fuzzy bi-hyperideal. We show that µ is a fuzzy quasi-hyperideal
of H, i.e., (µ ◦ 1) ∩ (1 ◦ µ) ⊆ µ.

Let a ∈ H. If Aa = ∅, then it is clear that ((µ ◦ 1) ∩ (1 ◦ µ))(a) 6 µ(a).
If Aa 6= ∅, then

(µ ◦ 1)(a) = sup
(x,y)∈Aa

{min{µ(x), 1(y)} and (1 ◦ µ)(a) = sup
(u,v)∈Aa

{min{1(u), µ(v)}.
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If (µ ◦ 1)(a) 6 µ(a), then µ(a) > ((µ ◦ 1) ∩ (1 ◦ µ))(a).
If (µ ◦ 1)(a) > µ(a), then there exists (x, y) ∈ Aa such that min{µ(x), 1(y)} =

µ(x) > µ(a). We claim that (1 ◦µ)(a) 6 µ(a). Let (u, v) ∈ Aa. Since H is regular,
there exists w ∈ H such that a 6 a ◦ w ◦ a. It turns out a 6 x ◦ y ◦ w ◦ u ◦ v, i.e.,
there exists b ∈ x ◦ y ◦ w ◦ u ◦ v such that a 6 b. Since µ is a fuzzy bi-hyperideal
of H,

µ(a) > µ(b) > inf
c∈x◦y◦w◦u◦v

{µ(c)} > min{µ(x), µ(v)}.

Ifmin{µ(x), µ(v)} = µ(x), then µ(a) > µ(x). This gives a contradiction. Then,
min{µ(x), µ(v)} = µ(v) and so µ(a) > µ(v) = min{1(u), µ(v)} for all (u, v) ∈ Aa.
Hence, µ(a) > sup

(u,v)∈Aa

min{1(u), µ(v)} = (1 ◦ µ)(a). Now, the claim was proved.

Therefore, min{(µ ◦ 1)(a), (1 ◦ µ)(a)} 6 µ(a), i.e., (µ ◦ 1) ∩ (1 ◦ µ) ⊆ µ.

Lemma 3.17. Let (H, ◦,6) be an ordered semihypergroup and µ a fuzzy subset of
H such that µ(a) > µ(b) for every a, b ∈ H with a 6 b. Then,

(1) µ ∪ (1 ◦ µ) is a fuzzy left hyperideal of H,

(2) µ ∪ (µ ◦ 1) is a fuzzy right hyperideal of H.

Proof. (1) Let a, b ∈ H and c ∈ a ◦ b. We have

(µ ∪ (1 ◦ µ))(c) = max{µ(c), (1 ◦ µ)(c)}
> (1 ◦ µ)(c) = sup

(x,y)∈Ac

{min{1(x), µ(y)}} = sup
(x,y)∈Ac

{µ(y)}

> µ(b), ( since c ∈ a ◦ b and then (a, b) ∈ Ac).

Next, we show that (1 ◦ µ)(c) > (1 ◦ µ)(b). Let Ab 6= ∅ and (r, s) ∈ Ab. Since
(a, b) ∈ Ac, we have

(r, s) ∈ Ab ⇒ b 6 r ◦ s
⇒ a ◦ b 6 (a ◦ r) ◦ s
⇒ c 6 (a ◦ r) ◦ s
⇒ c 6 t ◦ s, for some t ∈ a ◦ r.

We have (1 ◦µ)(c) > min{1(t), µ(s)} = µ(s) = min{1(r), µ(s)}. Thus, (1 ◦µ)(c) >
sup

(r,s)∈Ab

{min{1(r), µ(s)}} = (1 ◦ µ)(b) and then (µ ∪ (1 ◦ µ)(c) > (1 ◦ µ)(b). This

implies inf
c∈a◦b

{(µ ∪ (1 ◦ µ))(c)} > (µ ∪ (1 ◦ µ))(b). Next, we show that for any

a, b ∈ H and a 6 b implies (µ ∪ (1 ◦ µ))(a) > (µ ∪ (1 ◦ µ))(b). Since Aa ⊇ Ab, we
have (1 ◦ µ)(a) > (1 ◦ µ)(b). Then, max{µ(a), (1 ◦ µ)(a)} > max{µ(b), (1 ◦ µ)(b)}.
This means (µ ∪ (1 ◦ µ)(a) > (µ ∪ (1 ◦ µ)(b). Altogether, µ ∪ (1 ◦ µ) is a fuzzy left
hyperideal of H.

(2) It can be proved similarly.
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Similarly to Corollary 1 in [10], we have the following lemma.

Lemma 3.18. If H is an ordered semihypergroup, then the set of all fuzzy subsets
of H is a distributive lattice.

Now, we show that every fuzzy quasi-hyperideal is exactly an intersection of a
fuzzy right hyperideal and a fuzzy left hyperideal and vice versa.

Theorem 3.19. Let (H, ◦,6) be an ordered semihypergroup and µ a fuzzy subset
of H. Then, µ is a fuzzy quasi-hyperideal of H if and only if there exist a fuzzy
right hyperideal ν and a fuzzy left hyperideal ρ of H such that µ = ν ∩ ρ.

Proof. By Lemma 3.17 and Lemma 3.18, we have µ = (µ∪ (1 ◦ µ))∩ (µ∪ (µ ◦ 1)).
Conversely, let ν be a fuzzy right hyperideal and ρ be a fuzzy left hyperideal of H
such that µ = ν∩ρ. We show that µ is a fuzzy quasi-hyperideal ofH. Let a ∈ H. If
Aa = ∅, then it is clear that ((µ◦1)∩(1◦µ)) ⊆ µ. Let Aa 6= ∅ and (x, y) ∈ Aa. We
have a 6 x◦y. Then, there exists b ∈ x◦y such that a 6 b. Since ν is a fuzzy right
hyperideal of H and µ = ν ∩ ρ, we have ν(a) > ν(b) > inf

c∈x◦y
{ν(c)} > ν(x) > µ(x).

Now, we have ν(a) > µ(x) for all (x, y) ∈ Aa. Hence,

(µ ◦ 1)(a) = sup
(x,y)∈Aa

{min{µ(x), 1(y)}} = sup
(x,y)∈Aa

{min{µ(x)}} 6 ν(a).

Similarly, we can show that (1 ◦ µ)(a) 6 ρ(a). Thus,

((µ ◦ 1) ∩ (1 ◦ µ))(a) = min{(µ ◦ 1)(a), (1 ◦ µ)(a)}
6 min{ν(a), ρ(a)}
= (ν ∩ ρ)(a) = µ(a).

Therefore, µ is a fuzzy quasi-hyperideal of H.
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Free semiabelian n-ary groups

Nikolay A. Shchuchkin

Abstract. Free n-ary groups in the class of semiabelian n-ary groups are described.

1. Introduction

The non-empty set G together with an n-ary operation f : Gn → G is called an
n-ary groupoid (or an n-ary operative � in the Gluskin terminology, cf. [10]) and
is denoted by 〈G, f〉. We will assume that n > 2.

According to the general convention used in the theory of such groupoids we
will use the following abbreviated notation:

f(x1, . . . , xi, x, . . . , x︸ ︷︷ ︸
t

, xi+t+1, . . . , xn) = f(xi1,
(t)
x , xni+t+1),

f(k)(x
k(n−1)+1
1 ) = f(f(. . . , f(f︸ ︷︷ ︸

k

(xn1 ), x2n−1n+1 ), . . .), x
k(n−1)+1
(k−1)(n−1)+2),

where
(0)
x and xji for i > j are empty symbols. In certain situations, when the arity

of the operation f(k) does not play a crucial role or when it will di�er depending
on additional assumptions, we will write f(.) instead of f(k).

The algebra 〈G, f〉 is called an n-ary group if it satis�es the generalized asso-

ciative law:

f(xi−11 , f(xn+i−1i ), x2n−1n+i ) = f(xj−11 , f(xn+j−1j ), x2n−1n+j ) (1)

and for all a1, . . . , aj−1, aj+1, . . . , an, b ∈ G the equation

f(a1, . . . , aj−1xj , aj+1, . . . , an) = b

is uniquely solvable for each j = 1, . . . , n. Other equivalent de�nitions of n-ary
groups one can �nd in [4] and [5].

For n = 2 we obtain usual (binary) groups. Thus n-ary groups are a generali-
zation of groups.

Initial investigations of n-ary groups were presented in [2], [15] and [20]. The
necessity for such research is explained in the Kurosh's book [13].

2010 Mathematics Subject Classi�cation: 20N15
Keywords: n-ary group, semiabelian n-ary group, free n-ary group.
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The theory of n-ary groups di�ers from the theory of ordinary groups. This is
stipulated, for example, by absence of neutral elements. Therefore the invertibility
is also absent. Instead of this in n-ary groups is considered the skew element de�ned
as a solution of the equation f(a, . . . , a, x) = a. It is denoted by ā and is called the
skew element for a. Since for each a ∈ G it is uniquely de�ned we have the map
¯: x → x̄. Thus any n-ary group 〈G, f〉 may be considered as an algebra 〈G, f,̄ 〉
in which the generalized associative law (1) and the identities

f(y, x, . . . , x, x̄, x) = f(x, x̄, x, . . . , x, y) = y. (2)

are ful�lled (for details see [3], [4] and [5]).
An n-ary group 〈G, f〉 is called semiabelian if

f(x1, x2 . . . , xn−1, xn) = f(xn, x2 . . . , xn−1, x1)

and abelian or commutative if f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) is valid for all
x1, . . . , xn ∈ G and all σ ∈ Sn. An n-ary group is semiabelian 〈G, f〉 if and only
if f(x, a, . . . , a, y) = f(y, a, . . . , a, x) for some a ∈ G and all x, y ∈ G (cf. [3]).

Note that in semiabelian n-ary groups the map¯: x → x̄ is an endomorphism
(cf. [4]), but it is an endomorphism also in some n-ary groups which are not
semiabelian (cf. [8]).

The class of all n-ary groups considered as algebras of the form 〈G, f,̄ 〉 forms
a variety determined by (1) and (2). Free n-ary groups in this class are described
in [1]. Free n-ary groups in the class of all abelian n-ary groups were investigated
in [19], [17] and [18]. The description of structure of free n-ary groups in class of
abelian semicyclic (precyclic) n-ary groups one can �nd in [14].

In this paper we describe the structure of free n-ary groups in class of semi-
abelian n-ary groups.

2. Some facts on semiabelian n-ary groups

There is a close relationship between binary (i.e., classical) and n-ary groups. For
example, on any semiabelian n-ary group 〈G, f〉 the abelian group 〈G,+〉 may be
de�ned by putting a+ b = f(a, c, . . . , c, c̄, b) for �xed element c from G. Then (cf.
[10], [11]) for the element d = f(c, . . . , c) and for the map ϕ(x) = f(c, x, c, . . . , c, c̄),
which is an automorphism of the group 〈G,+〉, we obtain

ϕ(d) = d, ϕn−1(x) = x for any x ∈ G, and (3)

f(a1, . . . , an) = a1 + ϕ(a2) + . . .+ ϕn−2(an−1) + an + d. (4)

It is easily to see that c is a zero of the group 〈G,+〉, and−a = f(c, a, . . . , a, ā, c).
Moreover,

ϕs(x) = f(
(s)
c , x,

(n−2−s)
c , c̄). (5)
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Since f(x, . . . , x, x̄) = x, from (4) we get x + ϕ(x) + . . . + ϕn−2(x) + x̄ + d = x.
Thus, x̄ = −ϕ(x)− . . .− ϕn−2(x)− d, and consequently,

ϕs(x̄) = ϕs(−ϕ(x)− . . .− ϕn−2(x)− d) = −ϕs(ϕ(x))− . . .− ϕs(ϕn−2(x))− ϕs(d)

= −ϕs+1(x)− . . .− ϕn−2(x)− x− ϕ(x)− . . .− ϕs−1(x)− d

= −ϕs+1(x)− . . .− ϕn−2(x)− ϕ(x)− . . .− ϕs−1(x)− ϕs(x)−d−x+ ϕs(x)

= x̄− x+ ϕs(x).

Hence
ϕs(x̄) = x̄− x+ ϕs(x). (6)

The group 〈G,+〉 is called the retract of an n-ary group 〈G, f〉 and is denoted
by retc〈G, f〉. Two retracts of the same n-ary group are isomorphic (cf. [6]). For
an abelian n-ary group 〈G, f〉 the automorphism ϕ is the identity map.

The converse is also true: if 〈G,+〉 is an abelian group, ϕ its automorphism such
that for some d ∈ G the conditions (3) are satis�ed, then 〈G, f〉 with the operation
de�ned by (4) is a semiabelian n-ary group. Such obtained an n-ary group 〈G, f〉
is called (ϕ, d)-derived from the group 〈G,+〉 and is denoted by derϕ,d〈G,+〉. In
the case ϕ = 1G, d = 0 we say that an n-ary group derϕ,d〈G,+〉 is derived from
the group 〈G,+〉.

One can prove (cf. [6]) that

〈G,+〉 = retcderϕ,d〈G,+〉, 〈G, f〉 = derϕ,dretc〈G, f〉. (7)

An n-ary group with a cyclic retract is called semicyclic [16] or precyclic [8].
A semicyclic n-ary group 〈(a), f〉 which is (ϕ, d)-derived from the cyclic group
〈(a),+〉 of order k has the form derm,la〈(a),+〉, i.e.,

f(s1a, . . . , sna) = (s1 + s2m+ s3m
2 . . .+ sn−1m

n−2 + sn + l)a,

where 0 6 m, l < k, m and k are relatively prime, lm ≡ l (mod k) and m|n − 1.
Any �nite semicyclic n-ary group of order k is isomorphic to an n-ary group
〈(a), f〉 = derm,la〈(a),+〉, where l|gcd(1 +m+m2 + . . .+mn−2, k) (see [16]).

Using the basic idea of [7], the structure of homomorphisms of n-ary groups
was investigated in [12]. We need the special case of Theorem 1.2 from [12].

Theorem 2.1. Let 〈G, f〉 = derϕ,d〈G,+〉 and 〈H,h〉 = derµ,b〈H,⊕〉 be two semi-

abelian n-ary groups and ψ : 〈G, f〉 → 〈H,h〉 be a homomorphism. Then there

exists a ∈ H and a group homomorphism σ : 〈G,+〉 → 〈H,⊕〉 such that ψ(x) =
σ(x)⊕ a for any x ∈ G. In this case

h(a, . . . , a) = σ(d)⊕ a and σ ◦ ϕ = µ ◦ σ.

Moreover, if a and σ satisfy these two conditions, then ψ(x) = σ(x) ⊕ a is a

homomorphism 〈G, f〉 → 〈H,h〉.
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3. Generating sets of semiabelian n-ary groups

It is not di�cult to see that

f(xn1 ) = f(·)(
(n−3)
xn , x̄n, . . . ,

(n−3)
x1 , x̄1︸ ︷︷ ︸

n−2

), x = f(n−3)(x, . . . , x).

Theorem 3.1. If a semiabelian n-ary group 〈G, f〉 is generated by the set X =
{xα|α ∈ I}, then its retract retxβ 〈G, f〉 is generated by the set

Y =

{
f(

(i−1)
xβ , xα,

(n−i−1)
xβ , x̄β) |xα ∈ X\{xβ}, i = 1, . . . , n− 1

}
∪
{
f(

(n)
xβ)

}
.

Proof. Let 〈G,+〉 = retxβ 〈G, f〉 for some xβ ∈ X. Then xβ is a zero of 〈G,+〉

and (3) is valid for d = f(
(n)
xβ) and ϕ(x) = f(xβ , x,

(n−3)
xβ , x̄β).

Denote by B the subset of 〈G,+〉 generated (in 〈G,+〉) by Y. Obviously d ∈ Y.
So, also −d, xβ ∈ B. We will show that B = G.

First observe that ϕs(xα) ∈ Y ⊆ B for every s = 1, . . . , n−1 and xα ∈ X\{xβ}.
For xβ we obtain ϕs(xβ) = xβ ∈ B. Since x̄α = −ϕ(xα)− . . .− ϕn−2(xα)− d, by
(2) and (4), we see that ϕs(x̄α) ∈ B for every xα ∈ X.

Now consider an arbitrary element g ∈ G. By our assumption each element
g ∈ G has the form g = f(k)(yα1 , . . . , yαm), where m = k(n− 1) + 1, yαi = xαi or
yαi = x̄αi , xαi ∈ X, i = 1, . . . ,m. This, according to (4), means that each element
g of G can be written in the form

g = yα1
+ h0 + ϕ(h1) + ϕ2(h2) + . . .+ ϕn−2(hn−2) + hn−1 + d,

where

hj = yαj(n−1)+2
+ ϕ(yαj(n−1)+3

) + . . .+ ϕn−2(yαj(n−1)+n−1
) + yαj(n−1)+n

+ d

and j = 0, 1, . . . , k − 1. Since xβ is a zero of 〈G,+〉, each yj , and consequently, g
depends only on xα, x̄α and x̄β . But x̄β = −d and d ∈ Y. Thus g depends only on
d and xα ∈ X\{xβ}. Therefore Y generates G, so B = G.

Corollary 3.2. If a semiabelian n-ary group 〈G, f〉 is generated by the set X =
{xα|α ∈ I}, then the retract retc〈G, f〉 is generated by the set{
f(f(

(i−1)
xβ , xα,

(n−i−1)
xβ , x̄β),

(n−3)
c , c̄, xβ) |xα ∈ X\{xβ}, 1 6 i 6 n− 1

}
∪{

f(f(
(n)
xβ),

(n−3)
c , c̄, xβ)

}
,

where xβ is an arbitrary �xed element of X.
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Proof. It is not di�cult to see that the map σ : retxβ 〈G, f〉 → retc〈G, f〉 de�ned by

σ(x) = f(x,
(n−3)
c , c̄, xβ) is an isomorphism of retracts which transfers generators

of redxβ 〈G, f〉 onto generators of redc〈G, f〉.

Theorem 3.3. If an abelian group 〈G,+〉 is generated by the set Z = {zα|α ∈ I},
then a semiabelian n-ary group 〈G, f〉 = derϕ,d〈G,+〉 is generated by the set X =
{−d+ zα |α ∈ I} ∪ {0}.

Proof. In this case a+ b = f(a,
(n−3)

0 , 0̄, b), ϕ(x) = f(0, x,
(n−3)

0 , 0̄), d = f(
(n)

0 ) and

−d = 0̄. Thus zαi = f(
(n−1)

0 ,−d+ zαi). Moreover, for ni > 0 we obtain

nizαi = f(ni−1)(zαi ,
(n−3)

0 , 0̄, zαi ,
(n−3)

0 , 0̄, . . . , zαi ,
(n−3)

0 , 0̄, zαi)

= f(ni−1)(f(
(n−1)

0 ,−d+ zαi),
(n−3)

0 , 0̄, . . . ,
(n−3)

0 , 0̄, f(
(n−1)

0 ,−d+ zαi)).

Since

−d+zαi=f(−d+ zαi ,−d+ zαi ,
(n−2)
−d+ zαi)

=−d+zαi+ϕ(−d+zαi)+ϕ2(−d+zαi)+ . . .+ϕn−2(−d+zαi)−d+ zαi+d,

we have

−zαi = ϕ(−d+ zαi) + ϕ2(−d+ zαi) + . . .+ ϕn−2(−d+ zαi)

= −d+ ϕ(−d+ zαi) + ϕ2(−d+ zαi) + . . .+ ϕn−2(−d+ zαi) + 0 + d

= f(−d,−d+ zαi ,
(n−3)
−d+ zαi , 0) = f(0̄,−d+ zαi ,

(n−3)
−d+ zαi , 0).

Thus, for ni < 0 we have

nizαi = (−ni)(−zαi)=f(−ni−1)(−zαi ,
(n−3)

0 , 0̄,−zαi ,
(n−3)

0 , 0̄, . . . ,−zαi ,
(n−3)

0 , 0̄,−zαi)

=f(−ni−1)(f(0̄,−d+zαi ,
(n−3)
−d+zαi , 0),

(n−3)
0 , 0̄,f(0̄,−d+zαi ,

(n−3)
−d+zαi , 0),

(n−3)
0 , 0̄,

. . . , f(0̄,−d+zαi ,
(n−3)
−d+zαi , 0),

(n−3)
0 , 0̄, f(0̄,−d+zαi ,

(n−3)
−d+zαi , 0)).

Hence, in any case nizαi can be expressed in 〈G, f〉 = derϕ,d〈G,+〉 by elements
of X. Since each element of G has the form g = n1zα1 + . . . + nkzαk , the above
means that an n-group 〈G, f〉 = derϕ,d〈G,+〉is generated by X.

4. Structure of free semiabelian n-ary groups

Let K be the class of n-ary groups. An n-ary group 〈F, f〉 from K is free in K with
the set X of free generators if any map ψ0 of X to any n-ary group 〈B, f〉 from
the class K can be uniquely extended to a homomorphism ψ : 〈F, f〉 → 〈B, f〉.
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Denote by Cl, where 0 6 l 6 [n−12 ], the class of all abelian semicyclic n-ary
groups (1, la)-derived from cyclic groups. An abelian semicyclic n-ary group con-
structed on a cyclic group 〈(a),+〉 of order k has the form der1,l1a〈(a),+〉, where
0 6 l1 6 k−1. By Lemma 1 in [9], n-ary groups der1,l1a〈(a),+〉 and der1,l2a〈(a),+〉
of order k are isomorphic if and only if gcd(l1, n − 1, k) = gcd(l2, n − 1, k). So,
an n-ary group der1,l1a〈(a),+〉 is isomorphic to an n-ary group der1,l2a〈(a),+〉,
where gcd(l1, n − 1, k) = l2. If l2 = n − 1, then der1,l2a〈(a),+〉 ∼= der1,0〈(a),+〉.
Thus, der1,l1a〈(a),+〉 ∈ C0. If l2 < n − 1, then 1 6 l2 6 [n−12 ] which means that
der1,l1a〈(a),+〉 ∈ Cl2 . If der1,l1a〈(a),+〉 is an in�nite abelian semicyclic n-ary
group, then der1,l1a〈(a),+〉 ∼= der1,la〈(a),+〉, where 0 6 l 6 [n−12 ] (see Theorem
3 in [16]). Thus der1,,l1a〈(a),+〉 ∈ Cl. This shows that each abelian semicyclic
n-ary group belongs only to one class Cl, where 0 6 l 6 [n−12 ].

Each class Cl has only one (up to isomorphism) free n-ary group. It has the
form der1,lZ, where Z is the additive group of integers (see [14]).

Free n-ary groups in the class of all abelian n-ary groups are described in the
following theorem proved in [18].

Theorem 4.1. An n-ary group is free in the class of abelian n-ary groups if and

only if it is an in�nite cyclic n-ary group or a direct product of an in�nite cyclic

n-ary group and an n-ary group derived from a free abelian group.

To describe all free n-ary groups in the class of all semiabelian n-ary groups
consider the set {xα |α ∈ I}. For each element xα we determine the direct sum

〈Aα,+〉 =
∑n−1
j=1 〈(xαj),+〉 of in�nite cyclic groups 〈(xαj),+〉 and the direct sum

〈F,+〉 = 〈(a),+〉 +
∑
α∈I〈Aα,+〉, where 〈(a),+〉 is an in�nite cyclic group. On

each group 〈Aα,+〉 we select an automorphism ϕα such that

ϕα(t1xα1 + t2xα2 + . . .+ tn−1xαn−1) = tn−1xα1 + t1xα2 + . . .+ tn−2xαn−1

for any t1xα1 + t2xα2 + . . .+ tn−1xαn−1 ∈ Aα.
Then ϕ de�ned by ϕ(sa+

∑k
i=1 zαi) = sa+

∑k
i=1 ϕαi(zαi) is an automorphism

of the group 〈F,+〉. Since d = a and ϕ satisfy (3), on the group 〈F,+〉 we can
construct the semiabelian n-ary group 〈F, f〉 = derϕ,a〈F,+〉 with the operation f
de�ned by (4).

Proposition 4.2. The n-ary group 〈F, f〉 is generated by the set

X = {−a+ xα1 |α ∈ I} ∪ {0}.

Proof. The abelian group 〈F,+〉 is generated by the set

Z = {a} ∪ {xα1 |α ∈ I} ∪ {xα2 |α ∈ I} ∪ . . . ∪ {xαn−1 |α ∈ I}.

Thus, according to Theorem 3.3, the n-ary group 〈F, f〉 is generated by the set

T = {0} ∪ {−a+ xα1 |α ∈ I} ∪ {−a+ xα2 |α ∈ I} ∪ . . . ∪ {−a+ xαn−1 |α ∈ I}.
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Note that for α ∈ I and j = 2, . . . , n− 1 we have

−a+ xαj = −a+ ϕj−1α (xα1) = ϕj−1(−a+ xα1) = f(
(i−1)

0 ,−a+ xα1,
(n−i−1)

0 , 0̄),

−a+ xαj = f(
(i−1)

0 ,−a+ xα1,
(n−i−1)

0 , 0̄) = f(
(i−1)

0̄ ,−a+ xα1,
(n−i−1)

0̄ , ¯̄0)

= f(
(i−1)

0̄ ,−a+ xα1,
(n−i−1)

0̄ , f(n−3)(
((n−2)2)

0 )).

This completes the proof.

Theorem 4.3. The n-ary group 〈F, f〉 is free in the class of semiabelian n-ary
groups.

Proof. Let 〈B, f ′〉 be an arbitrary semiabelian n-ary group and ψ0 be a map of
the set X into B. Let ψ0(0) = c and ψ0(−a + xα1) = yα for all α ∈ I. Choose
in 〈B, f ′〉 an n-ary subgroup 〈G, f ′〉 generated by the set Y = {c} ∪ {yα |α ∈ I}
and consider the retract 〈G,+〉 = retc〈G, f ′〉. By Theorem 3.1, this retract is
generated by the set

U = {f ′(
(i−1)
c , yα,

(n−i−1)
c , c̄) |α ∈ I, i = 1, . . . , n− 1} ∪ {f ′(

(n)
c )}.

Since d′ = f ′(
(n)
c ) and ϕ′(x) = f ′(c, x,

(n−3)
c , c̄) satisfy (3), we see that 〈G, f ′〉 =

derϕ′,d′〈G,+〉.
Moreover, the map σ0 : Z → U such that σ0(a) = d′ and

σ0(xαj) = f ′(
(j−1)
c , yα,

(n−j−1)
c , c̄) + d′ = ϕ′

j−1
(yα) + d′

for all α ∈ I, j = 1, . . . , n− 1, can be extended to the homomorphism

σ : 〈F,+〉 → 〈G,+〉

with the property σ(0) = c and σ(−a+ xα1) = −σ(a) + σ(xα1) = yα.
Let us show that σ is a homomorphism of an n-ary group 〈F, f〉 into an n-

ary group 〈B, f ′〉. For this consider x = sa +
∑k
i=1 zαi ∈ 〈F,+〉, where zαi =

ti1xαi1 + ti2xαi2 + . . .+ tin−1xαin−1. Then

ϕ′◦σ(x)= ϕ′(sσ(a) +
∑k
i=1(ti1σ(xαi1) + ti2σ(xαi2) + . . .+ tin−1σ(xαin−1)))

= ϕ′(sd′+
∑k
i=1(ti1(yαi+d

′)+ti2(ϕ′(yαi)+d′)+. . .+tin−1(ϕ′
n−2

(yαi)+d′)))

= sd′+
∑k
i=1(tin−1(yαi+d

′)+ti1(ϕ′(yαi)+d′)+. . .+tin−2(ϕ′
n−2

(yαi)+d′)).

On the other hand

σ ◦ ϕ(x)= σ(sa+
∑k
i=1 ϕαi(ti1xαi1 + ti2xαi2 + . . .+ tin−1xαin−1))

= σ(sa+
∑k
i=1(tin−1xαi1 + ti1xαi2 + . . .+ tin−2xαin−1))
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= sσ(a) +
∑k
i=1(tin−1σ(xαi1) + ti1σ(xαi2) + . . .+ tin−2σ(xαin−1)))

= sd′ +
∑k
i=1(tin−1(yαi + d′) + ti1(ϕ′(yαi) + d′) + . . .+ tin−2(ϕ′

n−2
(yαi) + d′))).

Thus σ ◦ ϕ(x) = ϕ′ ◦ σ(x) for any x ∈ F .
Since the neutral element of 〈G,+〉 (i.e., the element c) and σ satisfy the

conditions of Theorem 2.1, σ is the homomorphism of an n-ary group 〈F, f〉 into
an n-ary group 〈B, f ′〉. Obviously, σ is the extension of the map ψ0 : X → B.

Theorem 4.4. In the class of semiabelian n-ary groups a free n-ary group freely

generated by the set W = {xα |α ∈ I}∪{c} is isomorphic to an n-ary group 〈F, f〉.

Proof. Let 〈H,h〉 be a free n-ary group generated by W . Then there is a homo-
morphism ψ from 〈H,h〉 into an n-ary group 〈F, f〉, which is the extension of the
map c → 0, xα → −a + xα1, α ∈ I. On the other hand, by Theorem 4.3, there
exists a homomorphism τ : 〈F, f〉 → 〈H,h〉, which is the extension of the map
0→ c, −a+xα1 → xα, α ∈ I. This means that τ ◦ψ(w) = w for all w ∈W . Also,
τ ◦ ψ(w̄) = τ ◦ ψ(w) = w̄ for all w ∈W .

Now if ψ(u) = ψ(v) for some u, v ∈ H, then

u = h(k)(yα1
, . . . , yαk(n−1)+1

), v = h(l)(zα1
, . . . , zαl(n−1)+1

),

where yαi and zαj are elements of W or are skew to some elements of W . Thus

τ ◦ ψ(u)= τ ◦ ψ(h(k)(yα1
, . . . , yαk(n−1)+1

))

= τ(f(k)(ψ(yα1), . . . , ψ(yαk(n−1)+1
)))

= h(k)(τ(ψ(yα1
)), . . . , τ(ψ(yαk(n−1)+1

)))

= h(k)(yα1
, . . . , yαk(n−1)+1

) = u.

In a similar way we obtain τ ◦ ψ(v) = v, whence, by the uniqueness of τ , we
conclude u = v. So, ψ is one-to-one. It is surjective too. Indeed, each g ∈ F has
the form

g = f(k)(yα1 , . . . , yαk(n−1)+1
),

where yαi ∈ X or is skew to some element from X. For each yαi ∈ X there exists
zαi ∈ W such that ψ(zαi) = yαi . If yαi is skew to some element from X, then
also there exists zαi ∈ W which is skew to some element from W and such that
ψ(zαi) = yαi . This means that for each u = h(k)(zα1 , . . . , zαk(n−1)+1

) we have

ψ(u) = ψ(h(k)(zα1
, . . . , zαk(n−1)+1

))

= f(k)(ψ(zα1), . . . , ψ(zαk(n−1)+1
))

= f(k)(yα1
, . . . , yαk(n−1)+1

) = g.

So ψ is surjective. Therefore ψ is a bijection. This completes the proof.
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On two-sided bases of ternary semigroups

Boonyen Thongkam and Thawhat Changphas

Abstract. We introduce the concept of two-sided bases of a ternary semigroup, and study the

structure of ternary semigroups containing two-sided bases.

1. Introduction

The notion of a ternary semigroup which is a natural generalization of a ternary
group was de�ned as follows: a ternary semigroup is a non-empty set T together
with a ternary operation, written as (a, b, c) 7→ [abc], satisfying the associative law

[[abc]uv] = [a[bcu]v] = [ab[cuv]]

for all a, b, c, u, v ∈ T.
A non-empty subset A of a ternary semigroup T is called

- a left ideal of T if [TTA] ⊆ A;

- a right ideal of T if [ATT ] ⊆ A;

- a middle ideal of T if [TAT ] ⊆ A.

If A is both a left and a right ideal of T then A is called a two-sided ideal of T .
Finally, A is called an ideal of T if it is a left, a right and a middle ideal of T (see
[6], [9]). Note that the union of two two-sided ideals of T is a two-sided ideal of T ,
and the intersection of two two-sided ideals of T , if it is non-empty, is a two-sided
ideal of T .

It is known that, for a non-empty subset A of a ternary semigroup T ,

At = A ∪ [TTA] ∪ [ATT ] ∪ [T [TAT ]T ]

is the two-sided ideal of T containing A (see [7], [9]). If A = {a} we write At as
(a)t, called the principal two-sided ideal of T generated by a.

We introduce the quasi-ordering on a ternary semigroup T as follows:

a 6t b if and only if (a)t ⊆ (b)t.

2010 Mathematics Subject Classi�cation: 20N15, 20N10
Keywords: ternary semigroup, selfpotent, ternary subsemigroup, left ideal, two-sided ideal,
two-sided base, maximal two-sided ideal
The second author is supported by the Centre of Excellence in Mathematics, the Commission
on Higher Education, Thailand.
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Tamura [10] introduced one-sided bases including left bases and right bases of
a semigroup. Fabrici [4] introduced two-sided bases of a semigroup and studied
the structure of a semigroup containing two-sided bases. In the line of Fabrici, the
results were extended to ordered semigroups by the second author and Summaprab
[1]. The purpose of this paper is to introduce two-sided bases of a ternary semi-
group and study the structure of a ternary semigroup containing two-sided bases.

2. Two-sided bases of a ternary semigroup

As in [4], we de�ne two-sided bases of a ternary semigroup as follows.

De�nition 2.1. A subset A of a ternary semigroup T is called a two-sided base
of T if it satis�es the following two conditions:

(i) At = T ;

(ii) there exists no a proper subset B of A such that Bt = T .

Example 2.2. Consider the multiplication over the complex numbers, the set
T = {−i, 0, i} is a ternary semigroup [3]. We have {i} and {−i} are the two-sided
bases of T .

Example 2.3. Under the usual multiplication of integers, the set Z− of all nega-
tive integers is a ternary semigroup. We have {−1} is a two-sided base of Z−.

Example 2.4. Let T = Z− × Z− = {(a, b) | a, b ∈ Z−}. Then (cf. [5]) T is a
ternary semigroup under the ternary operation which is de�ned by

[(a, b)(c, d)(e, f)] = (a, f).

Then, for all (a, b) ∈ T , {(a, b)} is a two-sided base of T .

Example 2.5. Let T be a non-empty set such that 0 ∈ T and the cardinality
|T | > 3. Then T with the ternary operation de�ned by

[xyz] =

{
x if x = y = z;
0 otherwise,

is a ternary semigroup [8]. We have T \ {0} is a two-sided base of T .

Example 2.6. Consider a ternary semigroup

T =

{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)}
under the matrix multiplication [2], we have

A =

{(
1 0
0 1

)}
is a two-sided base of T .
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Example 2.7. Let T = {0, 1, 2, 3, 4, 5}. De�ne the ternary operation on T by

[abc] = (a ∗ b) ∗ c for all a, b, c ∈ T

where the binary operation ∗ is de�ned by

∗ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 1 1 1 1
2 0 1 2 3 1 1
3 0 1 1 1 2 3
4 0 1 4 5 1 1
5 0 1 1 1 4 5

Then T is a ternary semigroup [8] and {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}
are two-sided bases of T .

We now give some elementary results:

Lemma 2.8. Let A be a two-sided base of a ternary semigroup T . If a, b ∈ A and

a ∈ [TTb] ∪ [bTT ] ∪ [T [TbT ]T ], then a = b.

Proof. Let a, b ∈ A be such that a ∈ [TTb] ∪ [bTT ] ∪ [T [TbT ]T ]. Suppose that
a 6= b. We set B = A \ {a}; then b ∈ B. By

(a)t ⊆ [TTb] ∪ [bTT ] ∪ [T [TbT ]T ] ⊆ (b)t ⊆ Bt,

it follows that At ⊆ Bt, and so T = Bt. This is a contradiction. Hence a = b.

Theorem 2.9. A non-empty subset A of a ternary semigroup T is a two-sided

base of T if and only if A satis�es the following conditions:

(1) for any x ∈ T there exists a ∈ A such that x 6t a;

(2) for any a, b ∈ A, if a 6= b, then a and b are incomparable.

Proof. Assume that A is a two-sided base of ternary semigroup T , and let x ∈ T .
Thus x ∈ At. Then there exists a ∈ A such that x ∈ (a)t, and hence x 6t a. This
shows that (1) hold. Let a, b ∈ A be such that a 6= b and a 6t b. Then (a)t ⊆ (b)t.
Since a 6= b, we have a ∈ (b)t \ {b}. By Lemma 2.8, a = b. This is a contradiction.
Thus (2) follows.

Conversely, assume that the conditions (1) and (2) hold. By (1), for any x ∈ T ,
there is a ∈ A such that (x)t ⊆ (a)t ⊆ At. Thus T = At. Suppose that there
exists a proper subset B of A such that T = Bt. Let a ∈ A \B. Then

a ∈ At = T = Bt.

By (1), there exists b ∈ B ⊆ A such that a 6t b. This contradicts to (2). Hence A
is a two-sided base of T .
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3. Main results

Throughout this section, the symbol ⊂ stands for proper inclusion for sets.

Theorem 3.1. Let A be a two-sided base of a ternary semigroup T such that

(a)t = (b)t for some a ∈ A and b ∈ T . If a 6= b, then T contains at least two

two-sided bases.

Proof. Let a 6= b be such that (b)t = (a)t, it follows that

b ∈ [TTa] ∪ [aTT ] ∪ [T [TaT ]T ].

By Lemma 2.8, b 6∈ A. Hence b ∈ T \A. We set B = (A \ {a})∪{b}. Thus A 6= B.
We will show that B is a two-sided base of T . Let x ∈ T . Since A is a two-sided
base of T , there exists c ∈ A such that x 6t c. If c 6= a, then c ∈ B. If c = a,
then (c)t = (a)t = (b)t; hence x 6t c 6t b ∈ B. Therefore B satis�es the condition
(1) of Theorem 2.9. Let x, y ∈ B be such that x 6= y. If x 6= b and y 6= b, then
x, y ∈ A, that is, neither x 6t y nor y 6t x. There are two cases to consider: x = b
or y = b. If x = b, then y ∈ A. Suppose that x 6t y. Then a 6t b = x 6t y and
a, y ∈ A. This is a contradiction. Suppose that y 6t x. Then y 6t x = b 6t a
and a, y ∈ A. This is a contradiction. Thus neither x 6t y nor y 6t x. The case
y = b can be probed in the same manner. Therefore, B satis�es the condition (2)
of Theorem 2.9.

By Theorem 3.1, we have the following.

Corollary 3.2. Let A be a two-sided base of a ternary semigroup T , and let a ∈ A.

If (a)t = (x)t for some x ∈ T and x 6= a, then x is an element of a two-sided base

of T which is di�erent from A.

Theorem 3.3. Any two two-sided bases of a ternary semigroup T have the same

cardinality.

Proof. Let A and B be two-sided bases of a ternary semigroup T . Let a ∈ A.
Since B is a two-sided base of T , we have a 6t b for some b ∈ B. For a ∈ A,
we choose and �x b ∈ B such that a 6t b and de�ne a mapping f : A → B by
f(a) = b for all a ∈ A.

If a1, a2 ∈ A such that f(a1) = f(a2) = b. We have a1 6t b and a2 6t b. Since
A is a two-sided base of T , we have b 6t a

′ for some a′ in A. Thus a1 6t a
′, a2 6t a

′

and a1, a2, a
′ ∈ A. By Theorem 2.9, we have a1 = a′ = a2. Hence f is one to

one. Now, let b ∈ B. Then there exists a ∈ A such that b 6t a. Similarly,
there exists b′ ∈ B such that a 6t b′. Then b 6t b′. By Theorem 2.9, we have
b = b′. Thus a 6t b′ = b. Let f(a) = c for some c ∈ B. Then a 6t c. Since
c, b ∈ T and A is a two-sided base of T , there exist a′, a′′ ∈ A such that c 6t a

′

and b 6t a
′′. Then a 6t a

′ and a 6t a
′′. By Theorem 2.9, we have a = a′ = a′′.

Then b 6t a
′′ = a 6t c. Thus b = c by Theorem 2.9. Hence f is onto.
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A two-sided base of a ternary semigroup need not to be a ternary subsemigroup,
in general. Consider Example 2.2 we have {i} is a two-sided base of T , but it is
not a ternary subsemigroup of T .

Theorem 3.4. Let A be a two-sided base of a ternary semigroup T . Then A is a

ternary subsemigroup of T if and only if it has only one element.

Proof. Let a, b ∈ A, where A is a ternary subsemigroup of T. Then [aab] ∈ A.
Since

[aab] ∈ [TTb] ∪ [bTT ] ∪ [T [TbT ]T ]
and

[aab] ∈ [TTa] ∪ [aTT ] ∪ [T [TaT ]T ],

it follows by Lemma 2.8 that [aab] = a = b. Then A = {a}.
The converse statement is obvious.

Theorem 3.5. Let A be the union of all two-sided bases of a ternary semigroup

T . If M = T \ A is non-empty, then it is a two-sided ideal of T .

Proof. Let x, y ∈ T and a ∈ M . Suppose that [xya] 6∈ M or [axy] 6∈ M . Then
[xya] ∈ A or [axy] ∈ A. Thus, there exists a two-sided base B of T such that
[xya] ∈ B or [axy] ∈ B. Hence, there is b ∈ B such that [xya] = b or [axy] = b.
It implies b ∈ (a)t. Then (b)t ⊆ (a)t. Thus b 6t a. If (b)t = (a)t, then a ∈ A.
This contradicts to a ∈ M . Hence (b)t 6= (a)t. Since B is a two-sided base of T ,
there exists c ∈ B such that a 6t c. If b = c, then (a)t ⊆ (c)t = (b)t ⊆ (a)t; hence
(a)t = (b)t. This is a contradiction. Thus b 6= c. We have b 6t a 6t c, b 6= c and
b, c ∈ B. This contradicts to Theorem 2.9. Therefore, [xya], [axy] ∈M .

Theorem 3.6. Let A be the union of all two-sided bases of a ternary semigroup

T such that ∅ 6= A ⊂ T . Let M∗ be a maximal two-sided ideal of T containing all

proper two-sided ideals of T . The following statements are equivalent:

(1) T \ A is a maximal two-sided ideal of T ;

(2) A ⊆ (a)t for every a ∈ A;

(3) T \ A = M∗;

(4) every two-sided base of T has only one element.

Proof. (1)⇔ (2). Assume that T \ A is a maximal two-sided ideal of T . Suppose
that A 6⊆ (a)t. Since A 6⊆ (a)t, there exists x ∈ A such that x 6∈ (a)t. Thus
x 6∈ T \ A. Then (T \ A)∪ (a)t 6= T , and thus (T \ A)∪ (a)t is a proper two-sided
ideal of T such that (T \ A) ⊂ (T \ A) ∪ (a)t. This contradicts to the maximality
of T \ A.

Conversely, assume that A ⊆ (a)t for every element a ∈ A. By Theorem 3.5,
T \ A is a proper two-sided ideal of T . Suppose that M is a two-sided ideal of T
such that T \ A ⊂ M ⊂ T . Then M ∩ A is non-empty. Let c ∈ M ∩ A. We have
(c)t ⊆M , and so
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T = (T \ A) ∪ A ⊆ (T \ A) ∪ (c)t ⊆M .

This is a contradiction. Hence T \ A is a maximal two-sided ideal of T .
(3) ⇔ (4). Assume that T \ A = M∗. Then T \ A is a maximal two-sided

ideal of T . Let a ∈ A. Using (1) ⇔ (2), A ⊆ (a)t. Then T = At ⊆ (a)t. This
implies T = (a)t. Hence, for any a ∈ A, {a} is a two-sided base of T . Let B be
a two-sided base of T , and let a, b ∈ B. Then B ⊆ A, that is, a, b ∈ A. Hence
b ∈ T = (a)t. By Lemma 2.8, a = b (i.e., B has only one element).

Conversely, assume that every two-sided base of T has only one element. Then
T = (a)t for all a ∈ A. Suppose that there is a proper two-sided ideal M of T such
that M is not contained in T \ A. Then there exists x ∈ A ∩M . Since x ∈ M ,
T = (x)t ⊆M , and so T = M . This is a contradiction.

(1)⇔ (3). Assume that T \ A is a maximal two-sided ideal of T . Let M be a
two-sided ideal of T such that M is not contained in T \ A. Hence, there exists
x ∈M∩A. Using (1)⇔ (2), A ⊆ (x)t ⊆M . ThusM = A∪X for some X ⊆ T \A.
For any y ∈ T , there exists c ∈ A such that y 6t c. Then y ∈ (y)t ⊆ (c)t ⊆ M .
This implies that M = T . Thus T \ A = M∗.

The converse is obvious.
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Relations between n-ary and binary comodules

Biljana Zekovich

Abstract. We construct a binary algebra R = C⊗(n−1)/I for an n-ary algebra C and prove
that M is an n-ary left C-module if and only if M is a binary left R-module. In the dual case,
for an n-ary coalgebra C, we construct a binary coalgebra:

C�(n−1) =

n−2⋂
j=1

Ker
[
∆ ⊗ 1

⊗(n−2)
C − 1⊗j

C ⊗ ∆ ⊗ 1
⊗(n−2−j)
C

]
⊂ C⊗(n−1)

and prove that M is an n-ary right C-comodule if and only if M is a binary right C�(n−1)-

comodule. In the end, we prove that for n-ary �nite generated coalgebra C over a �eld k,

C�(n−1) is the binary coalgebra, on the other hand, C∗ is an n-ary algebra, for which, we

construct the binary algebra R = (C∗)⊗(n−1)/I . If C is a �nite-dimensional n-ary coalgebra

over a �eld k, then C∗ is a n-ary algebra and (C�(n−1))∗ ∼= (C∗)⊗(n−1)
/
I. Dually, if C is an

n-ary �nite generated algebra over a �eld k, then R = C⊗(n−1)
/
I is a binary algebra and C∗ is

an n-ary coalgebra. Moreover, (C∗)�(n−1) ∼=
(
C⊗(n−1)

/
I
)∗

.

1. Introduction

Let k be a ground commutative associative ring with a unit, C and M modules
over k. In what follows, ⊗ is a tensor product over k. All homomorphisms are
k-linear maps. In [3], the concept of n-ary algebra (C,m) is de�ned, where

m : C ⊗ · · · ⊗ C → C

is n-ary multiplication, which is associative. It means that the following diagram
is commutative:

C⊗(2n−1)
m⊗1

⊗(n−1)
C //

1⊗i
C ⊗m⊗1

⊗(n−i−1)
C

��

C⊗n

m

��
C⊗n

m // C

i.e.,

m ◦ (m⊗ 1
⊗(n−1)
C ) = m ◦ (1⊗iC ⊗m⊗ 1

⊗(n−i−1)
C ).

2010 Mathematics Subject Classi�cation: 20N15
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The concept of n-ary coalgebra (C,∆) is de�ned in [4], where

∆:C → C ⊗ · · · ⊗ C

is n-ary comultiplication, which is coassociative, that is the following diagram is
commutative:

C
∆ //

∆
��

C⊗n

1⊗i
C ⊗∆⊗1

⊗(n−i−1)
C��

C⊗n
∆⊗1

⊗(n−1)
C // C⊗(n−1)

i.e.,

(∆⊗ 1
⊗(n−1)
C ) ◦∆ = (1⊗iC ⊗∆⊗ 1

⊗(n−i−1)
C ) ◦∆.

Similary, the concept of n-ary bialgebra (C,m,∆) is introduced, where m is an
associative n-ary multiplication and ∆ is a coassociative n-ary comultiplication
and ∆ is a homomorphism of n-ary algebras. An example of n-ary algebra is given
in [6]. We do not suppose the existence of an unit and a counit.

In the paper [3], the notion of homomorphism of n-ary algebras

(C,mC)→ (C ′,mC′)

is de�ned as a morphism f :C → C ′, such that the following diagram is commuta-
tive

C⊗n
f⊗n

//

mC

��

(C ′)⊗n

mC′

��
C

f // C ′

i.e.,
f ◦mC = mC′ ◦ f⊗n.

Let C be an n-ary coalgebra and a �nitely generated projective k-module. Denote
by C∗ the k-module Hom(C, k). Then C∗ is an n-ary algebra with multiplication
l1 ∗ · · · ∗ ln, where for c ∈ C

(l1 ∗ · · · ∗ ln)(c) =
∑
(c)

l1(c(1)) · · · ln(c(n)) (1)

if
∆(c) =

∑
(c)

c(1) ⊗ · · · ⊗ c(n) ∈ C⊗n.

Conversely, let C be an n-ary algebra and a �nitely generated projective k-module.
De�ne an n-ary comultiplication in C∗ = Hom(C, k) by the rule:

(∆l)(x1 ⊗ · · · ⊗ xn) = l(x1 · · ·xn) (2)
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where x1, . . . , xn ∈ C. Hence we use the isomorphism of k-modules:

(C ⊗ · · · ⊗ C)∗ = C∗ ⊗ · · · ⊗ C∗

(cf. [2]), because C is a �nitely generated projective k-module. Then, C∗ is an
n-ary coalgebra. If C is an n-ary (co)algebra, then (C∗)∗ ∼= C (cf. [3] and [4]).

In [5] are de�ned the concepts of a right (left) n-ary (co)modules in the fol-
lowing way: k-module M is called a right n-ary C-comodule, where C is an n-ary
coalgebra, if there is a map ρ : M →M⊗C⊗(n−1), such that the following diagram
is commutative:

M
ρ //

ρ

��

M ⊗ C⊗(n−1)

1M⊗1⊗i
C ⊗∆⊗1

⊗(n−i−2)
C

��
M ⊗ C⊗(n−1)

ρ⊗1
⊗(n−1)
C

// M ⊗ C⊗2(n−1)

i.e.,

(1M ⊗ 1⊗iC ⊗∆⊗ 1
⊗(n−i−2)
C ) ◦ ρ = (ρ⊗ 1

⊗(n−1)
C ) ◦ ρ.

k-module M is called a left n-ary C-module, where C is an n-ary algebra, if there
is a map γ : C⊗(n−1) ⊗M →M , such that the following diagram is commutative:

C⊗(n−1) ⊗M
γ // M

C⊗2(n−1) ⊗M

1
⊗(n−1)
C ⊗γ

OO

1⊗i
C ⊗m⊗1

⊗(n−i−2)
C ⊗1M

// C⊗(n−1) ⊗M

γ

OO

i.e.,

γ ◦ (1
⊗(n−1)
C ⊗ γ) = γ ◦ (1⊗iC ⊗m⊗ 1

⊗(n−i−2)
C ⊗ 1M ).

Now, we de�ne the concept of an n-ary ideal: a submodule I of the module C is
called an n-ary ideal, if

C⊗i ⊗ I ⊗ C⊗(n−i−1) ⊆ I,

where 0 6 i 6 n− 1, C is an n-ary algebra.

2. Relations between n-ary and binary modules

Let C be an n-ary algebra over commutative ring k. There is not necessarily a
unit in C, but the multiplication is associative, i.e.,

(c1 · · · cn)cn+1 · · · c2n−1 = c1 · · · cj(cj+1 · · · cj+n)cj+n+1 · · · c2n−1 (3)
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for all j = 0, . . . , n − 1 and c1, . . . , c2n−1 ∈ C. Consider the submodule I in the
tensor-degree C⊗(n−1) (see [4]), which is generated by all di�erences:

(c1 · · · cn)⊗cn+1⊗· · ·⊗c2n−2−c1⊗· · ·⊗cj⊗ (cj+1 · · · cj+n)⊗cj+n+1⊗· · ·⊗c2n−2

for c1, . . . , c2n−2 ∈ C and j = 0, . . . , n− 2. Then, I is an n-ary ideal in the n-ary
algebra C⊗(n−1). Denote by R the factor-module C⊗(n−1)

/
I.

Theorem 2.1. R is an associative binary k-algebra with respect to multiplication

(c1⊗· · ·⊗ cn−1 + I)(cn⊗· · ·⊗ c2n−2 + I) = (c1 · · · cn)⊗ cn+1⊗· · ·⊗ c2n−2 + I (4)

Proof. Let us check that the multiplication (4) is correctly de�ned. It is su�cient
to show that:

[(c1 · · · cn)⊗cn+1 ⊗ · · · ⊗ c2n−2 + I [c2n−1 ⊗ · · · ⊗ c3n−3 + I]

= [c1 ⊗ · · · ⊗ cj ⊗ (cj+1 · · · cj+n)⊗ cj+n+1 ⊗ · · · ⊗ c2n−2 + I]

· [c2n−1 ⊗ · · · ⊗ c3n−3 + I]

for all c1, . . . , c3n−3 ∈ C.
Similar equality holds after multiplication by c2n−1 ⊗ · · · ⊗ c3n−3 + I, on the

left. By (4), we have:

[(c1 · · · cn)⊗ cn+1 ⊗ · · · ⊗ c2n−2 + I] [c2n−1 ⊗ · · · ⊗ c3n−3 + I]
= [(c1 · · · cn)cn+1 · · · c2n−1]⊗ c2n ⊗ · · · ⊗ c3n−3 + I

On the other hand:

[c1⊗ · · · ⊗cj⊗ (cj+1 · · · cj+n)⊗ cj+n+1!⊗ · · · ⊗ c2n−2 + I] [c2n−1 ⊗ · · · ⊗ c3n−3 + I]

= [c1 · · · cj(cj+1 · · · cj+n)cj+n+1 · · · c2n−2c2n−1]⊗ c2n ⊗ · · · ⊗ c3n−3 + I.

By the associativity(3), the previous products are equal. The condition:

[c2n−1 ⊗ · · · ⊗ c3n−3 + I] [(c1 · · · cn)⊗ cn+1 ⊗ · · · ⊗ c2n−2 + I]

= [c2n−1⊗ · · · ⊗ c3n−3+I] [c1⊗ · · · ⊗ cj ⊗ (cj+1 · · · cj+n)⊗ cj+n+1⊗ · · · ⊗ c2n−2+I]

is checked in a similar way. Consequently, the multiplication in R is well de�ned.
Let us show that it is associative. We have:

[(c1 ⊗ · · · ⊗ cn−1 + I)(cn ⊗ · · · ⊗ c2n−2 + I)] (c2n−1 ⊗ · · · ⊗ c3n−3 + I)
= [(c1 · · · cn)⊗ cn+1 ⊗ · · · ⊗ c2n−2 + I] (c2n−1 ⊗ · · · ⊗ c3n−3 + I)
= [(c1 · · · cn)cn+1 · · · c2n−1]⊗ c2n ⊗ · · · ⊗ c3n−3 + I.

On the other hand,

(c1 ⊗ · · · ⊗ cn−1 + I) [(cn ⊗ · · · ⊗ c2n−2 + I) (c2n−1 ⊗ · · · ⊗ c3n−3 + I)]
= (c1 ⊗ · · · ⊗ cn−1 + I) [(cn . . . c2n−1)⊗ c2n · · · ⊗ c3n−3 + I]
= [c1 · · · cn−1 (cn . . . c2n−1)]⊗ c2n ⊗ · · · ⊗ c3n−3 + I

By (3), we obtain that the multiplication in R is associative.
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Theorem 2.2. M is an n-ary left C-module if and only if M is a binary left

R-module.

Proof. Suppose thatM is an n-ary left C-module. If c1, . . . , cn−1 ∈ C andm ∈M ,
then we put:

(c1 ⊗ · · · ⊗ cn−1 + I)m = (c1 ⊗ · · · ⊗ cn−1)m.

The de�nition of the ideal I and the n-ary C-module implies that I ·m = 0. So,
M is a left R-module.

Conversely, if M is a left R-module, then for c1, . . . , cn−1 ∈ C and m ∈M , we
put

(c1 ⊗ · · · ⊗ cn−1)m = (c1 ⊗ · · · ⊗ cn−1 + I)m.

We see that M is an n-ary left C-module.

What is proved here is an equivalence of categories between the category of
n-ary left modules over C and the category of left modules over R.

3. Dual situation

Let C be an n-ary coalgebra over a �eld k. Denote by C�(n−1) the set:

n−2⋂
j=1

Ker[∆⊗ 1
⊗(n−2)
C − 1⊗jC ⊗∆⊗ 1

⊗(n−2−j)
C ] ⊂ C⊗(n−1).

In the other words, C�(n−1) contains all elements

f =
∑

c1 ⊗ · · · ⊗ cn−1 ∈ C⊗(n−1),

such that∑
∆c1 ⊗ c2 ⊗ · · · ⊗ cn−1 =

∑
c1 ⊗ · · · ⊗ cj ⊗∆cj+1 ⊗ cj+2 ⊗ · · · ⊗ cn−1

for all j = 0, . . . , n− 2.

Theorem 3.1. The n-ary comultiplication in C induces a comultiplication:

∆′:C�(n−1) → C�(n−1) ⊗ C�(n−1)

i.e., C�(n−1) is a binary coalgebra.

Proof. De�ne the map

∆′:C⊗(n−1) → C⊗(n−1) ⊗ C⊗(n−1)

by the following rule:

∆′(c1⊗· · ·⊗cn−1) = ∆c1⊗c2⊗· · ·⊗cn−1 ∈∈ C⊗n⊗C⊗(n−2) = C⊗(n−1)⊗C⊗(n−1).
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It is necessary show that

∆′(C�(n−1)) ⊆ C�(n−1) ⊗ C�(n−1).

Let f ∈ C�(n−1). Then, for j = 1, . . . , n− 2:{[
∆⊗ 1

⊗(n−2)
C − 1⊗jC ⊗∆⊗ 1

⊗(n−2−j)
C

]
⊗ 1
⊗(n−1)
C

}
∆′(f)

=
{[

∆⊗ 1
⊗(n−2)
C − 1⊗jC ⊗∆⊗ 1

⊗(n−2−j)
C

]
⊗ 1
⊗(n−1)
C

}
(∆⊗ 1

⊗(n−2)
C )f

=
{[

(∆⊗ 1
⊗(n−1)
C − 1⊗jC ⊗∆⊗ 1

⊗(n−1−j)
C )⊗ 1

⊗(n−2)
C

]
(∆⊗ 1

⊗(n−2)
C )

}
f = 0

by the coassociativity. Analogously, for j = 1, . . . , n− 2:{
1
⊗(n−1)
C ⊗

[
∆⊗ 1

⊗(n−2)
C − 1⊗jC ⊗∆⊗ 1

⊗(n−2−j)
C

]}
∆′(f) = 0,

see [2].

Theorem 3.2. k-module M is an n-ary right C-comodule if and only if M is a

binary right C�(n−1)-comodule.

Proof. If M is a binary right C�(n−1)-comodule, then M is an n-ary right C-
comodule, because C�(n−1) ⊂ C⊗(n−1).

Conversely, let M be an n-ary right C-comodule and ρ:M →M ⊗C⊗(n−1). It
is necessary show that

ρ(M) ⊆M ⊗ C�(n−1),

i.e.,

(∆⊗ 1
⊗(n−2)
C − 1⊗jC ⊗∆⊗ 1

⊗(n−2−j)
C )ρ = 0.

This follows from the de�nition of an n-ary C-comodule.

What is proved here is an equivalence of categories between the category of
n-ary right comodules over C and the category of right comodules over C�(n−1).

4. Isomorphisms of binary (co)algebras

In this part, as in previous, we shall suppose that k is a �eld.

Theorem 4.1. Let C be an n-ary �nite dimensional coalgebra over the �eld k.
Then C�(n−1) is a binary coalgebra. Moreover, C∗ is an n-ary algebra, for which

we construct the binary algebra R = (C∗)⊗(n−1)
/
I. Then there exists an isomor-

phism of binary algebras:

(C�(n−1))∗ ∼= (C∗)⊗(n−1)
/
I.
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Proof. By de�nition:

C�(n−1) =

n−2⋂
j=1

Ker[∆⊗ 1
⊗(n−2)
C − 1⊗jC ⊗∆⊗ 1

⊗(n−2−j)
C ].

In other words, we obtain the exact sequence of the vector spaces:

0→ C�(n−1) → C⊗(n−1) ϕ−→
n−2
⊕
j=1

C⊗(2n−2),

where

ϕ(x) =
(

∆⊗ 1
⊗(n−2)
C − 1C ⊗∆⊗ 1

⊗(n−3)
C

)
(x) + · · ·

+
(

∆⊗ 1
⊗(n−2)
C − 1

⊗(n−2)
C ⊗∆

)
(x).

Moving to the dual �nite dimensional spaces, we obtain the exact sequence:

0← (C�(n−1))∗ ← (C⊗(n−1))∗
ϕ∗←−−

n−2
⊕
j=1

(C⊗(2n−2))∗ (5)

Since C has �nite dimension:

(C⊗(n−1))∗ = (C∗)⊗(n−1)

(C⊗(2n−2))∗ = (C∗)⊗(2n−2).

Moreover, for l1, . . . , l2n−2 from j-th summand (C∗)⊗(2n−2), we have:

ϕ∗(l1⊗ · · · ⊗ l2n−2) = (l1 ∗ · · · ∗ ln)⊗ ln+1 ⊗ · · · ⊗ l2n−2

− l1 ⊗ · · · ⊗ lj ⊗ (lj+1 ∗ · · · ∗ lj+n)⊗ lj+n+1 ⊗ · · · ⊗ l2n−2 (6)

In that way, by the exactness of the sequence (5), we obtain that:

(C
�(n−1)

)
∗ ∼= (C∗)⊗(n−1)

/
I,

where I is the subspace generated by all elements of the form (6). We need to
show that the constructed isomorphism

(C∗)⊗(n−1)
/
I → (C

�(n−1)
)∗

is an isomorphism of binary algebras. Let

l1, . . . , l2n−2 ∈ C∗ and f =
∑

c1 ⊗ · · · ⊗ cn−1 ∈ C�(n−1).

Then,
[(l1 ⊗ · · · ⊗ ln−1 + I)(ln ⊗ · · · ⊗ l2n−2 + I)] (f)
= [(l1 ∗ · · · ∗ ln)⊗ ln+1 ⊗ · · · ⊗ l2n−2 + I] (f)

= µ(l1 ⊗ · · · ⊗ l2n−2)(∆⊗ 1
⊗(n−2)
C )(f)



332 B. Zekovich

But, for u, v ∈ (C�(n−1))
∗
and f ∈ C�(n−1):

(u ∗ v)(f) = µ(u⊗ v)∆′(f) == µ(u⊗ v)(∆⊗ 1⊗(n−2))f

Let
u = l1 ⊗ · · · ⊗ ln−1 + I, v = ln ⊗ · · · ⊗ l2n−2 + I.

Then,
µ(u⊗ v)(∆⊗ 1⊗(n−2)) = µ(l1 ⊗ · · · ⊗ l2n−2)(∆⊗ 1⊗(n−2))

i.e., the map
R→ (C�(n−1))

∗

is a homomorphism of binary algebras.

Analogically, we prove:

Theorem 4.2. Let C be an n-ary �nite dimensional algebra over a �eld. Then,

R = C⊗(n−1)
/
I is a binary algebra, and C∗ is an n-ary coalgebra. Moreover,

(C∗)�(n−1) ∼= R∗.
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