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Bipolar fuzzy Lie superalgebras

Muhammad Akram, Wenjuan Chen and Yunqiang Yin

Abstract. We introduce the notion of bipolar fuzzy Lie sub-superalgebras (resp. bipolar fuzzy
ideals) and present some of their properties. First we investigate the properties of bipolar fuzzy
Lie sub-superalgebras and bipolar fuzzy ideals under homomorphisms of Lie superalgebras. Next
we study bipolar fuzzy bracket product, solvable bipolar fuzzy ideals and nilpotent bipolar fuzzy
ideals of Lie superalgebras.

1. Introduction

The concept of fuzzy set was �rst initiated by Zadeh [16] in 1965 and since then,
fuzzy set has become an important tool in studying scienti�c subjects, in partic-
ular, it can be applied in a wide variety of disciplines such as computer science,
medical science, management science, social science, engineering and so on. There
are a number of generalizations of Zadeh's fuzzy set theory so far reported in the
literature viz., interval-valued fuzzy theory, intuitionistic fuzzy theory, L-fuzzy
theory, probabilistic fuzzy theory and so on. In 1994, Zhang [17, 18] initiated
the concept of bipolar fuzzy sets as a generalization of fuzzy sets. Bipolar fuzzy
sets are an extension of fuzzy sets whose membership degree range is [−1, 1]. In
a bipolar fuzzy set, the membership degree 0 of an element means that the el-
ement is irrelevant to the corresponding property, the membership degree (0, 1]
of an element indicates that the element somewhat satis�es the property, and the
membership degree [−1, 0) of an element indicates that the element somewhat sat-
is�es the implicit counter-property. Although bipolar fuzzy sets and intuitionistic
fuzzy sets look similar to each other, they are essentially di�erent sets [15]. In
many domains, it is important to be able to deal with bipolar information. It is
noted that positive information represents what is granted to be possible, while
negative information represents what is considered to be impossible. This domain
has recently motivated new research in several directions. In particular, fuzzy and
possibilistic formalisms for bipolar information have been proposed [12], because
when we deal with spatial information in image processing or in spatial reasoning
applications, this bipolarity also occurs. For instance, when we assess the position
of an object in a space, we may have positive information expressed as a set of
possible places and negative information expressed as a set of impossible places.
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As another example, let us consider the spatial relations. Human beings consider
"left" and "right" as opposite directions. But this does not mean that one of them
is the negation of the other. The semantics of �opposite" captures a notion of sym-
metry rather than a strict complementation. In particular, there may be positions
which are considered neither to the right nor to the left of some reference object,
thus leaving some room for indetermination. This corresponds to the idea that
the union of positive and negative information does not cover the whole space.

The theory of Lie superalgebras was constructed by V.G. Kac [14] in 1977 as a
generalization of the theory of Lie algebras. This theory had played an important
role in both mathematics and physics. In particular, Lie superalgebras are im-
portant in theoretical physics where they are used to describe the mathematics of
supersymmetry [11]. Furthermore, Lie superalgebras had found many applications
in computer science such as unimodal polynomials [13].

Recently, Chen [7, 8, 9, 10] have considered Lie superalgebras in fuzzy settings,
intuitionistic fuzzy settings, interval-valued fuzzy settings and investigated their
several properties. Akram introduced the notion of cofuzzy Lie superalgebras over
a cofuzzy �eld in [4]. Now, it is natural to consider Lie superalgebras in bipolar
fuzzy settings. In this paper, we introduce the notion of bipolar fuzzy Lie sub-
superalgebras (resp. bipolar fuzzy ideals) and investigate the properties of bipolar
fuzzy Lie sub-superalgebras and bipolar fuzzy ideals under homomorphisms of Lie
superalgebras. We also introduce the concept of bipolar fuzzy bracket product
and study solvable bipolar fuzzy ideals and nilpotent bipolar fuzzy ideals of Lie
superalgebras and present the corresponding theorems parallel to Lie superalge-
bras. We have used standard de�nitions and terminologies in this paper. For
notations, terminologies and applications not mentioned in the paper, the readers
are referred to [2�6, 15, 17].

2. Preliminaries

In this section, we review some elementary aspects that are necessary for this
paper.

De�nition 2.1. [14] Suppose that V is a vector space and V0̄, V1̄ are its (vector)
subspaces. Let V = V0̄⊕V1̄ be the direct sum of the subspaces. Then V (with this
decomposition ) is called a Z2-graded vector space if each element v of a Z2-graded
vector space has a unique expression of the form v = v0̄ + v1̄ (v0 ∈ V0, v1 ∈ V1).
The subspaces V0̄ and V1̄ are called the even part and odd part of V , respectively.
In particular, if v is an element of either V0̄ or V1̄, v is said to be homogeneous.

De�nition 2.2. [14] A Z2-graded vector space L = L0̄ ⊕ L1̄ with a Lie bracket

[ , ] : L× L bilinear−−−−−−→ L

is called a Lie superalgebra, if it satis�es the following conditions:



Bipolar fuzzy Lie superalgebras 141

(1) [Li, Lj ] ⊆ Li+j for i, j ∈ Z2 = {0, 1},

(2) [x, y] = −(−1)pxppyp[y, x] (antisymmetry),

(3) [x, [y, z]] = [[x, y], z] + (−1)pxppyp[[x, z], y]( Jacobi identity),

where for any homogeneous element a ∈ Li, i = 0, 1. The subspaces L0̄ and L1̄

are called the even and odd parts of L, respectively. Therefore, a Lie algebra is a
Lie superalgebra with trivial odd part.

De�nition 2.3. [14] If ϕ : L1 → L2 is a linear map between Lie superalgebras L1

=L10̄ ⊕ L11̄ and L2 = L20̄ ⊕ L21̄ such that

(4) ϕ(L1i) ⊆ L2i (i ∈ Z2) (preserving the grading),

(5) ϕ([x, y]) = [ϕ(x), ϕ(y)] (preserving the Lie bracket).

Then ϕ is called a homomorphism of Lie superalgebras.

Throughout this paper, we denote V a vector space, L a Lie superalgebra over
�eld F .

Let µ be a fuzzy subset on V , i.e., a map µ : V → [0, 1]. In this paper, the
notations x ∨ y = max{x, y} and x ∧ y = min{x, y}.

De�nition 2.4. [17] Let X be a nonempty set. A bipolar fuzzy set B in X is an
object having the form

B = {(x, µP
B(x), µN

B (x)) |x ∈ X}

where µP
B : X → [0, 1] and µN

B : X → [−1, 0] are mappings. For the sake
of simplicity, we shall use the symbol B = (µP

B , µN
B ) for the bipolar fuzzy set

B = {(x, µP
B(x), µN

B (x)) |x ∈ X}.

De�nition 2.5. [15] For every two bipolar fuzzy sets A = (µP
A, µN

A ) and B =
(µP

B , µN
B ) in X, we de�ne

• (A
⋂

B)(x) = (min(µP
A(x), µP

B(x)),max(µN
A (x), µN

B (x))),

• (A
⋃

B)(x) = (max(µP
A(x), µP

B(x)),min(µN
A (x), µN

B (x))).

In order to point out the di�erences between intuitionistic fuzzy Lie sub-
superalgebras and bipolar fuzzy Lie sub-superalgebras, we omit the similar proofs
in this paper.

Lemma 2.6. A = (µP
A, µN

A ) is a bipolar fuzzy subspace of V if and only if µP
A and

µN
A are fuzzy subspaces of V.

Lemma 2.7. Let A = (µP
A, µN

A ) and B = (µP
B , µN

B ) be bipolar fuzzy subspaces of

V. Then A + B is also a bipolar fuzzy subspace of V.
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Lemma 2.8. Let A = (µP
A, µN

A ) and B = (µP
B , µN

B ) be bipolar fuzzy subspaces of

V. Then A ∩B is also a bipolar fuzzy subspace of V.

Lemma 2.9. Let A = (µP
A, µN

A ) be a bipolar fuzzy subspace of V
′
and φ be a

mapping from vector space V to V
′
. Then the inverse image φ−1(A) is also a

bipolar fuzzy subspace of V.

Lemma 2.10. Let A = (µP
A, µN

A ) be a bipolar fuzzy subspace of V and f be a

mapping from V to V
′
. Then the image φ(A) is also a bipolar fuzzy subspace of

V ′.

3. Bipolar fuzzy Lie sub-superalgebras

De�nition 3.1. Let V = V0̄ ⊕ V1̄ be a Z2-graded vector space. Suppose that
A0̄ = (µP

A0̄
, µN

A0̄
) and A1̄ = (µP

A1̄
, µN

A1̄
) are bipolar fuzzy vector subspaces of V0̄,

V1̄, respectively. We de�ne A′
0̄ = (µP

A′
0̄
, µN

A′
0̄
) where

µP
A′

0̄
(x) =

{
µP

A0̄
(x) x ∈ V0̄

0 x /∈ V0̄
, µN

A′
0̄
(x) =

{
µN

A0̄
(x) x ∈ V0̄

0 x /∈ V0̄

and de�ne A′
1̄ = (µP

A′
1̄
, µN

A′
1̄
) where

µP
A′

1̄
(x) =

{
µP

A1̄
(x) x ∈ V1̄

0 x /∈ V1̄
, µN

A′
1̄
(x) =

{
µN

A1̄
(x) x ∈ V1̄

0 x /∈ V1̄

Then A′
0̄ = (µP

A′
0̄
, µN

A′
0̄
) and A′

1̄ = (µP
A′

1̄
, µN

A′
1̄
) are the bipolar fuzzy vector subspaces

of V . Moreover, we have A′
0̄ ∩A′

1̄ = (µP
A′

0̄∩A′
1̄
, µN

A′
0̄∩A′

1̄
), where

µP
A′

0̄∩A′
1̄
(x) = µP

A′
0̄
(x) ∧ µP

A′
1̄
(x) =

{
1 x = 0
0 x 6= 0 ,

µN
A′

0̄∩A′
1̄
(x) = µN

A′
0̄
(x) ∨ µN

A′
1̄
(x) =

{
−1 x = 0
0 x 6= 0 .

So A′
0̄ + A′

1̄ is the direct sum and denoted by A0̄ ⊕ A1̄. If A = (µP
A, µN

A ) is an
bipolar fuzzy vector subspace of V and A = A0̄ ⊕A1̄, then A = (µP

A, µN
A ) is called

a Z2-graded bipolar fuzzy vector subspace of V .

De�nition 3.2. Let A = (µP
A, µN

A ) be an bipolar fuzzy set of L. Then A =
(µP

A, µN
A ) is called a bipolar fuzzy Lie sub-superalgebra of L, if it satis�es the fol-

lowing conditions:

(1) A = (µP
A, µN

A ) is a Z2-graded bipolar fuzzy vector subspace,

(2) µP
A([x, y]) ≥ µP

A(x) ∧ µP
A(y) and µN

A ([x, y]) ≤ µN
A (x) ∨ µN

A (y).
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If the condition (2) is replaced by

(3) µP
A([x, y]) ≥ µP

A(x) ∨ µP
A(y) and µN

A ([x, y]) ≤ µN
A (x) ∧ µN

A (y),

then A = (µP
A, µN

A ) is called a bipolar fuzzy ideal of L.

Example 3.3. Let N = N0̄ ⊕ N1̄, where N0̄ = 〈e〉, N1̄ = 〈a1, · · · , an, b1, · · · , bn〉
and [ai, bi] = e, i = 1, 2, · · ·n, the remaining brackets being zero. Then N is Lie
superalgebra. De�ne A0̄ = (µP

A0̄
, µN

A0̄
) where

µP
A0̄

(x) =
{

0.7 x ∈ N0̄ \ {0}
1 x = 0 , µN

A0̄
(x) =

{
−0.2 x ∈ N0̄ \ {0}
−1 x = 0 .

De�ne A1̄ = (µP
A1̄

, µN
A1̄

) where

µP
A1̄

(x) =
{

0.5 x ∈ N1̄ \ {0}
1 x = 0 , µN

A1̄
(x) =

{
−0.4 x ∈ N1̄ \ {0}
−1 x = 0 .

De�ne A = (µP
A, µN

A ) by A = A0̄ ⊕ A1̄. Then A = (µP
A, µN

A ) is an bipolar fuzzy
ideal of N.

De�nition 3.4. For any t ∈ [0, 1] and fuzzy subset µP of L, the set U(µP , t) =
{x ∈ L|µP (x) > t} (resp. L(µP , t) = {x ∈ L|µP (x) 6 t}) is called an upper (resp.
lower) t-level cut of µP .

The proofs of the following theorems are omitted.

Theorem 3.5. If A = (µP
A, µN

A ) is an bipolar fuzzy Lie sub-superalgebra (resp.
bipolar fuzzy ideal) of L, then the sets U(µP

A, t) and L(µN
A , t) are Lie sub-superalge-

bras (resp. ideals) of L for every t ∈ ImµP
A ∩ ImµN

A .

Theorem 3.6. If A = (µP
A, µN

A ) is an bipolar fuzzy set of L such that all non-

empty level sets U(µP
A, t) and L(µN

A , t) are Lie sub-superalgebras (resp. ideals) of

L, then A = (µP
A, µN

A ) is an bipolar fuzzy Lie sub-superalgebra (resp. bipolar fuzzy

ideal) of L.

Theorem 3.7. If A = (µP
A, µN

A ) and B = (µP
B , µN

B ) are bipolar fuzzy Lie sub-super-

algebras (resp. bipolar fuzzy ideals) of L, then so is A + B = (µP
A+B , µN

A+B).

Theorem 3.8. If A = (µP
A, µN

A ) and B = (µP
B , µN

B ) are bipolar fuzzy Lie sub-super-

algebras (resp. bipolar fuzzy ideals) of L, then so is A ∩B = (µP
A∩B , µN

A∩B).

Proposition 3.9. Let ϕ : L → L′ be a Lie homomorphism. If A = (µA, µN
A ) is a

bipolar fuzzy Lie sub-superalgebra (resp. bipolar fuzzy ideal) of L′, then the bipolar

fuzzy set ϕ−1(A) of L is also a bipolar fuzzy Lie sub-superalgebra (resp. bipolar

fuzzy ideal).
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Proof. Since ϕ preserves the grading, we have ϕ(x) = ϕ(x0̄+x1̄) = ϕ(x0̄)+ϕ(x1̄) ∈
L′0̄ ⊕ L′1̄, for x = x0̄ + x1̄ ∈ L. We de�ne ϕ−1(A)0̄ = (µP

ϕ−1(A)0̄
, µN

ϕ−1(A)0̄
) where

µP
ϕ−1(A)0̄

= ϕ−1(µP
A0̄

), µN
ϕ−1(A)0̄

= ϕ−1(µN
A0̄

) and ϕ−1(A)1̄ = (µP
ϕ−1(A)1̄

,µN
ϕ−1(A)1̄

)
where µP

ϕ−1(A)1̄
= ϕ−1(µP

A1̄
), µN

ϕ−1(A)1̄
= ϕ−1(µN

A1̄
). By Lemma 2.9, we have that

they are bipolar fuzzy subspaces of L0̄, L1̄, respectively.

Then we de�ne ϕ−1(A)′0̄ = (µP
ϕ−1(A)′0̄

, µN
ϕ−1(A)′0̄

), where µP
ϕ−1(A)′0̄

= ϕ−1(µP
A′

0̄
),

µN
ϕ−1(A)′0̄

= ϕ−1(µN
A′

0̄
), and ϕ−1(A)′1̄ = (µP

ϕ−1(A)′1̄
, µN

ϕ−1(A)′1̄
), where µP

ϕ−1(A)′1̄
=

ϕ−1(µP
A′

1̄
), µN

ϕ−1(A)′1̄
= ϕ−1(µN

A′
1̄
).

Clearly,

µP
ϕ−1(A)′0̄

(x) =
{

µP
ϕ−1(A)0̄

(x) x ∈ L0̄

0 x /∈ L0̄
, µN

ϕ−1(A)′0̄
(x) =

{
µN

ϕ−1(A)′0̄
(x) x ∈ L0̄

0 x /∈ L0̄

and

µP
ϕ−1(A)′1̄

(x) =
{

µP
ϕ−1(A)′1̄

(x) x ∈ L1̄

0 x /∈ L1̄

, µN
ϕ−1(A)′1̄

(x) =
{

µN
ϕ−1(A)′1̄

(x) x ∈ L1̄

0 x /∈ L1̄

These show that ϕ−1(A)′0̄ and ϕ−1(A)′1̄ are the extensions of ϕ
−1(A)0̄ and ϕ−1(A)1̄.

For 0 6= x ∈ L, we have

µP
ϕ−1(A)′0̄

(x) ∧ µP
ϕ−1(A)′1̄

(x) = ϕ−1(µP
A′

0̄
)(x) ∧ ϕ−1(µP

A′
1̄
)(x)

= µP
A′

0̄
(ϕ(x)) ∧ µP

A′
1̄
(ϕ(x)) = 0

and

µN
ϕ−1(A)′0̄

(x) ∨ µN
ϕ−1(A)′1̄

(x) = ϕ−1(µN
A′

0̄
)(x) ∨ ϕ−1(µN

A′
1̄
)(x)

= µN
A′

0̄
(ϕ(x)) ∨ µN

A′
1̄
(ϕ(x)) = 0.

For x ∈ L we have

µP
ϕ−1(A)′0̄+ϕ−1(A)′1̄

(x) = sup
x=a+b

{µP
ϕ−1(A)′0̄

(a) ∧ µP
ϕ−1(A)′1̄

(b)}

= sup
x=a+b

{ϕ−1(µP
A′

0̄
)(a) ∧ ϕ−1(µP

A′
1̄
)(b)}

= sup
x=a+b

{µP
A′

0̄
(ϕ(a)) ∧ µP

A′
1̄
(ϕ(b))}

= sup
ϕ(x)=ϕ(a)+ϕ(b)

{µP
A′

0̄
(ϕ(a)) ∧ µP

A′
1̄
(ϕ(b))}

= µP
A′

0̄+A′
1̄
(ϕ(x)) = µP

A(ϕ(x)) = µP
ϕ−1(A)(x)

and

µN
ϕ−1(A)′0̄+ϕ−1(A)′1̄

(x) = inf
x=a+b

{µN
ϕ−1(A)′0̄

(a) ∨ µN
ϕ−1(A)′1̄

(b)}
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= inf
x=a+b

{ϕ−1(µN
A′

0̄
)(a) ∨ ϕ−1(µN

A′
1̄
)(b)}

= inf
x=a+b

{µN
A′

0̄
(ϕ(a)) ∨ µN

A′
1̄
(ϕ(b))}

= inf
ϕ(x)=ϕ(a)+ϕ(b)

{µN
A′

0̄
(ϕ(a)) ∨ µN

A′
1̄
(ϕ(b))}

= µN
A′

0̄+A′
1̄
(ϕ(x)) = µN

A (ϕ(x)) = µN
ϕ−1(A)(x).

So, ϕ−1(A) = ϕ−1(A)0̄ ⊕ϕ−1(A)1̄ is a Z2-graded bipolar fuzzy vector subspace of
L.

Let x, y ∈ L. Then
(1) µP

ϕ−1(A)([x, y]) = µP
A(ϕ([x, y])) = µP

A([ϕ(x), ϕ(y)]) ≥ µP
A(ϕ(x)) ∧ µP

A(ϕ(y)) =
µP

ϕ−1(A)(x) ∧ µP
ϕ−1(A)(y), and µN

ϕ−1(A)([x, y]) = µN
A (ϕ([x, y])) = µN

A ([ϕ(x),ϕ(y)]) ≤
µN

A (ϕ(x)) ∨ µN
A (ϕ(y)) = µN

ϕ−1(A)(x) ∨ µN
ϕ−1(A)(y), thus ϕ−1(A) is a bipolar fuzzy

Lie sub-superalgebra.

(2) µP
ϕ−1(A)([x, y]) = µP

A(ϕ([x, y])) = µP
A([ϕ(x), ϕ(y)]) ≥ µP

A(ϕ(x)) ∨ µP
A(ϕ(y)) =

µP
ϕ−1(A)(x) ∨ µP

ϕ−1(A)(y), and µN
ϕ−1(A)([x, y]) = µN

A (ϕ([x, y])) = µN
A ([ϕ(x),ϕ(y)]) ≤

µN
A (ϕ(x)) ∧ µN

A (ϕ(y)) = µN
ϕ−1(A)(x) ∧ µN

ϕ−1(A)(y), thus ϕ−1(A) is a bipolar fuzzy
ideal.

Proposition 3.10. Let ϕ : L → L′ be a Lie homomorphism. If A = (µP
A, µN

A ) is

a bipolar fuzzy Lie sub-superalgebra of L, then the bipolar fuzzy set ϕ(A) is also a

bipolar fuzzy Lie sub-superalgebra of L′.

Proof. Since A = (µP
A, µN

A ) is a bipolar fuzzy Lie sub-superalgebra of L, we have
A = A0̄ ⊕ A1̄ where A0̄ = (µA0̄

, µN
A0̄

), A1̄ = (µA1̄
, µN

A1̄
) are bipolar fuzzy vector

subspaces of L0̄ and L1̄, respectively. We de�ne ϕ(A)0̄ = (µP
ϕ(A)0̄

, µN
ϕ(A)0̄

), where
µP

ϕ(A)0̄
= ϕ(µP

A0̄
), µN

ϕ(A)0̄
= ϕ(µN

A0̄
), ϕ(A)1̄ = (µP

ϕ(A)1̄
, µN

ϕ(A)1̄
), where µP

ϕ(A)1̄
=

ϕ(µP
A1̄

), µN
ϕ(A)1̄

= ϕ(µN
A1̄

). By Lemma 2.10, ϕ(A)0̄ and ϕ(A)1̄ are bipolar fuzzy

subspaces of L0̄, L1̄, respectively. And extend them to ϕ(A)′0̄, ϕ(A)′1̄, we de�ne
ϕ(A)′0̄ = (µP

ϕ(A)′0̄
, µN

ϕ(A)′0̄
) where µP

ϕ(A)′0̄
= ϕ(µP

A′
0̄
), µN

ϕ(A)′0̄
= ϕ(µN

A′
0̄
) and ϕ(A)′1̄ =

(µP
ϕ(A)′1̄

, µN
ϕ(A)′1̄

) where µP
ϕ(A)′1̄

= ϕ(µP
A′

1̄
), µN

ϕ(A)′1̄
= ϕ(µN

A′
1̄
). Clearly,

µP
ϕ(A)′0̄

(x) =
{

µP
ϕ(A)0̄

(x) x ∈ L0̄

0 x /∈ L0̄
, µN

ϕ(A)′0̄
(x) =

{
µN

ϕ(A)0̄
(x) x ∈ L0̄

0 x /∈ L0̄
,

µP
ϕ(A)′1̄

(x) =
{

µP
ϕ(A)1̄

(x) x ∈ L1̄

0 x /∈ L1̄
, µN

ϕ(A)′1̄
(x) =

{
µN

ϕ(A)1̄
(x) x ∈ L1̄

0 x /∈ L1̄
.

For 0 6= x ∈ L′ we have

µP
ϕ(A)′0̄

(x) ∧ µP
ϕ(A)′1̄

(x) = ϕ(µP
A′

0̄
)(x) ∧ ϕ(µP

A′
1̄
)(x) = sup

x=ϕ(a)

{µP
A′

0̄
(a)} ∧ sup

x=ϕ(a)

{µP
A′

1̄
(a)}

= sup
x=ϕ(a)

{µP
A′

0̄
(a) ∧ µP

A′
1̄
(a)} = 0,



146 M. Akram, W. Chen, Y. Yin

µN
ϕ(A)′0̄

(x) ∨ µN
ϕ(A)′1̄

(x) = ϕ(µN
A′

0̄
)(x) ∨ ϕ(µN

A′
1̄
)(x) = inf

x=ϕ(a)
{µN

A′
0̄
(a)} ∨ inf

x=ϕ(a)
{µN

A′
1̄
(a)}

= inf
x=ϕ(a)

{µN
A′

0̄
(a) ∨ µN

A′
1̄
(a)} = 0.

Let y ∈ L′. Then

µP
ϕ(A)′0̄+ϕ(A)′1̄

(y) = sup
y=a+b

{µP
ϕ(A)′0̄

(a) ∧ µP
ϕ(A)′1̄

(b)} = sup
y=a+b

{ϕ(µP
A′

0̄
)(a) ∧ ϕ(µP

A′
1̄
)(b)}

= sup
y=a+b

{ sup
a=ϕ(m)

{µP
A′

0̄
(m)} ∧ sup

b=ϕ(n)

{µP
A′

1̄
(n)}}

= sup
y=ϕ(x)

{ sup
x=m+n

{µP
A′

0̄
(m) ∧ µP

A′
1̄
(n)}}

= sup
y=ϕ(x)

{(µP
A′

0̄+A′
1̄
)(x)} = sup

y=ϕ(x)

{µP
A(x)} = µP

ϕ(A)(y),

µN
ϕ(A)′0̄+ϕ(A)′1̄

(y) = inf
y=a+b

{µN
ϕ(A)′0̄

(a) ∨ µN
ϕ(A)′1̄

(b)} = inf
y=a+b

{ϕ(µN
A′

0̄
)(a) ∨ ϕ(µN

A′
1̄
)(b)}

= inf
y=a+b

{ inf
a=ϕ(m)

{µN
A′

0̄
(m)} ∨ inf

b=ϕ(n)
{µN

A′
1̄
(n)}}

= inf
y=ϕ(x)

{ inf
x=m+n

{µN
A′

0̄
(m) ∨ µN

A′
1̄
(n)}}

= inf
y=ϕ(x)

{(µN
A′

0̄+A′
1̄
)(x)} = inf

y=ϕ(x)
{µN

A (x)} = µN
ϕ(A)(y).

So ϕ(A) = ϕ(A)0̄ ⊕ ϕ(A)1̄ is a Z2-graded bipolar fuzzy vector subspace.

Let x, y ∈ L′. It is enough to show µP
ϕ(A)([x, y]) ≥ µP

ϕ(A)(x) ∧ µP
ϕ(A)(y) and

µN
ϕ(A)([x, y]) ≤ µN

ϕ(A)(x) ∨ µN
ϕ(A)(y). If µP

ϕ(A)([x, y]) < µP
ϕ(A)(x)∧ µP

ϕ(A)(y), we
have µP

ϕ(A)([x, y])< µP
ϕ(A)(x) and µP

ϕ(A)([x, y]) < µP
ϕ(A)(y). We choose a number

t ∈ [0, 1] such that µP
ϕ(A)([x, y]) < t < µP

ϕ(A)(x) and µP
ϕ(A)([x, y]) < t < µP

ϕ(A)(y).
Then there exist a ∈ ϕ−1(x), b ∈ ϕ−1(y) such that µP

A(a) > t, µP
A(b) > t. Since

ϕ([a, b]) = [ϕ(a), ϕ(b)] = [x, y], we have µP
ϕ(A)([x, y]) = sup

[x,y]=ϕ([a,b])

{µP
A([a, b])}≥

µP
A([a, b]) > µP

A(a) ∧ µP
A(b) > t > µP

ϕ(A)([x, y]). This is a contradiction.

Suppose that µN
ϕ(A)([x, y]) >µN

ϕ(A)(x)∨µN
ϕ(A)(y), we have µN

ϕ(A)([x, y])>µN
ϕ(A)(x)

and µN
ϕ(A)([x, y]) > µN

ϕ(A)(y). We choose t ∈ [−1, 0] such that ϕ(µN )([x, y]) > t >

µN
ϕ(A)(x) and µN

ϕ(A)([x, y]) > t > µN
ϕ(A)(y). Then there exist a ∈ ϕ−1(x), b ∈ ϕ−1(y)

such that µN
A (a) < t, µN

A (b) < t. Since ϕ([a, b]) = [ϕ(a), ϕ(b)] = [x, y], we have
µN

ϕ(A)([x, y]) = inf
[x,y]=ϕ([a,b])

{µN
A ([a, b])} 6 µN

A ([a, b]) ≤ µN
A (a) ∨ µN

A (b) < t <

µN
ϕ(A)([x, y]). This is a contradiction.

Therefore, ϕ(A) is a bipolar fuzzy Lie sub-superalgebra of L′.

We state the following results without proofs.
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Proposition 3.11. Let ϕ : L → L′ be a surjective Lie homomorphism. If A =
(µP

A, µN
A ) is a bipolar fuzzy ideal of L, then ϕ(A) is also a bipolar fuzzy ideal of

L′.

Theorem 3.12. Let ϕ : L → L′ be a surjective Lie homomorphism. Then for any

bipolar fuzzy ideals A = (µP
A, µN

A ) and B = (µB , µN
B ) of L we have ϕ(A + B) =

ϕ(A) + ϕ(B).

4. Bipolar fuzzy bracket product

De�nition 4.1. For any bipolar fuzzy sets A = (µP
A, µN

A ) and B = (µP
B , µN

B ) of L,
we de�ne the bipolar fuzzy bracket product [A,B] = (µP

[A,B], µ
N
[A,B]) putting

µP
[A,B](x) =


sup

x=
∑

i∈N

αi[xi,yi]

{min
i∈N

{µP
A(xi) ∧ µP

B(yi)}} where αi ∈ F , xi, yi ∈ L

0 if x is not expressed as x =
∑

i∈N

αi[xi, yi]

and

µN
[A,B](x) =


inf

x=
∑

i∈N

αi[xi,yi]
{max

i∈N
{µN

A (xi) ∨ µN
B (yi)}} where αi ∈ F , xi, yi ∈ L

0 if x is not expressed as x =
∑

i∈N

αi[xi, yi]
.

Lemma 4.2. Let A1 = (µP
A1

, µN
A1

), A2 = (µP
A2

, µN
A2

), B1 = (µP
B1

, µN
B1

) and B2 =
(µP

B2
, µN

B2
) be bipolar fuzzy sets of L such that A1 ⊆ A2, B1 ⊆ B2. Then [A1, B1] ⊆

[A2, B2]. In particular, if A = (µP
A, µN

A ) and B = (µP
B , µN

B ) are bipolar fuzzy sets

of L, then [A1, B] ⊆ [A2, B] and [A,B1] ⊆ [A,B2].

Lemma 4.3. Let A1 = (µP
A1

, µN
A1

), A2 = (µP
A2

, µN
A2

), B1 = (µP
B1

, µN
B1

), B2 =
(µP

B2
, µN

B2
) and A = (µP

A, µN
A ), B = (µP

B , µN
B ) be any bipolar fuzzy vector subspaces

of L. Then [A1+A2, B] = [A1, B]+[A2, B] and [A,B1+B2] = [A,B1]+[A,B2].

Lemma 4.4. Let A = (µP
A, µN

A ) and B = (µP
B , µN

B ) be bipolar fuzzy vector sub-

spaces of L. Then for any α, β ∈ F , we have [αA, B] = α[A,B] and [A, βB] =
β[A,B].

Theorem 4.5. Let A1 = (µP
A1

, µN
A1

), A2 = (µP
A2

, µN
A2

), B1 = (µP
B1

, µN
B1

), B2 =
(µP

B2
, µN

B2
) and A = (µP

A, µN
A ), B = (µP

B , µN
B ) be bipolar fuzzy vector subspaces of

L. Then for any α, β ∈ F , we have

[αA1 + βA2, B] = α[A1, B] + β[A2, B],

[A,αB1 + βB2] = α[A,B1] + β[A,B2].

Proof. The results follow from Theorem 4.3 and Lemma 4.4. 2
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Lemma 4.6. Let A = (µP
A, µN

A ) and B = (µP
B , µN

B ) be any two bipolar fuzzy vector

subspaces of L. Then [A,B] is a bipolar fuzzy vector subspace of L.

Let A = (µP
A, µN

A ) and B = (µP
B , µN

B ) be Z2-graded bipolar fuzzy vector sub-
spaces of L. Then A = A0̄ ⊕ A1̄, B = B0̄ ⊕ B1̄, where A0̄, B0̄ are bipolar fuzzy
vector subspaces of L0̄ and A1̄, B1̄ are bipolar fuzzy vector subspaces of L1̄.

We de�ne:

• [A0̄, B0̄] = (µP
[A0̄,B0̄]

, µN
[A0̄,B0̄]

), where

µP
[A0̄,B0̄]

(x) = sup
x=

∑
i∈N

αi[xi,yi]

{min
i∈N

{µP
A0̄

(xi) ∧ µP
B0̄

(yi)}}

and
µN

[A0̄,B0̄]
(x) = inf

x=
∑

i∈N

αi[xi,yi]
{max

i∈N
{µN

A0̄
(xi) ∨ µN

B0̄
(yi)}},

for xi ∈ L0̄ and yi ∈ L0̄,

• [A0̄, B1̄] = (µP
[A0̄,B1̄]

, µN
[A0̄,B1̄]

), where

µP
[A0̄,B1̄]

(x) = sup
x=

∑
i∈N

αi[xi,yi]

{min
i∈N

{µP
A0̄

(xi) ∧ µP
B1̄

(yi)}}

and
µN

[A0̄,B1̄]
(x) = inf

x=
∑

i∈N

αi[xi,yi]
{max

i∈N
{µN

A0̄
(xi) ∨ µN

B1̄
(yi)}},

for xi ∈ L0̄ and yi ∈ L1̄,

• [A1̄, B0̄] = (µP
[A1̄,B0̄]

, µN
[A1̄,B0̄]

), where

µP
[A1̄,B0̄]

(x) = sup
x=

∑
i∈N

αi[xi,yi]

{min
i∈N

{µP
A1̄

(xi) ∧ µP
B0̄

(yi)}}

and
µN

[A1̄,B0̄]
(x) = inf

x=
∑

i∈N

αi[xi,yi]
{max

i∈N
{µN

A1̄
(xi) ∨ µN

B0̄
(yi)}},

for xi ∈ L1̄ and yi ∈ L0̄,

• [A1̄, B1̄] = (µP
[A1̄,B1̄]

, µN
[A1̄,B1̄]

), where

µP
[A1̄,B1̄]

(x) = sup
x=

∑
i∈N

αi[xi,yi]

{min
i∈N

{µP
A1̄

(xi) ∧ µP
B1̄

(yi)}}

and
µN

[A1̄,B1̄]
(x) = inf

x=
∑

i∈N

αi[xi,yi]
{max

i∈N
{µN

A1̄
(xi) ∨ µN

B1̄
(yi)}},
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for xi ∈ L1̄ and yi ∈ L1̄.

Note that [A0̄, B0̄], [A1̄, B1̄] are bipolar fuzzy sets of L0̄ and [A0̄, B1̄], [A1̄, B0̄]
are bipolar fuzzy sets of L1̄.

Lemma 4.7. Let A = (µP
A, µN

A ) and B = (µP
B , µN

B ) be any two Z2-graded bipolar

fuzzy vector subspaces of L. Then

[A,B]0̄ := [A0̄, B0̄] + [A1̄, B1̄] is a bipolar fuzzy vector subspace of L0̄,

[A,B]1̄ := [A0̄, B1̄] + [A1̄, B0̄] is a bipolar fuzzy vector subspace of L1̄ and

[A,B] is a Z2-graded bipolar fuzzy vector subspace of L.

Proof. Since [A0̄, B0̄] and [A1̄, B1̄] are bipolar fuzzy vector subspaces of L0̄ by
Lemma 5.5, we can get that [A,B]0̄ := [A0̄, B0̄] + [A1̄, B1̄] is a bipolar fuzzy
vector subspace of L0̄ by Lemma 2.6. Similarly, [A,B]1̄ := [A0̄, B1̄] + [A1̄, B0̄] is a
bipolar fuzzy vector subspace of L1̄. We de�ne [A,B]′0̄ := [A′

0̄, B
′
0̄] + [A′

1, B
′
1̄] and

[A,B]′1̄ := [A′
0̄, B

′
1̄] + [A′

1, B
′
0̄].

Let x ∈ L0̄. We have

µP
[A,B]′0̄

(x) = (µP
[A′

0̄,B′
0̄]+[A′

1̄,B′
1̄]

)(x)

= sup
x=a+b

{µP
[A′

0̄,B′
0̄]

(a) ∧ µP
[A′

1̄,B′
1̄]

(b)}

= sup
x=a+b

{ sup
a=

∑
i∈N

αi[ki,li]

{min
i∈N

{µP
A′

0̄
(ki) ∧ µP

B′
0̄
(li)}} ∧

∧ sup
b=

∑
i∈N

βi[mi,ni]

{min
i∈N

{µP
A′

1̄
(mi) ∧ µP

B′
1̄
(ni)}}

= sup
x=a+b

{ sup
a=

∑
i∈N

αi[ki,li]

{min
i∈N

{µP
A0̄

(ki) ∧ µP
B0̄

(li)}} ∧

∧ sup
b=

∑
i∈N

βi[mi,ni]

{min
i∈N

{µP
A1̄

(mi) ∧ µP
B1̄

(ni)}}

= sup
x=a+b

{µP
[A0̄,B0̄]

(a) ∧ µP
[A1̄,B1̄]

(b)} = (µP
[A0̄,B0̄]+[A1̄,B1̄]

)(x) = µP
[A,B]0̄

(x)

and

µN
[A,B]′0̄

(x) = (µN
[A′

0̄,B′
0̄]+[A′

1̄,B′
1̄]

)(x) = inf
x=a+b

{µN
[A′

0̄,B′
0̄]

(a) ∨ µN
[A′

1̄,B′
1̄]

(b)}

= inf
x=a+b

{ inf
a=

∑
i∈N

αi[ki,li]
{max

i∈N
{µN

A′
0̄
(ki) ∨ µN

B′
0̄
(li)}} ∨

∨ inf
b=

∑
i∈N

βi[mi,ni]
{max

i∈N
{µN

A′
1̄
(mi) ∨ µN

B′
1̄
(ni)}}
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= inf
x=a+b

{ inf
a=

∑
i∈N

αi[ki,li]
{max

i∈N
{µN

A0̄
(ki) ∨ µN

B0̄
(li)}} ∨

∨ inf
b=

∑
i∈N

βi[mi,ni]
{max

i∈N
{µN

A1̄
(mi) ∨ µN

B1̄
(ni)}}

= inf
x=a+b

{µN
[A0̄,B0̄]

(a) ∨ µN
[A1̄,B1̄]

(b)} = (µN
[A0̄,B0̄]+[A1̄,B1̄]

)(x) = µN
[A,B]0̄

(x).

Now let x /∈ L0̄. Then µP
[A,B]′0̄

(x) = 0 and µN
[A,B]′0̄

(x) = −1. Similarly, for

x ∈ L1̄, we have µP
[A,B]′1̄

(x) = µP
[A,B]1̄

(x) and µN
[A,B]′1̄

(x) = µN
[A,B]1̄

(x). For x /∈ L1̄,

we have µP
[A,B]′1̄

(x) = 0 and µN
[A,B]′1̄

(x) = −1. Thus [A,B]′0̄ and [A,B]′1̄ are the

extensions of [A,B]0̄ and [A,B]1̄.

Clearly, [A,B]′0̄ ∩ [A,B]′1̄ = (µP
[A,B]′0̄∩[A,B]′1̄

, µN
[A,B]′0̄∩[A,B]′1̄

), where

µP
[A,B]′0̄∩[A,B]′1̄

(x) = µP
[A,B]′0̄

(x) ∧ µP
[A,B]′1̄

(x) =
{

1 x = 0
0 x 6= 0 ,

µN
[A,B]′0̄∩[A,B]′1̄

(x) = µN
[A,B]′0̄

(x) ∨ µN
[A,B]′1̄

(x) =
{
−1 x = 0

0 x 6= 0 .

For x ∈ L we have

[A,B](x) = [A′
0̄ + A′

1̄, B
′
0̄ + B′

1̄](x) = ([A′
0̄, B

′
0̄] + [A′

1̄, B
′
1̄] + [A′

0̄, B
′
1̄] + [A′

1̄, B
′
0̄])(x)

= ([A,B]′0̄ + [A,B]′1̄)(x).

Hence [A,B] = [A,B]0̄⊕ [A,B]1̄ is a Z2-graded bipolar fuzzy vector subspace.

Lemma 4.8. Let A = (µP
A, µN

A ) and B = (µP
B , µN

B ) be any two Z2-graded bipolar

fuzzy vector subspaces of L. Then [A,B] = [B,A].

The following theorem is our main theorem in this section. The proof is base
on Lemma 4.8. The left is similar to intuitionistic fuzzy ideal of Lie superalgebras.
For more details see [10].

Theorem 4.9. Let A = (µP
A, µN

A ) and B = (µP
B , µN

B ) be any two bipolar fuzzy

ideals of L. Then [A,B] is also a bipolar fuzzy ideal of L.

5. Solvable and nilpotent bipolar fuzzy ideals

De�nition 5.1. Let A = (µP
A, µN

A ) be a bipolar fuzzy ideal of L. De�ne inductively
a sequence of bipolar fuzzy ideals of L by A(0) = A, A(1) = [A(0), A(0)], A(2) =
[A(1), A(1)], · · · , A(n) = [A(n−1), A(n−1)], then A(n) is called the nth derived bipolar

fuzzy ideal of L. In which, A(i+1) = (µP
A(i+1) , µ

N
A(i+1)), where
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µP
A(i+1)(x) =


sup

x=
∑

j∈N

αj [xj ,yj ]

{min
j∈N

{µP
A(i)(xj) ∧ µP

A(i)(yj)}} where αj ∈ F , xj , yj ∈ L

0 if x is not expressed as x =
∑

j∈N

αj [xj , yj ]

and

µN
A(i+1)(x) =


inf

x=
∑

j∈N

αj [xj ,yj ]
{max

j∈N
{µN

A(i)(xj) ∨ µN
A(i)(yj)}} where αj ∈ F , xj , yj ∈ L

0 if x is not expressed as x =
∑

j∈N

αj [xj , yj ].
.

From the de�nition, we can get µP
A(0) ⊇ µP

A(1) ⊇ µP
A(2) ⊇ · · · ⊇ µP

A(n) ⊇ · · · and
µN

A(0) ⊆ µN
A(1) ⊆ µN

A(2) ⊆ · · · ⊆ µN
A(n) ⊆ · · · .

De�nition 5.2. Let A(n) be as above. De�ne: η(n) = sup{µP
A(n)(x) : 0 6= x ∈ L}

and κ(n) = inf{µN
A(n)(x) : 0 6= x ∈ L}. Then it is clear that η(0) > η(1) > η(2) >

· · · > η(n) > · · · and κ(0) 6 κ(1) 6 κ(1) 6 · · · 6 κ(n) 6 · · · .

De�nition 5.3. An bipolar fuzzy ideal A = (µP
A, µN

A ) of L is called solvable, if
there is a positive integer n such that η(n) = 0 and κ(n) = 0. So, it is a solvable
bipolar fuzzy ideal, then there is positive integer n such that µP

A(n) = 10 and

µN
A(n) = (−1)0.

Example 5.4. For the Lie superalgebra L from Example 3.3 we de�ne A0̄ =
(µP

A0̄
, µN

A0̄
), where µP

A0̄
(x) = 1, µN

A0̄
(x) = −1 for all x ∈ N0̄. Then it is a bipolar

fuzzy subspace of N0̄. Let x ∈ N1̄. Then x = k1a1 + k2a2 + k3b1 + k4b2, for
ki 6= 0 and i = 1, 2, 3, 4. We de�ne A1̄ = (µP

A1̄
, µN

A1̄
) where µP

A1̄
(x) = µP

A1̄
(a1) ∧

µP
A1̄

(a2) ∧ µP
A1̄

(b1) ∧ µP
A1̄

(b2), in which µP
A1̄

(a1) = 0.2, µP
A1̄

(a2) = 1, µP
A1̄

(b1) = 0.1,
µP

A1̄
(b2) = 1, µP

A1̄
(0) = 1, and µN

A1̄
(x) = µN

A1̄
(a1) ∨ µN

A1̄
(a2) ∨ µN

A1̄
(b1) ∨ µN

A1̄
(b2), in

which µN
A1̄

(a1) = −0.7, µN
A1̄

(a2) = −1, µN
A1̄

(b1) = −0.9, µN
A1̄

(b2) = −1, µN
A1̄

(0) =
−1. Then A is a bipolar fuzzy subspace of N1̄.

Let x ∈ N . Then x = ke + k1a1 + k2a2 + k3b1 + k4b2 for k, ki 6= 0 and
i = 1, 2, 3, 4. We de�ne A = (µP

A, µN
A ) where µP

A(x) = µP
A(e) ∧ µP

A(a1) ∧ µP
A(a2) ∧

µP
A(b1) ∧ µP

A(b2), in which µP
A(e) = 1, µP

A(a1) = 0.2, µP
A(a2) = 1, µP

A(b1) = 0.1,
µP

A(b2) = 1, µP
A(0) = 1 and µN

A (x) = µN
B (e)∨µN

A (a1)∨µN
A (a2)∨µN

A (b1)∨µN
A (b2), in

which µN
A (e) = −1, µN

A (a1) = −0.7, µN
A (a2) = −1, µN

A (b1) = −0.9, µN
A (b2) = −1,

µN
A (0) = −1. Then A = A0̄ ⊕A1̄ is a bipolar fuzzy ideal of N .

Let A(0) = A. Note that [ai, bi] = e and the other brackets are zero. Then
µP

A(0)(x) = 0.1, µN
A(0)(x) = −0.7. We de�ne A(1) = [A(0), A(0)]. If x ∈ N1, then x

can not be expressed as x =
∑

αi[xi, yi], xi, yi ∈ N , so µP
A(1)(x) = 0, µN

A(1)(x) = 0.
If x ∈ N0, then x can be expressed as x = α1[a1, b1] + α2[a2, b2], α1, α2 ∈ k. We
calculate
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µP
A(1)(x) = sup

x=
∑

i=1,2
αi[ai,bi]

{min
i=1,2

{µP
A(0)(ai) ∧ µP

A(0)(bi)}} = 0.1,

µN
A(1)(x) = inf

x=
∑

i=1,2
αi[ai,bi]

{max
i=1,2

{µN
A(0)(ai) ∨ µN

A(0)(bi)}} = −1.

De�ne A(2) = [A(1), A(1)], we calculate

µP
A(2)(x) = sup

x=
∑

i=1,2
αi[ai,bi]

{min
i=1,2

{µP
A(1)(ai) ∧ µP

A(1)(bi)}} = 0,

µN
A(2)(x) = inf

x=
∑

i=1,2
αi[ai,bi]

{max
i=1,2

{µN
A(1)(ai) ∨ µN

A(1)(bi)}} = 0.

So, η(0) > η(1) > η(2) = 0 and κ(0) 6 κ(1) 6 κ(2) = 0. These show that A is a
solvable bipolar fuzzy ideal of N .

From the de�nition of solvable bipolar fuzzy ideals, we can easily get

Lemma 5.5. Let A = (µP
A, µN

A ) be a bipolar fuzzy Lie ideal of L. Then A =
(µP

A, µN
A ) is a solvable bipolar fuzzy ideal if and only if there is a positive integer n

such that µP
A(m) = 10, µ

N
A(m) = (−1)0 for all m > n.

Theorem 5.6. Homomorphic images of solvable bipolar fuzzy ideals are also solv-

able bipolar fuzzy Lie ideals.

Proof. Let ϕ : L → L′ be a homomorphism of Lie superalgebra and assume that
A = (µP

A, µN
A ) is a bipolar fuzzy ideal of L. Let ϕ(A) = B, i.e, µP

B = µP
ϕ(A), µ

N
B =

µN
ϕ(A). We prove µP

ϕ(A(n))
= µP

B(n) and µN
ϕ(A(n))

= µN
B(n) by induction on n, where

n is any positive integer. Indeed, let y ∈ L′. Consider n = 1,

µP
ϕ(A(1))(y) = µP

ϕ([A,A])(y) = sup
y=ϕ(x)

{µP
[A,A](x)}

= sup
y=ϕ(x)

{ sup
x=

∑
i∈N

αi[xi,yi]

{min
i∈N

(µP
A(xi) ∧ µP

A(yi))}}

= sup
y=

∑
i∈N

αiϕ[xi,yi]

{min
i∈N

(µP
A(xi) ∧ µP

A(yi))}

= sup
y=

∑
i∈N

αi[ai,bi]

{min
i∈N

(µP
A(xi) ∧ µP

A(yi)) : ϕ(xi) = ai, ϕ(yi) = bi}

= sup∑
i∈N

αi[ai,bi]=y

{min
i∈N

(µP
B(ai) ∧ µP

B(bi))} = µP
[B,B](y) = µP

B(1)(y),
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and

µN
ϕ(A(1))(y) = µN

ϕ([A,A])(y) = inf
y=ϕ(x)

{µN
[A,A](x)}

= inf
y=ϕ(x)

{ inf
x=

∑
i∈N

αi[xi,yi]
{max

i∈N
(µN

A (xi) ∨ µN
A (yi))}}

= inf
y=

∑
i∈N

αiϕ[xi,yi]
{max

i∈N
(µN

A (xi) ∨ µN
A (yi))}

= inf
y=

∑
i∈N

αi[ai,bi]
{max

i∈N
(µN

A (xi) ∨ µN
A (yi)) : ϕ(xi) = ai, ϕ(yi) = bi}

= inf∑
i∈N

αi[ai,bi]=y
{max

i∈N
(µN

B (ai) ∨ µN
B (bi))} = µN

[B,B](y) = µN
B(1)(y).

These prove the case of n = 1. Suppose that the case of n − 1 is true, then
µP

ϕ(A(n))
= µP

ϕ([A(n−1),A(n−1)])
= µP

[ϕ(A(n−1)),ϕ(A(n−1))]
= µP

[B(n−1),B(n−1)]
= µP

B(n) and

µN
ϕ(A(n))

= µN
ϕ([A(n−1),A(n−1)])

= µN
[ϕ(A(n−1)),ϕ(A(n−1))]

= µN
[B(n−1),B(n−1)]

= µN
B(n) .

Let m be a positive integer such that µP
A(m) = 10 and µN

A(m) = (−1)0. Then for

any 0 6= y ∈ L′, we get µP
B(m)(y) = µP

ϕ(A(m))
(y) = sup

y=ϕ(x)

{10(x)} = 0, µN
B(m)(y) =

ϕ(µN
A(m))(y) = inf

y=ϕ(x)
{(−1)0(x)} = 0. So µP

B(m) = 10 and µN
B(m) = (−1)0.

Let A = (µP
A, µN

A ) be a bipolar fuzzy ideal of L and I be an ideal of L. We can
prove that A/I is a bipolar fuzzy ideal of L/I.

Theorem 5.7. Let A = (µP
A, µN

A ) be an bipolar fuzzy ideal of L and A/I be a

solvable bipolar fuzzy ideal of L/I. If B = (µP
B , µN

B ) is a solvable bipolar fuzzy

ideal of L and is also a bipolar fuzzy ideal of A = (µP
A, µN

A ) such that B(I) = A(I),
then A = (µP

A, µN
A ) is solvable.

Proof. Let ϕ be the canonical projection from L to L/I. From the proof of
Theorem 5.6, we get µP

ϕ(A(n))
= µP

(A/I)(n) and µN
ϕ(A(n))

= µN
(A/I)(n) . Since A/I is

solvable, there exists n such that µP
(A/I)(n) = 10 and µN

(A/I)(n) = (−1)0.

For 0 6= ȳ ∈ L/I, we have sup
m∈ϕ−1(ȳ)

{µP
A(n)(m)} = µP

ϕ(A(n))
(ȳ) = µP

(A/I)(n)(ȳ) = 0

and inf
m∈ϕ−1(ȳ)

{µN
A(n)(m)} = µN

ϕ(A(n))
(ȳ) = µN

(A/I)(n)(ȳ) = 0 . Notice that m ∈ L

and m 6= 0, we get µP
A(n)(m) = 0 and µN

A(n)(m) = 0.

For ȳ = 0, we have sup
m∈ϕ−1(0)

{µP
A(n)(m)} = µP

ϕ(A(n))
(0) = 1 and inf

m∈ϕ−1(0)
{µN

A(n)(m)}

= µN
ϕ(A(n))

(0) = −1. Since ϕ−1(0) = I and B(I) = A(I), we have µP
B(n)(I) =
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µP
A(n)(I) and µN

B(n)(I) = µN
A(n)(I). For any x ∈ I, B is solvable, then there exists n

such that µP
B(n) = 10 and µN

B(n) = (−1)0, we have µP
A(n) = 10 and µN

A(n) = (−1)0.

Hence for any x ∈ L, we always have that µP
A(n) = 10 and µN

A(n) = (−1)0, which
imply that A = (µP

A, µN
A ) is solvable. 2

Lemma 5.8. Let A = (µP
A, µN

A ) and B = (µP
B , µN

B ) be bipolar fuzzy ideals of L.
Then (A⊕B)(n) = A(n) ⊕B(n).

Proof. Let 0 6= x ∈ L. Then we have [A,B] = (µP
[A,B], µ

P
[A,B]), where

µP
[A,B](x) = sup

x=
∑

ißN

αi[xi,yi]

{min
x∈N

(µP
A(xi) ∧ µP

B(yi))} ≤ µP
A(x) ∧ µP

B(x) = 0,

µN
[A,B](x) = inf

x=
∑

ißN

αi[xi,yi]
{max

x∈N
(µN

A (xi) ∨ µN
B (yi))} ≥ µN

A (x) ∨ µN
B (x) = 0.

So µP
[A,B] = 10 and µN

[A,B] = (−1)0. Consequently, for any positive integer

a, b, we have µP
[A(a),B(b)]

= 10 and µN
[A(a),B(b)]

= (−1)0. We prove the lemma by

induction on n.
Let n = 1. Then

(A⊕B)(1) = [A⊕B,A⊕B] = [A,A]⊕ [A,B]⊕ [B,A]⊕ [B,B] = A(1) ⊕B(1).

Suppose that the case of n− 1 is true, then

(A⊕B)(n) = [(A⊕B)(n−1), (A⊕B)(n−1)]

= [A(n−1) ⊕B(n−1), A(n−1) ⊕B(n−1)] = A(n) ⊕B(n).

So we get (A⊕B)(n) = A(n) ⊕B(n). 2

Theorem 5.9. Direct sum of any solvable bipolar fuzzy Lie ideals is also a solvable

bipolar Lie ideal.

Proof. Let A = (µP
A, µN

A ) and B = (µP
B , µN

B ) be solvable bipolar fuzzy ideals.
Then there exist positive integers m,n such that µP

A(m) = 10, µ
N
A(m) = (−1)0 and

µP
B(n) = 10, µ

N
B(n) = (−1)0. Since (A ⊕ B)(m+n) = A(m+n) ⊕ B(m+n), we have

µP
(A⊕B)(m+n) = µP

A(m+n)⊕B(m+n) = 10 and µN
(A⊕B)(m+n) = µN

A(m+n)⊕B(m+n) = (−1)0.
So A⊕B is a solvable bipolar fuzzy Lie ideal. 2

De�nition 5.10. Let A = (µP
A, µN

A ) be a bipolar fuzzy ideal of L. De�ne induc-
tively a sequence of bipolar fuzzy ideals of L by A0 = A, A1 = [A,A0], A2 =
[A,A1], · · · , An = [A,An−1] · · · , which is called the descending central series of a
bipolar fuzzy ideal A = (µP

A, µN
A ) of L. We get µP

A0 ⊇ µP
A1 ⊇ µP

A2 ⊇ · · · ⊇ µP
An ⊇

· · · and µN
A0 ⊆ µN

A1 ⊆ µN
A2 ⊆ · · · ⊆ µN

An ⊆ · · ·

De�nition 5.11. For any bipolar fuzzy Lie ideal A = (µP
A, µN

A ), de�ne ηn =
sup{µP

An(x) : 0 6= x ∈ L} and κn = inf{µN
An(x) : 0 6= x ∈ L}, for any positive
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integer n. The bipolar fuzzy ideal is called a nilpotent bipolar fuzzy ideal, if there
is a positive integer m such that ηm = 0 and κm = 1, or equivalently, µP

Am = 10

and µN
Am = (−1)0.

Example 5.12. Let us take the basis h, e, f of sl(1|1) as follows

h =
(

1 0
0 1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
. (1)

Then h is an even element, and e and f are odd element. Their bracket products
are as follows: [e, f ] = [f, e] = h, the other brackets = 0. Then sl(1|1) is a
three-dimensional Lie superalgebra.

De�ne A0̄ = (µP
A0̄

, µN
A0̄

) : sl(1|1)0̄ → [−1, 1] where

µP
A0̄

(x) =
{

0.6 x = h
1 otherwise

, µN
A0̄

(x) =
{

−0.4 x = h
−1 otherwise

De�ne A1̄ = (µP
A1̄

, µN
A1̄

) : sl(1|1)1̄ → [−1, 1] where

µP
A1̄

(x) =

 0.3 x = e
0.5 x = f
1 otherwise

, µN
A1̄

(x) =

 −0.7 x = e
−0.5 x = f
−1 otherwise

De�ne A = (µP
A, µN

A ) : sl(1|1) → [−1, 1] where µP
A(x) = µP

A0̄
(x0̄) ∧ µP

A1̄
(x1̄) and

µN
A (x) = µN

A0̄
(x0̄) ∨ µN

A1̄
(x1̄). Then A is a bipolar fuzzy ideal of sl(1|1).

Let A0 = A. We de�ne A1 = [A,A0], then if x ∈ sl(1|1)1̄, x can not be
expressed as x =

∑
αi[xi, yi], xi, yi ∈ sl(1|1) then µP

A1(x) = 0, µN
A1(x) = 0. If

x ∈ sl(1|1)0̄, x = α[e, f ], α ∈ F , then µP
A1(x) = sup{µP

A(e) ∧ µP
A0(f)} = 0.3 and

µN
A1(x) = inf{µN

A (e) ∨ µN
A0(f)} = −0.5.

De�ne A2 = [A,A1], we calculate if x ∈ sl(1|1)1̄, µP
A2(x) = 0, µN

A2(x) = 0.
If x ∈ sl(1|1)0̄, µP

A2(x) = sup{µP
A(e) ∧ µP

A1(f)} = 0 and µN
A2(x) = inf{µN

A (e) ∨
µN

A1(f)} = 0. Then we get η0 > η1 > η2 = 0 and κ0 ≤ κ1 6 κ2 = 0. So A is a
nilpotent bipolar fuzzy Lie ideal of sl(1|1).

Theorem 5.13. Homomorphic images of nilpotent bipolar fuzzy ideals are also

nilpotent bipolar fuzzy Lie ideals. Direct sum of nilpotent bipolar fuzzy ideals is

also a nilpotent bipolar fuzzy ideal.

Theorem 5.14. If A = (µP
A, µN

A ) is a nilpotent bipolar fuzzy ideal of L, then it is

solvable.
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Recursively r-di�erentiable quasigroups

within S-systems and MDS-codes

Galina B. Belyavskaya

Abstract. We study recursively r-di�erentiable binary quasigroups and such quasigroups with
an additional property (strongly recursively r-di�erentiable quasigroups). These quasigroups
we �nd in S-systems of quasigroups and give a lower bound of the parameters of idempotent
2-recursive MDS-codes that respect to strongly recursively r-di�erentiable quasigroups. Some
illustrative examples are given.

1. Introduction

In the article [7], the notion of a recursively r-di�erentiable k-ary quasigroup
which arise in the connect complete k-recursive codes is introduced. The minimum
Hamming distance of these codes achieves the Singleton bound.

Let Q = {a1, a2, . . . , aq} be a �nite set. Any subset K ⊆ Qn is called a code

of length n or an n-code over the alphabet Q. An n-code is called an [n, k]Q-code

if | K |= qk. An [n, k, d]Q-code is an [n, k]Q-code with the minimum Hamming
distance d between code words. An [n, k, d]Q-code is an MDS-code if d = n−k +1
(d 6 n− k + 1 is the Singleton bound).

A code K is a complete k-recursive code if there exists a function f : Qk → Q
(k 6 n) such that K is the set of all words u(0, n− 1) = (u(0), . . . , u(n − 1))
satisfying the condition u(i + k) = f(u(i), . . . , u(i + k − 1)) for i ∈ 0, n− k − 1,
where u(0), . . . , u(k − 1) are arbitrary elements of Q.

This code is a error-correcting code and is denoted by K(n, f). Any subcode
K1 ⊆ K of a complete k-recursive code is called k-recursive.

A complete k-recursive code K(n, f) is called idempotent if the function f is
idempotent, that is f(x, x, . . . , x) = x.

Let nr(k, q) (nir(k, q)) denote the maximal number n such that there exists
a complete k-recursive MDS-code (a complete idempotent k-recursive MDS-code)
over an alphabet of q elements.

By Theorem 6 of [7], the equality nr(2, q) = q+1 holds for any primary number
(prime power) q = pα > 3 and by Corollary 4 of [7],

nr(2, q) > min{pα1
1 + 1, pα2

2 + 1, . . . , pαt
t + 1}

2010 Mathematics Subject Classi�cation: 20N05, 94B60, 05B15
Keywords: quasigroup, S-system of quasigroups, orthogonal operations, balanced incomplete
block design, recursively r-di�erentiable quasigroup, recursive MDS-code
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if q = pα1
1 pα2

2 . . . pαt
t is the canonical decomposition of the number q.

According to Proposition 10 from [7], nir(2, q) > q − 1 for any primary q > 3.
By Proposition 11 from [7], nir(2, p) > p if p is a prime number.

For binary function f a code K(n, f) the system of check functions has the
form f (t)(x, y) = f(f (t−2)(x, y), f (t−1)(x, y)) for t > 2, where f (0)(x, y) = f(x, y)
and f (1)(x, y) = f(y, f (0)(x, y)).

In [7] it is proved that r-di�erentiable quasigroups correspond to complete
recursive codes and various methods of constructions of binary recursively 1-
di�erentiable quasigroups are suggested. Moreover, in [7] it is proved that for
any q ∈ N , excepting 1, 2, 6 and possibly 14, 18, 26, 42, there exist recursively
1-di�erentiable quasigroups of order q, that is nr(2, q) > 4.

A quasigroup operation f is called recursively r-di�erentiable if all its recur-

sive derivatives f (1), f (2), . . . , f (r) are quasigroups. By Theorem 4 of [7], a quasi-
group (Q, f) is recursively r-di�erentiable if and only if the code K(r + 3, f) is an
MDS-code. In this case the code words are (x, y, f (0)(x, y), f (1)(x, y), . . . f (r)(x, y)),
(x, y) ∈ Q2.

A. Abashin in [1] consider special linear recursive MDS-codes with k=2 or 3.
V. Izbash and P. Syrbu in [9] prove that for any k-ary (k > 2) operation f the
equality f (r) = fθr holds, where θ : Qk → Qk, θ(xk

1) = (x2, x3, . . . , xk, f(xk
1)) for

all (xk
1) ∈ Qk. (Note that this result for k = 2 was announced in [4]). They also

establish a connection between recursive di�erentiability of a binary group and the
Fibonacci sequence.

In this article we establish properties of binary recursively r-di�erentiable
quasigroups, introduce the notion of a strongly recursively r-di�erentiab-le quasi-
group, and �nd such idempotent quasigroups in S-systems of quasigroups. A lower
bound of nir

s (2, q) for complete idempotent strongly 2-recursive MDS-codes with
primary q is found and illustrative examples are given.

2. Preliminaries

Let Q be a �nite or in�nite set, ΛQ be the set of all binary operations de�ned on
Q. On the set ΛQ it can be de�ned the Mann's right (left) multiplication A · B
(A ◦B) of operations A,B ∈ ΛQ in the following way:

(A ·B)(x, y) = A(x,B(x, y)) = A(F,B)(x, y),

(A ◦B)(x, y) = A(B(x, y), y) = A(B,E)(x, y),

where E(x, y) = y, F (x, y) = x are the right and the left identity operations.
For any operations A,B ∈ ΛQ the equality (A ◦ B)∗ = A∗ · B∗ holds, where

A∗(x, y) = A(y, x) (Lemma 4.5 in [2]).
The set Λr(·) (the set Λl(◦)) of all invertible from the right (from the left)

operations given on a set Q forms the group Λr(·) (the group Λl(◦)) under the
right (under the left) multiplication of operations.
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The operation E, F are the identity elements of the group Λr(·) and Λl(◦),
respectively, and A−1 ·A = A ·A−1 = E, −1A ◦A = A ◦−1A = F, where

A−1(x, y) = z ⇔ A(x, z) = y, −1A(x, y) = z ⇔ A(z, y) = x.

Every pair (A,B) of operations of the set ΛQ de�nes a mapping θ of the set
Q2 into Q2 in the following way:

θ(x, y) = (A(x, y), B(x, y)), x, y ∈ Q.

And conversely, any mapping θ of the set Q2 into Q2 uniquely de�nes the pair
of operations A,B ∈ ΛQ: if θ(a, b) = (c, d), then c = A(a, b), d = B(a, b), and
(A,B) = (C,D) if and only if A = C, B = D.

If θ is a permutation on a set Q2, then operations A,B de�ned by θ are orthog-
onal (shortly, A ⊥ B), that is the system of equations {A(x, y) = a, B(x, y) = b}
has a unique solution for any a, b ∈ Q. And conversely, an orthogonal pair of
operations, given on a set Q, corresponds to the permutation θ on the set Q2.

If A,B,C ∈ ΛQ, then the new binary operation D can be de�ned by the
following superposition:

D(x, y) = A(B(x, y), C(x, y))

or shortly, D = A(B,C) = Aθ, where θ = (B,C), that is D(x, y) = Aθ(x, y).
The identity operations F, E of ΛQ de�ne the identity permutation (F,E) = ε

on Q2. The equality (A,B)θ = (Aθ, Bθ) holds [2, 3].

3. Recursively r-di�erentiable quasigroups

Let (Q,A) be a �nite quasigroup given on a set Q. Then, the sequence of operations
A(0), A(1), . . . , A(t), . . . for A is de�ned in the following way:

A(0)(x, y) = A(x, y), A(1)(x, y) = A(y, A(0)(x, y)),

A(t)(x, y) = A(A(t−2)(x, y), A(t−1)(x, y))

for t > 2. This sequence can be written shortly as:

A(0) = A(F,E), A(1) = A(E,A(0)), A(t) = A(A(t−2), A(t−1)), t > 2.

According to [7], the operation A(r) of this sequence is called the r-th recursive

derivative of a quasigroup (Q,A).
By de�nition, a quasigroup (Q, A) is recursively r-di�erentiable if all its re-

cursive derivatives A(1), A(2), . . . , A(r) are quasigroup operations. In this case, the
system of operations Σ = {F,E,A, A(1), A(2), . . . , A(r)} is orthogonal (Proposition
7 of [7]).
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By Theorem 4 of [7], a quasigroup (Q,A) is recursively r-di�erentiable if and
only if the 2-recursive code K(r + 3, A) is an MDS-code.

First we establish some properties of �nite binary recursively r-di�erentiable
quasigroups.

Theorem 1. Let A(i) be the i-th recursive derivative of a quasigroup (Q,A) and

θ = (E,A), then A(i) = Aθi, θi = (A(i−2), A(i−1)), θ2 6= (F,E).

Proof. Note that the mapping θ = (E,A) of Q2 into Q2 is a permutation since A
is a quasigroup operation. By the de�nition,

A(1)(x, y) = A(y, A(x, y)) = A(E,A)(x, y) = Aθ(x, y),

A(2) = A(A,A(E,A)) = A(A,Aθ) = Aθ2,

since (E,A)2 = (E,A)(E,A) = (A,A(E,A)) = (A,Aθ) whence (E,A)2 6= (F,E)
as A 6= F .

Let A(k) = Aθk for all k, 1 6 k 6 i − 1, then by the induction we have
A(i) = A(A(i−2), A(i−1)) = A(Aθi−2, Aθi−1) = A(A,Aθ)θi−2 = Aθ2θi−2 = Aθi.
From these equalities the second equality of the theorem follows.

Note that, in the general case, the equality Aθ1 = Aθ2, where θ1, θ2 are two
permutations not necessarily implies θ1 = θ2.

The result of Theorem 1 for binary quasigroups was announced in [4] and was
generalized for k-ary quasigroups in [9].

Let A∗(x, y) = A(y, x), then A∗ = (−1(A−1))−1 =−1((−1A)−1) (see [3]).

Corollary 1. If A(1), A(2), . . . , A(t), . . . are the sequence of the recursive deriva-

tives of a quasigroup (Q,A), then for i > 1 we have

A(i) = (A(i−1) ·A∗)∗ = (A(i−1))∗ ◦A,

where (·) and (◦) are the right and left multiplication of the operations given on

the set Q.

Proof. Indeed, by Theorem 1,

A(i) = Aθi = A(i−1)(E,A) = (A(i−1))∗ ◦A = (A(i−1) ·A∗)∗,

since A(E,B) = A∗ ◦B and (A ◦B)∗ = A∗ ·B∗.

Proposition 1. Let a quasigroup (Q, A) be recursively r-di�erentiable. Then,

A(i) ⊥−1(A−1) for any i = 0, 1, 2, . . . , r − 1, r > 1.

If A(r+1) = F , r > 0, then A(r) =−1(A−1) and A(r+2) = E.

If A(r+2) = E, r > 0, then A(r+1) = F .
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Proof. By the criterion of orthogonality of two quasigroups (cf. [2]), A ⊥ B if
and only if A ·B−1 is a quasigroup operation. But by Corollary 1, the operations
A(i+1) = (A(i) · A∗)∗ by i > 0 are quasigroup operations, and therefore the oper-
ation (A(i+1))∗ = A(i) · A∗ is a quasigroup operation. Taking into account that
A∗ = (−1(A−1))−1, we have A(i) ⊥−1(A−1) for any i = 0, 1, 2, . . . , r − 1.

Let A(r+1) = F , then by Corollary 1, A(r+1) = (A(r))∗ ◦ A = F for r > 0,
so (A(r))∗ =−1A since Λl(◦) is a group with the identity F and the quasigroup
−1A is inverse for A in this group. Thus, A(r) =−1 (A−1). In this case we have
A(r+2) = A(A(r), A(r+1)) = A(A(r), F ) = A∗(F,A(r)) = A∗ ·A(r) = A∗ ·−1(A−1) =
E because A∗ = (−1(A−1))−1, Λr(·) is a group with the identity E and A∗ is the
inverse quasigroup for −1(A−1) in this group.

Let A(r+2) = E, r > 0, then (A(r+2))∗ = F and according to Corollary 1,
A(r+3) = (A(r+2))∗ ◦ A = F ◦ A = A since Λl(◦) is a group with the identity F .
But then

A(r+3) = A(A(r+1), A(r+2))) = A(A(r+1), E) = A ◦A(r+1) = A

and so A(r+1) = F .

De�nition 1. A quasigroup (Q,A) is called strongly recursively r-di�erentiable
if it is r-di�erentiable and A(r+1) = F (or A(r+2) = E). A quasigroup (Q, A) is
strongly recursively 0-di�erentiable if A(1) = F .

Note that a quasigroup not always is strongly recursively 0-di�erentiable, al-
though any quasigroup is recursively 0-di�erentiable. In contrast to recursively
r-di�erentiable quasigroups, a strongly recursively r-di�erentiable quasigroup is
not strongly recursively r1-di�erentiable if r1 < r.

Recall that a quasigroup (Q,A) is called semisymmetric if in (Q,A) the identity
A(x,A(y, x)) = y holds.

Corollary 2. Let (Q,A) be a strongly recursively r-di�erentiable quasigroup, then

A(r) =−1 (A−1), A(r+2) = E for any r > 0. A quasigroup (Q,A) is strongly

recursively 0-di�erentiable (1-di�erentiable) if and only if it is semisymmetric

(A(1) =−1(A−1) respectively).

Proof. The �rst statement follows from Proposition 1. It is easy to see that a quasi-
group (Q, A) is semisymmetric if and only if A∗ = A−1 (or A =−1(A−1)), so for a
semisymmetric quasigroup A(1) = A∗ ◦−1(A−1) = A−1 ◦−1(A−1) = F . If A(1) = F ,
then by Proposition 1, A = A(0) =−1(A−1), that is (Q,A) is semisymmetric.

Let A(1) =−1(A−1), then A(2) = (A(1))∗ ◦ A = (−1(A−1))∗ ◦ A =−1 A ◦ A = F .
If A(2) = F , then, by Proposition 1, A(1) =−1(A−1).

Proposition 2. A recursively r-di�erentiable quasigroup (Q,A) is strongly recur-

sively r-di�erentiable if and only if the permutation θ = (E,A) has order r + 3.
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Proof. Let the permutation θ = (E,A) have order r + 3, that is θr+3 = (F,E),
then by Theorem 1, (A(r+1), A(r+2)) = (F,E) and so A(r+1) = F.

Conversely, suppose that a quasigroup (Q,A) is strongly recursively r-di�eren-
tiable, then r is the least number such that A(r+1) = F . By Proposition 1,
A(r+2) = E, so θr+3 = (A(r+1), A(r+2)) = (F,E).

Proposition 3. The direct product of strongly recursively r-di�erentiable quasi-

groups is a strongly recursively r-di�erentiable quasigroup.

Proof. Suppose that (Q,A) and (P,B), |Q| = q1, |P | = q2, are strongly recursively
r-di�erentiable quasigroups. Then, the direct product A×B of these quasigroups
is an r-di�erentiable quasigroup since

(A×B)(i) = A(i) ×B(i), i ∈ N

(see the proof of Proposition 9 of [7]). Furthermore, from A(r+1) = FQ and
B(r+1) = FP it follows that (A × B)(r+1) = A(r+1) × B(r+1) = FQ × FP . But
FQ × FP is the left identity operation under the left multiplication of operations
given on the set Q×P , so by the de�nition, the operation A×B given on the set
Q× P is a strongly recursively r-di�erentiable quasigroup of order q1q2.

4. Strongly recursively r-di�erentiable quasigroups

In the theory of binary quasigroups the notion of a Stein system (shortly, an
S-system) is known. This system can be de�ned in the following way [2].

De�nition 2. [2] A system Q(Σ) of operations given on a �nite set Q is called an
S-system if

1) Σ contains the operation F,E, the rest operations are quasigroup operations;
2) if A,B ∈ Σ′, where Σ′ = Σ\F , then A ·B ∈ Σ′;
3) if A ∈ Σ, then A∗ ∈ Σ.

In this case, Σ′(·), Σ′′(◦), where Σ′ = Σ\F and Σ′′ = Σ\E, are isomorphic groups.

We recall some necessary information about S-systems. Let s be the number
of operations in an S-system Q(Σ), n be the order of the set Q. Then, by Theorem
4.3 of [2], the number s− 1 divides n− 1 and k = (n− 1)/(s− 1) > s or k = 1.

The number k is called the index of an S-system Q(Σ). In the case k = 1 we
say that Q(Σ) is a complete S-system.

Complete S-systems are described by V. Belousov in [2]. Incomplete S-systems
are described by G. Belyavskaya and A. Cheban in [5, 6].

All operations of an S-system Q(Σ) are orthogonal and by Theorem 4.2 [2],
are idempotent if s > 4, that is A(x, x) = x for all x ∈ Q and A ∈ Σ.

If Q(Σ) is an S-system, then according to Theorem 4.1 [2], for any A,B, C ∈ Σ
the operation C(A,B):

C(A,B)(x, y) = C(A(x, y), B(x, y))
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belongs to Σ and the set ∆ of all mappings θ = (B,C), where B,C ∈ Σ, B 6= C,
is a group.

Recall that an algebra (Q,+, ·) with two operations is called a near-�eld if
(Q,+) is an abelian group with the identity 0, (Q′, ·) is a group, where Q′ = Q\{0}
and the right distributive law: (x + y)z = xz + yz holds [10].

By Theorem 4.6 of [2], any complete S-system Q(Σ) is a system over some
near-�eld Q(+, ·), that is any its operation has the form

Aa(x, y) = a(y − x) + x

for a �xed element a ∈ Q.
Thus, for a complete S-system Q(Σ) containing s quasigroups of order q we

have s = q = pα for some primary number since any near-�eld has such order, and
for any prime power there exists a near-�eld of this order [10]. If a near-�eld is a
�eld, then the quasigroups are linear over the group (Q,+) and have the form

Aa(x, y) = (1− a)x + ay.

All S-systems that are not complete are described in the article [5] by means
of near-�elds (by means of complete S-systems) and balanced incomplete block
designs BIB(v, b, r, k, 1).

A balanced incomplete block design BIB(v, b, r, k, 1) is an arrangement of v
elements by b blocks such that

every block contains exactly k di�erent elements;
every element appears in exactly r di�erent blocks;
every pair of di�erent elements appears in exactly one block.

The parameters r and k of a BIB(v, b, r, k, 1) de�ne the number v and b [11].
By Theorem 1 of [5], an S-system with operations of order q, of index k con-

taining s operations exists if and only if there exists a BIB(q, b, , k, pα, 1) with a
prime p. In this case,

q = ks− k + 1, b = ((ks− k + 1)/s)k, s = pα.

Below S-systems will be used to �nding of strongly recursively r-di�erentiable
idempotent quasigroups. Since we consider only recursively r-di�erentiable quasi-
groups sometimes the word "recursively" will be omitted.

Theorem 2. A quasigroup (Q,A) of an S-system Q(Σ) is (strongly) recursively

r-di�erentiable if and only if r is the least number such that A(r+1) = F (the
permutation θ = (E,A) has order r + 3).

Proof. If a quasigroup (Q, A) of an S-system Q(Σ) is strongly r-di�erentiable,
then by the de�nition, A(r+1) = F and A(1), A(2), . . . , A(r) are quasigroups.

For the proof of the converse statement we �rst note that from the properties
of S-systems Q(Σ) pointed above it follows that all recursive derivatives of any
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quasigroup (Q,A), where A ∈ Σ, are in Σ. So, they can be quasigroup operations
or the identity operations F,E.

Let a quasigroup operation A be in Σ, r be the least number such that A(r+1) =
F , then the recursive derivatives A(i), 1 6 i 6 r, of A either all are quasigroup
operations or A(i0) = E for some i0 6 r, and all operations A(i), i < i0, are
quasigroup operations.

In the �rst case, A is a strongly r-di�erentiable quasigroup. In the second case,
the quasigroup A is (i0 − 1)-di�erentiable. On the other hand, by Proposition 1,
we have A(i0−1) = F since A(i0) = E. But A(i0−1) is a quasigroup, that is we
obtain the contradiction.

Let the permutation θ = (E,A) have order r+3, then θ(r+3) = (A(r+1), A(r+2))
= (F,E) whence A(r+1) = F , A(r+2) = E, moreover, this number r is the least
one with such property. In this case, as has been shown above, the quasigroup
(Q,A) is strongly r-di�erentiable. The converse follows from Proposition 2.

Theorem 3. Let Q(Σ) be an S-system containing pα > 3 operations, A be a

quasigroup operation of Σ, and the permutations θA = (E,A) have order r + 3 for

some r > 0. Then

(r + 3) | pα(pα − 1).

Proof. Let Σ = {F,E, A1, A2, . . . As−2} be an S-system containing s = pα opera-
tions of order q = pα if the system Σ is complete, and of order q = ks− k + 1 if Σ
is an S-system of index k.

By Theorem 4.1 of [2], the set 4 of all mappings θ = (B,C), B,C ∈ Σ, B 6= C,
of any S-system is a group. The order of the group 4 is s(s− 1) = pα(pα − 1).

The permutation θA = (E,A) ∈ 4 for any operation A of Σ, A 6= E.
If for A ∈ Σ the permutation θA has order r + 3, then θr+3

A = (F,E). Thus
(r + 3) | pα(pα − 1). �

Theorem 4. Let pα > 5 be an odd prime power, Q(Σ) be an S-system containing

pα operations. Then in Σ there exists a quasigroup operation A such that the

permutation θA = (E,A) has order r + 3 for some r + 3 = pα1 , α1 6 α, and A
is a strongly recursively idempotent r-di�erentiable quasigroup operation of order

q = pα. If there exists a BIB(q, b, k, pα, 1), then A has order q = kpα − k + 1.

Proof. Let pα > 5 be an odd prime power, Q(Σ) be an S-system containing s = pα

operations. Then by Theorem 4.1 of [2] the set 4 of all mappings θ = (B,C),
B,C ∈ Σ, B 6= C is a group. Moreover, from the proof of Theorem 4.6 in [2] it
follows that this group is twice transitive on Σ and contains a strongly transitive
on Σ invariant abelian subgroup 40. It is obvious that the group 40 has order
s = pα.

Let θC be the permutation of 40 such that FθC = C. Then FθE = E and
θE = (E,A) = θA for a unique operation A of Σ. Moreover, A 6= F . Indeed, if

A = F , then θ
2

E = (E,F )(E,F ) = (F,E), so pα = 2α and the subgroup 40 has
even order.
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Suppose that the permutation θE has order r+3. Then r+3 = pα1 for α1 6 α

since (r + 3) | pα. Hence, θ
r+3

E = θr+3
A = (F,E). By Theorem 2, (Q,A) is strongly

r-di�erentiable quasigroup of order q = pα if the S-system Q(Σ) is complete, and
has order q = kpα−k +1 if it is incomplete with index k. Recall that by Theorem
4.2 of [2] any operation of an S-system is idempotent if s > 4.

According to Corollary 2, Ar =−1 (A−1), A(r+1) = F, A(r+2) = E. Thus, we
have the subsystem

Σ1 = {A,A(1), A(2), . . . , A(r) =−1 (A−1), A(r+1) = F, A(r+2) = E} ⊂ Σ
for r = pα1 − 3.

Corollary 3. For any prime p, p > 5, there exists a strongly recursively (p− 3)-
di�erentiable idempotent quasigroup of order q = p (of order q = kp − k + 1 if

there exists a BIB(q, b, k, p, 1)).

Proof. In this case the subgroup 40 of the group 4 of an S-system has odd order
p, that is, 40 is a cyclic group and so the permutation θE = (E,A) of 40 has
order p. Now the statements of the corollary follow from Theorem 4 by q = p.

Proposition 4. For any prime power pα, p > 5, there exists a strongly recursively

idempotent (p− 3)-di�erentiable quasigroup of order q = pα (respectively, of order
q = (kp− k + 1)α if there exists a BIB(q, b, k, p, 1)).

Proof. By Corollary 3 there exists a strongly (p − 3)-di�erentiable quasigroup
of order p. Using Proposition 3 and taking the direct product of α copies of
this quasigroup, we get a strongly (p− 3)-di�erentiable idempotent quasigroup of
order pα. It is obvious that the direct product of idempotent quasigroups is an
idempotent quasigroup.

Remark. Note that the direct product of two strongly recursively r-di�erentiable
idempotent quasigroups of order pα1

1 and pα2
2 , p1 6= p2, over near-�elds of the

respective orders already is not a quasigroup over some near-�eld since has order
pα1
1 pα2

2 which is not a prime power.

Corollary 4. There exist strongly recursively 2-di�erentiable idempotent quasi-

groups of order q = 21, 25, 41, 45, 61; strongly recursively 4-di�erentiable idem-

potent quasigroups of order q = 49, 91 and strongly recursively 8-di�erentiable
idempotent quasigroups of order q = 121.

Proof. These statements follow from Corollary 3 and the existence of the following
designs:

BIB(21, 21, 5, 5, 1) (N7), BIB(25, 30, 6, 5, 1) (N11),
BIB(41, 82, 10, 5, 1) (N42), BIB(45, 99, 11, 5, 1) (N51),
BIB(61, 183, 15, 5, 1) (N108) (for these designs we have (2 = 5 − 3)-di�eren-

tiable idempotent quasigroups of order q = 21, 25, 41, 45, 61 respectively.
The designs BIB(49, 56, 8, 7, 1) (N24) and BIB(91, 195, 15, 7, 1) (N111) give a

strongly (4 = 7− 3)-di�erentiable idempotent quasigroups of order q = 49, 91.
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The design BIB(121, 132, 12, 11, 1) (N68) corresponds to a strongly (8 =11−3)
-di�erentiable idempotent quasigroup of order q = 121.

All these BIB-designs exist (near with each design we point its number in
Table of Application I of [11].

De�nition 3. An MDS-code K(n, A) is said to be strongly recursive if the quasi-
group (Q,A) is strongly recursively (n− 3)-di�erentiable.

Corollary 5. For any prime power pα, p > 5, there exists an idempotent strongly

2-recursive code K(p, A), where A is a quasigroup of order pα.

Proof. By Theorem 4 of [7], a quasigroup A is r-di�erentiable if and only if the code
K(r + 3, A) is an MDS-code. Next use Corollary 3 for r = p− 3 and Proposition
4.

Denote by Ki
s(n, A) the idempotent strongly 2-recursive MDS-code correspond-

ing to a quasigroup (Q,A) and let nir
s (2, q) denote the maximal number n such

that there exists a (complete) idempotent strongly 2-recursive MDS-code Ki
s(n, A)

over an alphabet of q elements.

From Corollary 5 it follows

Corollary 6. nir
s (2, pα) > p for any prime p, p > 5 and α ∈ N.

Corollary 7. If there exist strongly recursively r-di�erentiable quasigroups of

order q1 and q2, then

nir
s (2, q1q2) > r + 3.

Proof. That follows from Proposition 3 and Theorem 4 of [7].

Below, we give some illustrative examples of strongly recursively r-di�erentiable
idempotent quasigroups over �elds.

Example 1. Consider the following quasigroup operation A2 of the S-system of
quasigroups over the �eld GF (5): A2(x, y) = 2(y−x)+x = 4x+2y. The recursive
derivatives of this quasigroup are:

A
(1)
2 (x, y) = A2(y, A2(x, y)) = 4y + 2(4x + 2y) = 3x + 3y;

A
(2)
2 (x, y) = A2(A2(x, y), A(1)

2 (x, y)) = 4(4x + 2y) + 2(3x + 3y) = 2x + 4y;
A

(3)
2 (x, y) = A2(A

(1)
2 (x, y), A(2)

2 )(x, y) = 4(3x + 3y) + 2(2x + 4y) = x.

Hence, A2 is a strongly 2-di�erentiable quasigroup operation of the S-system

over the �eld GF (5), and the orthogonal system Σ = {F,E,A2, A
(1)
2 , A

(2)
2 } corre-

sponds to the code Ki
s(5, A2).

Example 2. Consider the quasigroup operation of the same form over the �eld
GF (7):

A2(x, y) = 2(y−x) + x = 6x + 2y; A
(1)
2 (x, y) = 5x + 3y; A

(2)
2 (x, y) = 4x + 4y;

A
(3)
2 (x, y) = 3x + 5y; A

(4)
2 (x, y) = 2x + 6y; A

(5)
2 (x, y) = x.



r-di�erentiable quasigroups 167

Thus, this quasigroup is strongly (7 − 3 = 4)-di�erentiable. The orthogonal

system Σ = {F,E,A2, A
(1)
2 , A

(2)
2 , A

(3)
2 , A

(4)
2 } corresponds to the code Ki

s(7, A2).
Note that for a quasigroup operation A over GF (7) the group ∆ (see the proof

of Theorem 3) has order 7 · 6, so a permutation θ = (E,A) for A ∈ Σ can have
only order 3 or 7 ((E,A)2 6= (F,E) if A is a quasigroup operation).

For the quasigroup operation A3(x, y) = 3(y − x) + x = 5x + 3y over GF (7)
the permutation θ = (E,A3) has order 3 since A

(1)
3 (x, y) = A3(y, A3(x, y)) =

5y + 3(5x + 3y) = x. In this case, the quasigroup operation A3 is strongly 0-
di�erential, θ ∈ ∆\∆0 since | ∆0 |= 7.

The subsystem Σ1 = {F,E,A3} of the complete S-system over GF (7) corre-
sponds to the code Ki

s(3, A3).

Example 3. Among of quasigroups over the �eld GF (11) necessarily there are
strongly (11− 3 = 8)-di�erentiable quasigroups (by Corollary 3) and a priori can
be strongly (5− 3 = 2)- or (10− 3 = 7)-di�erentiable quasigroups since the group
∆ has order 11 · 10. Show that all these cases are possible.

The quasigroup operation A2(x, y) = 2(y − x) + x = 10x + 2y is strongly
8-di�erentiable with the following recursive derivatives:

A
(1)
2 (x, y) = 9x + 3y; A

(2)
2 (x, y) = 8x + 4y; A

(3)
2 (x, y) = 7x + 5y;

A
(4)
2 (x, y) = 6x + 6y; A

(5)
2 (x, y) = 5x + 7y; A

(6)
2 (x, y) = 4x + 8y;

A
(7)
2 (x, y) = 3x + 9y; A

(8)
2 (x, y) = 2x + 10y; A

(9)
2 (x, y) = x.

The system Σ = {F,E,A2, A
(1)
2 , A

(2)
2 , . . . , A

(8)
2 } corresponds to Ki

s(11, A2).
The commutative quasigroup operation A6(x, y) = 6(y−x)+x = 6x+6y over

the �eld GF (11) is strongly 2-di�erentiable: A
(1)
6 (x, y) = 3x + 9y; A

(2)
6 (x, y) =

10x+2y; A
(3)
6 (x, y) = x, corresponds to the subsystem Σ1 = {F,E,A6, A

(1)
6 , A

(2)
6 }

and to the code Ki
s(5, A6). The permutation θ = (E,A6) has order 5 and is in the

subset ∆\∆0.

Finally, consider the quasigroup operation A9(x, y) = 9(y − x) + x = 3x + 9y
over GF (11):

A
(1)
9 (x, y) = 5x + 7y; A

(2)
9 (x, y) = 10x + 2y; A

(3)
9 (x, y) = 6x + 6y;

A
(4)
9 (x, y) = 7x + 5y; A

(5)
9 (x, y) = 4x + 8y; A

(6)
9 (x, y) = 2x + 10y;

A
(7)
9 (x, y) = 8x + 4y; A

(8)
9 (x, y) = x.

Thus, the quasigroup operation A9 is strongly 7-di�erentiable and corresponds
to the subsystem Σ1 of 10 (from 11) operations and to the code Ki

s(10, A9).
Note that the direct product of the strongly 2-di�erentiable quasigroups A2 =

4x + 2y over GF (5) (Example 1) and A6(x, y) = 6x + 6y over the �eld GF (11)
(Example 3) is a strongly 2-di�erentiable quasigroup of order 55 and corresponds
to the code Ki

s(5, A2 ×A6) by Proposition 3 and Theorem 4 of [7].
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A characterization of binary invertible algebras

of various types of linearity

Sergey S. Davidov

Abstract. In this paper we de�ne the left (right) linear over a group binary invertible algebras
and invertible algebras of mixed type of linearity and characterize the classes of such algebras by
the second-order formula, namely by the ∀∃(∀)− identities.

1. Introduction

Linear quasigroups introduced by V.D. Belousov in 1967 in connection with an
investigation of balanced identities in quasigroups [2] play a special role in the
study of quasigroups isotopic to groups [5, 4, 6, 10, 11].

A binary algebra (Q; Σ) is called invertible, if (Q;A) is a quasigroup for any
operation A ∈ Σ.

Below we introduce the notions of left (right) linear invertible algebras and
invertible algebras of mixed type of linearity and characterize the classes of such
algebras by the second order formulae, namely by the ∀∃(∀)− identities.

For details about ∀∃(∀)− identities see [9, 12].

2. Left and right linear invertible algebras

We denote by LA,a and RA,a the left and right translations of the binary algebra
(Q; Σ) : LA,a : x 7→ A(a, x), RA,a : x 7→ A(x, a). If the algebra (Q; Σ) is an
invertible algebra then the translations LA,a and RA,a are bijections for all a ∈ Q
and all A ∈ Σ.

It is well known (see [2]) that the quasigroups A−1, −1A, −1
(
A−1

)
,
(−1A

)−1
,

A∗, where A∗(x, y) = A(y, x), are associated with the quasigroup A.
Similarly, the invertible algebras:(

Q; Σ−1
)
,

(
Q; −1Σ

)
,

(
Q; −1(Σ−1)

)
,

(
Q; (−1Σ)−1

)
, (Q; Σ∗) ,

where

Σ−1 = {A−1| A ∈ Σ}, −1Σ = {−1A| A ∈ Σ}, −1(Σ−1) = {−1(A−1)| A ∈ Σ},

2010 Mathematics Subject Classi�cation: 20N05
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(−1Σ)−1 = {(−1A)−1| A ∈ Σ}, Σ∗ = {A∗| A ∈ Σ}

are associated with the invertible algebra (Q,Σ). Each of these algebras is called
the parastrophy of the algebra (Q; Σ).

De�nition 2.1. An invertible algebra (Q; Σ) is called left (right) linear over a

group (Q; +), if every operation A ∈ Σ has the form:

A(x, y) = ϕAx+ βAy (A(x, y) = αAx+ ψAy) ,

where βA (respectively αA) is a permutation of the set Q, and ϕA (respectively
ψA) is an automorphism of the group (Q; +).

An invertible algebra is called left (right) linear if it is left (right) linear over
some group (Q; +).

Theorem 2.2. A binary invertible algebra (Q; Σ) is left linear if and only if for

all X,Y ∈ Σ the following formula

X
(
Y

(
x, Y −1(u, y)

)
, z

)
= X

(
Y

(
x, Y −1(u, u)

)
, X−1 (u,X(y, z))

)
(1)

is valid in the algebra (Q; Σ ∪ Σ−1).

Proof. Let (Q; Σ) be an invertible left linear algebra. Then for every X ∈ Σ we
have

X (x, y) = ϕXx+ βXy, (2)

where ϕX ∈ Aut(Q; +) and βX ∈ SQ. We prove that equality (1) is valid in the
algebra (Q; Σ ∪ Σ−1) for all X,Y ∈ Σ.

Observe that from (2) we obtain

X−1(x, y) = β−1
X (−ϕXx+ y) . (3)

Thus, according to (2) and (3) we get:

X(Y (x, Y −1(u, y)), z) = ϕX(ϕY x+ βY Y
−1(u, y)) + βXz

= ϕX(ϕY x+ βY β
−1
Y (−ϕY u+ y)) + βXz

= ϕXϕY x− ϕXϕY u+ ϕXy + βXz,

X(Y(x,Y −1(u, u)),X−1(u,X(y, z)))= ϕXY (x, Y −1(u, u))+βXX
−1(u,X(y, z))

= ϕX(ϕY x−ϕY u+ u)−ϕXu+ϕXy+βXz

= ϕXϕY x−ϕXϕY u+ϕXu−ϕXu+ϕXy+βXz

= ϕXϕY x− ϕXϕY u+ ϕXy + βXz.

Hence, the right and left sides of (1) are the same.
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Conversely, let (1) holds in (Q; Σ ∪Σ−1) for all X,Y ∈ Σ. Then for u = p and
X = A, Y = B, where A,B ∈ Σ, we have

A(B(x,B−1(p, y)), z) = A(B(x,B−1(p, p)), A−1(p,A(y, z))).

From this, by putting A1(x, y) = A(x, y), A2(x, y) = B(x,B−1(p, y)), A3(x, y) =
A(B(x,B−1(p, p)), y) and A4(x, y) = A−1(p,A(x, y)) we obtain

A1(A2(x, y), z) = A3(x,A4(y, z)),

which by Belousov`s theorem on four quasigroups (see [3]) shows that operations
A1, A2, A3, A4 are isotopic to the same group (Q; ∗). Hence, the operations A and
B are also isotopic to (Q; ∗). Since the operations A and B are arbitrary, we obtain
that all operations from Σ are isotopic to this group.

For every X ∈ Σ, let us de�ne the operation:

x+
X
y = X(R−1

X,ax, L
−1
X,by), (4)

where a, b are some �xed elements from Q. The operation +
X

is a loop operation

with the identity element 0X = X(b, a). Obviously, (Q; +
X

) is a loop isotopic to the

group (Q; ∗). Hence, by Albert`s theorem, it is a group. Hence every X ∈ Σ each
(Q; +

X
) is a group. So, (1) (where X = A, Y = B) can be rewritten in the form:

A(B(x, LB−1,uy), z) = A(RB,B−1(u,u)x, LA−1,uA(y, z)),

RA,a(RB,ax+
B
LB,bLB−1,uy)+

A
LA,bz=RA,aRB,B−1(u,u)x+

A
LA,bLA−1,u(RA,ay+

A
LA,bz).

Taking z = L−1
A,b0A in the last equality, we have

RA,a(RB,ax+
B
LB,bLB−1,uy) = RA,aRB,B−1(u,u)x+

A
LA,bLA−1,uRA,ay,

RA,a(x+
B
y) = αA,Bx+

A
βA,By, (5)

where αA,B = RA,aRB,B−1(u,u)R
−1
B,a, βA,B = LA,bLA−1,uRA,aL

−1
B−1,uL

−1
B,b are per-

mutations of the set Q. Since the operations A and B are arbitrary we can take
A = B in (5). Hence

RA,a(x+
A
y) = αA,Ax+

A
βA,Ay. (6)

From (5) and (6) we have

α−1
A,Bx+

B
β−1

A,By = α−1
A,Ax+

A
β−1

A,Ay,

x+
A
y = γA,Bx+

B
δA,By, (7)
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where γA,B = α−1
A,BαA,A and δA,B = β−1

A,BβA,A are permutations of the set Q.
Hence, according to (7), we get

RA,a(x+
B
y) = γA,BαA,Bx+

B
δA,BβA,By,

i.e., RA,a is a quasiautomorphism of the group (Q; +
B

). Since A is arbitrary we

have that RA,a is a quasiautomor�sm of the group (Q; +
B

) for all operations A ∈ Σ.

According to (4) we have

A(x, y) = RA,ax+
A
LA,by.

This, according to (7), gives:

A(x, y) = θ1A,Bx+
B
θ2A,By, (8)

where θ1A,B = γA,BRA,a and θ2A,B = δA,BLA,b are permutations of the set Q. Thus,
we can represent every operation from Σ by the operation +

B
.

Let + = +
B
. We prove that θ1A,B is a quasiautomorphism of the group (Q; +).

To do it we take z = (θ2A,B)−10B , X = A, Y = B in (1) and rewrite this equality
in the form:

θ1A,B(RB,ax+LB,bLB−1,uy)+θ2A,Bz= θ1A,BRB,B−1(u,u)x+θ2A,BLA−1,u(θ1A,By+θ
2
A,Bz),

θ1A,B(RB,ax+ LB,bLB−1,uy) = θ1A,BRB,B−1(u,u)x+ θ2A,BLA−1,uθ
1
A,By.

The last equality shows that θ1A,B is a quasiautomorphism of the group (Q; +).
According to [2, Lemma 2.5] we have

θ1A,Bx = ϕAx+ sA,

where ϕA is an automorphism of the group (Q,+) and sA is some element of the
set Q. Hence, it follows from (8) that

A(x, y) = ϕAx+ βAy, (9)

where βAy = sA + θ2A,By. Since A is an arbitrary operation we obtain that all
operations from Σ can be represented in the form (9), i.e., the algebra (Q; Σ) is
left linear.

Similarly, we can prove the following theorem.

Theorem 2.3. A binary invertible algebra (Q; Σ) is a right linear algebra if and

only if for all X,Y ∈ Σ the following formula

X(x, Y (−1Y (y, u), z)) = X(−1X(X(x, y), u), Y (−1Y (u, u), z)), (10)

is valid in the algebra (Q; Σ ∪ −1Σ).
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Proposition 2.4. A left and right linear invertible algebra is linear.

Corollary 2.5. The class of all invertible linear algebras is characterized by the

second order formulaes (1) and (10).

A linear invertible algebra over an abelian group is called an invertible T -algebra
(see [7]). The class of medial invertible algebras is a special subclass of invertible
T -algebras. An invertible algebra (Q; Σ) is called a left (right) T -algebra, brie�y
a LT -algebra (RT -algebra) if (Q; Σ) is a left (right) linear algebra over an abelian
group. It follows from Proposition 2.4, that if an invertible algebra is a LT -algebra
and RT -algebra, then it is a T -algebra.

Using the same arguments as in the proof of Theorem 1 from [6] and applying
our Theorems 2.2 and 2.3 we obtain

Theorem 2.6. A binary invertible algebra (Q; Σ) is a LT-algebra if and oly if for

all X,Y ∈ Σ the following formulaes

X(Y (x, Y −1(u, y)), z) = X(Y (x, Y −1(u, u)), X−1(u,X(y, z))),

X(−1X(x, u), X−1(u, y)) = X(−1X(y, u), X−1(u, x)), (11)

are valid in the algebra (Q; Σ ∪ Σ−1 ∪ −1Σ).

Theorem 2.7. A binary invertible algebra (Q; Σ) is a RT-algebra if and only if

for all X,Y ∈ Σ the following formulaes

X(x, Y (−1Y (y, u), z)) = X(−1X(X(x, y), u), Y (−1Y (u, u), z)),

X(−1X(x, u), X−1(u, y)) = X(−1X(y, u), X−1(u, x))

are valid in the algebra (Q; Σ ∪ Σ−1 ∪ −1Σ).

Corollary 2.8. The class of all invertible T -algebras is characterized by the second

order formulaes (1), (10) and (11).

3. Invertible algebras of mixed type of linearity

De�nition 3.1. An invertible algebra (Q; Σ) is called an invertible algebra of

mixed type of linearity of the �rst (second) kind over a group (Q; +), if every
operation A ∈ Σ has the form

A(x, y) = ϕAx+ cA + ψAy (A(x, y) = ϕAx+ cA + ψAy),

where ϕA, ψA ∈ Aut(Q; +), ψA, ϕA are antiautomorphisms of (Q; +), and cA is a
�xed element from Q.
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Theorem 3.2. An invertible algebra (Q; Σ) is of mixed type of linearity of the

�rst kind if and only if for all X,Y ∈ Σ the following second order formulaes

X(Y (x, Y −1(u, y)), z) = X(Y (x, Y −1(u, u)), X−1(u,X(y, z))), (12)

X(x,−1 Y (Y (y, Y −1(u, v)), u)) = X(−1X(X(x,−1 Y (v, u)), u), y) (13)

are valid in the algebra (Q; Σ ∪ Σ−1 ∪ −1Σ) .

Proof. Let (Q; Σ) be an invertible algebra of mixed type of linearity of the �rst
kind, then for every X ∈ Σ we have

X(x, y) = ϕXx+ cX + ψXy,
−1X(x, y) = ϕ−1

X (x− ψXy − cX),

X−1(x, y) = ψ
−1

X (−cX − ϕXx+ y),

where ϕX ∈ Aut(Q; +), ψX is an antiautomorphism of (Q; +) and cX ∈ Q.
Using the above identities we can prove that the left and right sides of (12)

and (13) are the same.

Conversely, let (12) and (13) be valid in the algebra (Q; Σ∪Σ−1 ∪−1Σ) for all
X,Y ∈ Σ.We prove that an algebra (Q; Σ) is an algebra of mixed type of linearity
of the �rst kind.

As in the proof of Theorem 2.2 we can see that from (12) we obtain

A(x, y) = θ1A,Bx+ θ2A,By, (14)

for any operation A ∈ Σ, where θ1A,B is a quasiautomor�sm of the group (Q; +).
Thus,

θ1A,Bx = ϕAx+ tA, (15)

where ϕA ∈ Aut(Q; +) and tA is some element of the set Q [2, Lemma 2.5].
To prove that θ2A,B is an antiquasiautomorphism of the group (Q; +) observe

that (13) for X = A, Y = B and �xed u ∈ Q gives

A(x,R−1B,uB(y, LB−1,uv)) = A(R−1A,uA(x,R−1B,uv), y),

θ1A,Bx+θ
2

A,BR−1B,u(RB,ay+LB,bLB−1,uv)= θ1A,BR−1A,u(θ1A,Bx+ θ2A,BR−1B,uv)+θ2A,By.

Taking x = (θ1A,B)−10 in the last equality, we obtain

θ2A,BR−1B,u(y + v) = θ1A,BR−1A,uθ
2
A,BR−1B,uL

−1
B−1,uL

−1
B,bv + θ2A,BR

−1
B,ay.

Thus, the triplet

(θ1A,BR−1A,uθ
2
A,BR−1B,uL

−1
B−1,uL

−1
B,b, θ

2
A,BR

−1
B,a, θ

2
A,BR−1B,u)
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is an antiautotopy of the group (Q; +). Since any component of an antiautotopy
of a group is an antiquasiautomorphism (see [1]), then θ2A,BR

−1
B,a is an antiquasi-

automorphism of the group (Q; +). Similarly as in the proof of Theorem 2.2 we
can see that R−1

B,a is a quasiautomorphism of the group (Q; +). Therefore θ2A,B is
an antiquasiautomorphism of the group (Q; +).

Thus,

θ2A,Bx = sA + ψAx, (16)

where ψA is an antiautomorphism of (Q; +), and sA is an element of the set Q.
Hence, from (14), (15) and (16) we get

A(x, y) = ϕAx+ cA + ψAx, (17)

where cA = tA + sA.

Theorem 3.3. An invertible algebra (Q; Σ) is an invertible algebra of mixed type

of linearity of the second kind if and only if for all X,Y ∈ Σ the following formulaes

X(x, Y (−1Y (y, u), z)) = X(−1X(X(x, y), u), Y (−1Y (u, u), z)), (18)

X(Y −1(u, Y (−1Y (x, u), y)), v) = X(y,X−1(u,X(Y −1(u, x), v))), (19)

are valid in the algebra (Q; Σ ∪ Σ−1 ∪ −1Σ).

Proof. The proof is similar to the proof of Theorem 3.2.

Note, that the equalities (1), (10), (11), (12), (13), (18) and (19) are the
identities of the second order (in the sense of Yu.M. Movsisyan [11]).
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Generalized IP-loops

Ivan I. Deriyenko

Abstract. Some generalization of the inverse identities for loops are presented and it is proved
that loops of order n < 7 satisfy one of these generalized identities. Included examples presented
method of computation of these identities. Some universal relations between left, right and mid-
dle translations are described.

1. Introduction

Let Q = {1, 2, . . . , n} be a �nite set, Sn - the set of all permutations of Q. The
multiplication (composition) of permutations ϕ,ψ ∈ Sn is de�ned as ϕψ(x) =
ϕ(ψ(x)). All permutations will be written in the form of cycles, cycles will be
separated by dots, e.g.

ϕ =
(

1 2 3 4 5 6 7
4 7 6 1 5 2 3

)
= (1 4)(2 7 3 6)(5) = (1 4. 2 7 3 6. 5.).

By a cyclic type of permutation ϕ we mean the sequence {l1, l2, . . . , ln}, where
li denotes the number of cycles of the length i. In this case we will write

C(ϕ) = {l1, l2, . . . , ln} and P (ϕ) = {xl1
1 , x

l2
2 , . . . , x

ln
n }.

For example, forthe above permutation ϕ we have C(ϕ) = {1, 1, 0, 1, 0, 0, 0} and
P (ϕ) = {x1

1, x
1
2, x

0
3, x

1
4, x

0
5, x

0
6, x

0
7}.

Let Q(·) be a quasigroup with the multiplication denoted by juxtaposition.
Then La(x) = a · x is called a left translation, Ra(x) = x · a is called a right

translation. By a middle translation (shortly: track) we mean a permutation ϕa

such that x · ϕa(x) = a for every x ∈ Q. The permutation ϕ−1
a is denoted by λa,

i.e., λa(x) · x = a for every x ∈ Q. Moreover, for all i, j ∈ Q, i 6= j, we de�ne left

spins Lij = LiL
−1
j , right spins Rij = RiR

−1
j and middle spins ϕij = ϕiϕ

−1
j .

The "matrices" L = [Lij ], R = [Rij ] and Φ = [ϕij ] are called the left (right,
middle) spectrum of a quasigroup Q(·), respectively. By the indicator of the spec-

trum L (cf. [5]) we mean the polynomial L∗ =
∑n

i=1 P (Li), where Li is the ith
row of L and P (Li) =

∑n
j=1, i 6=j P (Lij).

2010 Mathematics Subject Classi�cation: 20N05
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The indicators R∗, Φ∗ of R and Φ are de�ned analogously.
As it is well known (cf. [6]), two permutations ϕ,ψ ∈ Sn are conjugated if there

exists a permutation ρ ∈ Sn such that ρϕρ−1 = ψ.

Theorem 1.1. (Theorem 5.1.3. in [6]) Two permutations are conjugate if and

only if they have the same cyclic type.

We will use the following notation: L′ij = L−1
i Lj , R

′
ij = R−1

i Rj , ϕ
′
ij = ϕ−1

i ϕj .

2. IP-identities

As it is well known (cf. for example [1]), IP-loops satisfy the following two identi-
ties:

x−1 · (x · y) = y, (y · x) · x−1 = y. (1)

In any IP-loop we also have:

(x · y)−1 = y−1 · x−1. (2)

Let Q(·) be a quasigroup, α, β, γ, ρ, σ, τ � �xed permutations of Q. Consider
the following identities:

α(x) · β(x · y) = γ(y) (3)

β(y · x) · α(x) = γ(y) (4)

α(x) · β(y · x) = γ(y) (5)

β(x · y) · α(x) = γ(y) (6)

ρ(x · y) = σ(y) · τ(x). (7)

Identities (3) � (6) generalize (1), (7) is a generalization of (2).

Theorem 2.1. If (3) and (5) (or (4) and (6)) hold for some α, β, γ, then (7) holds
for some ρ, σ, τ .

Proof. Let (3) and (5) be satis�ed, i.e., let

α1(x) · β1(x · y) = γ1(y) (8)

α2(x) · β2(y · x) = γ2(y) (9)

for some α1, β1, γ1, α2, β2, γ2. Multiplying the second identity by β1 and α1(α2(x))
we obtain

α1(α2(x)) · β1(α2(x) · β2(y · x)) = α1(α2(x)) · β1(γ2(y)),

which for α2(x) = u and β2(y · x) = v gives

α1(u) · β1(u · v) = α1(u) · β1(γ2(y)).
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From this, applying (8), we get

α1(u) · β1(γ2(y)) = γ1(v).

So,
γ1(β2(y · x)) = α1(α2(x)) · β1(γ2(y)).

This shows that (7) is satis�ed for ρ = γ1β2, σ = α1α2, τ = β1γ2.
Analogously we can show that (4) and (6)) imply (7).

Theorem 2.2. In any quasigroup:

• (3) holds if and only if Ri = β−1ϕγ(i)α,

• (4) holds if and only if Li = β−1ϕ−1
γ(i)α,

• (5) holds if and only if Li = β−1ϕγ(i)α,

• (6) holds if and only if Ri = β−1ϕ−1
γ(i)α,

• (7) holds if and only if Li = ρ−1Rτ(i)σ

for all i ∈ Q.

Proof. We prove only the �rst equivalence. The proof of other equivalences is very
similar.

Let (3) holds. Then for y = i we have

α(x) · βRi(x) = γ(i) = α(x) · ϕγ(i)α(x),

which means that βRi = ϕγ(i)α, whence we obtain Ri = β−1ϕγ(i)α.
The converse statement is obvious.

Theorem 2.3. In a quasigroup Q(·) we have:

(a) R∗ = Φ∗ if (3) or (6) holds,

(b) L∗ = Φ∗ if (4) or (5) holds,

(c) L∗ = R∗ if (7) holds.

Proof. Let (3) holds. Then Ri = β−1ϕγ(i)α, whence Rij = β−1ϕγ(i)γ(j)β. This,
by Theorem 2.2, gives R′

ij = β−1ϕγ(i)γ(j)β. So, R
∗ = Φ∗.

In other cases the proof is similar.

Corollary 2.4. If in a quasigroup Q(·) for every i ∈ Q
(a) Ri = β−1ϕγ(i)α or Ri = β−1ϕ−1

γ(i)α, then R
∗ = Φ∗,

(b) Li = β−1ϕγ(i)α or Li = β−1ϕ−1
γ(i)α, then L

∗ = Φ∗,

(c) Li = ρ−1Rτ(i)σ, then L
∗ = R∗.

Theorem 2.5. Relations Li = β−1ϕγ(i)α, Li = β−1ϕ−1
γ(i)α, Ri = β−1ϕγ(i)α,

Ri = β−1ϕ−1
γ(i)α and Li = ρ−1Rτ(i)σ are universal, i.e., they are saved by isotopy.
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Proof. Assume that quasigroups Q(◦) and Q(·) are isotopic, i.e.,

δ(x ◦ y) = µ(x) · η(y)

for some permutations δ, µ, η of Q.
Translations Li, Ri, ϕi of Q(·) and translations L◦i , R

◦
i , ϕ

◦
i of Q(◦) are con-

nected by formulas:

Li = δL◦µ−1(i)η
−1, Ri = δR◦

η−1(i)µ
−1, ϕi = ηϕ◦δ−1(i)µ

−1

(for details see [5]). Hence, if the formula Li = β−1ϕγ(i)α is satis�ed in Q(·), then
in Q(◦) it has the form

δL◦µ−1(i)η
−1 = β−1(ηϕ◦δ−1γ(i)µ

−1)α .

Thus

L◦µ−1(i) = δ−1β−1ηϕ◦δ−1γ(i)µ
−1αη ,

which for j = µ−1(i) gives

L◦j = (δ−1β−1η)ϕ◦δ−1γµ(i)(µ
−1αη) .

So, the formula Li = β−1ϕγ(i)α is universal.
In other cases the proof is analogous.

3. Examples

We will use universal relations mentioned in Theorem 2.5 to determine conditions
under which identities (3) � (7) are satis�ed by quasigroups belonging to the iso-
topy classes of quasigroups listed in the book [2]. We omit classes of quasigroups
isotopic to groups since groups satisfy each of these identities for some permuta-
tions.

1. The �rst class is represented by the loop No. 2.1.1:

· 1 2 3 4 5

1 1 2 3 4 5
2 2 1 4 5 3
3 3 5 1 2 4
4 4 3 5 1 2
5 5 4 2 3 1

L1 = ϕ1 = (1.2.3.4.5.)
L2 = ϕ2 = (12.345.)
L3 = ϕ3 = (13.254.)
L4 = ϕ4 = (14.235.)
L5 = ϕ5 = (15.243.)

R1 = (1.2.3.4.5.)
R2 = (12.354.)
R3 = (13.245.)
R4 = (14.253.)
R5 = (15.234.)

In this loop Li = ϕi for all i, so from the �rst universal relation Li = β−1ϕγ(i)α
we see that this is possible for α = β = γ = ε, which, by Theorem 2.2, means that
this loop satis�es the identity:

x · (y · x) = y.
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This universal relation is possible also for other α and β. Indeed, for γ(1) = 1,
from Theorem 2.2 and (3), we obtain α(x) · β(x) = 1, which for this loop implies
α = β. Hence for γ(2) = 3 we have L2 = α−1ϕ3α. This is possible only for
α = (1.23.45.). Then γ = α. So, the identity

α(x) · α(y · x) = α(y), (10)

where α = (1.23.45.) also is possible in this loop.
Now we check connections between Ri and ϕi. For this we use indicators R∗

and Φ∗. In the case R∗ 6= Φ∗ no any connections, in the case R∗ = Φ∗ connections
are possible.

For this loop we have
Φ1 = {ϕ12, ϕ13, ϕ14, ϕ15} = {(12.354.), (13.245.), (14.253.), (15.234.)}
Φ2 = {ϕ21, ϕ23, ϕ24, ϕ25} = {(12.345.), (14325.), (15423.), (13524.)}
Φ3 = {ϕ31, ϕ32, ϕ34, ϕ35} = {(13.254.), (15234.), (12435.), (14532.)}
Φ4 = {ϕ41, ϕ42, ϕ43, ϕ45} = {(14.235.), (13245.), (15342.), (12543.)}
Φ5 = {ϕ51, ϕ52, ϕ53, ϕ54} = {(15.243.), (14235.), (12354.), (13452.)}

and
P (Φ1) =

∑5
j=2 P (ϕ1j) = x2x3 + x2x3 + x2x3 + x2x3 = 4x2x3

P (Φ2) =
∑5

j=1, j 6=2 P (ϕ2j) = x2x3 + x5 + x5 + x5 = x2x3 + 3x5

P (Φ3) = P (Φ4) = P (Φ5) = P (Φ2) = x2x3 + 3x5

Φ∗ =
∑5

i=1 P (Φi) = 5x2x3 + 12x5

Analogously,

R1 = {R12, R13, R14, R15} = {(12.345.), (13.254.), (14.235.), (15.243.)}
R2 = {R21, R23, R24, R25} = {(12.354.), (15324.), (13425.), (14523.)}
R3 = {R31, R32, R34, R35} = {(13.245.), (14234.), (15432.), (12534.)}
R4 = {R41, R42, R43, R45} = {(14.253.), (15243.), (12345.), (13542.)}
R5 = {R51, R52, R53, R54} = {(15.234.), (13245.), (14352.), (12453.)}

and

P (R1) = 4x2x3, P (R2) = P (R3) = P (R4) = P (R5) = x2x3 + 3x5

R∗ = 5x2x3 + 12x5

So, R∗ = Φ∗. Thus, the relation Ri = β−1ϕγ(i)α or Ri = β−1ϕ−1
γ(i)α is possible

(Corollary 2.4). If the �rst relation holds, then Rij = β−1ϕγ(i)γ(j)β. For i = 1
must be γ(1) = 1 since two conjugated permutations have the same cyclic type
(Theorem 1.1). So, R1j = β−1ϕ1γ(j)β, which for γ(2) = 2 gives R12 = β−1ϕ12β.
The last equation has three solutions: β1 = (1.2.3.45.), β2 = (1.2.35.4.) and
β3 = (1.2.34.5.). Hence, in view of Theorem 2.3, the identity (3) may be true in
this class of quasigroups for α = β = γ = βi. Comparing this fact with (10), where
α = (1.23.45.), and the end of the proof of Theorem 2.1 (ρ = γ1β2, σ = α1α2,
τ = β1γ2), we see that α1 = β1 = γ1 = (1.23.45.), α2 = β2 = γ2 = (1.2.3.45.) and
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ρ = σ = τ = (1.23.4.5.). So, in this loop we have

ρ(x · y) = ρ(y) · ρ(x)

for ρ = (1.23.4.5.).
2. Using the same method we can see that L∗ = R∗ = Φ∗ for loops no.

3.1.1, 4.1.1, 5.1.1, 6.1.1 and 7.1.1. For example, for the loop no. 3.1.1 we have
L∗ = R∗ = Φ∗ = 6(2x2

3 + 3x6) and Li = β−1ϕγ(i)α, where α = (1.2.3.465.),
β = γ = (1.23.4.5.6.). So, in this loop α(x) · β(y · x) = β(y) for the above α, β. In
this loop also Ri = β−1ϕγ(i)α for α = (1.2.3.46.5.), β = γ = (1.23.4.56.), which
means that this loop satis�es α(x) · β(x · y) = β(y) for the above α, β. Hence, it
satis�es also ρ(x · y) = ρ(y) · ρ(x) for ρ = (1.2.3.4.56.).

3. For loops no. 8.1.1, 8.2.1, 8.3.1, 9.1.1, 9.2.1, 9.3.1, 10.1.1, 10.2.1, 10.3.1,
11.1.1, 11.2.1, 11.3.1, 12.1.1, 12.2.1 and 12.3.1, one of the following relations take
place: L∗ = R∗ 6= Φ∗, L∗ 6= R∗ = Φ∗, R∗ 6= L∗ = Φ∗.
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D-loops

Ivan I. Deriyenko and Wieslaw A. Dudek

Abstract. D-loops are loops with the antiautomorphic inverse property. The class of such
loops is larger than the class of IP-loops. The smallest D-loops which is not an IP-loop has six
elements. We prove several basic properties of such loops and present methods of constructions
of D-loops from IP-loops. Unfortunately, a loop isotopic to a D-loop may not be a D-loop.

1. Introduction

A loop is a quasigroup Q(◦) with an identity element always denoted by 1. A loop
Q(◦) has the inverse property, i.e., it is an IP-loop, if for each its element a there
exists inQ a uniquely determined inverse element a′ such that a′◦(a◦b) = (b◦a)◦a′.
This means that in an IP-loop for right and left translations, i.e., for Ra(x) = x◦a,
La(x) = a ◦ x, we have

R−1
a = Ra′ , L−1

a = La′ . (1)

It is not di�cult to shown that in an IP-loop Q(◦) for all a, b ∈ Q hold

a ◦ a′ = a′ ◦ a = 1, (a′)′ = a (2)

and

(a ◦ b)′ = b′ ◦ a′ . (3)

On the other hand, in any loop Q(◦) for each a ∈ Q there are uniquely de-
termined left and right loop-inverse elements a−1

L
, a−1

R
∈ Q for which we have

a−1
L

◦ a = a ◦ a−1
R

= 1. A two-sided loop-inverse element to a ∈ Q is denoted by
a−1. Clearly, (a−1)−1 = a. Hence, an element a−1 ∈ Q is loop-inverse to a ∈ Q
if and only if a ∈ Q is loop-inverse to a−1. In a loop each inverse element is
loop-inverse but a loop-inverse element may not be inverse.

2010 Mathematics Subject Classi�cation: 20N05
Keywords: Quasigroup, loop, D-loop, antiautomorphic inverse property, track.
The main results of this paper were presented at the conference Loops'11 which was held
in Trest, Czech Republic, July, 2011.
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Example 1.1. Consider the following loop Q(◦):
◦ 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 3 1 6 7 5 4
3 3 1 2 7 6 4 5
4 4 7 6 5 1 3 2
5 5 6 7 1 4 2 3
6 6 4 5 2 3 7 1
7 7 5 4 3 2 1 6

In this loop we have a−1
L

= a−1
R

for each a ∈ Q. Hence, each element of this
loop is loop-inverse. But a = 5 is not an inverse element since 4 ◦ (5 ◦ 6) 6= 6. The
map h(x) = x−1

R
is an antiautomorphism of this loop, i.e., it satis�es the identity

h(x ◦ y) = h(y) ◦ h(x). �

Recall that a loop Q(◦) satis�es the antiautomorphic inverse property if for
each x ∈ Q there exists a two-sided loop-inverse element x−1 such that (x◦y)−1 =
y−1 ◦x−1 holds for all x, y ∈ Q. A simple example of such loop is an IP-loop. The
above example proves that there are also loops with this property which are not
IP-loops. Thus, the class of loops with this property is much larger than the class
of IP-loops.

This enables us to introduce the following de�nition.

De�nition 1.2. A loop Q(◦) is called a D-loop if it satis�es the dual automorphic

property for ϕ(x) = x−1
R
, i.e., if

(x ◦ y)−1
R

= y−1
R

◦ x−1
R

(4)

holds for all x, y ∈ Q.

Theorem 1.3. A loop Q(◦) is a D-loop if and only if it satis�es the identity

(x ◦ y)−1
L

= y−1
L

◦ x−1
L
. (5)

Proof. Suppose that Q(◦) is a D-loop. Since x−1
L

◦ x = 1, from (4) it follows

1 = 1−1
R

= (x−1
L

◦ x)−1
R

= x−1
R

◦ (x−1
L

)−1
R
,

which together with 1 = x−1
L

◦ (x−1
L

)−1
R

gives x−1
L

= x−1
R
. Thus (4) implies (5).

Analogously, using x ◦ x−1
R

= 1 and (x−1
R

)−1
L

◦ x
R

= 1 we can prove that (5)
implies (4).

Corollary 1.4. For all elements of D-loops we have

a−1
L

= a−1
R

and (a−1)−1 = a. �

This means that in the multiplication table of aD-loop Q(◦) its neutral element
is located symmetrically with respect to the main diagonal and the class of all D-
loops coincides with the class of loops with the antiautomorphic inverse property
but we'll keep the term D-loop since it is shorter and more convenient to use.
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2. Constructions of D-loops

Below we present several methods of veri�cation when a given loop is a D-loop.
To describe these methods we must reminder some de�nitions from [2], [5] and [6].

De�nition 2.1. Let Q(·) be a loop. A permutation ϕa of Q, where a ∈ Q, is
called a right middle translation or a right track (shortly: track) of Q(·) if

x · ϕa(x) = a (6)

holds for all x ∈ Q. By a left middle translation or a left track we mean a permu-
tation λa such that

λa(x) · x = a. (7)

It is clear that λa = ϕ−1
a and ϕ1(x) = x−1

R for all a, x ∈ Q.

The permutation ϕa selects in the multiplication table of a given loop the
number of columns in an element a appears. For the loop de�ned in Example 1.1

ϕ4 =
(

1 2 3 4 5 6 7
4 7 6 1 5 2 3

)
= (1 4)(2 7 3 6)(5).

Further, permutations will be written in the form of cycles, cycles will be sepa-
rated by dots. For example, the above permutation ϕ4 will be written as ϕ4 =
(1 4. 2 7 3 6. 5.).

It is clear that a loop Q(·), where Q = {1, 2, . . . , n}, can be identi�ed with the
set {ϕ1, ϕ2, . . . , ϕn, } of its tracks.

Theorem 2.2. A loop Q(·) is a D-loop if and only if

ϕ1ϕaϕ1 = ϕ−1
a−1 (8)

for every a ∈ Q, where a−1 is (right) inverse to a.

Proof. Let Q(·) be a D-loop. Then x−1
R = x−1 for every x ∈ Q and, according to

(6), for all a, x ∈ Q we have ϕ−1
a (x) · x = a. Hence

a−1 = (ϕ−1
a (x) · x)−1 = x−1 · (ϕ−1

a (x))−1 = ϕ1(x) · ϕ1ϕ
−1
a (x).

Since also a−1 = ϕ1(x) · ϕa−1ϕ1(x), from the above we obtain ϕ1ϕ
−1
a = ϕa−1ϕ1,

which implies (8).
Conversely, let x · y = a. Then y = ϕa(x). Hence

y−1
R · x−1

R = ϕ1ϕa(x) · ϕ1(x) = ϕ1ϕaϕ1(x−1) · x−1

(8)
= ϕ−1

a−1(x−1) · x−1 = λa−1(x−1) · x−1 (7)
= a−1

R = (x · y)−1
R .

This completes the proof.
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Corollary 2.3. A loop Q(·) is a D-loop if and only if it satis�es one of the

following identities:

(a) ϕ1ϕ
−1
a ϕ1 = ϕa−1 ,

(b) ϕ1Raϕ1 = La−1 ,

(c) ϕ1Laϕ1 = Ra−1 .

Proof. Indeed, (8) can be written in the form ϕ1ϕa−1ϕ1 = ϕ−1
a , which, in view

of ϕ1ϕ1 = idQ, is equivalent to (a). Moreover, (x · a)−1 = a−1 · x−1 means that
ϕ1Ra = La−1ϕ1. The last is equivalent to (b) and (c).

Example 2.4. Consider the loop Q(·):

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 4 3 6 5
3 3 5 1 6 4 2
4 4 6 5 2 1 3
5 5 3 6 1 2 4
6 6 4 2 5 3 1

We will use Theorem 2.2 to verify that this loop is a D-loop.
We have

ϕ1 = (1. 2. 3. 4 5. 6.) ϕ4 = (1 4. 2 3 5 6.)
ϕ2 = (1 2. 3 6. 4. 5.) ϕ5 = (1 5. 2 6 4 3.)
ϕ3 = (1 3. 2 4 6 5.) ϕ6 = (1 6. 2 5 3 4.)

We have to check the condition (8) for a = 2, 3, 4, 5, 6 because ϕ1ϕ1ϕ1 = ϕ−1
1 holds

in each loop. Permutations ϕ1 and ϕ2 have disjoint cycles hence ϕ1ϕ2ϕ1 = ϕ2 =
ϕ−1

2 . In other cases we obtain:

ϕ1ϕ3ϕ1 = (1 3. 2 5 6 4.) = ϕ−1
3 ϕ1ϕ5ϕ1 = (1 4. 2 6 5 3.) = ϕ−1

4

ϕ1ϕ4ϕ1 = (1 5. 2 3 4 6.) = ϕ−1
5 ϕ1ϕ6ϕ1 = (1 6. 2 4 3 5.) = ϕ−1

6

This shows that Q(◦) is a D-loop. �

Note that in general loops isotopic to D-loops are not D-loops.

Example 2.5. The following loop

◦ 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 6 3 4 5
3 3 6 2 5 1 4
4 4 5 1 6 2 3
5 5 3 4 1 6 2
6 6 4 5 2 3 1
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is isotopic to a D-loop Q(◦) from the previous example. This isotopy has the form
γ(x◦ y) = α(x) ·β(y), where α = (1 4 2. 3. 5. 6.), β = (1 2 5 4 6. 3.), γ = (1 6 4 3 5 2.).
The loop Q(◦) is not a D-loop since 3−1

L
6= 3−1

R
. �

Theorem 2.6. Let Q(·) be an IP-loop and let a ∈ Q be �xed. If an element a′ ∈ Q
is inverse to a in Q(·), then Q(◦) with the operation

x ◦ y = Ra′(x) · La(y) (9)

is a D-loop with the same identity as in Q(·).
Proof. It is clear that Q(◦) is a quasigroup. Let an element a′ ∈ Q be inverse to
a in Q(·). Then

x ◦ 1 = Ra′(x) · La(1) = (x · a′) · a = x.

Similarly 1 ◦ x = x. Hence Q(◦) is a loop with the same identity as in Q(·).
Moreover, for every x ∈ Q there exists x ∈ Q such that

1 = x ◦ x = Ra′(x) · La(x) = (x · a′) · (a · x),

which gives a · x = (x · a′)−1 = (a′)−1 · x−1 = a · x−1. Thus x = x−1 for every
x ∈ Q. Hence

(x ◦ y)−1 = (Ra′(x) · La(y))−1 = ((x · a′) · (a · y))−1

= (a · y)−1 · (x · a′)−1 = (y−1 · a−1) · ((a′)−1 · x−1)

= (y−1 · a′) · (a · x−1) = Ra′(y−1) · La(x−1) = y−1 ◦ x−1.

Therefore Q(◦) is a D-loop.

Corollary 2.7. Any IP-loop of order n determines n− 1 isotopic D-loops.

Example 2.8. Starting from the following IP-loop:

· 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 3 1 6 7 5 4
3 3 1 2 7 6 4 5
4 4 7 6 5 1 2 3
5 5 6 7 1 4 3 2
6 6 4 5 3 2 7 1
7 7 5 4 2 3 1 6

and using (9) with a = 2 we obtain a D-loop:

◦ 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 3 1 6 7 5 4
3 3 1 2 5 4 7 6
4 4 5 6 7 1 2 3
5 5 4 7 1 6 3 2
6 6 7 5 3 2 4 1
7 7 6 4 2 3 1 5
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which is not an IP-loop because 3 ◦ (2 ◦ 5) 6= 5. Hence a = 2 is not an inverse
element in Q(◦). Putting x ∗ y = R3(x) ◦ L2(y) we obtain a quasigroup:

∗ 1 2 3 4 5 6 7

1 1 2 3 7 6 4 5
2 2 3 1 6 7 5 4
3 3 1 2 5 4 7 6
4 7 5 6 4 1 2 3
5 6 4 7 1 5 3 2
6 4 7 5 3 2 6 1
7 5 6 4 2 3 1 7

which is isotopic to the initial D-loop Q(◦) but it is not a D-loop. This means
that in Theorem 2.6 the assumption on a can not be ignored. �

Proposition 2.9. An element a ∈ Q used in Theorem 2.6 has the same inverse

element in Q(·) and Q(◦) de�ned by (9) if and only if

x · a = x ◦ a and a′ · x = a′ ◦ x (10)

for all x ∈ Q.

Proof. Let a′ ∈ Q be inverse to a in Q(·) and Q(◦). Then a = (a′)′ and

z = (z ◦ a′) ◦ a = (Ra′(z) · La(a′)) ◦ a = Ra′(z) ◦ a,

which for z = x · a gives x · a = x ◦ a.
Similarly,

z = a′ ◦ (a ◦ z) = a′ ◦ (Ra′(a) · La(z)) = a′ ◦ La(z)

for z = a′ · x implies a′ · x = a′ ◦ x.
Conversely, if a′ ∈ Q is inverse to a in Q(·) and (10) are satis�ed, then

(x ◦ a) ◦ a′ = (x · a) ◦ a′ = Ra′(x · a) · La(a′) = ((x · a) · a′) · (a · a′) = x.

Analogously a′ ◦ (a ◦ x) = a′ · (a ◦ x) = x. Hence a′ is inverse to a in Q(◦).

Corollary 2.10. An element a ∈ Q used in Theorem 2.6 has the same inverse

element in Q(·) and Q(◦) de�ned by (9) if and only if the multiplication tables of

these two loops have the same a�columns and the same a′�rows.

Proposition 2.11. An element a ∈ Q used in Theorem 2.6 has the same inverse

element in Q(·) and Q(◦) de�ned by (9) if and only if

LaLa = La2 and RaRa = Ra2 (11)

where La and Ra are translations in Q(·).
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Proof. Let a ∈ Q has the same inverse a′ in Q(·) and Q(◦). Then for every x ∈ Q
we have

x = a′ ◦ (a ◦ x) = Ra′(a′) · La(Ra′(a) · La(x))
= Ra′(a′)LaLa(x) = La′·a′LaLa(x) = L(a2)′LaLa(x),

whence, applying (1), we get LaLa = L−1
(a2)′ = La2 .

Similarly, for every z ∈ Q we have

z ◦ a = Ra′(z) · La(a) = Ra2Ra′(z),

which for z = Ra(x), by (1), gives

Ra(x) ◦ a = Ra2Ra′Ra(x) = Ra2(x).

Hence RaRa = Ra2 . This proves (11).
The converse statement is obvious.

Below we present a simple method of construction of new loops from given
loops. This method is based on exchange of tracks. Next, this method will be
applied to the construction of D-loops.

Let {ϕ1, ϕ2, . . . , ϕn} be tracks of a D-loop Q(·) with the identity 1. We say
that for i 6= j 6= 1 tracks ϕi, ϕj are decomposable if there exist two nonempty
subsets X,Y of Q such that Q = X ∪ Y, X ∩ Y = ∅, 1 ∈ X and{

ϕi = ϕ̄iϕ̂i
ϕj = ϕ̄jϕ̂j

(12)

where ϕ̄i, ϕ̄j are permutations of X, ϕ̂i, ϕ̂j are permutations of Y.
Putting {

ψi = ϕ̄iϕ̂j
ψj = ϕ̄jϕ̂i

(13)

and ψk = ϕk for k 6∈ {i, j} we obtain the new system of tracks which de�nes on Q
the new loop Q(◦) with the same identity as in Q(·).

Example 2.12. The loop Q(·) de�ned by

· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 3 4 1 6 7 8 5
3 3 4 1 2 7 8 5 6
4 4 1 2 3 8 5 6 7
5 5 8 7 6 1 4 3 2
6 6 5 8 7 2 1 4 3
7 7 6 5 8 3 2 1 4
8 8 7 6 5 4 3 2 1



190 I. I. Deriyenko and W. A. Dudek

is a group (so, it is a D-loop) with the following tracks:

ϕ1 = (1.24.3.4.5.6.7.8.) ϕ2 = (12.34.5876.) ϕ3 = (13.2.4.57.68.)
ϕ4 = (14.23.5678.) ϕ5 = (15.37.2846.) ϕ6 = (16.38.2547.)
ϕ7 = (17.35.2648.) ϕ8 = (18.36.2745.)

For (i, j) ∈ {(2, 3), (2, 4), (3, 4), (5, 7), (6, 8)} tracks ϕi, ϕj are decomposable. In
the case (i, j) = (6, 8) we have{

ϕ6 = ϕ̄6ϕ̂6, where ϕ̄6 = (16.38.), ϕ̂6 = (2547.)
ϕ8 = ϕ̄8ϕ̂8, where ϕ̄8 = (18.36.), ϕ̂8 = (2745.)

whence, according to (13), we obtain{
ψ6 = ϕ̄6ϕ̂8 = (16.38.2745.)
ψ8 = ϕ̄8ϕ̂6 = (18.36.2547.)

and ψk = ϕk for k = 1, 2, 3, 4, 5, 7.
This new system of tracks {ψ1, ψ2, . . . , ψ8} de�nes the loop Q(◦):

◦ 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 2 3 4 1 8 7 6 5
3 3 4 1 2 7 8 5 6

4 4 1 2 3 6 5 8 7

5 5 6 7 8 1 4 3 2
6 6 5 8 7 2 1 4 3

7 7 8 5 6 3 2 1 4
8 8 7 6 5 4 3 2 1

where items changed by tracks ψ6 and ψ8 are entered in the box. �

This new loop Q(◦) can be used for the construction of another loop since it
has the same pair of decomposable tracks as Q(·). So, for the construction of new
loops we can use not only one but also two or more pairs of decomposable tracks.
Using di�erent pairs of decomposable tracks we obtain di�erent loops which may
not be isotopic. Obtained loops may not be isotopic to the initial loop Q(·), too.
Example 2.13. Direct computations show that this loop

· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 5 7 3 8 4 6
3 3 8 6 1 4 2 5 7
4 4 6 1 5 7 3 8 2
5 5 7 4 2 8 1 6 3
6 6 4 8 3 1 7 2 5
7 7 5 2 8 6 4 3 1
8 8 3 7 6 2 5 1 4

is a D-loop. It hasn't got any decomposable pair of tracks. �
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Theorem 2.14. Let Q(·) be a D-loop with the identity 1. If ϕi, ϕj, where i · j = 1
and i 6= j, are decomposable tracks of Q(·), then a loop Q(◦) obtained from Q(·)
by exchange of tracks is a D-loop.

Proof. Since Q(◦) is a loop it is su�cient to show that ψ1ψkψ1 = ψ−1
k−1 for every

k ∈ Q (Theorem 2.2). For k 6∈ {i, j} we have ψk = ϕk, so for k 6∈ {i, j} this
condition is satis�ed by the assumption. For k = i we have

ψ1ψiψ1 = ϕ1ϕ̄iϕ̂jϕ1 = (ϕ1ϕ̄iϕ1)(ϕ1ϕ̂jϕ1) = ϕ̄j
−1ϕ̂i

−1 = ψ−1
j = ψ−1

i−1

because ϕ2
1 = ε, ϕ̄iϕ̂j = ϕ̂jϕ̄i and i · j = 1.

For k = j the proof is analogous. So, Q(◦) is a D-loop.

The assumption i ·j = 1 is essential. Indeed, in Example 2.12 tracks ϕ3, ϕ4 are
decomposable, 4 · 3 6= 1, 4−1 = 2 and ψ1ψ4ψ1 = ψ4 6= ψ−1

2 . So, a loop determined
by tracks ψ1, . . . , ψ8 is not a D-loop.

The D-loop Q(◦) constructed in Example 2.12 is not isotopic to the initial
group Q(·) since (7 ◦ 7) ◦ 2 6= 7 ◦ (7 ◦ 2). In this loop we also have 7 ◦ (7 ◦ 2) 6= 2,
so it is not an IP-loop, too.

Example 2.15. The loop Q(·) de�ned by

· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 5 7 3 8 4 6
3 3 8 4 1 7 2 6 5
4 4 6 1 3 8 7 5 2
5 5 7 8 2 6 1 3 4
6 6 4 7 8 1 5 2 3
7 7 5 2 6 4 3 8 1
8 8 3 6 5 2 4 1 7

is a D-loop with the following tracks:

ϕ1 = (1.2.34.56.78.) ϕ2 = (12.367.485.) ϕ3 = (13.4.25768.)
ϕ4 = (14.3.27586.) ϕ5 = (15.6.23847.) ϕ6 = (16.5.28374.)
ϕ7 = (17.8.24635.) ϕ8 = (18.7.26453.)

For (i, j) ∈ {(3, 4), (5, 6), (7, 8)} tracks ϕi, ϕj are decomposable. Each pair of such
tracks gives a D-loop. Obtained loops are isotopic but they are not isotopic to
Q(·) since they and Q(·) have di�erent indicators Φ∗. (Isotopic loops have the
same indicators � see [7].)

If for the construction of a new loop we use two pairs of decomposable tracks:
ϕ3, ϕ4 and ϕ5, ϕ6, or ϕ3, ϕ4 and ϕ7, ϕ8, or ϕ5, ϕ6 and ϕ7, ϕ8, then we obtain three
isotopic D-loops. These loops are not isotopic either to Q(·) or to the previous
because have di�erent indicators Φ∗.

Also in the case when we use three pairs of decomposable tracks obtained
D-loop. It is not isotopic to any of the previous.
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So, from this D-loop we obtain three nonisotopic D-loops which also are not
isotopic to the initial D-loop Q(·).

As it is well known with each quasigroup Q(·) we can conjugate �ve new quasi-
groups (called parastrophes of Q(·)) by permuting the variables in the de�ning
equation. Namely, if Q0 = Q(·) is a �xed quasigroup, then its parastrophes have
the form

Q(\) x\z = y ⇐⇒ x · y = z,

Q(/) z/y = x ⇐⇒ x · y = z,

Q(∗) y ∗ x = z ⇐⇒ x · y = z,

Q(•) y • z = x ⇐⇒ x · y = z,

Q(/) z / x = y ⇐⇒ x · y = z.

Theorem 2.16. Parastrophes of a D-loop Q(·) are isomorphic to one of the fol-

lowing quasigroups: Q(·), Q(\), Q(/).

Proof. Indeed, if Q(·) is a D-loop, ϕ1 � its track determined by the identity of
Q(·), then, according to the de�nition of D-loops, we have

ϕ1(x · y) = ϕ1(y) · ϕ1(x).

Hence

ϕ1(y ∗ x) = ϕ1(z) ⇐⇒ ϕ1(x · y) = ϕ1(z) ⇐⇒ ϕ1(y) · ϕ1(x) = ϕ1(z).

So, ϕ1(y ∗ x) = ϕ1(y) · ϕ1(x), i.e., Q(∗) and Q(·) are isomorphic.

Further,

ϕ1(y • z) = ϕ1(x) ⇐⇒ ϕ1(x · y) = ϕ1(z) ⇐⇒ ϕ1(y) · ϕ1(x) = ϕ1(z)

⇐⇒ ϕ1(y)\ϕ1(z) = ϕ1(x).

Thus, ϕ1(y • z) = ϕ1(y\z). Consequently, Q(•) ∼= Q(\).

Analogously,

ϕ1(z / x) = ϕ1(y) ⇐⇒ ϕ1(x · y) = ϕ1(z) ⇐⇒ ϕ1(y) · ϕ1(x) = ϕ1(z)

⇐⇒ ϕ1(z)/ϕ1(x) = ϕ1(y),

whence ϕ1(z / x) = ϕ1(z/x). So, Q(/) ∼= Q(/).

3. Loops isotopic to D-loops

As was mentioned earlier, loops isotopic to D-loops are not D-loops in general, but
in some cases principal isotopes of D-loops are D-loops. Below we �nd conditions
under which D-loops are isotopic to groups and conditions under which a principal
isotope of a D-loop is a D-loop.
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De�nition 3.1. Let Q(·), where Q = {1, 2, . . . , n}, be a quasigroup. By a spin of
a quasigroup Q(·) we mean a permutation

ϕij = ϕiϕ
−1
j = ϕiλj ,

where ϕi and λj are right and left tracks of Q(·) respectively.

Obviously ϕii = ε for i ∈ Q and ϕij 6= ϕik for j 6= k, but the situation where
ϕij = ϕkl for some i, j, k, l ∈ Q also is possible (cf. [6]). Hence the collection
Φ of all spins of a given quasigroup Q(·) can be divided into disjoint subsets
Φi = {ϕij : j ∈ Q} (called spin-basis) in which all elements are di�erent. Generally,
Φi are not closed under the composition of permutations but in some cases Φi are
groups.

In [6] the following result is proved.

Theorem 3.2. A quasigroup Q(·) is isotopic to some group if and only if its

spin-basis Φ1 is a group. �

In this case Φ1 = Φi for all i ∈ Q.

Theorem 3.3. In D-loops we have Φ = 〈Φ1〉 = {ϕ1iϕ1j : i, j ∈ Q}.

Proof. Indeed, by Corollary 2.3

ϕ1iϕ1j = ϕ1ϕ
−1
i ϕ1ϕ

−1
j = (ϕ1ϕ

−1
i ϕ1)ϕ−1

j = ϕi−1ϕ−1
j = ϕi−1j ∈ Φ

and conversely, each ϕij ∈ Φ can be written in the form ϕij = ϕ1i−1ϕ1j .

Corollary 3.4. A D-loop is isotopic to a group if and only if 〈Φ1〉 = Φ1.

Proof. If a D-loop Q(·) is isotopic to a group, then, by Theorem 3.2, Φ1 is a group.
Hence 〈Φ1〉 = Φ1.

Conversely, if 〈Φ1〉 = Φ1, then ϕ1iϕi1 = ϕ11 implies ϕ−1
1i = ϕi1 ∈ Φ = 〈Φ1〉 =

Φ1 which means that Φ1 is a group. Thus Q(◦) is isotopic to some group.

Corollary 3.5. A D-loop is isotopic to a group if and only if Φ1 is closed under

a composition of permutations.

Proof. If a D-loop Q(·) is isotopic to a group, then, by Theorem 3.2, Φ1 is a group.
Hence Φ1 is closed under a composition of permutations.

Conversely, if Φ1 is closed under a composition of permutations, then, in view
of Theorem 3.3, from ϕ1iϕi1 = ϕ11 it follows ϕ−1

1i = ϕi1 ∈ Φ = 〈Φ1〉 = Φ1, which
means that Φ1 is a group. Thus Q(·) is isotopic to some group.

Corollary 3.6. A D-loop Q(·) is isotopic to a group if and only if for all i, j ∈ Q
there exists k ∈ Q such that ϕiϕ1ϕj = ϕk.

Proof. Indeed, ϕ1jϕ1i = ϕ1k means that ϕ1ϕ
−1
j ϕ1ϕ

−1
i = ϕ1ϕ

−1
k . Thus ϕ−1

j ϕ1ϕ
−1
i =

ϕ−1
k . Hence ϕk = ϕiϕ1ϕj .
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Theorem 3.7. If a quasigroup Q(·) is isotopic to a D-loop Q(◦), then there exists

a permutation σ of Q and an element p ∈ Q and such that

ϕpϕ
−1
i ϕp = ϕσ(i) (14)

for all tracks ϕi of Q(·).

Proof. Let a quasigroup Q(·) be isotopic to a D-loop Q(◦). Then

γ(x · y) = α(x) ◦ β(y) (15)

for some permutations α, β, γ of Q. Thus for all i, x ∈ Q we have

γ(i) = γ(x · ϕi(x)) = α(x) ◦ βϕi(x),

where ϕi is a right track of Q(·). Hence

γ(i) = z ◦ βϕiα−1(z)

for all i ∈ Q and z = α(x). This together with γ(i) = z ◦ ψγ(i)(z) gives

βϕiα
−1 = ψγ(i),

i.e.,
ϕi = β−1ψγ(i)α, ϕ−1

i = α−1ψ−1
γ(i)β. (16)

Thus for p = γ−1(1), where 1 is the identity of Q(◦), we obtain

ϕpϕ
−1
i ϕp = (β−1ψ1α)(α−1ψ−1

γ(i)β)(β−1ψ1α) = β−1(ψ1ψ
−1
γ(i)ψ1)α.

Since Q(◦) is a D-loop, for k = γ−1ψ1γ(i), by Corollary 2.3, we have

β−1(ψ1ψ
−1
γ(i)ψ1)α = β−1ψγ(i)−1α = β−1ψψ1γ(i)α = β−1ψγ(k)α = ϕk.

So, ϕpϕ
−1
i ϕp = ϕk, which means that (14) is valid for σ = γ−1ψ1γ.

The converse statement is more complicated.

Theorem 3.8. Let a quasigroup Q(·) and a loop Q(◦) with the identity 1 be

isotopic, i.e., let (15) holds. If ϕi are tracks of Q(·), ψi � tracks of Q(◦) and (14)
is satis�ed for p = γ−1(1), σ = γ−1ψ1γ and all i ∈ Q, then Q(◦) is a D-loop.

Proof. Indeed, (15) holds, then for p = γ−1(1) and any i ∈ Q, in view of (16), we
have

ψ1ψ
−1
i ψ1 = (βϕγ−1(1)α

−1)(αϕ−1
γ−1(i)β

−1)(βϕγ−1(1)α
−1) = β(ϕpϕ−1

γ−1(i)ϕp)α
−1

= βϕσ(γ(i))α
−1 = βϕγ−1ϕ1(i)α

−1 = ψψ1(i) = ψi−1 ,

where i−1 is calculated in Q(◦).
Thus ψ1ψ

−1
i ψ1 = ψi−1 , which means that Q(◦) is a D-loop.
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Lemma 3.9. A loop Q(◦) is a principal isotope of a quasigroup Q(·) if and only

if

x ◦ y = R−1
b (x) · L−1

a (y),

for some a, b ∈ Q such that a · b = 1, where 1 is the identity of Q(◦) and La, Rb
are translations of Q(·).

Proof. Indeed, if Q(◦) is a loop with the identity 1 and x◦y = α(x) ·β(y) for some
permutations α, β of Q, then for a = α(1), b = β(1) we have

1 = 1 ◦ 1 = α(1) · β(1) = a · b,

x = x ◦ 1 = α(x) · β(1) = α(x) · b,

y = 1 ◦ y = α(1) · β(y) = a · β(y).

Thus
α(x) = R−1

b (x), β(y) = L−1
a (y).

Hence x ◦ y = R−1
b (x) · L−1

a (y).
The converse statement is obvious.

Corollary 3.10. A quasigroup Q(·) is a principal isotope of a loop Q(◦) with the

identity 1 if and only if

x · y = Rb(x) ◦ La(y),

for some translations La, Rb of Q(·) such that a · b = 1.

Proposition 3.11. In any principal isotope Q(·) of a D-loop Q(◦) with the identity
1 we have

ϕ1ϕ
−1
i ϕ1 = ϕi−1 ,

where i−1 is calculated in Q(◦).

Proof. It is a consequence of (15) and (16).

Corollary 3.12. A principal isotope Q(·) of a D-loop Q(◦) is a D-loop if and

only if Q(·) and Q(◦) have the same inverse elements. �

Corollary 3.13. A principal isotope Q(·) of a D-loop Q(◦) is a D-loop if and

only if Q(·) and Q(◦) have the same tracks induced by the identity of Q(◦), i.e., if
and only if ϕ1 and ψ1, where 1 he identity of Q(◦). �

4. Proper D-loops

A D-loop is proper if it is not an IP-loop. The smallest D-loop has six elements.
Below we present a full list of all nonisotopic proper D-loops of order 6. They
represent (respectively) the classes 8.1.1, 9.1.1, 10.1.1 and 11.1.1 mentioned in the
book [4].
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· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 6 5 3 4
3 3 6 1 2 4 5
4 4 5 2 1 6 3
5 5 3 4 6 1 2
6 6 4 5 3 2 1

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 3 1 6 4 5
3 3 1 2 5 6 4
4 4 6 5 1 2 3
5 5 4 6 2 3 1
6 6 5 4 3 1 2

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 6 5 4 3
3 3 5 1 2 6 4
4 4 6 2 1 3 5
5 5 3 4 6 2 1
6 6 4 5 3 1 2

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 4 5 6 3
3 3 4 2 6 1 5
4 4 5 6 2 3 1
5 5 6 1 3 2 4
6 6 3 5 1 4 2
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Prime and weakly prime ideals in semirings

Manish Kant Dubey

Abstract. We study the concept of subtractive prime and weakly prime ideals in a semiring
and prove some results analogous to ring theory.

1. Introduction

The notion of a semiring was �rst introduced by H. S. Vandiver in 1935. After
that several authors have generalized and characterized the results in many ways.
By a semiring, we mean a semigroup (S, ·) and a commutative monoid (S, +, 0)
in which 0 is the additive identity and s · 0 = 0 · s = 0 for all s ∈ S, both are
connected by ring-like distributivity. In this paper, all semirings are considered to
be semirings with zero.

A nonempty subset I of a semiring S is called an (left, right) ideal if a, b ∈ I
and s ∈ S implies a + b ∈ I and (sa ∈ I, as ∈ I respectively) as ∈ S and sa ∈ I.
A subtractive ideal I of S is an ideal such that if a, a + b ∈ I then b ∈ I.

For the remaining de�nition of a semiring we refer [6].

2. Weakly prime ideals

D. D. Anderson and E. Smith [3] have introduced and studied the concept of a
weakly prime ideal of an associative ring with unity. After that several authors
have focused on the study of this concept to extend the results to commutative
ring and commutative semiring theory.

De�nition 2.1. A proper ideal P of a semiring S is said to be prime if AB ⊆ P
implies A ⊆ P or B ⊆ P for any ideals A,B of S.

De�nition 2.2. A proper ideal P of a semiring S is said to be weakly prime if
{0} 6= AB ⊆ P implies A ⊆ P or B ⊆ P for any ideals A and B of S.

It is clear that every prime ideal is weakly prime. If S be a semiring with zero,
then I = {0} is a weakly prime ideal of S. It is easy to see that in Z6 an ideal
I = {0} is weakly prime but not prime.

2010 Mathematics Subject Classi�cation: 16Y60
Keywords: Subtractive ideal, prime ideal, weakly prime ideal.
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De�nition 2.3. An element s in a semiring S is said to be nilpotent if there exists
a positive integer n (depending on s), such that sn = 0 for s ∈ S. Nil S denote the
set of all nilpotent element of S. An ideal I in a semiring S is said to be nilpotent

if there exists a positive integer n (depending on I), such that In = 0.

Theorem 2.4. Let I be a subtractive ideal in a semiring S with 1 6= 0. The

following statements are equivalent:

(i) I is a weakly prime ideal.

(ii) If A,B are right (left) ideals of S such that {0} 6= AB ⊆ I, then A ⊆ I or

B ⊆ I.

(iii) If a, b ∈ S such that {0} 6= aSb ⊆ I, then a ∈ I or b ∈ I.

Proof. (i) ⇒ (ii) Suppose that I is a weakly prime ideal of S and A,B are two right
(left) ideals of S such that {0} 6= AB ⊆ I. Let 〈A〉 , 〈B〉 be the ideals generated
by A,B respectively. Then {0} 6= 〈A〉 〈B〉 ⊆ I implies 〈A〉 ⊆ I or 〈B〉 ⊆ I and
A ⊆ 〈A〉 ⊆ I or B ⊆ 〈B〉 ⊆ I. Therefore A ⊆ I or B ⊆ I.

(ii) ⇒ (iii) Let {0} 6= aSb ⊆ I. Since S has an identity, therefore {0} 6=
(aS)(bS) ⊆ I implies a ∈ aS ⊆ I or b ∈ bS ⊆ I.

(iii) ⇒ (i) Suppose that AB ⊆ I for ideals A and B of S, where A * I and
B * I. Let a ∈ A \ I, b ∈ B \ I. Also let a′ ∈ A∩ I, b′ ∈ B ∩ I be chosen arbitrary.
Since a+a′, b+ b′ /∈ I, we must have {0} = (a+a′)S(b+ b′). Now if we are letting
a′ = 0 or b′ = 0 or a′ = 0 and b′ = 0 and considering all combinations we get
0 = ab = a′b = a′b′ = a′b′ and hence AB = {0}.

Proposition 2.5. Every ideal of a semiring S is weakly prime if and only if for

any ideals A, B in S, we have AB = A, AB = B, or AB = 0.

Proof. Assume that every ideal of S is weakly prime. Let A,B be ideals of S.
Suppose AB 6= S. Then AB is weakly prime. If {0} 6= AB ⊆ AB; then we have
A ⊆ AB or B ⊆ AB (since AB is weakly prime ideal of S), that is, A = AB or
B = AB. If AB = S, then we have A = B = S whence S2 = S. Conversely, let I
be any proper ideal of S and suppose that {0} 6= AB ⊆ I for ideals A and B of S.
Then we have either A = AB ⊆ I or B = AB ⊆ I.

Now we can easily prove the following results based on the above proposition.
Let S be a semiring in which every ideal of S is weakly prime. Then for any ideal

A of S, we have either A2 = A or A2 = 0.

Lemma 2.6. Let P be a subtractive ideal of semiring S. Let P be a weakly prime

ideal but not a prime ideal of semiring S. Suppose ab = 0 for some a, b /∈ P , then

we have aP = Pb = {0}.

Proof. Suppose ap1 6= 0, for some p1 ∈ P . Then 0 6= a(b + p1) ∈ P . Since P is a
weakly prime ideal of S, therefore a + p1 ∈ P or b ∈ P, that is, a ∈ P or b ∈ P , a
contradiction. Therefore aP = {0}. Similarly, we can show that Pb = {0}
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Theorem 2.7. Suppose that P is a subtractive ideal in a semiring S. If P is

weakly prime but not prime, then P 2 = {0}.

Proof. Suppose that p1p2 6= 0 for some p1, p2 ∈ P and ab = 0 for some a, b /∈ P ,
where P is not a prime ideal of S. Then by Lemma 2.6 we have (a + p1)(b + p2) =
p1p2 6= 0. Hence either (a + p1) ∈ P or (b + p2) ∈ P, and thus either a ∈ P or
b ∈ P , a contradiction. Hence P 2 = {0}.

Corollary 2.8. Let P be a weakly prime ideal of S. If P is not a prime ideal of

S, then P ⊆ Nil S.

A subtractive ideal in a commutative semiring S satisfying P 2 = {0} may not
be weakly prime.

Example 2.9. Let S =
{(

a 0
0 0

)
: a ∈ Z+

12

}
. Then S is a commutative semiring

and P =
{(

0 0
0 0

)
,

(
6 0
0 0

)}
is its ideal such that P 2 = {0}. In this semiring(

2 0
0 0

) (
3 0
0 0

)
∈ P but

(
2 0
0 0

)
/∈ P and

(
3 0
0 0

)
/∈ P . Therefore P is not a

weakly prime ideal of S.

Theorem 2.10. Let P be a weakly subtractive prime ideal of a commutative semir-

ing S that is not prime. Then if z ∈ Nil S, then either z ∈ P or zP = {0}.

Proof. Let z ∈Nil S. To show that if zP 6= {0}, then z ∈ P, suppose that
zP 6= {0}. Let n be the least positive integer such that zn = 0. Then for n > 2
and for some p ∈ P we have 0 6= z(p + zn−1) = zp ∈ P. Hence either z ∈ P or
(p + zn−1) ∈ P. If z ∈ P then nothing to prove. So let (p + zn−1) ∈ P. Then
zn−1 ∈ P and thus z ∈ P. Hence for each z ∈ Nil S, we have either z ∈ P or
zP = {0}. Again we suppose that z /∈ P for some z ∈ Nil S. Then we will show
that zP = {0}. Now let zp 6= 0 for some p ∈ P. Let n be the least positive integer
such that zn = 0. Since z /∈ P, n > 2 and zP 6= 0. Hence z(zn−1+p) = zp 6= 0. Since
0 6= z(zn−1 + p) ∈ P, therefore we have either z ∈ P or zn−1 6= 0 and zn−1 ∈ P.
Hence in both cases, we have z ∈ P, a contradiction. Thus zP = {0}.

3. Prime ideals

The following lemma is obvious.

Lemma 3.1. Let f be a homomorphism of semiring S1 onto a semiring S2. Then

each of the following is true:

(i) If I is an ideal (subtractive ideal) in S1, then f(I) is an ideal (subtractive
ideal) in S2.
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(ii) If J is an ideal (subtractive ideal) in S2, then f−1(J) is an ideal (subtractive
ideal) in S1.

Proposition 3.2. If f : S1 → S2 is a homomorphism of semirings and P is a

prime ideal in S2, then f−1(P ) is a prime ideal in S1.

Proof. By Lemma f−1(P ) is an ideal of S1. Let xy ∈ f−1(P ). Then f(xy) ∈ P
implies f(x)f(y) ∈ P . Since P is a prime ideal of S2 therefore it follows that either
f(x) ∈ P or f(y) ∈ P and thus either x ∈ f−1(P ) or y ∈ f−1(P ). Hence f−1(P )
is a prime ideal of S1.

Theorem 3.3. Let I be an arbitrary ideal of a semiring S and P1, P2, . . . , Pn be

subtractive prime ideals of S. If I * Pi for all i, then there exists an element

a ∈ Isuch that a /∈
⋃

Pi. Hence, I *
⋃

Pi.

Proof. We will prove it by induction. Clearly the result is true for n = 1. Suppose
that the theorem holds for n− 1 subtractive prime ideals. Then, for each i, where
1 6 i 6 n, there exists xi ∈ I with xi /∈

⋃
j 6=i Pj . If xi /∈ Pi, then xi /∈ ∪Pj and then

we are done. Now suppose that xi ∈ Pi for all i. Let ai = x1 · · ·xi−1xi+1 · · ·xn.
We claim that ai /∈ Pi. Suppose ai ∈ Pi and since Pi is prime therefore xj ∈ Pi for
some j 6= i, which is not possible by original choice of xj . If j 6= i, then the element
aj ∈ Pi because xi being a factor of aj . Consider a =

∑n
j=1 aj . Since each aj ∈ I

where 1 6 j 6 n, therefore a ∈ I. As a = ai +
∑

j 6=i aj with
∑

j 6=i aj ∈ Pi implies
that a ∈ Pi; otherwise we would obtain ai ∈ Pi (as Pi is a subtractive ideal),
which is a contradiction. Thus we get an existence of an element a =

∑
aj ∈ I

and a /∈ Pi, which proves the theorem.

Corollary 3.4. Let I be an arbitrary ideal of a semiring S and P1, P2, . . . , Pn be

subtractive prime ideals of S. If I ⊆
⋃

Pi, then I ⊆ Pi for some I.

Theorem 3.5. Let I be a subset of a commutative semiring S which is closed

under addition and multiplication.

(i) Let P1, . . . , Pn be subtractive ideals in S, at least n− 2 of which are primes.

If I ⊆ P1 ∪ . . . ∪ Pn, then I is contained in some Pi.

(ii) Let J be an ideal of S with J ⊂ I. If there are subtractive prime ideals

P1, . . . , Pn such that I \ J ⊆ P1 ∪ . . . ∪ Pn, then I ⊆ Pi for some i.

Proof. (i) The proof is by induction n > 2. If we consider n = 2, that is, I ⊆ P1∪P2

implies I ⊆ P1 or I ⊆ P2. In this case P1 and P2 need not be prime because if
I * P2, then there is x1 ∈ I with x1 /∈ P2; since I ⊆ P1 ∪ P2, we must have
x1 ∈ P1. Similarly, if I * P1, there is x2 ∈ I with x2 /∈ P1 and x2 ∈ P2. However,
if a = x1 + x2, then a /∈ P1 (because if a ∈ P1 then x2 ∈ P1), a contradiction.
Similarly, a /∈ P2 which contradicts to fact that I ⊆ P1 ∪ P2.

Now assume that I ⊆ P1 ∪ . . .∪Pn+1, where at least n− 1 = (n + 1)− 2 of the
Pi are prime ideals. Let Mi = P1 ∪ . . .∪Pi−1 ∪Pi+1 . . .∪Pn+1. Since Mi is union
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of n ideals at least (n − 1) − 1 = n − 2 of which are prime. By the hypothesis
we can suppose that I * Mi for all i. Thus, for all i, there exist xi ∈ I with
xi /∈ Mi; since I ⊆ Mi ∪Pi therefore we must have xi ∈ Pi. Now n > 3, so that at
least one of the Pi are prime ideals; without loss of generality assume that P1 is
prime. Consider the element a = x1+x2x3 · · ·xn+1. Since all xi ∈ I and I is closed
under addition and multiplication and a ∈ I. Now a /∈ P1 because if a ∈ P1 then
x2 · · ·xn+1 ∈ P1 (as P1 is subtractive). Since P1 is a prime ideal in S therefore
some xi ∈ P1. This is a contradiction, for xi /∈ P1 ⊆ Mi. If i > 1 and a ∈ Pi,
then x2x3 · · ·xn+1 ∈ Pi, because Pi is an subtractive ideal and so x1 ∈ Pi. This
cannot be, for x1 /∈ Pi ⊆ M1. Therefore, a /∈ Pi for any i, contradicting to fact
that I ⊆ P1 ∪ . . . ∪ Pn+1.

(ii) By hypothesis, we have I ⊆ J ∪ P1 ∪ . . . ∪ Pn. Therefore (i) gives I ⊆ J
or I ⊆ Pi. Since J is a proper subset of I therefore I * J . Hence we must have
I ⊆ Pi.

Let I be an ideal of a commutative semiring S. Then the radical of I, denoted
by

√
I, is de�ned as the set

√
I = {x ∈ S : xn ∈ I for some positive integern}.

This is an ideal of S containing I, and it is the intersection of all prime ideals of
S containing I [2]. It is easy to see that if an ideal I is subtractive then

√
I is

subtractive.

De�nition 3.6. An ideal I of the commutative semiring S is said to be semiprime

if and only if I =
√

I.

Subtractive semiprime ideals of semirings are characterized by the following
theorem.

Theorem 3.7. An subtractive ideal I of a commutative semiring S is semiprime

if and only if the quotient semiring S/I has no nonzero nilpotent elements.

Proof. Suppose that a subtractive ideal I of a semiring S is semiprime. Let a+
√

I
be a nilpotent element of S/

√
I. Then there exists some positive integer n ∈ Z+

such that (a +
√

I)n = an +
√

I =
√

I. As
√

I is subtractive therefore an ∈
√

I.
Hence, (an)m = anm ∈ I for some positive integer m. This shows that a ∈ I.
Therefore we have a +

√
I =

√
I, the zero element of S/

√
I.

Conversely, suppose that S/I has no nonzero nilpotent elements and let a ∈
√

I.
Then for some positive integer n, we have an ∈ I. This implies that (a + I)n = I,
that is, a + I is nilpotent in S/I. As a + I = I (by hypothesis), therefore a ∈ I.
Thus, we have

√
I ⊆ I. The inclusion I ⊆

√
I is obvious. Hence I =

√
I, so I is

semiprime.
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Congruences on completely inverse AG∗∗-groupoids

Wieslaw A. Dudek and Roman S. Gigo«

Abstract. By a completely inverse AG∗∗-groupoid we mean an inverse AG∗∗-groupoid A satis-
fying the identity xx−1 = x−1x, where x−1 denotes a unique element of A such that x = (xx−1)x

and x−1 = (x−1x)x−1. We show that the set of all idempotents of such groupoid forms a semi-
lattice and the Green's relations H,L,R,D and J coincide on A. The main result of this note
says that any completely inverse AG∗∗-groupoid meets the famous Lallement's Lemma for regular
semigroups. Finally, we show that the Green's relation H is both the least semilattice congruence
and the maximum idempotent-separating congruence on any completely inverse AG∗∗-groupoid.

1. Preliminaries

By an Abel-Grassmann's groupoid (brie�y an AG-groupoid) we shall mean any
groupoid which satis�es the identity

xy · z = zy · x. (1)

Such groupoid is also called a left almost semigroup (brie�y an LA-semigroup) or
a left invertive groupoid (cf. [2], [3] or [5]). This structure is closely related to a
commutative semigroup, because if an AG-groupoid contains a right identity, then
it becomes a commutative monoid. Moreover, if an AG-groupoid A with a left zero
z is �nite, then (under certain conditions) A\{z} is a commutative group (cf. [6]).

One can easily check that in an arbitrary AG-groupoid A, the so-called medial

law is valid, that is, the equality

ab · cd = ac · bd (2)

holds for all a, b, c, d ∈ A.
Recall from [11] that an AG-band A is an AG-groupoid satisfying the identity

x2 = x. If in addition, ab = ba for all a, b ∈ A, then A is called an AG-semilattice.
Let A be an AG-groupoid and B ⊆ A. Denote the set of all idempotents of B

by EB , that is, EB = {b ∈ B : b2 = b}. From (2) follows that if EA 6= ∅, then
EAEA ⊆ EA, therefore, EA is an AG-band.

2010 Mathematics Subject Classi�cation: 20N02, 06B10
Keywords: completely inverse AG∗∗-groupoid, AG-group, LA-semigroup, congruence,
Green's relation.
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Further, an AG-groupoid satisfying the identity

x · yz = y · xz (3)

is said to be an AG∗∗-groupoid. Every AG∗∗-groupoid is paramedial (cf. [1]), i.e.,
it satis�es the identity

ab · cd = db · ca. (4)

Notice that each AG-groupoid with a left identity is an AG∗∗-groupoid (see [1],
too). Furthermore, observe that if A is an AG∗∗-groupoid, then (4) implies that if
EA 6= ∅, then it is an AG-semilattice. Indeed, in this case EA is an AG-band and
ef = ee · ff = fe · fe = fe for all e, f ∈ EA. Moreover, for a, b ∈ A and e ∈ EA,
we have

e · ab = ee · ab = ea · eb = e(ea · b) = e(ba · e) = ba · ee = ba · e = ea · b,

that is,
e · ab = ea · b (5)

for all a, b ∈ A and e ∈ EA. Thus, as a consequence, we obtain

Proposition 1.1. The set of all idempotents of an AG∗∗-groupoid is either empty

or a semilattice.

We say that an AG-groupoid A with a left identity e is an AG-group if each of
its elements has a left inverse a′, that is, for every a ∈ A there exists a′ ∈ A such
that a′a = e. It is not di�cult to see that such element a′ is uniquely determined
and aa′ = e. Therefore an AG-group has exactly one idempotent.

Let A be an arbitrary groupoid, a ∈ A. Denote by V (a) the set of all inverses
of a, that is,

V (a) = {a∗ ∈ A : a = aa∗ · a, a∗ = a∗a · a∗}.

An AG-groupoid A is called regular (in [1] it is called inverse) if V (a) 6= ∅ for all
a ∈ A. Note that AG-groups are of course regular AG-groupoids, but the class of
all regular AG-groupoids is vastly more extensive than the class of all AG-groups.
For example, every AG-band A is regular, since a = aa · a for all a ∈ A. In [1] it
has been proved that in any regular AG∗∗-groupoid A we have |V (a)| = 1 (a ∈ A),
so we call it an inverse AG∗∗-groupoid. In this case, we denote a unique inverse
of a ∈ A by a−1. Notice that (ab)−1 = a−1b−1 for all a, b ∈ A. Further, one can
prove that in an inverse AG∗∗-groupoid A, we have aa−1 = a−1a if and only if
aa−1, a−1a ∈ EA (cf. [1]).

Many authors studied various congruences on some special classes of AG∗∗-
groupoids and described the corresponding quotient algebras as semilattices of
some subgroupoids (see for example [1, 5, 7, 8, 9, 10]). Also, in [1, 9] the authors
studied congruences on inverse AG∗∗-groupoids satisfying the identity xx−1 =
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x−1x. We will be called such groupoids completely inverse AG∗∗-groupoids. A
simple example of such AG∗∗-groupoid is an AG-group. In the light of Proposition
1.1, the set of all idempotents of any completely inverse AG∗∗-groupoid forms a
semilattice.

A nonempty subset B of a groupoid A is called a left ideal of A if AB ⊆ B.
The notion of a right ideal is de�ned dually. Also, B is said to be an ideal of A if
it is both a left and right ideal of A. It is clear that for every a ∈ A there exists
the least left ideal of A containing the element a. Denote it by L(a). Dually, R(a)
is the least right ideal of A containing the element a. Finally, J(a) denotes the
least ideal of A containing a ∈ A.

In a similar way as in semigroup theory we de�ne the Green's equivalences on
an AG-groupoid A by putting:

aL b ⇐⇒ L(a) = L(b),

aR b ⇐⇒ R(a) = R(b),

aJ b ⇐⇒ J(a) = J(b),

H = L ∩R, D = L ∨R.

2. The main results

Let A be a completely inverse AG∗∗-groupoid. Then

a = (aa−1)a ∈ Aa

for every a ∈ A.

Proposition 2.1. Let A be a completely inverse AG∗∗-groupoid, a ∈ A. Then:
(a) aA = Aa;
(b) aA = L(a) = R(a) = J(a);
(c) H = L = R = D = J ;
(d) aA = (aa−1)A;
(e) aA = a−1A;
(f) eA = fA implies e = f for all e, f ∈ EA.

Proof. (a). Let b ∈ A. Then

ab = (aa−1)a · b = ba · aa−1 = ba · a−1a = aa · a−1b = (a−1b · a)a ∈ Aa.

Thus aA ⊆ Aa. Also,

ba = b · (aa−1)a = aa−1 · ba = ab · a−1a = ab · aa−1 = a(ab · a−1) ∈ aA,

so Aa ⊆ aA. Consequently, aA = Aa.
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(b). Obviously, it is su�cient to show that aA = Aa is an ideal of A. Let
x = ab ∈ aA and c ∈ A. Then we have cx = c(ab) = a(cb) ∈ aA and xc = (ab)c =
(cb)a ∈ Aa = aA.

(c). It follows from (b).
(d). Let b ∈ A. Then ab = (aa−1)a · b = ba · aa−1 ∈ A(aa−1) = (aa−1)A,

that is, aA ⊆ (aa−1)A. Furthermore, (aa−1)b = (ba−1)a ∈ Aa = aA. Thus
(aa−1)A ⊆ aA. Consequently, the condition (d) holds.

(e). By (d), aA = (aa−1)A = (a−1a)A = (a−1(a−1)−1)A = a−1A.

(f). Let e, f ∈ EA and eA = fA. Then e ∈ fA, that is, e = fa for some
a ∈ A. Hence fe = f(fa) = (ff)a (by Proposition 1.1), and so fe = e. Similarly,
ef = f . Since EA is a semilattice, e = f .

Corollary 2.2. Let A be a completely inverse AG∗∗-groupoid. Then each left ideal

of A is also a right ideal of A, and vice versa. In particular,

L ∩R = LR

for every (left) ideal L and every (right) ideal R.

Proof. Let L be a left ideal of A and l ∈ L. Then lA = Al ⊆ L. It follows that

L =
⋃
{lA : l ∈ L}.

Since each component lA of the above set-theoretic union is a right ideal of A,
then L is itself a right ideal of A. Similar arguments show that every right ideal of
A is a left ideal.

Clearly, LR ⊆ L∩R. Conversely, if a ∈ L∩R, then a = (aa−1)a ∈ LR. Hence
L ∩R = LR.

Let A be a completely inverse AG∗∗-groupoid. Denote by Ha the equivalence
H-class containing the element a ∈ A. We say that Ha ≤ Hb if and only if
aA ⊆ bA.

The following theorem is the main result of this paper.

Theorem 2.3. If ρ is a congruence on a completely inverse AG∗∗-groupoid A and

aρ ∈ EA/ρ (a ∈ A), then there exists e ∈ Eaρ such that He ≤ Ha.

Proof. Let ρ be a congruence on A, a ∈ A and aρa2. We know that there exists
x ∈ A such that a2 = a2x · a2, x = xa2 · x and a2x = xa2 ∈ EA. Notice that

a2x · aa = a(a2x · a) = a(xa2 · a) = a(aa2 · x) = aa2 · ax = a2 · a2x = a2 · xa2,

i.e., a2 = a2 · xa2. Put e = a · xa. Then e ρ (a2 · xa2) = a2 ρ a. Hence e ∈ aρ. Also,

e2 = (a · xa)(a · xa) = a((a · xa) · xa) = a(ax · (xa · a)) = a(ax · a2x).
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Further,
ax · a2x = ax · xa2 = a2x · xa = xa2 · xa = (xa2 · x)a

by (5), since xa2 ∈ EA. Hence ax · a2x = xa. Consequently,

e2 = a · xa = e ∈ EA.

Thus, e ∈ Eaρ.
Finally, let b ∈ A. Then eb = (a · xa)b = (b · xa)a ∈ Aa = aA, therefore,

eA ⊆ aA, so He ≤ Ha.

We say that a congruence ρ on a groupoid A is idempotent-separating if eρf
implies that e = f for all e, f ∈ EA. Furthermore, ρ is a semilattice congruence
if A/ρ is a semilattice. Finally, A is said to be a semilattice A/ρ of AG-groups if
ρ is a semilattice congruence and every ρ-class of A is an AG-group.

Corollary 2.4. Let A be a completely inverse AG∗∗-groupoid. Then:
(a) H is the least semilattice congruence on A;
(b) H is the maximum idempotent-separating congruence on A;
(c) A is a semilattice A/H ∼= EA of AG-groups He (e ∈ EA).

Proof. (a). Let aA = bA and c, x ∈ A. Then x · ca = c · xa. On the other hand,

xa ∈ Aa = aA = bA = Ab,

i.e., xa = yb, where b ∈ A, so x · ca = c · yb = y · cb ∈ A(cb). Thus A(ca) ⊆ A(cb).
By symmetry, we conclude that A(ca) = A(cb). Moreover, a = yb for some y ∈ A.
Hence ac · x = xc · a = xc · yb = bc · yx ∈ (bc)A. Thus (ac)A ⊆ (bc)A. In a similar
way we can obtain the converse inclusion, so (ac)A = (bc)A. Consequently, H is
a congruence (by Proposition 2.1 (b)). In the light of Proposition 2.1 (d), every
H-class contains an idempotent of A. This implies that A/H is a semilattice, that
is, H is a semilattice congruence on A.

Suppose that there is a semilattice congruence ρ on A such that H * ρ.
Then the relation H ∩ ρ is a semilattice congruence which is properly contained
in H, and so not every (H ∩ ρ)-class contains an idempotent of A, since each H-
class contains exactly one idempotent (Proposition 2.1 (f)), a contradiction with
Theorem 2.3. Consequently, H must be the least semilattice congruence on A.

(b). By (a) and Proposition 2.1 (f), H is an idempotent-separating congruence
on A. On the other hand, if ρ is an idempotent-separating congruence on A and
(a, b) ∈ ρ, then (a−1, b−1) ∈ ρ, so (aa−1, bb−1) ∈ ρ. Hence aa−1 = bb−1. Let
x ∈ A. Then

xa = x(aa−1 · a) = x(bb−1 · a) = bb−1 · xa = (xa · b−1)b ∈ Ab.

Thus Aa ⊆ Ab. By symmetry, we conclude that Aa = Ab. Consequently, aH b
(Proposition 2.1 (b)), that is, ρ ⊆ H, as required.
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(c). We show that every H-class of A is an AG-group. In view of the above and
Proposition 2.1 (d), (e), each H-class is an AG∗∗-groupoid. Consider an arbitrary
H-class He (e ∈ EA). Let a ∈ He. Then aa−1 ∈ He. Hence aa−1 = e and so
ea = a, that is, e is a left identity of He. Since a−1a = e and a−1 ∈ He, then He is
an AG-group. Obviously, A/H ∼= EA. Consequently, A is a semilattice A/H ∼= EA

of AG-groups He (e ∈ EA).

We say that an ideal K of a groupoid A is the kernel of A if K is contained in
every ideal of A. If in addition, K is an AG-group, then it is called the AG-group

kernel of A. Finally, a congruence ρ on A is said to be an AG-group congruence if
A/ρ is an AG-group.

Corollary 2.5. Let A be a completely inverse AG∗∗-groupoid. If e is a zero of

EA, then He = eA is the AG-group kernel of A and the map ϕ : A → eA given by

aϕ = ea (a ∈ A) is an epimorphism such that xϕ = x for all x ∈ eA.

Proof. Obviously, He ⊆ eA. Conversely, if x = ea ∈ eA, then

xx−1 = ea · ea−1 = ee · aa−1 = e.

In a view of Proposition 2.1 (d), x ∈ He. Consequently, He = eA. If I is an ideal
of A, then clearly EI 6= ∅. Let i ∈ EI . Then e = ei ∈ EI . Hence a = ea ∈ I
for all a ∈ He, so He ⊆ I. Thus He = eA is the AG-group kernel of A. Also,
for all a, b ∈ A, (aϕ)(bϕ) = (ea)(eb) = (ee)(ab) = e(ab) = (ab)ϕ, i.e., ϕ is a
homomorphism of A into eA. Evidently, ϕ is surjective. Finally, ϕ|eA = 1eA (by
Proposition 1.1).

Corollary 2.6. Let A be a completely inverse AG∗∗-groupoid. If e is a zero of EA,

then

σ = {(a, b) ∈ A×A : ea = eb}

is the least AG-group congruence on A and A/σ ∼= He.

Proof. It is clear that σ is an AG-group congruence on A induced by ϕ (de�ned
in the previous corollary). If ρ is also an AG-group congruence on A and a σ b,
then (eρ)(aρ) = (eρ)(bρ). By cancellation, a ρ b and so σ ⊆ ρ. Obviously, A/σ ∼=
He.

Remark 2.7. Let I be an ideal of a completely inverse AG∗∗-groupoid A. The
relation ρI = (I × I) ∪ 1A is a congruence on A. If e is a zero of EA, then He

is an ideal of A and σ ∩ ρHe
= 1A. It follows that A is a subdirect product

of the group He and the completely inverse AG∗∗-groupoid A/He. Note that we
may think about A/He as a groupoid B = (A \ He) ∪ {e} with zero e, where all
products ab ∈ He are equal e. In fact, fg = e in A (f, g ∈ EA) if and only if
HfHg ⊆ {e} = He in B.

Obviously, in any �nite completely inverse AG∗∗-groupoid A, the semilattice
EA has a zero.
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Construction of subdirectly irreducible SQS-skeins

of cardinality n2m

Enas M. A. Elzayat

Abstract. We give a construction for subdirectly irreducible SQS-skeins of cardinality n2m

having a monolith with a congruence class of cardinality 2m for each integer m > 2. Moreover,
the homomorphic image of the constructed SQS-skein modulo its atom is isomorphic to the
initial SQS-skein. Consequently, we will construct an SK(n2m) with a derived SL(n2m) such
that SK(n2m) and SL(n2m) are subdirectly irreducible and have the same congruence lattice.
Also, we may construct an SK(n2m) with a derived SL(n2m) in which the congruence lattice
of SK(n2m) is a proper sublattice of the congruence lattice of SK(n2m).

1. Introduction

A Steiner quadruple (triple) system is a pair (S;B) where S is a �nite set and B is
a collection of 4-subsets (3-subsets) calledblocks of S such that every 3-subset (2-
subset) of S is contained in exactly one block of B (see [8] and [11]). Let SQS(m)
denote a Steiner quadruple system (brie�y quadruple system) of cardinality m
and STS(n) denote Steiner triple system (brie�y triple system) of cardinality n.
It is well-known that SQS(m) exists i� m ≡ 2 or 4 (mod 6) and STS(n) exists
if and only if n ≡ 1 or 3 (mod 6) [8] and [11]. Let (S;B) be an SQS. If one
considers Sa = S − {a} for any point a ∈ S and deletes that point from all blocks
which contain it then the resulting system (Sa;B(a)) is a triple system, where
B(a) = {b − {a} ∀b ∈ B, a ∈ b}. Now, (Sa;B(a)) is called a derived triple system

(or brie�y DTS) of (S;B) (cf. [8] and [11]).

A sloop (brie�y SL) L = (L; ·, 1) is a groupoid with a neutral element 1 satis-
fying the identities:

x · y = y · x, 1 · x = x, x · (x · y) = y.

A sloop L is called Boolean if it satis�es the associative law. The cardinality
of the Boolean sloop is equal 2m.

2010 Mathematics Subject Classi�cation: 05B30, 05B07, 20N05, 08A99
Keywords: Steiner triple system, Steiner loop, sloop, subdirectly irreducible sloop, Steiner
quadruple systems, Steiner skein, SQS-skein, subdirectly irreducible SQS-skein.
This paper was funded by the Deanship of Scienti�c Research (DSR), King Abdulaziz Uni�
versity, Jeddah, under grant No. (18-857-D1432).
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There is one to one correspondence between STSs and Steiner loops (sloops)
[8].

An SQS-skein (brie�y an SK) (Q; q) is an algebra with a unique ternary
operation q satisfying:

q(x, y, z) = q(x, z, y) = q(z, x, y), q(x, x, y) = y, q(x, y, q(x, y, z)) = z.

An SQS-skein (Q; q) is called Boolean if it satis�es in addition the identity:

q(a, x, q(a, y, z)) = q(x, y, z).

There is one to one correspondence between SQSs and SQS-skeins (cf. [8] and
[11]).

The sloop associated with a derived triple system is also called derived. A
derived sloop of an SQS-skein (Q; q) with respect to a ∈ Q is the sloop (Qa; ·, a)
with the binary operation · de�ned by x · y = q(a, x, y).

A subsloop N of L (sub-SQS-skein of Q) is called normal if and only if N = [1]θ
(N = [a]θ ) for a congruence θ on L (Q) (cf. [8] and [12]). The associated
congruence θ with the normal subsloop (sub-SQS-skein) N is given by:

θ = {(x, y) : x · y (or q(a, y, z)) ∈ N}.

Quackenbush in [12] and similarly Armanious in [1] have proved that the con-
gruences of sloops (SQS-skeins) are permutable, regular and uniform. Also, we
may say that the congruence lattice of each of sloops and SQS-skeins is modular.
Moreover, they proved that a maximal subsloop (sub-SQS-skein) has the same
property as in groups.

Theorem 1. (cf. [1] and [8]) Every subsloop (sub-SQS-skein) of a �nite sloop

(L; ·, 1) (SQS-skein (Q; q)) with cardinality 1
2 |L| ( 1

2 |Q|) is normal.

A Boolean sloop is a Boolean group. If (G; +) is a Boolean group, then
(G; q(x, y, z) = x + y + z) is a Boolean SQS-skein [1].

Guelzow [10] and Armanious [2], [3] gave generalized doubling constructions
for nilpotent subdirectly irreducible SQS-skeins and sloops of cardinality 2n. In
[6] the authors gave recursive construction theorems as n → 2n for subdiredtly
irreducible sloops and SQS-skeins. All these constructions supplies us with sub-
directly irreducible SQS-skeins having a monolith θ satisfying |[x]θ| = 2 (the min-
imal possible order of a proper normal SQS-skeins). Also in these constructions,
the authors begin with a subdirectly irreducible SK(n) to construct a subdirectly
irreducible SK(2n) satisfying the property that the cardinality of the congruence
class of its monolith is equal 2. Armanious [5] has given another construction of a
subdirectly irreducible SK(2n). He begins with a �nite simple SK(n) to costruct
a subdirectly irreducible SK(2n) having a monolith θ with |[x]θ| = n (the maximal
possible order of a proper normal sub-SQS-skein).

In [7] the authors begin with an arbitrary SL(n) to construct subdirectly irre-
ducible SL(n2m) for each possible integers n > 4 and m > 2.
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In this article, we begin with an arbitrary SK(n) for each possible value n > 4
to construct subdirectly irreducible SK(n2m) for each integer m > 2. This con-
struction enables us to construct subdirectly irreducible SQS-skein having a mono-
lith θ satisfying that its congruence class is SK(2m). Moreover, its homomorphic
image modulo θ is isomorphic to Q .

We will show that our construction supplies us with construction of an SK(n2m)
with a derived SL(n2m) such that the congruence lattices of SK(n2m) and SL(n2m)
are the same for each possible case. Moreover, we may construct an SK(n2m) with
a derived SL(n2m) such that the congruence lattices of SK(n2m) is a proper sub-
lattice of the congruence lattice of SL(n2m).

2. Subdirectly irreducible SQS-skeins Q×αB

Let Q := (Q; q) be an SK(n) and B := (B; •, 1) be a Boolean SL(2m), where Q =
{x0, x1, x2, . . . , xn−1} and B = {1, a1, a2, . . . , a2m−1}. In this section we extend the
SQS-skein Q to a subdireclty irreducible SQS-skein Q ×α B of cardinality n2m

having Q as a homomorphic image.
We divide the set of elements of the direct product Q × B into two sub-

sets {x0, x1} × B and {x2, . . . , xn−1} × B. Consider the cyclic permutation α =
(a1a2 . . . a2m−1) on the set {1, a1, a2, . . . , a2m−1} and the characteristic function χ
from the direct product Q×B to B de�ned as follows

χ((y1, i1), (y2, i2), (y3, i3)) = im • in • α−1(im • in) for ym = yn = x0, yk = x1 and {m,n, k} = {1, 2, 3}
im • in • α(im • in) for ym = yn = x1, yk = x0 and {m,n, k} = {1, 2, 3}
1 otherwise.

It is clear that χ((y1, i1), (y2, i2), (y3, i3)) = 1 in two cases:

(i) y1 = y2 = y3 = x0 or y1 = y2 = y3 = x1.

(ii) y1, y2 or y3 ∈ Q− {x0, x1} .

For this characteristic function we obtain the following result:

Lemma 2. The characteristic function χ satis�es the properties:

(i) χ((x, a), (y, b), (z, c)) = χ((x, a), (z, c), (y, b)) = χ((z, c), (x, a), (y, b));

(ii) χ((x, a), (x, a), (y, b)) = 1;

(iii) χ((x, a), (y, b), (q(x, y, z), a • b • c • χ((x, a), (y, b), (z, c)))) =
χ((x, a), (y, b), (z, c)).

Proof. According to the de�nition of χ, we may deduce that (i) is valid.
In (ii), if x = x0 and y = x1 then χ((x0, a), (x0, a), (x1, b)) = a•a•α−1(a•a) =

1. If x = x1 and y = x0, then χ((x1, a), (x1, a), (x0, b)) = a • a • α(a • a) = 1.
Otherwise if x ory 6= x0 or x1, then χ((x, a), (x, a), (y, b)) = 1.
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To prove the third property, we have only three essential cases:
(1) If x = y = x0 and z = x1 then

χ((x0, a), (x0, b), (q(x0, x0, x1), a • b • c • χ((x0, a), (x0, b), (x1, c))))
= χ((x0, a), (x0, b), (x1, c • α−1(a • b))) = a • b • α−1(a • b)
= χ((x0, a), (x0, b), (x1, c)).

(2) If x = y = x1 and z = x0 then

χ((x1, a), (x1, b), (q(x1, x1, x0), a • b • c • χ((x1, a), (x1, b), (x0, c))))
= χ((x1, a), (x1, b), (x0, c • α(a • b))) = a • b • α(a • b)
= χ((x1, a), (x1, b), (x0, c)).

Note that
χ((x0, a), (x0, b), (x1, c)) = χ((x0, a), (x1, c), (x0, b)) = χ((x1, c), ((x0, a), (x0, b))

and
χ((x1, a), (x1, b), (x0, c)) = χ((x1, a), (x0, c), (x1, b)) = χ((x0, c), ((x1, a), (x1, b)).

(3) Otherwise, i.e., when i) x = y = z = x0 or x = y = z = x1

ii) x, y or z /∈ {x0, x1} ,
we have

χ((x, a), (y, b), (q(x, y, z), a•b•c•χ((x, a), (y, b), (z, c)))) = χ((x, a), (y, b), (z, c) = 1.

This completes the proof of the lemma.

Lemma 3. Let (Q; q) be an arbitrary SK(n), and (B; •, 1) be a Boolean SL(2m)
for m > 2. Also let q′ be a ternary operation on the set Q×B de�ned by :

q′((x, a), (y, b), (z, c)) := (q(x, y, z), a • b • c • χ((x, a), (y, b), (z, c))).

Then Q ×α B = (Q×B; q′) is an SK(n2m) for each possible number n > 4.

Proof. Let Q = {x0, x1, x2, . . . , xn−1} and B = {1, a1, a2, . . . , a2m−1}. For all
(x, a), (y, b), (z, c) ∈ Q × B, according to Lemma 2 (i) and the properties of the
operations ”q” and ” • ” we �nd that:

q′((x, a), (y, b), (z, c)) = q′((x, a), (z, c), (y, b)) = q′((z, c), (x, a), (y, b)).

By using Lemma 2 (ii)

q′((x, a), (x, a), (y, b) = (q(x, x, y), a • a • b • χ((x, a), (x, a), (y, b))) = (y, b).

Also, Lemma 2 (iii) gives us that

q′((x, a), (y, b), (q
′
((x, a), (y, b), (z, c)))

= q′((x, a), (y, b), (q(x, y, z), a • b • c • χ((x, a), (y, b), (z, c)) = (z, c).

Hence Q×αB = (Q×B; q′) is an SQS-skein.
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In the next theorem we prove that the constucted Q×αB is a subdirectly
irreducible SQS-skein having a monolith θ1 satisfying that the cardinality of its
congruence class equal 2m .

Theorem 4. The constructed sloop Q×αB = (Q×B; q′) is a subdirectly irreducible

SQS-skein.

Proof. The projection Π : (x, a) → x from Q × B into Q is an onto homomorphism
and the congrurnce Ker Π := θ1 on Q × B is given by:

θ1 =
⋃n−1

i=0

{
(xi, 1) , (xi, a1) , . . . ,

(
xi, a2m−1

)}2
,

so one can directly see that [(x0, 1)]θ1 =
{
(x0, 1), (x0, α1), . . . , (x0, a2m−1)

}
.

Now C(Q) ∼= C((Q×αB)/θ1) ∼= [θ1 : 1]. Our proof will now be complete if we
show that θ1 is the unique atom of C(Q×αB).

First, assume that θ1 is not an atom of C(Q×αB), then we can �nd an atom γ
satisfying that: γ ⊂ θ1 and |[(xi, ai)] γ| = r < |[(xi, ai)] θ1| = 2m. In the following
we get a contradiction by proving [(x1, 1)] γ is not a normal sub-SQS-skein of
Q×αB .

Suppose [(x1, 1)]γ =
{
(x1, 1), (x1, as1), . . . ., (x1, asr−1)

}
. If

{
as1 , as2 , . . . , asr−1

}
is an increasing successive subsequence of

{
a1, a2, . . . , a2m−1

}
and if α(as

i
) =

asi+1 for all i = 1, 2, . . . , r − 1, then α(asr−1) = asr /∈
{
as1 , as2 , . . . , asr−1

}
. If{

as1 , as2 , . . . , asr−1

}
is an increasing and not successive subsequence selected from{

a1, a2, . . . , a2m−1

}
then there exists an element aj ∈

{
as1 , as2 , . . . , asr−1

}
such

that α(aj) = aj+1 /∈
{
as1 , as2 , . . . , asr−1

}
. For both cases, we can always �nd an

element (x1, ak) ∈ [(x1, 1)] γ such that (x1, α(ak)) /∈ [(x1, 1)] γ (ak = asr−1 for the
�rst case, and ak = aj for the second case).

We can determine the class containing (x0, 1) when we use the fact that
[(x0, 1)] γ = q′ ([(x1, 1)] γ, (x1, 1) , (x0, 1)), hence we will �nd that

[(x0, 1)] γ =
{
(x0, 1) , (x0, α (as1)) , (x0, α (as2)) , . . . ,

(
x0, α

(
asr−1

))}
.

By the same way [(x2, 1)] γ = q′ ([(x1, 1)] γ, (x1, 1) , (x2, 1)), and this leads to

[(x2, 1)] γ =
{
(x2, 1) , (x2, as1) , (x2, as2) , . . . ,

(
x2, asr−1

)}
.

From the other side [(x2, 1)] γ = q′ ([(x0, 1)] γ, (x0, 1) , (x2, 1)), here we will �nd
that

[(x2, 1)] γ =
{
(x2, 1) , (x2, α (as1)) , (x2, α (as2)) , . . . ,

(
x2, α

(
asr−1

))}
.

This means that for each ak ∈
{
as1 , as2 , . . . , asr−1

}
α (ak) ∈

{
as1 , as2 , . . . , asr−1

}
.

This contradicts the assumption that (x1, α(ak)) /∈ [(x1, 1)] γ. Hence, we may say
that there is no atom γ of C(Q×αB) satisfying γ ⊂ θ1. Therefore, θ1 is an atom
of the lattice C(Q×αB).



216 E.M.A. Elzayat

Secondly, to prove that θ1 is the unique atom of C(Q ×α B). Assume that δ
is another atom of C(Q ×α B), then θ1 ∩ δ = 0. Hence, one can easily see that
there is only one element (x, ai) ∈ [(x, ai)]δ with the �rst component x (note that
[(x, ai)] θ1 =

{
(x, 1), (x, a1), . . . , (x, ai), . . . , (x, a2m−1)

}
). For this reason we may

say that the class [(x0, 1)]δ has at most one pair (x1, ai) with �rst component x1.
So we have two possibilities; either

(i) [(x0, 1)]δ contains only one pair (x1, ai) with �rst component x1, or

(ii) [(x0, 1)]δ has not any pairs with �rst component x1.

For the �rst case, let ((x, a), (x1, as)) ∈ δ such that x0 6= x 6= x1, and as 6= ai.
Then

q′((x0, 1), (x, a), (x1, as)) ∈ [(x0, 1)]δ.

In this case (x1, ai) ∈ [(x0, 1)] δ. Thus

q′((x0, 1), (x1, ai), q′((x0, 1), (x, a), (x1, as))) ∈ [(x0, 1)]δ.

Hence, (x, ai • a • as) ∈ [(x0, 1)] δ.
By using the properties of congruences, ((x0, 1) , (x1, ai)) , ((x1, as) , (x, a)) and

((x1, ai) , (x1, ai)) ∈ δ, we shall �nd that (q′((x0, 1), (x1, as), (x1, ai)), (x, a)) ∈ δ.
This means that

q′((x0, 1), (x, a), q′((x0, 1), (x1, as), (x1, ai))) ∈ [(x0, 1)]δ.

So,
(x, a • α(ai • as)) ∈ [(x0, 1)] δ.

Since the class [(x0, 1)] δ contains at most one element with a �rst component x, it
follows that α(ai •as) = ai •as hence ai •as = 1, which contradicts the choice that
as 6= ai. This implies that [(x0, 1)] δ is not a normal sub-SQS-skein of Q ×α B .

For the second case (ii) when [(x0, 1)]δ has not any pair with �rst component
x1. Let (x, a) ∈ [(x0, 1)]δ such that x0 6= x 6= x1, and let (x, b) and (x, c) are two
elements in Q × B such that a 6= b. Then

q′((x0, 1), (x, a), q′((x0, 1), (x1, c), (x, b))) ∈ [q′((x0, 1), (x1, c), (x, b))] δ.

This means that (x1, c • a • b) ∈ [q′((x0, 1), (x1, c), (x, b))] δ. Also,

q′((x0, 1), (x1, c), q′((x0, 1), (x, a), (x, b))) ∈ q′((x0, 1), (x1, c), [(x, b)]δ)
= [q′((x0, 1), (x1, c), (x, b))] δ.

Therefore (x1, c • α−1(a • b)) ∈ [q′((x0, 1), (x1, c), (x, b))] δ.
By using the fact that the class [q′((x0, 1), (x1, c), (x, b))] δ contains only one

element with the �rst component x1, we may say that α−1(a • b) = a • b, hence
a • b = 1, which contradicts that a 6= b.Thus [(x0, 1)]δ is not a normal sub-SQS-
skein of Q ×α B .This mean that there is no another atom δ, and θ1 is the unique
atom of C(Q×αB). Therefore, Q×αB is a subdirectly irreducible SQS-skein.
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Note that in the constructed SQS-skein Q ×α B , we may choose B a Boolean
SL(2m) for each m > 2. Therefore, as a consequence of the proof of Theorem 3,
we obtain

Corollary 5. Let B be a Boolean SL(2m) for an integer m > 2. Then the con-

gruence class [(x0, 1)]θ1 of the monolith θ1 of the constucted subdirectly irreducible

SQS-skein Q ×α B is a Boolean SK(2m).

Also, Theorem 3 enable us to construct a subdirectly irreducible SQS-skein
Q ×α B having a monolith θ1 satisfying that (Q ×α B)/ θ1

∼= Q .

Corollary 6. Every SQS-skein Q is isomorphic to the homomorphic image of

the subdirectly irreducible SQS-skein Q ×αB over its monolith, for each Boolean

sloop B.

Remark: The SQS-skein Q×α B having L×α B as a derived sloop.

Let (Q; q) be an SK(n) and (L; ∗, x0) be a derived SL(n) of Q with respect to
the element x0 with the same congruence lattice. This means that for L = Q =
{x0, x1, . . . , xn−1}, the binary operation ” ∗ ” is de�ned by x ∗ y = q(x0, x, y).

By using the construction in [7], we construct subdirectly irreducible SL(n2m).
This means that if we begin with our derived sloop L := (L; ∗, x0) of cardinality
n and the Boolean sloop B := (B; •, 1) of cardinality 2m, we get subdirectly
irreducible sloop L×αB =(L×B; ◦, (x0, 1)), where

(x, a) ◦ (y, b) := (x ∗ y, a • b • χ((x, a), (y, b)))
and

χ((x, a), (y, b))L =


a • α−1(a) for x = x0, y = x1,
b • α−1(b) for x = x1, y = 1,
c • α(c) for x = x1 = y and a • b = c,
1 otherwise.

It is easy to see that χ((x, a), (y, b))L = χ((x0, 1), (x, a), (y, b)) (the characte-
ristic function of our construction) for all x, y ∈ L = Q. Hence (x, a) ◦ (y, b) =
q′((x0, 1), (x, a), (y, b)) for all (x, a) , (y, b) ∈ L × B = Q × B, this means directly
that the constructed sloop L×αB is a derived sloop of the constructed SQS-skein
Q×α B. Therefore, we have the following result:

Corollary 7. Let L be a derived sloop of the SQS-skein Q with respect to the

element x0, then the sloop L×αB is a derived sloop of the SQS-skein Q×α B with

respect to (x0, 1).

Note that Q is isomorphic to the homomorphic image of Q ×α B over its
monolith (Corollary 5) and also L is isomorphic to the homomorphic image of
L×α B over its monolith [7]. Hence according to [7], Theorem 4 and Corollary 6,
we may say that:

There is always an SQS-skein Q×α B with a derived sloop L×α B, in which

both Q×α B and L×α B are subdirectly irreducible of cardinality n2m having the

same congruence lattice for each possible integers n > 4 and m > 2.
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The construction of a semi-Boolean SQS-skein (each derived sloop L of Q is
Boolean) given in [9] satis�es that C(Q) is a proper sublattice of the congruence
lattice of its derived sloop C(L). This means that we may begin with SQS-skein Q
with a derived sloop L in which the congruence lattice of Q is a proper sublattice
of the congruence lattice of L, this leads to C(L ×α B) is a proper sublattice of
C(Q ×α B).

Consequently, we may construct SQS-skein Q×αB with a derived sloop L×αB
such that Q ×α B and L ×α B are subdirectly irreducible of cardinality n2m and

have the same congruence lattice, if we begin with L derived sloop of Q with the

same congruence lattice. Also, we may construct SQS-skein Q×α B with a derived

sloop L×α B in which the congruence lattice of Q×α B is a proper sublattice of

the congruence lattice of L×α B, if we begin with L derived sloop of Q such that

the congruence lattice of Q is a proper sublattice of the congruence lattice of L.
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Clifford congruences on an idempotent-surjective

R-semigroup

Roman S. Gigo«

Abstract. In the paper we describe the least Clifford congruence ξ on an idempotent-surjective
R-semigroup, and so we generalize the result of LaTorre (1983). In addition, a characterization of
all Clifford congruences on such a semigroup (in particular, on a structurally regular semigroup)
is given. Furthermore, we �nd necessary and suf�cient conditions for ξ to be idempotent pure or
E-unitary. Moreover, using some earlier result, we give a description of all USG-congruences on
an idempotent-surjective semigroup, and so we generalize the result of Howie and Lallement for
regular semigroups (1966). Finally, in Section 4 we study the subdirect products of an E-unitary
semigroup and a Clifford semigroup.

1. Preliminaries

Whenever possible the notation and conventions of Howie [11, 12] are used. Let S
be a semigroup and let A ⊆ S. Denote by EA the set of all idempotents of A, that
is, EA = {a ∈ A : a2 = a}, and by Reg(S) the set of all regular elements of S,
i.e., Reg(S) = {a ∈ S : a ∈ aSa}. We say that S is regular if Reg(S) = S. More
generally, in [10] Hall observed that the set Reg(S) of a semigroup S with ES 6= ∅
forms a regular subsemigroup of S if and only if the product of any two idempotents
of S is regular. In a such case, S is said to be an R-semigroup. Finally, if ES is a
subsemigroup of S, then S is called an E-semigroup. Clearly, any E-semigroup is
an R-semigroup.

Let S be a semigroup, a ∈ S. The set W (a) = {x ∈ S : x = xax} is called
the set of weak inverses of a, so the elements of W (a) will be called weak inverse

elements of a. A semigroup S is said to be E-inversive if for every a ∈ S there is
x ∈ S such that ax ∈ ES [21]. Clearly, S is E-inversive iff W (a) 6= ∅ (a ∈ S), so if
S is E-inversive, then for all a ∈ S there is x ∈ S such that ax, xa ∈ ES . For some
interesting results concerning E-inversive semigroups, see [18, 4].

A generalization of the concept of regularity will also prove convenient. De�ne a
semigroup S to be idempotent-surjective if whenever ρ is a congruence on S and aρ
is an idempotent of S/ρ, then aρ contains some idempotent of S [2]. The famous
Lallement's Lemma says that all regular semigroups are idempotent-surjective.
Finally, it is known that idempotent-surjective semigroups are E-inversive.

2010 Mathematics Subject Classi�cation: 20M99, 06B10
Keywords: Clifford congruence,R-semigroup, idempotent-surjective semigroup, E-semigroup,
structurally regular semigroup, E-unitary congruence, USG-congruence.
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On the other hand, Kopamu de�ned in [14] a countable family of congruences
on a semigroup S, as follows: for each ordered pair of non-negative integers (m,n),
he put:

θm,n = {(a, b) ∈ S × S : (∀x ∈ Sm, y ∈ Sn) xay = xby},

and he made the convention that S1 = S and S0 denotes the set containing only
the empty word. In particular, θ0,0 = 1S . Recall from [14] that if S/θm,n is regular
for some non-negative integers m,n, then S is structurally regular. Kopamu also
proved that structurally regular semigroups are idempotent-surjective. Finally, in
[8] the author showed that structurally regular semigroups are R-semigroups, and
so every structurally regular semigroup is an idempotent-surjective R-semigroup.

Green's relations on S are denoted by L ((a, b) ∈ L if Sa∪ {a} = Sb∪ {b}), R
((a, b) ∈ R if aS ∪ {a} = bS ∪ {b}) and H (= L ∩ R). Denote by Ha the H-class
containing the element a. Notice that Green's Theorem says that in an arbitrary
semigroup S either HaHa ∩Ha = ∅ or Ha is a group.

Recall that a semigroup S is a semilattice if a2 = a, ab = ba for all a, b ∈ S.
Let C be some class of semigroups of the same type T (for example: the class of all
groups); call its elements C-semigroups. A congruence ρ on a semigroup S is said
to be a C-congruence if S/ρ ∈ C. Clearly, the least semilattice congruence η (say)
on an arbitrary semigroup S exists. Finally, a semigroup S is a semilattice S/ρ of

groups if there exists a semilattice congruence ρ on S such that every ρ-class is a
group. Since H ⊆ η, then a semigroup S is a semilattice S/ρ of groups if and only
if H = η. Indeed, H ⊆ η ⊆ ρ and evidently ρ ⊆ H. Consequently we have H = η.
The converse implication follows from Green's Theorem.

Moreover, some preliminaries about group congruences on a semigroup S are
needed. A subset A of S is called (respectively) full ; reflexive and dense if ES ⊆ A;
(∀a, b ∈ S)(ab ∈ A ⇒ ba ∈ A) and (∀s ∈ S)(∃x, y ∈ S) sx, ys ∈ A. Also, we de�ne
the closure operator ω on S by Aω = {s ∈ S : (∃ a ∈ A) as ∈ A} (where A ⊆ S).
We shall say that A ⊆ S is closed (in S) if Aω = A. Further, a subsemigroup N
of a semigroup S is said to be normal if it is full, dense, reflexive and closed (if
N is normal, then we shall write N � S). Finally, if a subsemigroup of S is dense
and reflexive, then it is called quasi-normal.

By the kernel of a congruence ρ on a semigroup S we shall mean the set
ker(ρ) = {x ∈ S : (x, x2) ∈ ρ}.

Result 1.1. [5] Let B be a quasi-normal subsemigroup of a semigroup S. Then the

relation ρB = {(a, b) ∈ S × S : (∃ x, y ∈ B) ax = yb} is a group congruence on S.
Also, B ⊆ Bω = ker(ρB), and if B � S, then B = ker(ρB).

Conversely, if ρ is a group congruence on S, then there is a normal subsemi-

group N of S such that ρ = ρN (in fact, N = ker(ρ)). Thus there is an inclusion-

preserving bijection between the set of all normal subsemigroups of S and the set

of all group congruences on S.
Moreover, the least group congruence on an E-inversive E-semigroup is given

by

σ = {(a, b) ∈ S × S : (∃ e, f ∈ ES) ea = bf}.
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Remark 1.2. [5] Let B be a quasi-normal subsemigroup of S. Then:

(a, b) ∈ ρB ⇔ (∃x ∈ S) xa, xb ∈ B.

It is easily seen that if S is an E-inversive semigroup (and so ES is dense), then
there exists the least normal subsemigroup of S. In the light of Result 1.1, every
E-inversive semigroup possesses the least group congruence σ.

An inverse semigroup in which the idempotents are central is called a Cli�ord

semigroup. Recall that a semigroup S is a Clifford semigroup if and only if it is a
semilattice of groups [11]. Observe that if ab = e ∈ ES , then

ba = baa−1a = a−1aba = a−1ea ∈ ES .

Thus ab = ba (since ab and ba belong to the same subgroup of S), so ES is reflexive.
Further, a semigroup S is called η-simple if S has no semilattice congruences except
the universal relation. It is well known that every η-class of S is η-simple [20].

Recall from [9] that a full quasi-normal subsemigroup of a semigroup is called
seminormal.

Finally, we have need the following two results.

Theorem 1.3. Let ρ be an arbitrary semilattice congruence on an idempotent-

surjective R-semigroup S, N be a (semi)normal subsemigroup of S and let a ∈ S.
Put Na = N ∩ aρ. Then:

(a) aρ is an E-inversive R-semigroup;
(b) Na is a (semi)normal subsemigroup of aρ.

Proof. (a). Let a ∈ S and e ∈ Eaη. Suppose by way of contradiction that aη is not
E-inversive. Then the set A of all non E-inversive elements of aη is an ideal of aη.
Clearly, e /∈ A. Consider an equivalence ρ (say) on aη induced by the partition:
{A, aη \ A} and suppose that there are elements s, t ∈ aη \ A such that st ∈ A.
Then fg ∈ A for some idempotents f, g ∈ aη \A. Since S is an R-semigroup, then
x = xfgx, fg = fgxfg for some x ∈ S. It follows that x ∈ aη, so x ∈ W (fg) in aη,
which contradicted to fg ∈ A. Hence ρ is a semilattice congruence on an η-simple
semigroup aη, a contradiction. Consequently, A = ∅ (since e /∈ A), and so aη is an
E-inversive R-semigroup.

(b). The second part of the theorem is a direct consequence of the de�nition
of a (semi)normal subsemigroup and the �rst part of the theorem.

Lemma 1.4. Let B be the least seminormal subsemigroup of an idempotent-

surjective semigroup S. If φ is an epimorphism of S onto a Clifford semigroup T ,
then Bφ = ET .

Proof. Put A = (ET )φ−1. Clearly, A is a full subsemigroup of S. Thus A is dense.
Moreover, if xy ∈ A, then ET 3 (xy)φ = xφ · yφ = yφ · xφ = (yx)φ (since ET

is reflexive), so yx ∈ A. Hence B ⊆ A. Thus Bφ ⊆ ((ET )φ−1)φ ⊆ ET . Since S
is idempotent-surjective and B is full, then ET = (ES)φ ⊆ Bφ. Consequently,
Bφ = ET .
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2. Clifford congruences

Let ε be a semilattice congruence on an idempotent-surjective R-semigroup S.
Denote ε-classes of S by Sα, where α's are elements of some set A, and de�ne on
A a binary operation ◦, as follows: if a ∈ Sα, b ∈ Sβ , then

α ◦ β = γ ⇔ ab ∈ Sγ .

Clearly, (A, ◦) is a semilattice (isomorphic to S/ε), so

S =
⋃
{Sα : α ∈ A}

is a semilattice A of E-inversive R-semigroups Sα (Theorem 1.3(a)). For any semi-
normal subsemigroup I of S, put Iα = I ∩ Sα (α ∈ A); see Theorem 1.3(b). Then
by Result 1.1 and Remark 1.2, for every α, the relation

ρIα
= {(a, b) ∈ Sα × Sα : (∃x ∈ Sα) xa, xb ∈ Iα}

is a group congruence on Sα. Put ρ =
⋃
{ρIα

: α ∈ A}. We will show that ρ is
a congruence on S. Let (a, b) ∈ ρ, say (a, b) ∈ ρIα

; c ∈ Sβ . Then xa, xb ∈ Iα

for some x ∈ Sα. Since Iβ is dense, then cz ∈ Iβ for some z ∈ Sβ . Notice that
ac, bc, zx ∈ Sαβ . Furthermore, (xa)(cz) ∈ IαIβ ⊆ I. Hence (zx)(ac) ∈ I (since I
is reflexive), therefore, (zx)(ac) ∈ I ∩ Sαβ = Iαβ . Similarly, (zx)(bc) ∈ Iαβ . This
implies that (ac, bc) ∈ ρ, and so ρ is a right congruence on S. By symmetry of the
de�nition of ρIα

, we conclude that ρ is also a left congruence on S. Thus ρ is a
congruence on S and for all a ∈ S, aρ = aρIα

if a ∈ Sα. Put Gα = Sα/ρIα
. Then

S/ρ =
⋃
{Gα : α ∈ A} is a semilattice A of groups Gα.

Applying the above construction (of ρ) to the least semilattice congruence η on
S and to the least seminormal subsemigroup B of S, we obtain some semilattice
of groups congruence on S, say ξ.

Let S be an idempotent-surjective E-semigroup. Then each η-class of S is an
E-semigroup. De�ne on every Sα the least group congruence σα (see Result 1.1).
Then the relation ξ∗, induced by this partition of S, is a congruence on S. Indeed,
if aξ∗ b, say (a, b) ∈ σα in Sα; c ∈ Sβ , then ea = bf , where e, f ∈ ESα , and so
(bcc∗b∗e)ac = bc(c∗ ·b∗bf ·c) for every b∗ ∈ WSα(b), c∗ ∈ WSβ

(c). The expressions in
the parentheses belong to ES . Further, bcc∗b∗e, c∗b∗bfc ∈ Sαβ , ac, bc ∈ Sαβ . Hence
ξ∗ is a right congruence on S. By symmetry, ξ∗ is a left congruence on S. Thus
S/ξ∗ is a semilattice of groups.

Finally, we will show that ξ is the least Clifford congruence on an idempotent-
surjective R-semigroup S. Let ρ be any congruence on S such that S/ρ is a semi-
lattice A of groups, say S/ρ =

⋃
{Gα : α ∈ A}; ρ\ be the natural homomorphism of

S onto S/ρ and ϕ be the canonical morphism of S/ρ onto A, de�ned by (aρ)ϕ = α
if aρ ∈ Gα. The composition map Φ = ρ\ϕ is a morphism of S onto A, so ΦΦ−1,
where a(ΦΦ−1)b if and only if aρ, bρ ∈ Gα for some α ∈ A, is a semilattice congru-
ence on S. Thus η ⊆ ΦΦ−1. Suppose that aξ b. Then aη b and xa = by for some
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x, y ∈ aη ∩B, where B is the least seminormal subsemigroup of S. Since x, y, a, b
lie in the same η-class, then they belong to the same ΦΦ−1-class, so xρ, yρ, aρ, bρ lie
in Gα (α ∈ A). Since x, y ∈ B, then xρ, yρ ∈ ES/ρ (Lemma 1.4), so xρ = yρ = 1Gα

(the identity of the group Gα). It follows that

aρ = (xρ)(aρ) = (xa)ρ = (by)ρ = (bρ)(yρ) = bρ.

Consequently, ξ ⊆ ρ, as required.
Observe that if S is an E-semigroup, then x, y ∈ ES (by the de�nition of ξ∗),

so obviously xρ = yρ = 1Gα
∈ ES/ρ. Thus ξ∗ ⊆ ρ.

Note that ξ, ξ∗ ⊆ η ∩ σ and denote by Baη the intersection of aη and B (a ∈ S).
We have just shown the following theorem.

Theorem 2.1.The least Clifford congruence on an idempotent-surjective R-semi-

group S is given by

ξ = {(a, b) ∈ η : (∃x, y ∈ Baη) xa = by}.

Remark 2.2. In the light of Remark 1.2,

ξ = {(a, b) ∈ η : (∃x ∈ aη) xa, xb ∈ Baη}.

Corollary 2.3. The least Clifford congruence on an idempotent-surjective E-semi-

group S is given by

ξ∗ = {(a, b) ∈ η : (∃ e, f ∈ Eaη) ea = bf}.

Note also that we have proved the �rst part of the following theorem which is
new for regular semigroups (and it is probably new even for inverse semigroups).

Theorem 2.4. Let ε be an arbitrary semilattice congruence on an idempotent-

surjective R-semigroup S and let A be a seminormal subsemigroup of S. Then the

relation

ρA,ε = {(a, b) ∈ ε : (∃x, y ∈ aε ∩A) xa = by}

is a Clifford congruence on S.
Conversely, if ρ is a Clifford congruence on S, then there exists a semilattice

congruence ε on S and a seminormal subsemigroup A of S such that ρ = ρA,ε.

Proof. Let ρ be a semilattice of groups congruence on S. Since S/ρ is a semilattice
of groups, then the least semilattice congruence on S/ρ is HS/ρ. De�ne a relation
ε on S, as follows: (a, b) ∈ ε if and only if (aρ, bρ) ∈ HS/ρ. Then HS/ρ = ε/ρ. It
follows that ε is a semilattice congruence on S, since (S/ρ)/HS/ρ ∼= S/ε. Next,
put

A =
⋃
{eρ : e ∈ ES}.

Since S is idempotent-surjective and ES/ρ is a subsemigroup of S/ρ, then A is
a semigroup. Obviously, A is full. Finally, A is reflexive, since ES/ρ is reflexive.
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Consequently, A is a seminormal subsemigroup of S. Further, note that ρ ⊆ ε, and
consider an arbitrary ρ-class eρ, where e ∈ ES . Let x ∈ (eρ)ω in eε (in particular,
(xρ, eρ) ∈ HS/ρ). Then ax ∈ eρ for some a ∈ eρ. Hence

eρ = (aρ)(xρ) = (eρ)(xρ) = xρ,

because (xρ, eρ) ∈ HS/ρ. Thus eρ is closed in eε. Since A ∩ eε = eρ for every
e ∈ ES , then ρ = ρA,ε, as required.

A congruence ρ on a semigroup S is called idempotent pure if eρ ⊆ ES for all
e ∈ ES . Note that if S is idempotent-surjective, then ρ is idempotent pure if and
only if ker(ρ) = ES .

Let E be the relation on a semigroup S induced by the partition {ES , S \ES}.
Then E[ is the greatest idempotent pure congruence on S. Put τ = E[. Then [12]

τ = {(a, b) ∈ S × S : (∀x, y ∈ S(1)) xay ∈ ES ⇔ xby ∈ ES},

where S(1) denotes the semigroup obtained from S by adjoining the identity 1.
Recall from [5] that an E-inversive semigroup S is E-unitary if and only if ES

is closed in S.
The following result will be useful.

Result 2.5. [5, 7] Let S be an idempotent-surjective semigroup. Then the following

conditions are equivalent:
(a) S is E-unitary;
(b) ker(σ) = ES ;
(c) every idempotent pure congruence on S is E-unitary ;
(d) there exists an idempotent pure E-unitary congruence on S;
(e) σ = τ .

The following theorem gives necessary and suf�cient conditions for ξ to be
idempotent pure. Note that the condition (c) is new even for regular semigroups.

Theorem 2.6. Let S be an idempotent-surjective R-semigroup. Then the following

conditions are equivalent:
(a) ξ is idempotent pure;
(b) each η-class of S is an E-unitary E-inversive subsemigroup of S;
(c) ξ = η ∩ τ .

Proof. (a)⇐⇒ (b). It follows from the construction of ξ and Result 2.5 (see (b)).
(a) =⇒ (c). Let ξ be idempotent pure, that is, ξ ⊆ τ . Then evidently ξ ⊆ η ∩ τ .

Conversely, let a(η ∩ τ)b. Take any weak inverse x of a in aη. Then (xa, xb) ∈ τ ,
where xa ∈ Eaη. Since xb ∈ aη, then xb ∈ Eaη. Thus (a, b) ∈ ξ (by Remark 2.2).

(c) =⇒ (a). This is trivial.

Corollary 2.7. Let S be an idempotent-surjective R-semigroup. Then ξ is idempo-

tent pure if and only if S is a semilattice of E-unitary E-inversive semigroups.
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Moreover, we have the following theorem.

Theorem 2.8. Let S be an idempotent-surjective R-semigroup. Then the following

conditions are equivalent:
(a) S is E-unitary ;
(b) ξ is an idempotent pure E-unitary congruence on S;
(c) for every a ∈ S, aη is E-unitary and σaη = σS ∩ (aη × aη).

Proof. (a) =⇒ (b). If S is E-unitary, then each η-class of S is also E-unitary and
so, by Theorem 2.6, ξ is idempotent pure. Hence by Result 2.5, ξ is E-unitary.

(b) =⇒ (a). This follows from Result 2.5.
(a) =⇒ (c). Let a ∈ S. It is clear that aη is E-unitary. Also, if (a, b) ∈ σ,

then ab∗ ∈ ES for all b∗ ∈ W (b), so if (a, b) ∈ σ ∩ (aη × aη), then ab∗ ∈ Eaη

for all b∗ ∈ W (b) in aη. Thus ab∗b ∈ Eaηb. It follows that (a, b) ∈ σaη. Therefore
σ ∩ (aη × aη) ⊆ σaη. The converse inclusion is obvious.

(c) =⇒ (a). Let e ∈ ES , x ∈ aη, where a ∈ S. Choose f ∈ Eaη and suppose
that (x, e) ∈ σS . Clearly, (e, f) ∈ σS . Hence (x, f) ∈ σS ∩ (aη × aη) = σaη. Thus
x ∈ ES , so S is E-unitary (by Result 2.5).

The next result gives some equivalent conditions for ξ to be E-unitary, when
ξ is idempotent pure.

Corollary 2.9. Let an idempotent-surjective R-semigroup S be a semilattice of an

E-unitary E-inversive semigroups. Then the following conditions are equivalent:
(a) S is E-unitary ;
(b) ξ = η ∩ σ;
(c) ξ is E-unitary ;
(d) for every a ∈ S, σaη = σS ∩ (aη × aη).

Proof. (a) =⇒ (b). The main assumption of the corollary implies that ξ is idem-
potent pure (Corollary 2.7). Hence ξ = η∩ τ (Theorem 2.6). Since S is E-unitary,
then τ = σ (Result 2.5). Thus ξ = η ∩ σ.

(b) =⇒ (c). The congruences η and σ are both E-unitary. Therefore ξ = η ∩ σ
is also E-unitary.

(c) =⇒ (a). The assumptions imply that the congruence ξ is idempotent pure
and E-unitary. Thus S is E-unitary (Result 2.5).

(a) ⇐⇒ (d). It is a consequence of Theorem 2.8.

Finally, we have the following corollary.

Corollary 2.10. In any E-unitary idempotent-surjective semigroup S,

ξ ∩H = 1S .

If in addition ES forms a semilattice, then

ξ ∩ L = ξ ∩R = 1S .

Proof. This follows from Theorem 5.5 [5], since ξ ⊆ σ.
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3. USG-congruences

A semigroup S is said to be a USG-semigroup if it is an E-unitary Clifford semi-
group. Recall from [13] that if S is a USG-semigroup, then σ ∩ η = 1S .

Remark that if a semigroup is a subdirect product of a group and a semilattice,
then it is an E-semigroup.

Theorem 3.1. In any idempotent-surjective semigroup S, σ ∩ η = 1S if and only

if S is a USG-semigroup.

Proof. Let σ ∩ η = 1S . Then S is a subdirect product of the group S/σ and the
semilattice S/η, so S is an idempotent-surjective E-semigroup. In particular, the
least Clifford congruence ξ exists on S. Also, ξ ⊆ σ ∩ η and so ξ = 1S . Hence S is
a semilattice of groups. Thus H = η. Let (x, e) ∈ σ (where x ∈ S, e ∈ ES). Then
(since x ∈ Hf for some f ∈ ES ⊆ eσ) (x, f) ∈ σ ∩H = σ ∩ η = 1S , so x = f ∈ ES .
Consequently, S is E-unitary.

If ρ, υ are two congruences on S such that ρ ⊆ υ, then the map ϕ : S/ρ → S/υ,
(aρ)ϕ = aυ (a ∈ S), is a well-de�ned epimorphism between these semigroups.
Denote its kernel ϕϕ−1 by

υ/ρ = {(aρ, bρ) ∈ S/ρ× S/ρ : a υ b}.

Then (S/ρ)/(υ/ρ) ∼= S/υ. Also, each congruence α on S/ρ is of the form υ/ρ, where
υ ⊇ ρ is a congruence on S. Indeed, the relation υ, de�ned on S by: a υ b if and
only if (aρ, bρ) ∈ α, is a congruence on S such that ρ ⊆ υ and α = υ/ρ. Finally, let
ρ ⊆ υ1, υ2 (where υ1, υ2 are congruences on S). Then (υ1/ρ)∩(υ2/ρ) = (υ1∩υ2)/ρ,
and (υ1 ∩ υ2)/ρ = 1S/ρ implies that ρ = υ1 ∩ υ2.

Note that if a class C of semigroups is closed under homomorphic images and
the least C-congruence ρCS on a semigroup S exists, then the interval [ρCS , S × S]
consists of all C-congruences on S and is a complete sublattice of C(S).

Theorem 3.2. Let C1, C2 and C3 be some classes of semigroups; ρC1
A , ρC2

A be the

least C1-congruence, C2-congruence on any semigroup A, respectively, such that

A ∈ C3 if and only if ρC1
A ∩ ρC2

A = 1A. Then the intersection of a C1-congruence

and a C2-congruence on a semigroup S is a C3-congruence. Conversely, every

C3-congruence on S can be expressed in this way.

Proof. Let ρi be a Ci-congruence on S (for i = 1, 2). Put ρ = ρ1 ∩ ρ2 and observe
that ρ1/ρ is a C1-congruence, ρ2/ρ is a C2-congruence on S/ρ. Since (ρ1/ρ)∩(ρ2/ρ)
is the identity relation on S/ρ, then ρC1

S/ρ ∩ ρC2
S/ρ = 1S/ρ. Thus S/ρ ∈ C3, and so

ρ = ρ1 ∩ ρ2 is a C3-congruence on S.
Conversely, let ρ be any C3-congruence on S, ρ1/ρ = ρC1

S/ρ, ρ2/ρ = ρC2
S/ρ, where

ρ ⊆ ρ1, ρ2. Then ρi is a Ci-congruence on S (for i = 1, 2). Furthermore,

(ρ1 ∩ ρ2)/ρ = ρC1
S/ρ ∩ ρC1

S/ρ = 1S/ρ.

Thus ρ = ρ1 ∩ ρ2, as required.



Clifford congruences 227

Remark 3.3. One can modify Theorem 3.2 for any type of a universal algebra.

The following theorem describes all USG-congruences on idempotent-surjective
semigroups.

Theorem 3.4. The intersection of a group congruence ν and a semilattice con-

gruence γ on an idempotent-surjective semigroup S is a USG-congruence.
Conversely, any USG-congruence ρ on S can be expressed in this way, and ν, γ

are uniquely determined by ρ.

Proof. Note that the class of all idempotent-surjective semigroups is closed under
homomorphic images. All assertions of the theorem except a uniqueness follows
from Theorems 3.1, 3.2 (see the proof of Theorem 3.2).

Let ρ = ν1∩ γ1 = ν2∩ γ2, where νi is a group congruence and γi is a semilattice
congruence on S (i = 1, 2), and let (a, b) ∈ γ1. Since γ1 ∩ γ2 is a band congruence,
then there are e, f ∈ ES such that (a, e) ∈ γ1 ∩ γ2, (e, f) ∈ ν1 and (f, b) ∈ γ1 ∩ γ2.
In fact, (e, f) ∈ γ1 ∩ ν1 = γ2 ∩ ν2 ⊆ γ2. Hence (a, b) ∈ γ2. Thus γ1 ⊆ γ2. Similarly,
we obtain the opposite inclusion, so γ1 = γ2. Put γ1 = γ2 = γ. Let (a, b) ∈ ν1. Then
(aab, abb) ∈ ν1 ∩ γ ⊆ ν2. Hence (a, b) ∈ ν2 (by cancellation), therefore, ν1 ⊆ ν2.
By symmetry, ν2 ⊆ ν1. Consequently, ν1 = ν2, as required.

Corollary 3.5. The relation σ ∩ η is the least USG-congruence on an arbitrary

idempotent-surjective semigroup S.

Corollary 3.6. An idempotent-surjective semigroup is a subdirect product of a

group and a semilattice if and only if it is a USG-semigroup.

Proof. Let S ⊆ G × Y be a subdirect product of a group G and a semilattice Y .
Then the two projection maps induce on S a group congruence and a semilattice
congruence. The intersection of these congruences is the equality relation on S.
Thus σ ∩ η = 1S , so S is a USG-semigroup (Theorem 3.1).

The converse implication is clear.

Lemma 3.7. Let S be an E-unitary idempotent-surjective semigroup. Then S/ξ is

a USG-semigroup.

Proof. Let S be E-unitary. Then every η-class of S is E-unitary, too. In the light
of Theorem 2.6, ξ is idempotent pure. Hence ξ is E-unitary (Corollary 2.9). Thus
S/ξ is a USG-semigroup.

One can show without dif�culty that the least E-unitary congruence π on an
arbitrary E-inversive semigroup exists.

Lemma 3.8. Let S be an idempotent-surjective R-semigroup. Then the relation

(ξ ∨ π)/π

is the least Clifford congruence on S/π.
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Proof. Indeed, S/(ξ ∨ π) is a Clifford semigroup, so (ξ ∨ π)/π is a semilattice of
groups congruence on S/π, since S/(ξ ∨ π) ∼= (S/π)/((ξ ∨ π)/π). On the other
hand, if α is a semilattice of groups congruence on S/π, then α = ρ/π, where
π ⊆ ρ. Since (S/π)/(ρ/π) ∼= S/ρ, then ρ is a Clifford congruence on S, so π, ξ ⊆ ρ.
Hence ξ ∨ π ⊆ ρ. Thus (ξ ∨ π)/π ⊆ ρ/π = α, as required.

Theorem 3.9. In any idempotent-surjective R-semigroup S,

σ ∩ η = ξ ∨ π.

Proof. We have just seen that S/(ξ∨π) ∼= (S/π)/((ξ∨π)/π). By Lemmas 3.7, 3.8,
(S/π)/((ξ∨π)/π) is an E-unitary semilattice of groups and so S/(ξ∨π) is also an
E-unitary semilattice of groups. Thus ξ ∨ π is a USG-congruence on S. Moreover,
ξ ⊆ σ ∩ η and π ⊆ σ ∩ η. Hence ξ ∨ π ⊆ σ ∩ η. Thus ξ ∨ π = σ ∩ η (because σ ∩ η
is the least USG-congruence on S).

Corollary 3.10. In any E-unitary idempotent-surjective semigroup,

ξ = σ ∩ η.

4. The condition π ∩ ξ = 1S

In this section we characterize those idempotent-surjective R-semigroups S which
are a subdirect product of an E-unitary semigroup and a Clifford semigroup, i.e.,
those semigroups S for which π ∩ ξ is the identity relation. Since E-unitary semi-
groups and Clifford semigroups are both E-semigroups, then S are E-semigroups,
too.

In [2] Edwards de�ned the relation µ on a semigroup S by

(a, b) ∈ µ ⇐⇒

{
(xL ax or xL bx) =⇒ axH bx,

(xRxa or xRxb) =⇒ xaHxb,

where x is an arbitrary element of Reg(S). Furthermore, he proved in [3] that µ
is the maximum idempotent-separating congruence on an arbitrary idempotent-
surjective semigroup S (that is, µ ∩ (ES × ES) = 1S).

Recall that a semigroup S is:

• fundamental if µ = 1S [1];

• η-simple if η = S × S [20].

Note that if an E-inversive semigroup S is η-simple, then the least Clifford
congruence ξ coincides with σ. Indeed, let ρ be a Clifford congruence on S. Since
S/ρ is a Clifford semigroup, then the least semilattice congruence on S/ρ is H.
De�ne a relation ε on S, as follows: (a, b) ∈ ε if (aρ)H(bρ). Then H = ε/ρ, so
ε is a semilattice congruence on S, since (S/ρ)/H ∼= S/ε. Thus (aρ)H(bρ) for all
a, b ∈ S. Consequently, S/ρ is a group.
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Recall that π denotes the least E-unitary congruence on an E-inversive semi-
group. Clearly, π ⊆ σ (the least group congruence).

From the last two paragraphs we obtain the following corollary.

Corollary 4.1. Let S be an η-simple E-inversive semigroup. Then S is E-unitary

if and only if π ∩ ξ = 1S.

Proposition 4.2. Let S be an idempotent-surjective R-semigroup, π ∩ ξ = 1S.

Then S is a semilattice of (η-simple) E-unitary E-inversive semigroups.

Proof. It is suf�cient to show that every η-class of S is E-unitary. Let a ∈ S. Then
the restriction of π to aη is an E-unitary congruence on aη and the restriction of ξ
to aη is a group congruence on aη. From the assumption of the proposition follows
that the intersection of these two congruences is the identity relation on aη, so the
intersection of the least E-unitary congruence and the least Clifford congruence on
aη is also the identity relation. In the light of Corollary 4.1, aη is E-unitary.

Theorem 4.3. Let S be a fundamental idempotent-surjective R-semigroup. Then

π ∩ ξ = 1S if and only if S is E-unitary.

Proof. Let π ∩ ξ = 1S ; e, f ∈ ES . If (e, f) ∈ π, then (e, f) ∈ η. Hence (e, f) ∈ ξ.
Thus e = f , so π ⊆ µ = 1S . Consequently, S is E-unitary.

The converse implication is trivial.

Remark 4.4. The above theorem is valid for any C-congruence ρ (instead of π)
contained in η (i.e., if we replace in the theorem π by ρ, then we must replace
“E-unitary� with �C-semigroup�).

Recall from [7] that (for idempotent-surjective semigroups) every congruence
of the interval [π, σ] is E-unitary. Also, ker(ρ) = ker(π) for every ρ ∈ [π, σ].

We have mentioned above that the class of idempotent-surjective semigroups is
closed under homomorphic images. Using Hall's observation, one can prove with-
out dif�culty that the class of all idempotent-surjective R-semigroups possess this
property. It is also known that the class of all structurally regular semigroups is
closed under taking homomorphic images [14].

For regular semigroups S, µ ∩ τ = 1S . The next theorem gives necessary and
suf�cient conditions for π ∩ ξ to be the identity relation on idempotent-surjective
R-semigroups S such that µ ∩ τ = 1S (in particular, the theorem is valid, too, for
structurally regular semigroups having this additional property).

Remark 4.5. Using Lemma 1.2 [17], Janet Mills proved for orthodox semigroups a
similar result to the next theorem (see Theorem 3.5 [17]). However, the proof of her
lemma is not correct (see [6]). Moreover, in [6] using different methods, the author
showed the theorem of Mills (with a very important additional condition). Finally,
notice that the implication “(f) ⇒ (g)” in the following theorem is proved in a
different way than the corresponding implication in [6].
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Theorem 4.6. If S is an idempotent-surjective R-semigroup such that µ∩ τ = 1S,

then the following conditions are equivalent:
(a) π ∩ ξ = 1S ;
(b) S is a semilattice of E-unitary E-inversive semigroups and π ⊆ µ;
(c) S is a semilattice of E-unitary E-inversive semigroups and π ⊆ µ∩ σ ⊆ σ;
(d) S is a semilattice of E-unitary E-inversive semigroups and the congruence

µ ∩ σ is E-unitary;
(e) S is a semilattice of E-unitary E-inversive semigroups and at least one

idempotent-separating congruence on S (say ρ) is E-unitary;
(f) S is a subdirect product of an E-unitary idempotent-surjective semigroup

and a Clifford semigroup;
(g) S is a semilattice of E-unitary E-inversive semigroups and the relation

H ∩ σ is E-unitary congruence on S.

Proof. (a) =⇒ (b). This implication follows directly from Proposition 4.2 and from
the proof of Theorem 4.3.

(b) =⇒ (c). This is clear, since π ⊆ σ.

(c) =⇒ (d). In that case, µ ∩ σ ∈ [π, σ], so µ ∩ σ is E-unitary.

(d) =⇒ (e). This is evident.
(e) =⇒ (a). In such case, π ⊆ ρ ⊆ µ. Hence π ∩ ξ ⊆ µ ∩ ξ = µ ∩ (η ∩ τ) (see

Corollary 2.7 and Theorem 2.6). Thus π ∩ ξ ⊆ µ ∩ τ = 1S .

(a) =⇒ (f). This is clear.
(f) =⇒ (g). Suppose that S is a subdirect product of an E-unitary idempotent-

surjective semigroup A and a Clifford semigroup T . Notice that (a, t)(H∩σ)(b, w)
in S if and only if (a, b) ∈ H ∩ σ in A and (t, w) ∈ H ∩ σ = η ∩ σ in T , i.e., if and
only if a = b (Theorem 5.5 [5]) and (t, w) ∈ η ∩ σ in T . This implies that H∩ σ is
a congruence on S. Finally, we will show that the congruence H ∩ σ is E-unitary.
Let

(e, g)(a, t)(H ∩ σ)(f, h),

where (e, g), (f, h) ∈ ES , then ea = f and (gt, h) ∈ H ∩ σ in T . It follows that

a ∈ EA & t ∈ ker(σT ).

Hence

(t, i) ∈ HT ∩ σT

for some i ∈ ET , since T is a semilattice of groups. Consequently,

(a, t)(H ∩ σ)(a, i),

where (a, i) ∈ ES , so H ∩ σ is E-unitary.

(g) =⇒ (e). This is evident.
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A new characterization of

Osborn-Buchsteiner loops

Tèmító. pé. Gbó. láhàn Jaiyéo. lá and John Olúso. lá Adéníran

Abstract. In the study of loops of Bol-Moufang types, a question that quickly comes to mind
is this. Since a loop is an extra loop if and only if it is a Moufang loop and a CC-loop(or C-
loop), then can one generalize this statement by identifying a "new identity" for a loop which
generalizes the C-loop identity such that we can say "An Osborn loop is a Buchsteiner loop if and
only if it obeys "certain" identity? A somewhat close answer to this question is the unpublished
fact by M. K. Kinyon that "An Osborn loop Q with nucleus N is a Buchsteiner loop if and only
if Q/N is a Boolean group" where Q/N being a Boolean group somewhat plays the role of the
missing identity. It is proved that an Osborn loop is a Buchsteiner loop if and only if it satis�es
the identity (x · xy)(xλ · xz) = x(x · yz). The importance of its emergence which was traced from
the facts that Buchsteiner loops generalize extra loops while Osborn loops generalize Moufang
loops is the fact that not every Osborn-Buchsteiner loop is an extra loop. An LC-loop obeys
this identity. An Osborn-Buchsteiner loop (OBL) is shown to be nuclear square and to obey the
identity xρ · xx = xx · xλ = x. Necessary and su�cient condition for a OBL to be central square
is established. It is shown that in an OBL, the cross inverse property and commutativity are
equivalent, and the properties: 3-power associativity (xx · x = x · xx), self right inverse property
(xx · xρ = x), self left inverse property (xλ · xx = x) and xρ = xλ are equivalent.

1. Introduction

Let L be a nonempty set with a binary operation denoted by juxtaposition. If the
system of equations: ax = b, ya = b has unique solutions x and y respectively,
then (L, ·) is called a quasigroup. Furthermore, if there exists a unique element
e ∈ L called the identity such that for all x ∈ L, xe = ex = x, (L, ·) is called a
loop. For each x ∈ L, the elements xρ = xJρ, xλ = xJλ such that xxρ = e = xλx
are called the right, left inverses of x respectively. For any x, y ∈ L, we shall take
(xy)(x, y) = yx, where (x, y) ∈ L is called the commutator of x and y.

The triple α = (A,B,C) of bijections on a loop (L, ·) is called an autotopism

if and only if

xA · yB = (xy)C for all x, y ∈ L.

2010 Mathematics Subject Classi�cation: 20N02, 20NO5
Keywords: Osborn loop, Buchsteiner loop.
The authors dedicate this paper to the 50th Anniversary of Obafemi Awolowo University
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Such triples form a group AUT (L, ·) called the autotopism group of (L, ·). For an
overview of the theory of loops, readers may check [10, 19].

Further to reduce of number of brackets we will use dots instead of some brack-
ets. For example, the formula x((yz)x) will be written as x(yz · x).

A loop that satis�es any of the following equivalent identities is called anOsborn

loop.

OS0 : x(yz · x) = x(yxλ · x) · zx, (1)

OS1 : x(yz · x) = [x(yx · xρ)] · zx, (2)

OS2 : x[(xλy)z · x] = y · zx, (3)

OS3 : (x · yz)x = xy · [(xλ · xz) · x], (4)

OS4 : [x · y(zxρ)]x = xy · z. (5)

Kinyon [17] revived the study of Osborn loops in 2005. The most popularly
known varieties of Osborn loops are: VD-loops (Basarab [1]), Moufang loops, CC-
loops, universal weak inverse property loops and extra loops. Some recent works
on Osborn loops are Jaiyéo. lá [11, 12], Jaiyéo. lá and Adéníran [13, 14, 15], and
Jaiyéo. lá, Adéníran and Sòlárìn [16].

The Buchsteiner law

BL : x\(xy · z) = (y · zx)/x

was �rst introduced by Buchsteiner [2]. Its study in loops is on revival by Csörg®
et. al. [3, 4, 5] and Drápal et. al. [6, 7, 8]. Buchsteiner loops are G-loops and
extra loops belongs to their class.

Buchsteiner loops generalize extra loops while Osborn loops generalize Moufang
loops. A question that quickly comes to mind is this: since a loop is an extra loop
if and only if it is a Moufang loop and a CC-loop (or C-loop), then can one
generalize this statement by identifying a new identity that describes a new class
of loop which generalizes a C-loop such that we can say "An Osborn loop is a
Buchsteiner loop if and only if it is a "certain" loop?" A some what close answer
to this question is the unpublished fact by M. K. Kinyon that "An Osborn loop
Q with nucleus N is a Buchsteiner loop if and only if Q/N is a Boolean group"
where Q/N being a Boolean group some what plays the role of the missing loop
variety. It will be shown in this study that this new class of loop is described by
the identity

(x · xy)(xλ · xz) = x(x · yz). (6)

LC-loops fall into this class. It must be noted that when Drápal and Jedli£ka
[6] used nuclear identi�cation to obtain some loop identities, the Osborn and our
new loop identities did not feature among such identities. We shall refer to an
Osborn loop which obeys the Buchsteiner law as an Osborn-Buchsteiner loop.

Theorem 1.1. (Proposition 2.5 in [5]) Let Q be a CC-loop with nucleus N(Q).
Then Q is a Buchsteiner loop if and only if x2 ∈ N(Q) for every x ∈ Q.
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We got the following unpublished result from Kinyon through personal contact.

Theorem 1.2. (Kinyon, 2009) Let Q be a loop with nucleus N = N(Q). Any two

of the following implies the third.

1. Q is an Osborn loop.

2. Q is a Buchsteiner loop.

3. N is a normal in Q and Q/N is a Boolean group.

We can also say that:

Theorem 1.3. Let Q be an Osborn loop with nucleus N = N(Q). Then Q is a

Buchsteiner loop if and only if Q/N is a Boolean group. Hence, Q is an Osborn

loop that is nuclear square.

Theorem 1.4. (Theorem 11.3 in [5]) Let Q be a Buchsteiner loop with nucleus

N = N(Q). If |Q| < 32, then Q is a CC-loop. If |Q| < 64, then Q/N has exponent

2.

Theorem 1.5. (Theorem 7.14 in [5]) Let Q be a Buchsteiner loop with nucleus

N = N(Q). Then Q/N is an abelian group of exponent 4.

Theorem 1.2 is a generalization of Theorem 1.1.

2. Main Results

Theorem 2.1. An Osborn loop is a Buchsteiner loop if and only if it obeys identity

(6). Hence, it is a nuclear square loop and the loop modulo its nucleus is an abelian

group of exponent 2.

Proof. Using the identities OS1, OS2 and OS3 of an Osborn loop (L, ·) and the
identity BL of a Buchsteiner loop L, it can be shown that

(RxRxρL2
x, I, RxT−1

(x)Lx) ∈ AUT (L). (7)

This is done as follows. Take T(x) = RxL−1
x . From equation (2),

RzRxLx = RxRxρLxRzx ⇔ Rzx = L−1
x R−1

xρ R−1
x RzRxLx.

From the Buchsteiner law, Rzx = LxRzL
−1
x Rx. So,

LxRzL
−1
x Rx = L−1

x R−1
xρ R−1

x RzRxLx ⇔ RxRxρL2
xRzL

−1
x Rx = RzRxLx ⇔

yRxRxρL2
xRzL

−1
x Rx = yRzRxLx ⇔ yRxRxρL2

xRzL
−1
x Rx = (yz)RxLx ⇔

yRxRxρL2
x · z = (yz)RxT−1

(x)Lx ⇔ (RxRxρL2
x, I, RxT−1

(x)Lx) ∈ AUT (L).

Thus, if an Osborn loop L is a Buchsteiner loop, then (7) holds. Doing the reverse
of the procedure above, it is also true that if in an Osborn loop L holds (7), then
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L is a Buchsteiner loop. So, we have shown that an Osborn loop is a Buchsteiner
loop if and only if (7) holds.

From equation (3), (Lxλ , R−1
x , L−1

x R−1
x ) ∈ AUT (L) while from equation (4),

(Lx, LxLxλRx, LxRx) ∈ AUT (L). Thus,

(LxLxλ , LxLxλ , LxRxL−1
x R−1

x ) = (LxLxλ , LxLxλ , LxT(x)R
−1
x ) ∈ AUT (L).

Therefore, in an Osborn loop L, keeping in mind that LxLxλRxRxρ = I,

(LxLxλ , LxLxλ , LxT(x)R
−1
x )(RxRxρL2

x, I, RxT−1
(x)Lx) =

(LxLxλRxRxρL2
x, LxLxλ , L2

x) = (L2
x, LxLxλ , L2

x) ∈ AUT (L)

⇔ (x · xy)(xλ · xz) = x(x · yz).

Thus, we have shown that an Osborn loop which is also a Buchsteiner loop obeys
the identity (6). Assuming the identity (6) is true in the Osborn loop L and
doing the reverse of the process above, it will be observed that (7) holds, hence by
the earlier fact, L is a Buchsteiner loop. Recall that (7) implies yRxRxρL2

x · z =
(yz)RxT−1

(x)Lx for all y, z ∈ L. Substituting z = e, we have

RxRxρL2
x = RxT−1

(x)Lx for all x ∈ L. (8)

So, (7) implies yRxRxρL2
x · z = (yz)RxRxρL2

x for all y, z ∈ L. Substituting y = e,
we see that x2z = zRxRxρL2

x implies Lx2 = RxRxρL2
x for all x ∈ L. Thus,

(Lx2 , I, Lx2) ∈ AUT (L) which means that x2 ∈ N for all x ∈ L. That is, L is
nuclear square. Thus, by Theorem 1.5, L/N is a Boolean group.

From Theorem 2.1 we can deduce that in Theorem 1.2 conditions 1. and 2.
imply 3. The proof of Theorem 2.1 was carried out without the knowledge of
Theorem 1.2.

Corollary 2.2. Let Q be an Osborn loop with nucleus N = N(Q). The following

are equivalent:

1. Q is a Buchsteiner loop,

2. Q/N is a Boolean group,

3. Q obeys (6).
Hence, Q is an Osborn loop that is nuclear square.

Proof. The proof follows from Theorem 1.3 and Theorem 2.1.

Lemma 2.3. Let (Q, ·) be an Osborn loop that is nuclear square. Then

1. xρ · xx = xx · xλ = x.
2. The following are equivalent: xx · xρ = x, xλ · xx = x, xρ = xλ and

xx · x = x · xx. Hence, (x2, xρ) = (x2, xλ) = e.
3. L is central square if and only if x · (xλy · x)x = x(x · yxρ) · x.
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Proof. 1. By OS1, x(yz · x) = [x(yx · xρ)] · zx. Substituting z = x, we have
x(yx · x) = [x(yx · xρ)] · xx ⇒ (yx · x) = (yx · xρ)(xx) ⇒ xρ · xx = x. Doing a
similar thing with OS3, we get xx · xλ = x.
2. Using OS0 the way OS1 was used above, we get yx · x = (yxλ · x)(xx). Taking
y = x, it is easy to see that xx · x = x · xx if and only if xρ = xλ. In Lemma 3.20
of [16], the equivalence of the �rst three identities was proved in an Osborn loop.
Hence, the equivalence of the four identities follows.
3. In OS2, x[(xλy)z · x] = y · zx, making z = x, we get Rx2 = LxλR2

xLx. Doing a
similar thing with OS4, we have Lx2 = RxρL2

xRx. So, L is central square if and only
if Rx2 = Lx2 ⇔ Lx2 = RxρL2

xRx = RxρL2
xRx ⇔ x · (xλy · x)x = x(x · yxρ) · x.

Lemma 2.4. Let (Q, ·) be an Osborn-Buchsteiner loop. Then

1. the following are equivalent: xx ·xρ = x, xλ ·xx = x, xρ = xλ, xx ·x = x ·xx
and (x · xy)x = x(x · yx). Hence, (x, y) = e if and only if (x, x · xy) = e or

(x, x · yx) = e.
2. (x · yxρ)x = xy.
3. L is a cross inverse property loop if and only if L is commutative.

Proof. 1. The equivalence of the �rst four identities follows from 1. of Lemma 2.3.
From identity (6), (x · xy)(xλ · xz) = x(x · yz), so taking z = x, (x · xy)(xλ · xx) =
x(x · yx), so xλ · xx = x ⇔ (x · xy)x = x(x · yx).
2. Recall that from (8), RxRxρL2

x = RxT−1
(x)Lx, for all x ∈ L. Putting T(x) =

RxL−1
x , we get RxρLxRx = Lx ⇔ (x · yxρ)x = xy.

3. This follows from 2. above.

Not all Osborn-Buchsteiner loops are extra loops. A loop is said to be nuclear

square if the square of each element is nuclear (i.e. in the nucleus). It is well known
from Fenyves [9] that extra loops are nuclear square loops. In Table 2 of the last section
of [18], the authors established the fact that there exists a non-extra CC-loop that is
nuclear square by constructing a power associative CC-loop of order 16 that is nuclear
square. Thus, by Theorem 1.1, such a loop is a Buchsteiner loop, hence an Osborn-
Buchsteiner loop. This fact can also be corroborated with Theorem 1.4 following the fact
that |Q| < 32.

Furthermore, in [Page 7, [4]], it was observed that not every Buchsteiner loop Q with
nucleus N such that Q/N is a Boolean group has to be a CC-loop. Hence, since Q/N is
a Boolean group implies Q is nuclear square, then there exist nuclear square Buchsteiner
loops that are not CC-loops.

As shown in Corollary 2.1, Theorem 2.1 is another characterization of Osborn-
Buchsterner loops in identity form relative to the group-structural characterization form
of Q modulo N being a Boolean group. The importance of this characterization can be
linked to the fact that Buchsteiner [2] originally claimed that in a Buchsteiner loop Q,
Q/N is a Boolean group, while [5] clari�ed this statement by showing in Theorem 1.5
that Q/N is actually an abelian group of exponent 4.

Kinyon in personal correspondence went further to show that a Buchsteiner loop Q
for which Q/N is a Boolean group must be an Osborn loop. So, a single identity to
describe a Osborn-Buchsterner loop Q for which Q/N is a Boolean group is (6).
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Left quasi-regular and intra-regular ordered

semigroups using fuzzy ideals

Niovi Kehayopulu

Abstract. As a continuation of our paper in [6], we characterize here the ordered semigroups
which are both intra-regular and left (right) quasi-regular also the ordered semigroups which are
both regular and intra-regular in terms of fuzzy right, fuzzy left and fuzzy bi-ideals using �rst
the �rst and then the second de�nitions of fuzzy ideals. As in [6], comparing the proofs of the
results using the two de�nitions, we see that with the second de�nitions the proofs of the results
are drastically simpli�ed.

1. Introduction and prerequisites

In [6], we characterized the ordered semigroups in which f ∧ h ∧ g � g ◦ h ◦ f ,
f ∧ h∧ g � h ◦ f ◦ g and f ∧ h∧ g � f ◦ h ◦ g as the ordered semigroups which are
intra-regular, both regular and intra-regular, and regular, respectively. It would
be interesting to characterize the rest, that is the ordered semigroups in which
f ∧ h∧ g � f ◦ g ◦ h, f ∧ h∧ g � h ◦ g ◦ f and f ∧ h∧ g � g ◦ f ◦ h. In this respect,
we characterize the ordered semigroups which are both intra-regular and left (or
right) quasi-regular, also the ordered semigroups which are both regular and intra-
regular in terms of fuzzy left, fuzzy right and fuzzy bi-ideals. We prove that the
property f ∧h∧ g � g ◦ f ◦h characterizes the ordered semigroups which are both
intra-regular and left quasi-regular, and the property f ∧ h ∧ g � h ◦ g ◦ f the
ordered semigroups which are both intra-regular and right quasi-regular. We also
prove that the property f ∧ h∧ g � f ◦ g ◦ h characterizes the ordered semigroups
which are both regular and intra-regular adding an additional characterization to
the characterization of the same type of semigroups already considered in [6]. The
left (resp. right) quasi-regular ordered semigroups are the ordered semigroups
in which the left (resp. right) ideals are idempotent. According to the present
paper, if an ordered semigroup (S, ., 6) is intra-regular and the left (resp. right)
ideals of S are idempotent, then for every fuzzy right ideal f , every fuzzy left
ideal g and every fuzzy subset h of (S, ·) we have f ∧ h ∧ g � g ◦ f ◦ h (resp.
f ∧ h ∧ g � h ◦ g ◦ f) which shows that the corresponding results in [5] hold not

2010 Mathematics Subject Classi�cation: 06F05 (08A72).
Keywords: Ordered semigroup, regular, intra-regular, left quasi-regular, left (right) ideal,
bi-ideal, fuzzy left (right) ideal, fuzzy bi-ideal.
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only for the fuzzy right, left, bi-ideals of (S, ·,6) but for the fuzzy right, left,
bi-ideals of (S, ·), not only for the bi-ideals h but for any fuzzy subset h of S.
Moreover, if an ordered semigroup (S, ·,6) is both regular and intra-regular, then
for every fuzzy right ideal f , every fuzzy subset g and every fuzzy bi-ideal h of
(S, ·) we have f ∧ h ∧ g � f ◦ g ◦ h. We notice that investigations in the existing
bibliography are based on the �rst de�nitions. Characterizations of semigroups
(without order) which are intra-regular and left quasi-regular have been given by
Kuroki in [7].

These are the �rst de�nitions:

De�nition 1.1. Let (S, ·,6) be an ordered groupoid. A fuzzy subset f of S is
called a fuzzy left (resp. right) ideal of (S, ·,6) if

(1) f(xy) > f(y) (resp. f(xy) > f(x)) for all x, y ∈ S and
(2) if x 6 y, then f(x) > f(y).

In particular, if (S, ·,6) is an ordered semigroup, then a fuzzy subset f of S is
called a fuzzy bi-ideal of (S, ·,6) if

(1) f(xyz) > min{f(x), f(z)} for all x, y ∈ S and
(2) if x 6 y, then f(x) > f(y).

These are the second de�nitions:

De�nition 1.2. Let (S, ·,6) be an ordered groupoid. A fuzzy subset f of S is
called a fuzzy left (resp. right) ideal of (S, ·,6) if

(1) 1 ◦ f � f (resp. f ◦ 1 � f) and
(2) if x 6 y, then f(x) > f(y).

In particular, if (S, ·,6) is an ordered semigroup, then a fuzzy subset f of S is
called a fuzzy bi-ideal of (S, ·,6) if

(1) f ◦ 1 ◦ f � f and
(2) if x 6 y, then f(x) > f(y).
A fuzzy subset f of (S, ·,6) is said to be a fuzzy left (resp. right) ideal or

fuzzy bi-ideal of (S, ·) if the following assertions, respectively hold in (S, ·,6):
f(xy) > f(y) (resp. f(xy) > f(x)), f(xyz) > min{f(x), f(z)} for all x, y, z ∈ S.
The fuzzy set 1 : S → [0, 1] | a → 1 is the greatest element in the set of fuzzy
subsets of S. We have 1 ◦ 1 � 1. In particular in intra-regular, also in regular
ordered semigroups we have 1 ◦ 1 = 1. If (S, ·,6) is an ordered groupoid, f, g
fuzzy subsets of (S, ·) and f � g then, for any fuzzy subset h of (S, ·), we have
f ◦ h � g ◦ h and h ◦ f � h ◦ g. If the multiplication on S is associative, then
the multiplication ” ◦ ” on fuzzy subsets of S is also associative. An ordered
semigroup (S, ·,6) is called regular if for every a ∈ S there exists x ∈ S such
that a 6 axa, equivalently if A ⊆ (ASA] for every A ⊆ S. It is called intra-

regular if for every a ∈ S there exist x, y ∈ S such that a 6 xa2y, equivalently
if A ⊆ (SA2S] for every A ⊆ S. An ordered semigroup (S, ·,6) is regular if and
only if for every fuzzy right ideal f and every fuzzy left ideal g of (S, ·,6), we have
f ∧ g = f ◦ g equivalently f ∧ g � f ◦ g. It is intra-regular if and only if for every
fuzzy right ideal f and every fuzzy left ideal g of (S, ·,6), we have f ∧ g � g ◦ f .
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Moreover, an ordered semigroup S is regular if and only if for every fuzzy subset f
of S, we have f � f ◦ 1 ◦ f . It is intra-regular if and only if for every fuzzy subset
f of S, we have f � 1 ◦ f2 ◦ 1. For further information we refer to [6]. The next
two lemmas can be proved using only sets, which shows their pointless character.

Lemma 1.1. (cf. also [1]) Let (S, ·,6) be an ordered semigroup. If S is intra-

regular, then for every right ideal X and every left ideal Y of (S, ·) we have X∩Y ⊆
(Y X]. "Conversely", if for every right ideal X and every left ideal Y of (S, ·,6)
we have X ∩ Y ⊆ (Y X], then S is intra-regular.

Proof. =⇒. Let X be a right ideal and Y a left ideal of (S, ·). Since S is intra-
regular, we have

X ∩ Y ⊆ (S(X ∩ Y )2S] = (S(X ∩ Y )(X ∩ Y )S] ⊆ ((SY )(XS)] ⊆ (Y X].

⇐=. Let A ⊆ S. Since R(A), L(A) are right and left ideals of (S, ·,6), respectively,
by hypothesis, we have

A ⊆ R(A) ∩ L(A) ⊆ (L(A)R(A)] = ((A ∪ SA](A ∪AS]]
= ((A ∪ SA)(A ∪AS)] = (A2 ∪ SA2 ∪A2S ∪ SA2S],

A2 ⊆ (A2 ∪ SA2 ∪A2S ∪ SA2S](A]
⊆ (A3 ∪ SA3 ∪A2SA ∪ SA2SA]
⊆ (SA2 ∪A2S ∪ SA2S],

A ⊆ ((SA2 ∪A2S ∪ SA2S] ∪ SA2 ∪A2S ∪ SA2S]
= ((SA2 ∪A2S ∪ SA2S]] = (SA2 ∪A2S ∪ SA2S],

A2 ⊆ (SA2 ∪A2S ∪ SA2S](A] ⊆ (SA3 ∪A2SA ∪ SA2SA],

SA2 ⊆ (S](SA3 ∪A2SA ∪ SA2SA] ⊆ (SA3 ∪ SA2SA] ⊆ (SA2S],++

A ⊆ ((SA2S] ∪A2S ∪ SA2S] = (A2S ∪ (SA2S]],

A2 ⊆ (A](A2S ∪ (SA2S]] ⊆ (A3S ∪A(SA2S]].

Since A(SA2S] ⊆ (A](SA2S] ⊆ (ASA2S] ⊆ (SA2S], we have

A2 ⊆ (A3S ∪ (SA2S]] ⊆ (SA2S ∪ (SA2S]] = ((SA2S]] = (SA2S].

Then we have A2S ⊆ (SA2S](S] ⊆ (SA2S], and A ⊆ ((SA2S]] = (SA2S]. �

In a similar way, the following lemma holds.

Lemma 1.2. (cf. also [2]) Let (S, ·,6) be an ordered semigroup. If S is regular,

then for every right ideal X and every left ideal Y of (S, ·) we have X ∩Y = (XY ].
"Conversely", if for every right ideal X and every left ideal Y of (S, ·,6) we have

X ∩ Y ⊆ (XY ], then S is regular.
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2. Main results

The �rst theorem characterizes the ordered semigroups which are both intra-
regular and left quasi-regular in terms of fuzzy ideals. These are the ordered
semigroups for which f ∧ h ∧ g � g ◦ f ◦ h. Let us prove this theorem using �rst
the �rst and then the second de�nitions.

De�nition 2.1. An ordered semigroup S is called left quasi-regular if for every
a ∈ S there exist x, y ∈ S such that a 6 xaya.

Equivalent De�nitions:
1) a ∈ (SaSa] for every a ∈ S.
2) A ⊆ (SASA] for every A ⊆ S.

Recall that this type of ordered semigroups are the ordered semigroups in which
the left ideals are idempotent.

Theorem 2.1. Let (S, ·,6) be an ordered semigroup. If (S, ·,6) is intra-regular

and left quasi-regular, then for every fuzzy right ideal f, every fuzzy left ideal g and

every fuzzy subset h of (S, ·), we have

f ∧ h ∧ g � g ◦ f ◦ h.

"Conversely", if for every fuzzy right ideal f, every fuzzy left ideal g and every

fuzzy bi-ideal h of (S, ·,6) we have f ∧h∧ g � g ◦ f ◦h, then S is intra-regular and

left quasi-regular.

Proof of Theorem 2.1 using the �rst de�nitions

We need the following lemmas.

Lemma 2.1. Let (S, ·,6) be an ordered groupoid. If A is a left (resp. right) ideal

of (S, ·,6), then the characteristic function fA is a fuzzy left (resp. fuzzy right)
ideal of (S, ·,6). "Conversely", if A is a nonempty set and fA a fuzzy left (resp.
right) ideal of (S, ·,6), then A is a left (resp. right) ideal of (S, ·,6). In particular,

let (S, ·,6) be an ordered semigroup. Then, if B is a bi-ideal of (S, ·,6), then the

characteristic function fB is a fuzzy bi-ideal of (S, ·,6). "Conversely", if B is a

nonempty set and fB a fuzzy bi-ideal of (S, ·,6), then B is a bi-ideal of (S, ·,6).

Lemma 2.2. If S is an ordered groupoid (or groupoid) and {Ai | i ∈ I} a family

of subsets of S, then we have ∧
i∈I

fAi = f ⋂
i∈I

Ai
.

Lemma 2.3. Let S be an ordered semigroup, n a natural number, n > 2 and

{A1, A2, ....., An} a set of nonempty subsets of S. Then we have

fA1 ◦ fA2 ◦ ..... ◦ fAn
= f(A1A2.....An].
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Lemma 2.4. If S is an ordered groupoid (or groupoid) and A,B subsets of S,
then we have

A ⊆ B ⇐⇒ fA � fB .

Lemma 2.5. Let (S, ·,6) be an ordered semigroup. If S is intra-regular and left

quasi-regular, then for every right ideal X and every left ideal Y of (S, ·), and every

subset B of S we have

X ∩B ∩ Y ⊆ (Y XB].

"Conversely", if for every right ideal X, every left ideal Y and every bi-ideal B of

(S, ·,6) we have X∩B∩Y ⊆ (Y XB], then S is intra-regular and left quasi-regular.

Proof. =⇒. Let X be a right ideal, Y a left ideal of (S, ·) and B a subset of S.
Then we have

X ∩B ∩ Y ⊆ (S(X ∩B ∩ Y )S(X ∩B ∩ Y )] (since S is left quasi-regular)

⊆ (S(S(X ∩B ∩ Y )2S]S(X ∩B ∩ Y )] (since S is intra-regular)

= (S(S(X ∩B ∩ Y )2S)S(X ∩B ∩ Y )]
⊆ (S(X ∩B ∩ Y )(X ∩B ∩ Y )S(X ∩B ∩ Y )]
⊆ ((SY )(XS)B] ⊆ (Y XB].

⇐=. Let X be a right ideal and Y a left ideal of (S, ·,6). Since S is a bi-ideal
of (S, ·,6), by hypothesis, we have X ∩ Y = X ∩ S ∩ Y ⊆ (Y XS] ⊆ (Y X]. By
Lemma 1.1, S is intra-regular. Let now A be a left ideal of (S, ·,6). Since S is a
right ideal, A a bi-ideal and A a left ideal of (S, ·,6), by hypothesis, we have

A = S ∩A ∩A ⊆ (A(SA)] ⊆ (A2] ⊆ (SA] ⊆ (A] = A.

Then (A2] = A, so S is left quasi-regular. �

Lemma 2.6. [4; Prop. 5] Let S be an ordered groupoid, f, g fuzzy subsets of S,

and a ∈ S. The following are equivalent:

(1) (f ◦ g)(a) 6= 0.
(2) There exists (x, y) ∈ Aa such that f(x) 6= 0 and g(y) 6= 0. �

Proof of Theorem 2.1

=⇒. Let f be a fuzzy right ideal, g a fuzzy left ideal, h a fuzzy subset of (S, ·),
and a ∈ S. Since (S, ·,6) is intra-regular, there exist x, y ∈ S such that a 6 xa2y.
Since S is left quasi-regular, there exist s, t ∈ S such that a 6 sata. Then we have
a 6 sata 6 s(xa2y)ta = sxa2yta. Since (sxa2yt, a) ∈ Aa, we have Aa 6= ∅, and

((g ◦ f) ◦ h)(a) : =
∨

(u,v)∈Aa

min{(g ◦ f)(u), h(v)} > min{(g ◦ f)(sxa2yt), h(a)}.

Since (sxa, ayt) ∈ Asxa2yt, we have Asxa2yt 6= ∅, and

(g ◦ f)(sxa2yt) : =
∨

(w,t)∈Asxa2yt

min{g(w), f(t)} > min{g(sxa), f(ayt)}.
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Since g is a fuzzy left ideal of S, g(sxa) > g(a). Since f is a fuzzy right ideal of
S, f(ayt) > f(a). Therefore we get

(g ◦ f ◦ h)(a) = ((g ◦ f) ◦ h)(a) > min{min{g(sxa), f(ayt)}, h(a)}
> min{min{g(a), f(a)}, h(a)} = min{g(a), f(a), h(a)}
= (f ∧ h ∧ g)(a).

This holds for every a ∈ S, so f ∧ h ∧ g � g ◦ f ◦ h.

For the converse statement we give three proofs. For the �rst one we use the
Lemmas 2.1�2.5. For the second and third proof the Lemmas 2.1, 2.3 and 2.5 and
Lemmas 2.1, 2.5 and 2.6, respectively, together with some basic properties of fuzzy
sets.

First proof. Let X be a right ideal, Y a left ideal, B a bi-ideal of (S, ·,6). By
Lemma 2.1, fX is a fuzzy right, fY a fuzzy left and fB a fuzzy bi-ideal of (S, ·,6).
By hypothesis, we have fX∧fB∧fY � fY ◦fX ◦fB . By Lemma 2.2, fX∧fB∧fY =
fX∩B∩Y . By Lemma 2.3, fY ◦ fX ◦ fB = f(Y XB], then fX∩B∩Y � f(Y XB]. By
Lemma 2.4, X ∩ B ∩ Y ⊆ (Y XB]. By Lemma 2.5, (S, ·,6) is intra-regular and
left quasi-regular.

Second proof. Let X be a right ideal, Y a left ideal, B a bi-ideal of (S, ·,6) and
a ∈ X ∩B ∩ Y . By Lemma 2.5, it is enough to prove that a ∈ (Y XB]. As in the
�rst proof, by Lemma 2.1 and hypothesis, we have fX ∧ fB ∧ fY � fY ◦ fX ◦ fB .
Then

(fY ◦ fX ◦ fB)(a) > (fX ∧ fB ∧ fY )(a) = min{fX(a), fB(a), fY (a)}.

Since a ∈ X, we have fX(a) = 1, since a ∈ B, fB(a) = 1, since a ∈ Y , fY (a) = 1.
Thus we have (fY ◦ fX ◦ fB)(a) > 1. Besides, since fY ◦ fX ◦ fB is a fuzzy subset
of S, we have (fY ◦ fX ◦ fB)(a) 6 1, then (fY ◦ fX ◦ fB)(a) = 1. By Lemma 2.3,
fY ◦ fX ◦ fB = f(Y XB], then f(Y XB](a) = 1, and a ∈ (Y XB].

Third proof. Let X be a right ideal, Y a left ideal, B a bi-ideal of (S, ·,6) and
a ∈ X ∩ B ∩ Y . As in the second proof, by Lemma 2.1, we have (fY ◦ (fX ◦
fB))(a) = 1 6= 0. By Lemma 2.6, there exists (b, c) ∈ Aa such that fY (b) 6= 0
and (fX ◦ fB)(c) 6= 0. Since (fX ◦ fB)(c) 6= 0, there exists (d, e) ∈ Ac such that
fX(d) 6= 0 and fB(e) 6= 0. Then fY (b) = fX(d) = fB(e) = 1, b ∈ Y , d ∈ X, e ∈ B,
and a 6 bc 6 bde ∈ Y XB, so a ∈ (Y XB]. By Lemma 2.5, S is intra-regular and
left quasi-regular. �

Proof of Theorem 2.1 using the second de�nitions

We need the following lemma

Lemma 2.7. [3] An ordered semigroup (S, ·,6) is left quasi-regular if and only if,

for every fuzzy subset f of S, we have

f � 1 ◦ f ◦ 1 ◦ f,
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equivalently, if the fuzzy left ideals of (S, ·,6) are idempotent.

Proof of the theorem.

=⇒. Let f be a fuzzy right, g a fuzzy left and h a fuzzy bi-ideal of (S, ·). By
Lemma 2.7, we have

f ∧ h ∧ g � 1 ◦ (f ∧ h ∧ g) ◦ 1 ◦ (f ∧ h ∧ g) (since S is left quasi-regular)

� 1 ◦ 1 ◦ (f ∧ h ∧ g) ◦ (f ∧ h ∧ g) ◦ 1 ◦ 1 ◦ (f ∧ h ∧ g)
(since S is intra-regular)

� (1 ◦ g) ◦ (f ◦ 1) ◦ h � g ◦ f ◦ h.

⇐=. Let f be a fuzzy right ideal and g a fuzzy left ideal of (S, ·,6). Since 1 is a
fuzzy bi-ideal of S, by hypothesis, we have

f ∧ g = f ∧ 1 ∧ g � g ◦ (f ◦ 1) � g ◦ f,

so S is intra-regular. Let now g be a fuzzy left ideal of (S, ·,6). Since 1 is a fuzzy
right ideal and g at the same time a fuzzy bi-ideal of (S, ·,6), by hypothesis, we
have g = 1 ∧ g ∧ g � g ◦ (1 ◦ g) � g2 � 1 ◦ g � g, so g2 = g. By Lemma 2.7, S is
left quasi-regular. �

The next theorem characterizes the ordered semigroups which are both intra-
regular and right quasi-regular in terms of fuzzy left, right and fuzzy bi-ideals.
These are the ordered semigroups for which f ∧ h ∧ g � h ◦ g ◦ f .

De�nition 2.2. An ordered semigroup S is called right quasi-regular if for every
a ∈ S there exist x, y ∈ S such that a 6 axay.

Equivalent De�nitions:
1) a ∈ (aSaS] for every a ∈ S.
2) A ⊆ (ASAS] for every A ⊆ S.

Theorem 2.2. Let (S, ·,6) be an ordered semigroup. If (S, ·,6) is intra-regular

and right quasi-regular, then for every fuzzy right ideal f, every fuzzy left ideal g

and every fuzzy subset h of (S, ·), we have

f ∧ h ∧ g � h ◦ g ◦ f.

"Conversely", if for every fuzzy right ideal f, every fuzzy left ideal g and every fuzzy

bi-ideal h of (S, ·,6) we have f ∧ h ∧ g � h ◦ g ◦ f , then (S, ·,6) is intra-regular

and right quasi-regular.

Proof of Theorem 2.2 using the �rst de�nitions

In addition to Lemmas 2.1�2.4 (or 2.1 and 2.3 or 2.1 and 2.6), we need the following
lemma.
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Lemma 2.8. Let (S, ·,6) be an ordered semigroup. If S is intra-regular and right

quasi-regular, then for every right ideal X and every left ideal Y of (S, ·), and every

subset B of S we have

X ∩B ∩ Y ⊆ (BY X].

"Conversely", if for every right ideal X, every left ideal Y and every bi-ideal B of

(S, ·,6) we have X ∩ B ∩ Y ⊆ (BY X], then S is intra-regular and right quasi-

regular.

Proof of Theorem 2.2.

=⇒. Let f be a fuzzy right ideal, g a fuzzy left ideal, h a fuzzy subset of (S, ·),
and a ∈ S. Since (S, ·,6) is intra-regular, there exist x, y ∈ S such that a 6 xa2y.
Since S is right regular, there exist s, t ∈ S such that a 6 asat. Then we have
a 6 asat 6 as(xa2y)t = asxa2yt. Then (asxa, ayt) ∈ Aa, Aa 6= ∅, and

((h ◦ g) ◦ f)(a) : =
∨

(u,v)∈Aa

min{(h ◦ g)(u), f(v)} > min{(h ◦ g)(asxa), f(ayt)}.

Since (a, sxa) ∈ Aasxa, we have Aasxa 6= ∅ and

(h ◦ g)(asxa) : =
∨

(w,t)∈Aasxa

min{(h(w), g(t)} > min{h(a), g(sxa)}.

Therefore we get

((h ◦ g) ◦ f)(a) > min{min{h(a), g(sxa)}, f(ayt)} = min{h(a), g(sxa), f(ayt)}.

Since g is a fuzzy left ideal of S, we have g(sxa) > g(a). Since f is a fuzzy right
ideal of S, we have f(ayt) > f(a). Then we get

(h ◦ g ◦ f)(a) = ((f ◦ g) ◦ f)(a) > min{h(a), g(a), f(a)} = (f ∧ h ∧ g)(a).

Thus we obtain f ∧ h ∧ g � h ◦ g ◦ f .

⇐=. Let X be a right ideal, Y a left ideal and B a bi-ideal of (S, ·,6). Since fX

is a fuzzy right, fY a fuzzy left and fB a fuzzy bi-ideal of (S, ·,6), by hypothesis,
we have fX ∧ fB ∧ fY � fB ◦ fY ◦ fX . Since fX ∧ fB ∧ fY = fX∩B∩Y and
fB ◦ fY ◦ fX = f(BY X], we have fX∩B∩Y � f(BY X]. Then X ∩ B ∩ Y ⊆ (BY X]
and, by Lemma 2.8, S is intra-regular and right quasi-regular. �

Proof of Theorem 2.2 using the second de�nition.

We need the following lemma.

Lemma 2.9. [3] An ordered semigroup (S, ·,6) is right quasi-regular if and only

if, for every fuzzy subset f of S, we have

f � f ◦ 1 ◦ f ◦ 1,
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equivalently, if the fuzzy right ideals of (S, ·,6) are idempotent.

Proof of the theorem.

=⇒. Let f be a fuzzy right ideal, g a fuzzy left ideal, h a fuzzy subset of (S, ·).
By Lemma 2.9, we have

f ∧ h ∧ g � (f ∧ h ∧ g) ◦ 1 ◦ (f ∧ h ∧ g) ◦ 1 (since S is right quasi-regular)

� (f ∧ h ∧ g) ◦ 1 ◦ 1 ◦ (f ∧ h ∧ g) ◦ (f ∧ h ∧ g) ◦ 1 ◦ 1
(since S is intra-regular)

= (f ∧ h ∧ g) ◦ 1 ◦ (f ∧ h ∧ g) ◦ (f ∧ h ∧ g) ◦ 1
� h ◦ (1 ◦ g) ◦ (f ◦ 1) � h ◦ g ◦ f.

⇐=. Let f be a fuzzy right ideal and g a fuzzy left ideal of (S, ·,6). Since 1 is a
fuzzy bi-ideal of (S, ·,6), by hypothesis, we have f∧g = f∧1∧g � (1◦g)◦f � g◦f ,
so S is intra-regular. Let now f be a fuzzy right ideal of (S, ·,6). Since f is at
the same time a fuzzy bi-ideal and 1 a fuzzy left ideal of (S, ·,6), by hypothesis,
we have

f = f ∧ f ∧ 1 � (f ◦ 1) ◦ f � f ◦ f � f ◦ 1 � f,

so f2 = f . By Lemma 2.9, S is right quasi-regular. �

The last theorem characterizes the ordered semigroups which are both regular
and intra-regular in terms of fuzzy left, right and fuzzy bi-ideals. These are the
ordered semigroups for which f ∧ h ∧ g � f ◦ g ◦ h.

Theorem 2.3. Let (S, ·,6) be an ordered semigroup. If S is both regular and

intra-regular, then for every fuzzy right ideal f , every fuzzy subset g and every

fuzzy bi-ideal h of (S, ·) we have

f ∧ h ∧ g � f ◦ g ◦ h.

"Conversely", if for every fuzzy right ideal f , every fuzzy left ideal g and every

fuzzy bi-ideal h of (S, ·,6) we have f ∧h∧ g � f ◦ g ◦h, then S is both regular and

intra-regular.

Proof of Theorem 2.3 using the �rst de�nitions

In addition to Lemmas 2.1�2.4 (or 2.1 and 2.3 or 2.1 and 2.6), we need the following
lemma.

Lemma 2.10. (cf. also [8]) Let (S, ·,6) be an ordered semigroup. If (S, ·,6) is

both regular and intra-regular, then for every right ideal X, every subset Y and

every bi-ideal B of (S, ·), we have

X ∩B ∩ Y ⊆ (XY B].

"Conversely", if for every right ideal X, every left ideal Y and every bi-ideal B of

(S, ·,6), we have X ∩B ∩ Y ⊆ (XY B], then S is both regular and intra-regular.
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Proof. Condition ”A ⊆ (ASA2SA] for all A ⊆ S” characterizes the ordered semi-
groups which are both regular and intra-regular. Let now X be a right ideal, Y a
subset and B a bi-ideal of (S, ·). Then we have

X ∩B ∩ Y ⊆ ((X ∩B ∩ Y )S(X ∩B ∩ Y )(X ∩B ∩ Y )S(X ∩B ∩ Y )]
⊆ ((XS)Y (BSB)] ⊆ (XY B].

For the converse statement, suppose X is a right ideal and Y a left ideal
of (S, ·,6). Since S is a left ideal and Y a bi-ideal of (S, ·,6), by hypothesis,
we have X ∩ Y = X ∩ Y ∩ S ⊆ (XSY ] ⊆ (XY ] then, by Lemma 1.2, S is
regular. Since S is a right ideal and X a bi-ideal of (S, ·,6), by hypothesis, we
have X∩Y = S∩X∩Y ⊆ (SY X] ⊆ (Y X] then, by Lemma 1.1, S is intra-regular.�

Proof of Theorem 2.3.

=⇒. Let f be a fuzzy right ideal of (S, ·), g a fuzzy subset of S, h a fuzzy bi-ideal of
(S, ·), and a ∈ S. Since S is both regular and intra-regular, there exist x, y, z ∈ S
such that a 6 axa and a 6 za2y. Then we have a 6 ax(axa) 6 ax(za2y)xa. As
(axza, ayxa) ∈ Aa, we have Aa 6= ∅, and

((f ◦ g) ◦ h)(a) : =
∨

(u,v)∈Aa

min{(f ◦ g)(u), h(v)} > min{(f ◦ g)(axza), h(ayxa)}.

Since (axz, a) ∈ Aaxza, we have Aaxza 6= ∅, and

(f ◦ g)(axza) : =
∨

(w,t)∈Aaxza

min{f(w), f(t)} > min{f(axz), g(a)}.

Then we have

(f ◦ g ◦ h)(a) > min{min{f(axz), g(a)}, h(ayxa)}
= min{f(axz), g(a), h(ayxa)}
> min{f(a), g(a), h(a)}
= (f ∧ h ∧ g)(a).

Thus we obtain f ∧ h ∧ g � f ◦ g ◦ h.

⇐=. Let X be a right ideal, Y a left ideal and B a bi-ideal of (S, ·,6). Since fX

is a fuzzy right ideal, fY a fuzzy left ideal and fB a fuzzy bi-ideal of (S, ·,6), by
hypothesis, we have fX ∧ fB ∧ fY � fX ◦ fY ◦ fB . Then fX∩B∩Y � f(XY B], and
X ∩B ∩ Y ⊆ (XY B]. By Lemma 2.10, S is both regular and intra-regular. �

Proof of Theorem 2.3 using the second de�nitions

=⇒. Since S is both regular and intra-regular, for every fuzzy subset f of S, we
have f � f ◦ 1 ◦ f2 ◦ 1 ◦ f . Indeed: Since S is regular, we have f � f ◦ 1 ◦ f and,
since S is intra-regular, f � 1 ◦ f2 ◦ 1. Then we have f � f ◦ 1 ◦ (f ◦ 1 ◦ f) �
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f ◦ 1 ◦ (1 ◦ f2 ◦ 1) ◦ 1 ◦ f = f ◦ 1 ◦ f2 ◦ 1 ◦ f . Let now f be a fuzzy right ideal, g a
fuzzy subset and h a fuzzy bi-ideal of (S, ·). Then we have

f ∧ h ∧ g � (f ∧ h ∧ g) ◦ 1 ◦ (f ∧ h ∧ g) ◦ (f ∧ h ∧ g) ◦ 1 ◦ (f ∧ h ∧ g)
� (f ◦ 1) ◦ g ◦ (h ◦ 1 ◦ h)
� f ◦ g ◦ h.

⇐=. Let f be a fuzzy right ideal and g a fuzzy left ideal of (S, ·,6). Since
g is a fuzzy bi-ideal and 1 a fuzzy left ideal of (S, ·,6), by hypothesis, we have
f∧g = f∧g∧1 � (f◦1)◦g � f◦g, so S is regular. Since 1 is a fuzzy right ideal and f
a fuzzy bi-ideal of (S, ·,6), by hypothesis, we have f∧g = 1∧f∧g � (1◦g)◦f � g◦f ,
and S is intra-regular. �

I would like to thank the managing editor of the journal Professor Wieslaw A.
Dudek for editing and communicating the paper and the referee for his time to
read the paper very carefully.
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On fuzzy ordered semigroups

Niovi Kehayopulu

Abstract. We characterize the ordered semigroups which are both regular and intra-regular, the
completely regular, the quasi-semisimple, and the quasi left (right) regular ordered semigroups
in terms of fuzzy sets.

1. For an ordered semigroup S and a subset A of S we denote by (A] the subset
of S de�ned by (A] := {t ∈ S | t 6 a for some a ∈ A}. An ordered semigroup
S is called regular if for any a ∈ S there exists x ∈ S such that a 6 axa. It
is called left (resp. right) regular if for any a ∈ S there exists x ∈ S such that
a 6 xa2 (resp. a 6 a2x). It is called intra-regular if for any a ∈ S there exist
x, y ∈ S such that a 6 xa2y. So, an ordered semigroup S is regular (left regular,
right regular) if and only if a ∈ (aSa] (a ∈ (Sa2], a ∈ (a2S]) for all a ∈ S. It is
intra-regular if and only if a ∈ (Sa2S] for all a ∈ S. Using fuzzy sets, we get the
following: An ordered semigroup S is regular if and only if for every fuzzy subset
f of S, we have f � f ◦ 1 ◦ f . It is left (resp. right) regular if and only if for every
fuzzy subset f of S, we have f � 1 ◦ f2 (resp. f � f2 ◦ 1). It is intra-regular if
and only if for every fuzzy subset f of S, we have f � 1 ◦ f2 ◦ 1 [2]. An ordered
semigroup S is called completely regular if at the same time is regular, left regular
and right regular. As one can easily see, an ordered semigroup S is completely
regular if and only if for every a ∈ S there exists x ∈ S such that a ≤ a2xa2.
That is, if a ∈ (a2Sa2] for all a ∈ S. Our aim is to show that the de�nitions
of regular, left (right) regular and intra-regular ordered semigroups using fuzzy
sets play an essential role in studying the structure of ordered semigroups. In this
respect, we prove that an ordered semigroup S is both regular and intra-regular
if and only if for every fuzzy subset f of S, we have f � f ◦ 1 ◦ f2 ◦ 1 ◦ f . An
ordered semigroup S is completely regular if and only if for every fuzzy subset f
of S, we have f � f2 ◦ 1 ◦ f2. We prove them �rst in the usual way, then using
the equivalent de�nition of regular, left (right) regular and intra-regular ordered
semigroups mentioned above. Comparing the two proofs we see that using the
characterizations given in [2] the proofs of the results are drastically simpli�ed.

On the other hand, we characterized in [1] the left (right) quasi-regular and the
more general class of semisimple ordered semigroups using similar conditions. An
ordered semigroup S is called left (resp. right) quasi-regular if for every a ∈ S there

2010 Mathematics Subject Classi�cation: 06F05 (08A72).
Keywords: Ordered semigroup, regular, intra-regular, completely regular, fuzzy subset, quasi
left (right) regular, quasi-regular, quasi-semisimple.
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exist x, y ∈ S such that a 6 axay (resp. a 6 xaya). Equivalently, if a ∈ (aSaS]
(resp. a ∈ (SaSa]) for all a ∈ S. It is called semisimple if for every a ∈ S there
exist x, y, z ∈ S such that a 6 xayaz. That is, if a ∈ (SaSaS] for all a ∈ S. We
have already seen in [1] that an ordered semigroup S is left (resp. right) quasi-
regular if and only if for every fuzzy subset f of S, we have f � 1 ◦ f ◦ 1 ◦ f (resp.
f � f ◦ 1 ◦ f ◦ 1); it is semisimple if and only if for every fuzzy subset f of S, we
have f � 1 ◦ f ◦ 1 ◦ f ◦ 1.

A semigroup S (without order) is called quasi-semisimple if a ∈ SaS for every
a ∈ S. A semigroup S is called quasi left (resp. right) regular if a ∈ Sa (resp.
a ∈ aS) for every a ∈ S. Keeping in mind the terminology of quasi-semisimple
and quasi left (resp. right) regular semigroups given above, in the present paper
we �rst introduce the concepts of quasi-semisimple and quasi left (right) regular
ordered semigroups. Then, as a continuation of the paper in [1], we characterize
the quasi-semisimple, the quasi left (right) regular and the quasi-regular ordered
semigroups in terms of fuzzy sets. Each quasi-regular ordered semigroup is a
quasi-semisimple ordered semigroup.

As always, denote by 1 the fuzzy subset on S de�ned by 1(x) = 1 for every
x ∈ S. Recall that if S is regular or intra-regular, then 1 ◦ 1 = 1. If f, g are fuzzy
subsets of S such that f � g, then for any fuzzy subset h of S we have f ◦h � g ◦h
and h ◦ f � h ◦ g. Denote f2 := f ◦ f , and by fa the characteristic function on the
set S de�ned by fa(x) = 1 if x = a and fa(x) = 0 if x 6= a (a ∈ S). Denote by Aa

the subset of S × S de�ned by Aa := {(x, y) ∈ S × S | a 6 xy}.

2. In this section we characterize the ordered semigroups which are both regular
and intra-regular and the completely regular ordered semigroups in terms of fuzzy
sets. For the following three lemmas we refer to [2].

Lemma 1. Let (S, ., 6) be an ordered groupoid, f,g fuzzy subsets of S and a ∈ S.
The following are equivalent:

(1) (f ◦ g)(a) 6= 0.
(2) There exists (x, y) ∈ Aa such that f(x) 6= 0 and g(y) 6= 0.

Lemma 2. Let (S, ., 6) be an ordered groupoid, f a fuzzy subset of S and a ∈ S.
The following are equivalent:

(1) (f ◦ 1)(a) 6= 0.
(2) There exists (x, y) ∈ Aa such that f(x) 6= 0.

Lemma 3. Let (S, ., 6) be an ordered groupoid, g a fuzzy subset of S and a ∈ S.
The following are equivalent:

(1) (1 ◦ g)(a) 6= 0.
(2) There exists (x, y) ∈ Aa such that g(y) 6= 0.

Theorem 4. An ordered semigroup S is both regular and intra-regular if and only

if for every fuzzy subset f of S, we have

f � f ◦ 1 ◦ f2 ◦ 1 ◦ f.
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Proof. =⇒. Let a ∈ S. Since S is regular and intra-regular, there exist x, y, z ∈ S
such that a 6 axa and a 6 ya2z. Then we have

a 6 ax(axa) 6 ax(ya2z)xa = (axy)a2zxa.

Since (axy, a2zxa) ∈ Aa, we have Aa 6= ∅ and

(f ◦ 1 ◦ f2 ◦ 1 ◦ f)(a) : =
∨

(u,v)∈Aa

min{(f ◦ 1)(u), (f2 ◦ 1 ◦ f)(v)}

> min{(f ◦ 1)(axy), (f2 ◦ 1 ◦ f)(a2zxa)}.

Since (a, xy) ∈ Aaxy, we have Aaxy 6= ∅ and

(f ◦ 1)(axy) :=
∨

(w,t)∈Aaxy

min{f(w), 1(t)} > min{f(a), 1(xy)} = f(a).

Since (a2zx, a) ∈ Aa2zxa, we have Aa2zxa 6= ∅ and

(f2 ◦ 1 ◦ f)(a2zxa) : =
∨

(k,h)∈Aa2zxa

min{(f2 ◦ 1)(k), f(h)} > min{(f2 ◦ 1)(a2zx), f(a)}.

Since (a2, zx) ∈ Aa2zx, we have Aa2zx 6= ∅ and

(f2 ◦ 1)(a2zx) : =
∨

(s,g)∈Aa2zx

min{f2(s), 1(g)} > min{f2(a2), 1(zx)} = f2(a2).

Since (a, a) ∈ Aa2 , we have Aa2 6= ∅ and

(f ◦ f)(a2) : =
∨

(s,g)∈Aa2

min{f(s), f(g)} > min{f(a), f(a)} = f(a).

Thus
(f ◦ 1 ◦ f2 ◦ 1 ◦ f)(a) > min{(f ◦ 1)(axy), (f2 ◦ 1 ◦ f)(a2zxa)}

> min{f(a),min{(f2 ◦ 1)(a2zx)}, f(a)}}
> min{f(a),min{f2(a2), f(a)}}
> min{f(a),min{f(a), f(a)}}
= min{f(a), f(a)} = f(a).

⇐=. Let a ∈ S. Since fa is a fuzzy set in S, by hypothesis, we have 1 = fa(a) 6
(fa ◦ 1 ◦ f2

a ◦ 1 ◦ fa)(a). Since fa ◦ 1 ◦ f2
a ◦ 1 ◦ fa is a fuzzy set in S, we have

(fa ◦ 1 ◦ f2
a ◦ 1 ◦ fa)(a) 6 1. Thus we have (fa ◦ 1 ◦ f2

a ◦ 1 ◦ fa)(a) = 1. By Lemma
1, there exists (x, y) ∈ Aa such that (fa ◦ 1)(x) 6= 0 and (f2

a ◦ 1 ◦ fa)(y) 6= 0. Since
(fa ◦ 1)(x) 6= 0, by Lemma 2, there exists (u, v) ∈ Ax such that fa(u) 6= 0. Since
(f2

a ◦1◦fa)(y) 6= 0, by Lemma 1, there exists (w, t) ∈ Ay such that (f2
a ◦1)(w) 6= 0

and fa(t) 6= 0. Since (f2
a ◦ 1)(w) 6= 0, by Lemma 2, there exists (k, h) ∈ Aw such
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that f2
a (k) 6= 0. Since (fa ◦ fa)(k) 6= 0, by Lemma 1, there exists (s, g) ∈ Ak

such that fa(s) 6= 0 and fa(g) 6= 0. Since fa(u) 6= 0, we have fa(u) = 1, and
u = a. Since fa(t) 6= 0, t = a; since fa(s) 6= 0, s = a; since fa(g) 6= 0, g = a.
Thus we have a 6 xy 6 (uv)(wt) 6 uv(kh)t 6 uv(sg)ht = ava2ha, from which
a 6 a(va2h)a and a 6 (av)a2(ha), where the elements va2h and av, ha are in S.
So S is regular and intra-regular.

Second proof

=⇒. Let f be a fuzzy set on S. Since S is regular, we have f � f ◦ 1 ◦ f ; since S
is intra-regular, f � 1 ◦ f2 ◦ 1. Thus we have

f � f ◦ 1 ◦ (f ◦ 1 ◦ f) � f ◦ 1 ◦ (1 ◦ f2 ◦ 1) ◦ 1 ◦ f = f ◦ 1 ◦ f2 ◦ 1 ◦ f.

⇐=. Let f be a fuzzy set on S. By hypothesis, we have

f � f ◦ 1 ◦ f2 ◦ 1 ◦ f � f ◦ 1 ◦ f, 1 ◦ f2 ◦ 1,

so S is both regular and intra-regular.

Theorem 5. An ordered semigroup S is completely regular if and only if for every

fuzzy subset f of S we have

f � f2 ◦ 1 ◦ f2.

Proof. =⇒. Let a ∈ S. Since S is completely regular, there exists x ∈ S such that
a 6 a2xa2. Since (a2xa, a) ∈ Aa, we have Aa 6= ∅, and

(f2 ◦ 1 ◦ f2)(a) : =
∨

(u,v)∈Aa

min{(f2 ◦ 1 ◦ f)(u), f(v)} > min{(f2 ◦ 1 ◦ f)(a2xa), f(a)}.

Since (a2x, a) ∈ Aa2xa, we have Aa2xa 6= ∅, and

(f2 ◦ 1 ◦ f)(a2xa) : =
∨

(w,t)∈Aa2xa

min{(f2 ◦ 1)(w), f(t)} > min{(f2 ◦ 1)(a2x), f(a)}.

Since (a2, x) ∈ Aa2x, we have Aa2x 6= ∅, and

(f2 ◦ 1)(a2x) : =
∨

(k,h)∈Aa2x

min{f2(k), 1(h)} > min{f2(a2), 1(x)} = f2(a2).

Since (a, a) ∈ Aa2 , we have Aa2 6= ∅, and

(f ◦ f)(a2) : =
∨

(s,g)∈Aa2

min{f(s), f(g)} > min{f(a), f(a)} = f(a).

Then

(f2 ◦ 1 ◦ f2)(a) > min{(f2 ◦ 1 ◦ f)(a2xa), f(a)}
> min{min{(f2 ◦ 1)(a2x), f(a)}, f(a)}
> min{min{f2(a2), f(a)}, f(a)}
> min{min{f(a), f(a)}, f(a)} = f(a).
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Thus f � f2 ◦ 1 ◦ f2.

⇐=. Let a ∈ S. For the characteristic function fa, by hypothesis, we have
1 = fa(a) 6 (f2

a ◦ 1 ◦ f2
a )(a). Since f2

a ◦ 1 ◦ f2
a is a fuzzy subset of S, we have

(f2
a ◦ 1 ◦ f2

a )(a) 6 1. Thus we have (f2
a ◦ 1 ◦ f2

a )(a) = 1. By Lemma 1, there exists
(x, y) ∈ Aa such that (f2

a ◦ 1)(x) 6= 0 and f2
a (y) 6= 0. Since (f2

a ◦ 1)(x) 6= 0, by
Lemma 2, there exists (u, v) ∈ Ax such that f2

a (u) 6= 0. Since (fa ◦ fa)(y) 6= 0,
by Lemma 1, there exists (w, t) ∈ Ay such that fa(w) 6= 0 and fa(t) 6= 0. Since
(fa ◦ fa)(u) 6= 0, by Lemma 1, there exists (k, h) ∈ Au such that fa(k) 6= 0 and
fa(h) 6= 0. Since fa(w) 6= 0, we have fa(w) = 1, and so w = a. Since fa(t) 6= 0,
fa(k) 6= 0, fa(h) 6= 0, we have t = k = h = a. Thus we have

a 6 xy 6 (uv)y 6 uv(wt) 6 (kh)vwt = a2va2,

where v ∈ S, so S is completely regular.

Second proof

=⇒. Let f be a fuzzy set on S. Since S is completely regular, we have f � f ◦1◦f ,
f � f2 ◦ 1 and f � 1 ◦ f2. Then we have

f � f ◦ 1 ◦ f � (f2 ◦ 1) ◦ 1 ◦ (1 ◦ f2) = f2 ◦ 1 ◦ f2.

⇐=. Let f be a fuzzy set on S. By hypothesis, we have

f � f ◦ f ◦ 1 ◦ f ◦ f � f ◦ 1 ◦ f, f2 ◦ 1, 1 ◦ f2,

so S is regular, left regular and right regular.

3. In this section, we characterize the quasi-semisimple, the quasi left (right)
regular and the quasi-regular ordered semigroups using fuzzy sets.

De�nition 6. An ordered semigroup (S, ., 6) is called quasi-semisimple if, for
every a ∈ S we have a ∈ (SaS]. That is, for every a ∈ S there exist x, y ∈ S such
that a 6 xay.

Theorem 7. An ordered semigroup (S, ., 6) is quasi-semisimple if and only if for

every fuzzy subset f of S, we have f � 1 ◦ f ◦ 1.

Proof. =⇒. Let f be a fuzzy subset of S and a ∈ S. Since S is quasi-semisimple,
there exist x, y ∈ S such that a 6 xay. Then (x, ay) ∈ Aa, Aa 6= ∅ and

(1 ◦ f ◦ 1)(a) :=
∨

(u,v)∈Aa

min{1(u), (f ◦ 1)(v)} > min{1(x), (f ◦ 1)(ay)} = (f ◦ 1)(ay).

Since (a, y) ∈ Aay, we have Aay 6= ∅ and

(f ◦ 1)(ay) :=
∨

(w,t)∈Aay

min{f(w), 1(t)} > min{f(a), 1(y)} = f(a).

Thus we have (1 ◦ f ◦ 1)(a) > (f ◦ 1)(ay) > f(a), and so f � 1 ◦ f ◦ 1.
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⇐=. Let a ∈ S. Since fa is a fuzzy subset of S, by hypothesis, we have

1 = fa(a) 6 (1 ◦ fa ◦ 1)(a).

Since 1 ◦ fa ◦ 1 is a fuzzy subset of S, we have (1 ◦ fa ◦ 1)(a) 6 1. Then we have
(1◦fa ◦1)(a) = 1. Since (1◦ (fa ◦1))(a) 6= 0, by Lemma 3, there exists (x, y) ∈ Aa

such that (fa ◦ 1)(y) 6= 0. Then, by Lemma 2, there exists (u, v) ∈ Ay such that
fa(u) 6= 0. Then fa(u) = 1, and u = a. Finally, a 6 xy 6 x(uv) = xav ∈ SaS, so
a ∈ (SaS], and S is quasi-semisimple.

De�nition 8. An ordered semigroup (S, ., 6) is called quasi left regular if, for
every a ∈ S we have a ∈ (Sa]. That is, for every a ∈ S there exists x ∈ S such
that a 6 xa. It is called quasi right regular if, for every a ∈ S we have a ∈ (aS],
and quasi-regular if it is both left quasi regular and right quasi regular.

Theorem 9. An ordered semigroup (S, ., 6) is quasi left regular if and only if for

every fuzzy subset f of S, we have f � 1 ◦ f.

Proof. =⇒. Let f be a fuzzy subset of S and a ∈ S. Since S is quasi left regular,
there exists x ∈ S such that a 6 xa. Then (x, a) ∈ Aa, Aa 6= ∅ and

(1 ◦ f)(a) :=
∨

(u,v)∈Aa

min{1(u), f(v)} > min{1(x), f(a)} = f(a).

Thus we have f � 1 ◦ f .

⇐=. Let a ∈ S. Since fa and 1 ◦ fa are fuzzy subsets of S, by hypothesis, we have
1 = fa(a) 6 (1 ◦ fa)(a) 6 1, so (1 ◦ fa)(a) = 1. Since (1 ◦ fa)(a) 6= 0, by Lemma
3, there exists (x, y) ∈ Aa such that fa(y) 6= 0. Then fa(y) 6= 1, and y = a. Thus
we have a 6 xy = xa ∈ Sa, and a ∈ (Sa].

In a similar we prove the following:

Theorem 10. An ordered semigroup (S, ., 6) is quasi right regular if and only if

for every fuzzy subset f of S, we have f � f ◦ 1.

Corollary 11. A quasi-regular ordered semigroup is quasi-semisimple.

Proof. Let f be a fuzzy subset of S. Since S is quasi left regular, by Theorem
9, we have f � 1 ◦ f . Since S is quasi right regular, by Theorem 10, we have
f � f ◦ 1. Then we have f � 1 ◦ f � 1 ◦ (f ◦ 1) = 1 ◦ f ◦ 1. By Theorem 7, S is
quasi-semisimple.
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On �nite loops

whose inner mapping groups are direct products

of dihedral groups and abelian groups

Emma Leppälä and Markku Niemenmaa

Abstract. We show that a �nite loop, whose inner mapping group is a direct product of a
dihedral group and an abelian group, is solvable provided that the components in the direct
product have coprime orders.

1. Introduction

Let Q be a groupoid with a neutral element e. If each of the two equations ax = b
and ya = b has a unique solution for any a, b ∈ Q, then we say that Q is a
loop. The two mappings La(x) = ax and Ra(x) = xa are permutations on Q
for every a ∈ Q. The permutation group M(Q) = 〈La, Ra : a ∈ Q〉 is called the
multiplication group of the loop Q. Clearly, M(Q) is transitive on Q. The stabilizer
of the neutral element e is denoted by I(Q) and is called the inner mapping group

of Q.

A subloop H of Q is normal in Q if x(yH) = (xy)H, (Hx)y = H(xy) and
xH = Hx for every x, y ∈ Q. A loop Q is solvable if it has a series 1 = Q0 ⊆
· · · ⊆ Qn = Q, where Qi−1 is a normal subloop of Qi and Qi/Qi−1 is an abelian
group for each i. In 1996 Vesanen [8] managed to show that the solvability of
M(Q) (in the group theoretical sense) implies the solvability of Q (in the loop
theoretical sense) if Q is a �nite loop. After this we were naturally interested in
those properties of I(Q) which imply the solvability of M(Q).

In 2000 Csörg® and Niemenmaa [1] considered the case where I(Q) is a non-
abelian group of order 2p (here p is an odd prime number) and they showed that
M(Q) is then a solvable group. In 2002, Drápal [2] investigated the case where
I(Q) is a nonabelian group of order pq (p and q are two di�erent prime num-
bers) and again the solvability of M(Q) followed. Finally, in 2004 Niemenmaa [5]
showed that �nite loops with dihedral inner mapping groups are solvable. Now
we are able to prove the following: If Q is a �nite loop and I(Q) = S × L, where
S is dihedral, L is abelian and gcd(|S|, |L|) = 1, then M(Q) is solvable. By the

2010 Mathematics Subject Classi�cation: 20N05, 20D15
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result of Vesanen, Q is solvable, too. The result also holds in the case that S is a
nonabelian group of order pq, where p and q are two di�erent prime numbers.

Many properties of loops and their multiplication groups can be reduced to the
properties of connected transversals in groups. Thus in section two we shall give
the needed background material about connected transversals and their connec-
tions to loop theory. Section three contains our main results about the solvability
of �nite loops with given inner mapping groups.

2. Connected transversals

Let G be a group, H ≤ G and let A and B be two left transversals to H in
G. We say that the two transversals A and B are H-connected if a−1b−1ab ∈ H
for every a ∈ A and b ∈ B. We denote by HG the core of H in G (the largest
normal subgroup of G contained in H). If Q is a loop, then A = {La : a ∈ Q}
and B = {Ra : a ∈ Q} are I(Q)-connected transversals in M(Q) and the core of
I(Q) in M(Q) is trivial. Niemenmaa and Kepka proved in 1990 the following [6,
Theorem 4.1]

Theorem 2.1. A group G is isomorphic to the multiplication group of a loop if

and only if there exist a subgroup H and H-connected transversals A and B such

that HG = 1 and G = 〈A,B〉.

In the following results, which are needed later, we assume that A and B are
H-connected transversals in G.

Lemma 2.2. If C ⊆ A ∪B and K = 〈H,C〉, then C ⊆ KG.

Lemma 2.3. If G = 〈A,B〉 and H is cyclic, then G′ ≤ H.

Theorem 2.4. If G is �nite and H is abelian or dihedral, then G is solvable.

For the proofs, see [6, Lemma 2.5 and Theorem 3.5], [7, Theorem 4.1] and [5,
Theorem 3.1].

Next we wish to show that the solvability of G also follows in the case that
H is a nonabelian subgroup of order pq (here p 6= q are prime numbers). For the
proof we need the following loop theoretical result by Drápal [2, Corollary 4.7].

Theorem 2.5. If Q is a loop and I(Q) is a nonabelian group of order pq, where
p 6= q are prime numbers, then M(Q) is solvable.

We also need

Lemma 2.6. Let G = AH be a �nite group, where A is an abelian subgroup, H
is a subgroup of order pq and p 6= q are prime numbers. Then G is solvable.

For the proof, see [4, Lemma 2.5].
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Theorem 2.7. Let G be a �nite group, H ≤ G and |H| = pq, where p 6= q are

prime numbers. If there exist H-connected transversals A and B in G, then G is

solvable.

Proof. If HG > 1, then we consider the group G/HG and the subgroup H/HG.
Since H/HG is cyclic, the claim follows from Theorem 2.4. Thus we may assume
that HG = 1.

If G = 〈A,B〉, then we apply Theorems 2.1 and 2.5, and the solvability of G
follows. Thus we may assume that E = 〈A,B〉 < G. If we write K = E ∩ H,
then K < H and we have K-connected transversals A and B in E. Then E′ ≤ K
by Lemma 2.3 and K is normal in E. As G = EH, we may conclude that
KG = 〈Kg : g ∈ G〉 ≤ H. If K 6= 1, then we get a contradiction, as HG = 1. Thus
K = 1 and it follows that E = A = B is an abelian group. Now G = EH and we
can apply Lemma 2.6.

3. Main results

The following classical result of Wielandt is needed in the proof of our main the-
orem.

Theorem 3.1. Let G be a �nite group and let G contain a nilpotent Hall π-
subgroup H. Then every π-subgroup of G is contained in a conjugate of H.

For the proof, see [3, Satz 5.8, p. 285].

Theorem 3.2. Let G be a �nite group and H = S × L ≤ G, where S is dihedral,

L is abelian and gcd(|S|, |L|) = 1. If there exist H-connected transversals A and

B in G, then G is solvable.

Proof. Let G be a minimal counterexample. If HG > 1, then we consider G/HG

and its subgroup H/HG and by using induction or Theorem 2.4, it follows that
G/HG is solvable, hence G is solvable.

Thus we may assume that HG = 1. If H is not maximal in G, then there exists
a subgroup T such that H < T < G. By Lemma 2.2, TG > 1 and we may consider
G/TG and its subgroup HTG/TG = T/TG. It follows that G/TG is solvable. Since
T is solvable by induction, we conclude that G is solvable.

We thus assume that H is a maximal subgroup of G. Let P be a Sylow p-
subgroup of L. As HG = 1, we conclude that P is a Sylow p-subgroup of G. From
this it follows that L is a Hall subgroup of G. Clearly, NG(P ) = H = CG(P )
and by using the Burnside normal complement theorem there exists a normal p-
complement in G for each p that divides |L|. Clearly, this means that G = KL,
where K is normal in G and gcd(|K|, |L|) = 1.

If 1 6= a ∈ A, then a = yx, where y ∈ L and x ∈ K. Then aK = yK and
(aK)d = K, where d divides |L|. Thus ad ∈ K, hence (ad)t = 1, where t divides
|K|. It follows that (at)d = 1, hence |at| divides d. Since L is an abelian Hall
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subgroup of G, we may apply Theorem 3.1 and it follows that at ∈ Lg for some
g ∈ G. As L is abelian, 〈at〉 is normal in 〈a,Hg〉 = G. As HG = 1, we conclude
that at = 1. Now there exist integers m and n such that md + nt = 1. Thus
a = amd+nt = (ad)m(at)n ∈ K.

We may conclude that A ∪ B ⊆ K. Clearly, S ≤ K and thus K = AS = BS.
By Theorem 2.4, K is a solvable group. As G = KL, it follows that G is solvable,
too.

Theorem 3.3. Let G be a �nite group and H = S × L ≤ G, where S is a

nonabelian group of order pq (here p 6= q are prime numbers), L is abelian and

gcd(|S|, |L|) = 1. If there exist H-connected transversals A and B in G, then G is

solvable.

Proof. The proof is analogous to the proof of Theorem 3.2. We just have to replace
Theorem 2.4 by Theorem 2.7 when needed.

By combining Theorem 2.1 with Theorems 3.2 and 3.3, and by applying the
theorem of Vesanen [8], we have the following

Corollary 3.4. Let Q be a �nite loop. If I(Q) = S×L, where S is either dihedral

or nonabelian of order pq, L is abelian and gcd(|S|, |L|) = 1, then M(Q) is a

solvable group and Q is a solvable loop.

Remark 3.5. It would be interesting to know if the results of Theorems 3.2
and 3.3 and Corollary 3.4 also hold in the case that L is nilpotent.
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New signature scheme based on

di�culty of �nding roots

Nikolai A. Moldovyan and Victor A. Shcherbacov

Abstract. There are considered two digital signature schemes based on di�culty of �nding the
wth roots in the �nite ground �elds GF (p). The �rst scheme uses the prime value p = Nt0t1t2+1,
where N is an even number; t0, t1, t2 are prime numbers such that |t0| ≈ |t1| ≈ |t2| ≈ 80 bits.
The public key is de�ned as follows Y = Kw1

1 Kw2
2 , where w1 = t0t1 and w2 = t0t2. The second

scheme uses the value p = Nt1t2 + 1, and the public key composed of two values Y1 = Kt1
1 Kt2

2

mod p and Y2 = Kt1
3 Kt2

4 mod p, where four numbers K1, K2, K3, and K4 are the private key.

1. Introduction

There are well known signature schemes based on the di�culty of �nding discrete
logarithms [1] and factorization [3, 6] problems.

In paper [2] it has been proposed the signature scheme based on di�culty of
�nding the kth roots in the �nite �elds GF (p) such that p = Nk2 + 1, where k is
su�ciently large prime having the size | k |> 160 bits and N is even number such
that the size of p is | p |> 1024 bits.

To provide faster signature generation and veri�cation procedures it is interest-
ing to design signature schemes based on the last problem de�ned over the elliptic
curves (ECs) [5] having the order divisible by the square of large prime k. However
generating the EC with required order is an open problem. In the present paper
there are considered other approaches to designing signature schemes based on
di�culty of �nding roots in the �nite ground �elds. The proposed approaches can
be applied with using the ECs.

2. The �rst signature scheme

2.1. Algorithms for signature generation and veri�cation

For the synthesis of the DS schemes it can be used complexity of �nding the roots of
large degree modulo prime p in the case of the modulus structure p = Nt0t1t2 +1,

2010 Mathematics Subject Classi�cation: 11G20 11T71
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where N is even number; t0, t1, t2 are prime numbers such that |t0| ≈ |t1| ≈ |t2| ≈
80 bits. In such signature schemes the di�culty of �nding the wth roots is de�ned
by di�culty of performing large number of checks that are required to �nd a value
that can be represented as the wth power of some number.

It is supposed performing computations in the multiplicative group of the �nite
ring (Zp,+, ·). The security of the DS scheme using the prime modulus p =
Nt0t1t2 + 1 is de�ned by the fact that procedure of �nding the qth roots, where q
is a prime that divides the group order Ω, can be performed only for Ω/q di�erent
elements of the group. For su�ciently large value q probability that a random
element a can be represented as xq is negligible. Let us consider the construction
of the DS scheme.

The public key Y is formed using two private keys K1 < p and K2 < p that
are selected at random. The public key is calculated as follows Y = Kw1

1 Kw2
2 ,

where w1 = t0t1 and w2 = t0t2. This is a characteristic feature of the considered
signature scheme. The digital signature is a triple e, S1 and S2. Suppose a message
M is given. The signature generation procedure is performed as follows:

1. Select at random two numbers T1 and T2.
2. Calculate the value R = Tw1

1 Tw2
2 (mod p).

3. Calculate the �rst signature element e: e = F (R,M) = RH (mod w1),
where H is the hash value computed from the message: H = FH(M).

4. Calculate the second signature element S1 using the formula
S1 = T1K

−e
1 (mod p).

5. Calculate the third signature element S2 using the formula
S2 = T2K

−e
2 (mod p).

2.2. The signature veri�cation algorithm

The signature veri�cation algorithm is as follows.
1. Using the given signature (e, S1, S2) calculate the value

R′ = Y eSw1
1 Sw2

2 (mod p).
2. Calculate the value e ′ = F (R′,M) = R′H (mod w1).
3. Compare e ′ with e. If e ′ = e, then the signature is valid.

Proof that signature veri�cation works. If the digital signature has been formed
correctly, i.e., using the true private key in accordance with the speci�ed procedure
for the signature generation, then in step 3 of the signature veri�cation procedure
it is obtained the equality of the values e and e′. On the basis of the equality e = e ′

it is concluded that the signature is valid. Correctness of the signature scheme can
be shown as follows. Substituting into the formula R′ = Y eSw1

1 Sw2
2 (mod p) the

values Y = Kw1
1 Kw2

2 (mod p), S1 = T1K
−e
1 (mod p), and S2 = T2K

−e
2 (mod p)

we obtain:

R′ = (Kw1
1 Kw2

2 )e (T1K
−e
1 )w1 (T2K

−e
2 )w2 (mod p) = Tw1

1 Tw2
2 (mod p) = R,

i.e., the value R′ obtained at the �rst step of the signature veri�cation procedure
is equal to R, therefore e ′ = R′H (mod w1) = RH (mod w1) = e.
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2.3. Possible attacks

Let us consider some attacks on the constructed signature algorithm.

The �rst type attack. In the �rst attack it is supposed that a potential attacker
can do the following attack, including the generation of random values T1 and T2,
then calculate value R = Tw1

1 Tw2
2 (mod p), e = F (R,M) and try to �nd a pair

numbers S1 and S1 such that the following equation Sw1
1 Sw2

2 = RY −e (mod p)
holds, where S1 and S2 are the unknowns.

In this case the right side of the equation has a random value because a function
F (R,M) is a confusion function, for example, a hash function, or function of the
form e = RH (mod w1).

If you set one of the unknowns, for example S2, the equation is transformed
into an equation with unknown S1. In the last equation the right side with negli-
gibly small probability will have a value, at which the last equation is solvable. An
exponentiation operation modulo p is performed to verify condition of the solv-
ability. To obtain the case when the solvability condition is satis�ed, it is required
to perform the described attempt on the average t1 time. When the length of t1
equal to 80 bits or more, the computational complexity of forging the signature
is so high that it is practically infeasible. Similarly, the signature forgery can be
performed with solving some equation relatively unknown S2, when it is required
do t2 described attempts. If the length of the value t2 is equal to 80 bits or more,
then the computational di�culty of such attempt is su�ciently high and the attack
is infeasible.

The second type attack. The second attack model is more sophisticated. In the
second variant it is considered the case in which the attacker generates the value
R = Y u (mod p), calculates e = F (R,M), and tries to �nd a pair of the numbers
S1 and S2 using the formulas S1 = Y s1w1 (mod p) and S2 = Y s2w2 (mod p).

For this representation of the desired values S1 and S2 the expression Y u =
Y eY s1w1Y s2w2 (mod p) holds, if the following relation holds u− e = s1w1 + s2w2

(mod (p− 1)), which is a Diophantine equation for the unknown s1 and s2.
Because w1 = t0t1 and w2 = t0t2, where t0, t1, and t2 are prime numbers,

then this Diophantine equation has a solution in integers only in the case when
the right side of the equation is divisible by the number t0, which is equal to
the greatest common divisor of the coe�cients for the unknowns s1 and s2. The
value e is determined by the formula e = F (R,M) and has a random value. The
probability that a number t0 will divide the number u − e (i.e., the probability
that a Diophantine equation has solutions) is 1/t0.

When the size t0 is equal to 80 bits, for one case the solvability of the Dio-
phantine equation requires on the average to perform 280 attempts to forge the
signature. The di�culty of the last process exceeds 280 exponentiations modulo p.

The third type attack. The most e�ective method for attacking the signature
scheme is based on solving the discrete logarithm problem in the �nite �eld GF (p).
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The method is described as follows. It is easy to �nd a primitive element G, the
degree of which run through all nonzero elements of the �eld GF (p). Then the
public key can be represented as:

Y = Gz = Xw1
1 Xw2

2 = Gx1w1Gx2w2 = Gx1w1+x2w2 (mod p),

where x1 and x2 are the values of the discrete logarithms of the secret key ele-
ments X1 and X2, respectively. The last relation shows that �nding the discrete
logarithm z from the public key to the base G allows one to obtain the equation
z = x1w1 + x2w2 = x1t0t1 + x2t0t2 (mod (p− 1)).

The last equation can be easily solved relatively the unknowns x1 and x2. Its
solvability follows from the fact of the divisibility of numbers z by t0. Let z = z′t0.
Then we have z′ = x1t1 + x2t2 (mod (p− 1)/t0)

From the last relation, for some integer N we obtain the following equation
with two unknowns x1 and x2: z′ + N p−1

t0
= x1t1 + x2t2, from which it follows

z′ = x1t1 (mod t2) ⇒ x1 =
z′

t1
(mod t2)

Similarly, one can obtain a formula for calculating the second unknown x2:
x2 = z′

t2
(mod t1). Thus, the DS scheme proposed in this section requires to use

a prime p, whose size is not less than 1024 bits. In the last case the discrete log-
arithm problem can be considered as practically infeasible one, since its di�culty
estimation is 280 multiplications mod p [4]. Thus, the proposed signature scheme
provides security > 280 for values p having size > 1024 bits.

3. The second signature scheme

3.1. Algorithms for generation and veri�cation signatures

Let us consider another variant of the construction of the DS scheme based on
di�culty of �nding the roots of large degree, which is characterized in using the
two-element public-key. In the construction it is used a prime modulus p having
the following structure p = Nt1t2 + 1, where N is an even number; t1 and t2
are prime numbers such that |t1| ≈ |t2| > 80 bits. In contrast to the DS scheme
described previously, the public key Y is formed in the form of two numbers, which
are calculated using the formulas Y1 = Kt1

1 Kt2
2 mod p and Y2 = Kt1

3 Kt2
4 mod p,

where four numbers K1 < p, K2 < p, K3 < p, and K4 < p are the private key.
The digital signature is a triple e, S1, and S2.

Suppose a message M is given. The signature generation procedure is per-
formed as follows:

1. Select at random two numbers T1 and T2.
2. Calculate the value R = T t1

1 T t2
2 (mod p).

3. Calculate the �rst signature element e: e = F (R,M) = RH (mod w1),
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where H is the hash value computed from the message: H = FH(M). The
value e is represented as the concatenation of two values e1 and e2: e = e1||e2.

4. Calculate second signature element S1 using the following formula

S1 = T1K
−e1
1 K−e2

3 (mod p).
5. Calculate the third signature element S2 using the following formula

S2 = T2K
−e1
2 K−e2

4 (mod p).
The signature veri�cation algorithm is as follows.

1. Using the signature (e, S1, S2) calculate the value
R′ = Y e1

1 Y e2
2 St1

1 St2
2 (mod p).

2. Calculate the value e ′ = F (R′,M) = R′H (mod t1).
3. Compare e ′ with e. If e ′ = e, then the signature is valid.

3.2. Proof that signature veri�cation works

If the digital signature has been formed correctly, i.e., using the true private key in
accordance with the speci�ed procedure of the signature generation, then in step 3
of the signature veri�cation procedure it is obtained the value e ′ equal to e. On the
basis of the equality e′ = e it is concluded about validity of the digital signature.
Correctness of the signature scheme can be proved as follows. Substituting into
the formula R′ = Y e1

1 Y e2
2 St1

1 St2
2 (mod p) the values Y1 = Kt1

1 Kt2
2 (mod p), Y2 =

Kt1
3 Kt2

4 (mod p), S1 = T1K
−e1
1 K−e2

3 (mod p), and S2 = T2K
−e1
2 K−e2

4 (mod p),
we obtain:

R′ = Y e1
1 Y e2

2 St1
1 St2

2 (mod p) =

(Kt1
1 Kt2

2 )e1(Kt1
3 Kt2

3 )e2(T1K
−e1
1 K−e2

3 )t1(T2K
−e1
2 K−e2

4 )t2 (mod p) =

T t1
1 T t2

2 (mod p) = R

i.e., the value R′ obtained at the �rst step of the signature veri�cation algorithm
is equal to R, so e′ = R ′H mod t1 = RH mod t1 = e.

3.3. Security discussion

The variants of the attack presented in Section 2.3 can be also applied against
the second DS scheme. Details of the algorithms for forging the signature are
di�erent, but the used ideas and approaches are similar to the case of attacking
the �rst signature scheme. The �rst two variants of the attack dictate the need of
the choice of the size of prime powers t1 and t2 equal to |t1| = |t2| > 80 bits. The
third type attack, based on solving the discrete logarithm problem, determine the
size of the prime modulus |p| = 1024 bits, which provides 80-bit security of the
considered signature scheme.



266 N.A. Moldovyan and V.A. Shcherbacov

4. Conclusion

The proposed two constructions of the signature algorithms illustrates two new
approaches to design of the digital signature schemes based on the di�culty of
�nding large prime roots in the ground �nite �elds. The cryptosystems can be
broken with solving the discrete logarithm problem in the �nite ground �eld like
in the case of the cryptosystem described in [2]. To obtain the 80-bit security
of the cryptosystems based on di�culty of �nding roots in the �nite �eld GF(p)
one should use the 1024-bit value p. The advantage of the proposed approaches
against the construction introduced in [4] consists in possibility to construct fast
signature schemes based on di�culty of �nding roots in the �nite groups of the
EC points.
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Some remarks on Abel-Grassmann's groups

Petar V. Proti¢

Abstract. Abel-Grassmann's groupoids or shortly AG-groupoids have been considered in quite
a number of papers, although under the di�erent names (left-almost semigroups, left invertive
groupoids). Abel-Grassmann's groups (AG-groups) is an Abel-Grassmann's groupoid with left
identity in which every element has inverse. In this paper we describe AG-groups by equations.
Also, we describe congruences on AG-groups.

1. Introduction

Abel-Grassmann's groupoids, abbreviated as AG-groupoids, are also called left
almost semigroups (LA-semigroups in short). They are closely related with com-
mutative semigroup because if an AG-groupoid contains right identity then it
becomes a commutative monoid. Although the structure is non-associative and
non-commutative, nevertheless, it posses many interesting properties which we
usually found in associative and commutative algebraic structures. For instance
a2b2 = b2a2, for all a, b holds in a commutative semigroup, while this equation
also holds for an AG-groupoid with left identity e, moreover ab = (ba)e for any
subset {a, b} of an AG-groupoid. An idempotent AG-groupoid with left identity
is a semilattice [6].

A groupoid (S, ·) is called AG-groupoid, if it satis�es the left invertive law:

ab · c = cb · a. (1)

Any AG-groupoid satis�es the medial law:

ab · cd = ac · bd. (2)

An AG-groupoid satisfying the identity

a · bc = b · ac (3)

is called an AG∗∗-groupoid. Notice that each AG-groupoid with left identity is an
AG∗∗-groupoid [7]. In any AG∗∗-groupoid G holds the paramedial law:

ab · cd = db · ca. (4)

In this paper by Ge we denote the AG-groupoid G with a left identity e.

2010 Mathematics Subject Classi�cation: 20N02
Keywords: Abel-Grassmann's groupoid, AG-groupoid, AG-group, congruence.
Supported by Grant ON 174026 of Ministry of Science through Math. Inst. SANU
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2. AG-groups

The element x ∈ Ge (y ∈ Ge) is a left (resp. right) inverse for a ∈ Ge if xa = e
(resp. ay = e), and an element which is both a left and a right inverse is called an
inverse element. In [5] it has been proved that in Ge left identity and left inverse
are uniquely determined and that any left inverse is a right inverse and conversely.
Hence, left and right inverses is an inverse and it is unique. An inverse of a ∈ Ge

is denoted by a′. Clearly, for any a, b ∈ Ge, (a′)′ = a, (ab)′ = a′b′.

De�nition 2.1. [5] An AG-groupoid Ge is called an AG-group if every a ∈ Ge

has an inverse element a′.

Obviously, any AG-group is an AG∗∗-groupoid. Hence any AG∗∗-group satis-
�es (1), (2), (3) and (4).

A simple example of an AG-group is an AG-groupoid der(G, ∗) derived from
an Abelian group (G, ∗) i.e., an AG-groupoid with the operation xy = x−1 ∗ y. In
this AG-group we have x′ = x for all x ∈ G. But there are AG-groups which are
not of this form.

Example 2.2. It is not di�cult to see that the groupoid (G, ·) de�ned by the
following table

· e a b c

e e a b c
a a e c b
b c b a e
c b c e a

is an AG-groupoid. It is not a semigroup since, for example, ba · a 6= b · aa. The
element e is its left identity, a = a′, b′ = c and c′ = b. Hence, (G, ·) is an AG-group.
Obviously this AG-group is not derived from a group.

Lemma 2.3. In an AG-group Ge the equation xa = b has an unique solution for

every a, b ∈ Ge.

Proof. Indeed, since for all a, b ∈ Ge we have

b = eb = aa′ · b = ba′ · a,

the element x = ba′ ∈ Ge is a solution of the equation xa = b.
Let x1 and x2 be solutions of the equation xa = b, then

x1 = ex1 = a′a · x1 = x1a · a′ = ba′

= x2a · a′ = a′a · x2 = ex2 = x2.

Hence, the equation xa = b has an unique solution.

Theorem 2.4. On any AG-group Ge we can de�ne an Abelian group ret(Ge) by

putting x ◦ y = xe · y.
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Proof. If Ge is an AG-group, then by (1) the operation x◦y = xe·y is commutative
and e is its neutral element. Moreover, for all x, y, z ∈ Ge we have

(x ◦ y) ◦ z = (xe · y)e · z (1)
= ze · (xe · y)

(1)
= ze · (ye · x)

(4)
= xe · (ye · z) = x ◦ (y ◦ z).

So, (Ge, ◦) is a commutative monoid.
Consider the equation b = x◦a = xe ·a. By Lemma 2.3 the equation za = b has

a unique solution z0 ∈ Ge. The equation xe = z0 also has a unique solution. Thus
for every a, b ∈ Ge there exists x such that x ◦ a = b. Hence ret(Ge) = (Ge, ◦) is
an Abelian group. In this group a−1 = a′e, where a′ is an inverse element in an
AG-group Ge.

Remark 2.5. For an AG-groupoid Ge derived from an Abelian group (G, ∗) we
have ret(Ge) = der(G, ∗). So, ret(der(G, ∗)) = (G, ∗) and der(ret(Ge)) = Ge.
Example 2.2 show that the last equality is not true for AG-groups which are not
derived from an Abelian group.

From results obtained in [6] it follows that der(ret(Ge)) = Ge holds only for
AG-groups satisfying the identity x2 = e.

Theorem 2.6. Let H, K be two AG-subgroups of an AG-groupoid G. If e
H
, e

K

are left identities of H and K respectively, then

H ∩K 6= ∅ ⇐⇒ e
H

= e
K

.

Proof. Let H ∩K 6= ∅ and let a ∈ H ∩K, then aa′
H

= a′
H

a = e
H
, aa′

K
= a′

K
a = e

K

for some a′
H
∈ H, a′

K
∈ K. Thus

e
H

e
K

= a′
H

a · eK = e
K

a · a′
H

= aa′
H

= e
H

.

By symmetry, e
K

e
H

= e
K
. Now, by (1) and (2), we obtain

e
H

e
K

= aa′
H
· e

K
= e

K
a′

H
· a = e

K
a′

H
· e

K
a = e

K
e

H
· a′

H
a = e

K
e

H
,

and so e
H

= e
K
.

The converse statement is trivial.

3. Congruences on AG-groups

In this section we shall characterize all congruences on an arbitrary AG-group by
its normal AG-subgroups.

Lemma 3.1. If ρ is a congruence on an AG-group Ge, then for all a, b ∈ Ge we

have

aρ b ⇐⇒ a′ρ b′.
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Proof. Indeed, if aρ b, then (b′a)ρ (b′b), and so (b′a)ρ e. Therefore, (b′a · a′)ρ (ea′).
On the other hand, b′a · a′ = a′a · b′ = eb′ = b′. Hence, b′ρ a′.

The converse implication is obvious, since (a′)′ = a for every a ∈ Ge.

De�nition 3.2. A nonempty subset K of an AG-group Ge is called

• self conjugate if x ·Kx′ ⊆ K for all x ∈ Ge,

• inverse closed if x′ ∈ K for all x ∈ K,

• an AG-subgroup if it is an inverse closed subgroupoid of Ge,

• a normal AG-subgroup if it is a self conjugate AG-subgroup of Ge.

Obviously, any AG-subgroup of Ge is a subgroup of the group ret(Ge). The
converse is not true in general. For example, it is not di�cult to see that for an
AG-group Ge de�ned in Example 2.2, H = {e, b} is a subgroup of ret(Ge), but it
is not an AG-subgroup of Ge.

Lemma 3.3. Let ρ be a congruence relation de�ned on an AG-group Ge. Then

ker ρ = {x ∈ Ge : x ρ e}

is a normal AG-subgroup of Ge.

Proof. Let ρ be a congruence on Ge. Obviously, e ∈ ker ρ. Moreover, if a, b ∈ ker ρ,
then aρe, bρe and so ab ρ e. Hence, ab ∈ ker ρ. Thus ker ρ is a subgroupoid of Ge.
It is inverse closed since for every x ∈ ker ρ we have xρe, which by Lemma 3.1
implies x′ρ e, whence x′ ∈ ker ρ. Hence, ker ρ is an AG-subgroup of Ge.

Now let x ∈ Ge. Then for every y ∈ x · ker ρ x′ there exists a ∈ ker ρ such
that y = a · ax′. Thus (x · ax′)ρ(x · ex′), i.e., (x · ax′)ρe, which means that
y = x · ax′ ∈ ker ρ. So, ker ρ is a normal AG-subgroup of Ge.

Theorem 3.4. Let K be a normal AG-subgroup of an AG-group Ge. Then the

relation ρ
K

de�ned by

aρ
K

b ⇐⇒ a ∈ Kb ∧ b ∈ Ka

is the unique congruence on Ge for which ker ρ
K

= K.

Proof. Let K be a normal AG-subgroup of Ge. Clearly, the relation ρ
K
is re�exive

and symmetric. If aρ
K

b, bρ
K

c, then obviously a ∈ Kb, b ∈ Kc. From this, applying
(1) and (4) we obtain

a ∈ Kb ⊆ K ·Kc = KK ·Kc = cK ·KK = cK ·K = KK · c = Kc.

Dually, c ∈ Ka, whence aρ
K

c and so ρ is a transitive relation. Therefore, ρ is an
equivalence on Ge.
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Now let aρ
K

b and cρ
K

d. Then ac ∈ Kb · Kd = KK · bd = K · bd and dually
bd ∈ K · ac. Hence (ab)ρ

K
(cd). Thus ρ

K
is a congruence on Ge.

If a ∈ ker ρ
K
, then aρ

K
e. Consequently a ∈ Ke and e ∈ Ka. From the above

ea′ ∈ Ka · a′, whence a′ ∈ a′a ·K = eK = K. Now, since K is inverse closed, we
have a ∈ K. Hence ker ρ

K
⊆ K. Conversely, if a ∈ K then e, a′ ∈ K and so

e = a′a ∈ Ka, a ∈ K = KK = eK ·K = KK · e = Ke,

whence aρ
K

e and a ∈ ker ρ
K
. Hence K ⊆ ker ρ

K
and so K = ker ρ

K
.

To prove that ρ
K

is an unique congruence on Ge with the kernel K consider
an arbitrary congruence λ on Ge and assume that its kernel also is K. Then for
aλb we have ab′λ bb′ and aa′λ ba′. So, ab′, ba′ ∈ ker λ = K. Thus ab′ · b ∈ Kb and
so a = bb′ · a = ab′ · b ∈ Kb. Analogously we obtain b = ba′ · a ∈ Ka. This proves
that aρ

K
b. Thus λ ⊆ ρ

K
.

Conversely, if aρ
K

b, then a ∈ Kb, b ∈ Ka, and consequently

ab′ ∈ Kb · b′ = b′b ·K = eK = K = kerλ,

whence ab′λe. This implies (ab′ · b)λeb, i.e., (ab′ · b)λb. But ab′ · b = bb′ · a = a, so
aλb. Hence ρ

K
⊆ λ. Thus ρ

K
= λ. This means that ρ

K
is an unique congruence on

Ge with kernel K.

Corollary 3.5. For any congruence λ on an AG-group Ge we have ρker λ = λ.

Proof. Indeed, by Lemma 3.3, ker λ is a normal AG-subgroup of Ge, and in a view
of Theorem 3.4 we have ker ρker λ = kerλ. This implies ρker λ = λ.

As a consequence of results proved in [3] we obtain the following proposition
which will be used later.

Proposition 3.6. The lattice of congruences on an AG-group is modular.

4. Congruences on AG∗∗-groupoids

An AG∗∗-groupoid G in which for every x ∈ G there exists uniquely determined
element x−1 ∈ G such that

x = xx−1 · x, x−1 = x−1x · x−1 (5)

and

xx−1 = x−1x (6)

is called completely inverse.
Obviously any AG-group is a completely inverse AG∗∗-groupoid. Moreover, in

this case x−1 = x′.
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One can prove (cf. [1]) that an AG∗∗-groupoid (satisfying (5)) satis�es (6) if and
only if xx−1 and x−1x are idempotents. Thus a completely inverse AG∗∗-groupoid
containing only one idempotent is an AG-group (cf. [3]).

Let EG denote the set of idempotents of a completely inverse AG∗∗-groupoid G.
Then EG is a semilattice (cf. [1]) and the relation 6 de�ned on G by

a 6 b ⇐⇒ a ∈ EGb

is the natural partial order on G.

The following result can be deduced from [9].

Lemma 4.1. In any completely inverse AG∗∗-groupoid G, the relation 6 is a

compatible partial order on G. Also, a 6 b implies a−1 6 b−1 for all a, b ∈ G.

De�nition 4.2. For any nonempty subset B of a completely inverse AG∗∗-groupoid
G, the set

Bω = {a ∈ G : ∃ (b ∈ B) b 6 a}

is called the closure of B in G.

If B = Bω, then we shall say that B is closed in G. Clearly, Bω is closed in G.

It is clear that a subgroupoid B of a completely inverse AG∗∗-groupoid G is
itself a completely inverse AG∗∗-groupoid if and only if b ∈ B implies b−1 ∈ B
for every b ∈ B. A subgroupoid with this property is called a completely inverse

AG∗∗-subgroupoid of G.

De�nition 4.3. A nonempty subset B of a completely inverse AG∗∗-groupoid G
is called:

• full if EG ⊆ B,

• symmetric if xy ∈ B implies yx ∈ B for all x, y ∈ G,

• normal if it is full, closed and symmetric.

Denote the set of AG-group congruences on an arbitrary completely inverse
AG∗∗-groupoid G by GC(G), and denote by σ the least such a congruence on G.
Then GC(G) = [σ,G × G] is a complete sublattice of the lattice C(G) of all con-
gruences on G. Notice that GC(G) ∼= C(G/σ) and so the lattice GC(G) is modular
(by Proposition 3.6). Furthermore, let N (G) be the set of all normal completely
inverse AG∗∗-subgroupoids of G. Obviously, EGω ⊆ N for every normal com-
pletely inverse AG∗∗-subgroupoid N of G. If ∅ 6= F ⊆ N (G), then

⋂
F ∈ N (G).

Consequently, N (G) is a complete lattice.

The following theorem describes the AG-groups congruences on a completely
inverse AG∗∗-groupoid in the terms of its normal completely inverse AG∗∗-sub-
groupoids.
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Theorem 4.4. Let N be a normal completely inverse AG∗∗-subgroupoid of a com-

pletely inverse AG∗∗-groupoid G. Then the relation

ρN = {(a, b) ∈ G×G : ab−1 ∈ N}

is the unique AG-group congruence ρ on G for which ker(ρ) = N.

Proof. Clearly, ρN is re�exive. Further, if ab−1 ∈ N, then b−1a ∈ N, so ba−1 ∈ N,
therefore, ρN is symmetric. Also, if ab−1, bc−1 ∈ N, then ab−1 · c−1b ∈ N. Hence
ac−1 · b−1b ∈ N, so b−1b · ac−1 ∈ N, that is, b−1b · ac−1 = n for some n ∈ N and
so n 6 ac−1. Thus ac−1 ∈ Nω = N . Consequently, ρN is an equivalence relation
on G. Moreover, let (a, b) ∈ ρN and c ∈ G. Then

ac · (bc)−1 = ac · b−1c−1 = ab−1 · cc−1 ∈ NEG ⊆ NN ⊆ N

and similarly ca · (cb)−1 ∈ N, therefore, ρN is a congruence on G. Furthermore,
since ef−1 = ef ∈ EG ⊆ N for all e, f ∈ EG, then S/ρN is an AG-group. Finally,
if a ∈ Nω, then ea ∈ N for some e ∈ EG. Hence ae = ae−1 ∈ N and so (a, e) ∈ ρN .
Thus we have a ∈ ker(ρ). Conversely, if a ∈ ker(ρ), then aa · a−1 = a−1a · a ∈ N.
Hence a ∈ Nω = N. Consequently, ker(ρN ) = N. It is easy to see that an arbitrary
AG-group congruence on G is uniquely determined by its kernel, so ρN is a unique
AG-group congruence with ker(ρN ) = N.

Theorem 4.5. If ρ is a group congruence on a completely inverse AG∗∗-groupoid

G, then ker(ρ) ∈ N (G) and ρ = ρker(ρ).

Proof. Indeed, N = ker(ρ) is a normal completely inverse AG∗∗-subgroupoid of
G, so that ρ = ρN .

Corollary 4.6. The map ϕ : N (G) → GC(G) given by ϕ(N) = ρN , where G is

a completely inverse AG∗∗-groupoid, is a complete lattice isomorphism of N (G)
onto GC(G). In particular, the lattice N (G) is modular.

More interesting facts concerning certain fundamental congruences on a com-
pletely inverse AG∗∗-groupoid one can �nd in [2] and [3]. In [3] are determined,
for example, the maximum idempotent-separating congruence, the least AG-group
and the least E-unitary congruence. In particular, the congruences on completely
inverse AG∗∗-groupoids are described by their kernel and trace.
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Polyadic groups and automorphisms

of cyclic extensions

Mohammad Shahryari

Abstract. We show that for any n-ary group (G, f), the group Aut(G, f) can be embedded in
Aut(Zn−1 n G) and so we can obtain a class of interesting automorphisms of cyclic extensions.

1. Introduction

Our notations in this article are standard and can be �nd in [2], for example.
Let (G, f) be an n-ary group. We know that, there is a binary operation "·"

on G, such that (G, ·) is an ordinary group, and further, there is a θ ∈ Aut(G, ·)
with an element b ∈ G, such that

(i) θ(b) = b, and θn−1(x) = bxb−1 for all x ∈ G,

(ii) f(xn
1 ) = x1θ(x2) · · · θn−1(xn)b.

So, some times, we denote (G, f) by the notation derθ,b(G, ·). If b = e, the identity
element of (G, ·), then we use the notation derθ(G, ·).

We associate another binary group to (G, f) which is called the universal cov-

ering group or Post's cover of (G, f). Let a be an arbitrary element of G and
suppose G∗

a = Zn−1 ×G. De�ne a binary operation on this set by

(i, x) ∗ (j, y) = (i + j + 1, f∗(x,
(i)
a , y,

(j)
a , a,

(i,j)
a )).

Here of course, i + j + 1 is computed modulo n − 1, and (i, j) = n − i − j − 3
modulo n− 1. The symbol f∗ indicates that f applies one or two times depending
on the values of i and j and a denotes the skew element of a. It is proved that
(see [4]), G∗

a is a binary group and the subset

R = {(n− 2, x) : x ∈ G}

is a normal subgroup such that G∗
a/R ∼= Zn−1. Further, if we identify G by the

subset
{(0, x) : x ∈ G},

2010 Mathematics Subject Classi�cation: 20N15
Keywords: Polyadic group, covering group, semi-direct product, cyclic extensions.
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then G is a coset of R and it generates G∗
a. We also have

f(xn
1 ) = x1 ∗ x2 ∗ · · · ∗ xn.

It is not hard to see that for all a, b ∈ G, we have G∗
a
∼= G∗

b , so for simplicity, we
always, assume that a = e, the identity element of (G, ·).

Through this article, we assume that (G, f) = derθ(G, ·). So, we have θn−1 = id
and

f(xn
1 ) = x1θ(x2) · · · θn−2(xn−1)xn.

We also assume that e is the identity element of (G, ·). We will prove �rst the
following theorem on the structure of the Post's cover.

Theorem 1.1. (derθ(G, ·))∗e ∼= Zn−1nG, where Zn−1 acts on (G, ·) by i.x = θi(x).

Note that, we used a special case of this theorem in [6], to investigate represen-
tations of polyadic groups. The main idea of this article is almost the same as in
[6]. Our second goal is to obtain an embedding from Aut(G, f) to Aut(G∗

e). The
method we employ is the same as in [6]. For any i ∈ Zn−1 and u ∈ G, suppose
δ(i, u) = θ(u)θ2(u) . . . θi(u). We prove

Theorem 1.2. Let Λ ∈ Aut(G, f) and de�ne Λ∗ : G∗
e → G∗

e by

Λ∗(i, x) = (i,Λ(x)δ(i, u)),

where u = Λ(e). Then the map Λ 7→ Λ∗ is an embedding.

In [3], the structure of automorphisms of (G, f) is determined. If Λ ∈ Aut(G, f),

then we have Λ = Ruϕ, where u is an idempotent element, i.e. f(
(n)
u ) = u, Ru is

the right translation by u and ϕ is an ordinary automorphism of (G, ·) with the
property [ϕ, θ] = Iu, (the bracket denotes the commutator ϕθϕ−1θ−1 and Iu is
the inner automorphism corresponding to u). The converse is also true; if u and ϕ
satisfy above conditions, the Λ = Ruϕ is an automorphism of the polyadic group
(G, f). We will use this fact frequently through this article. The interested reader
should see [3] for a full description of homomorphisms between polyadic groups.

Combining Theorems 1.1 and 1.2, we obtain an embedding of Aut(G, f) into
Aut(Zn−1 n G). More precisely, we prove the following.

Theorem 1.3. Let Ĝ = A n G, with A = 〈a〉 cyclic of order n − 1 and let

θ(x) = axa−1. Then for any ϕ ∈ Aut(G) and u ∈ G, the hypotheses [ϕ, θ] = Iu

and (au)n−1 = 1 imply that the map

(ai, x) 7→ (ai, u−1ϕ(x)u(au)ia−i)

is an automorphism of Ĝ and these automorphisms are mutually distinct.
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2. Proofs

Proof of Theorem 1.1. Note that in G∗
e, we have

(i, x) ∗ (j, y) = (i + j + 1, f∗(x,
(i)
e , y,

(j)
e , e,

(i,j)
e ))

= (i + j + 1, xθ(e) · · · θi(e)θi+1(y)θi+2(e)
· · · θi+j+2(e)θi+j+3(e) · · · θn−2(e))

= (i + j + 1, xθi+1(y)θi+j+3(e)),

but, since e = e, so

(i, x) ∗ (j, y) = (i + j + 1, xθi+1(y)) = (i, x)(1, e)(j, y),

where the right hand side product is done in Zn−1 n G. Note that in general,
if (A, ·) is a group and a ∈ A, then we can de�ne a new binary operation on A
by x ◦ y = xay and together with this new operation, A is a group too, and so
we denote it by Aa = (A, ◦). We have A ∼= Aa and the isomorphism is given by
ϕ(x) = a−1x. Now, by this notation, we have

(derθ(G, ·))∗e = G∗
e = (Zn−1 n G)(1,e),

and hence (derθ(G, ·))∗e ∼= Zn−1 n G.

Now, let Λ ∈ Aut(G, f) and u = Λ(e). De�ne Λ∗e : G∗
e → G∗

u by Λ∗e(i, x) =
(i,Λ(x)).

Lemma 2.1. Λ∗e is an isomorphism.

Proof. Note that

Λ∗e((i, x) ∗ (j, y)) = Λ∗e(i + j + 1, xθi+1(y)) = (i + j + 1,Λ(xθi+1(y))).

On the other hand,

Λ∗e(i, x) ∗ Λ∗e(j, y) = (i,Λ(x)) ∗ (j, Λ(y))

= (i + j + 1, f∗(Λ(x),
(i)
u ,Λ(y),

(j)
u , u,

(i,j)
u )).

But f(u,
(n−1)

u ) = u, so Λ(f(v,
(n−1)

e )) = Λ(e), where Λ(v) = u. Therefore

f(v,
(n−1)

e ) = e and so v = e and hence u = Λ(e) = u. Now, we have

Λ∗e(i, x) ∗ Λ∗e(j, y) = (i + j + 1,Λ(f∗(x,
(i)
e , y,

(j)
e , e,

(i,j)
e ))) = (i + j + 1,Λ(xθi+1(y)))

= Λ∗e((i, x) ∗ (j, y)).

This shows that Λ∗e is an isomorphism.
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An element u ∈ G is said to be idempotent if f(
(n)
u ) = u. For an arbitrary

element u ∈ G, we remember that the right translation map Ru is de�ned by
Ru(x) = xu. In [3], it is proved that every element of Aut(G, f) can be uniquely
represented as Ruϕ with u an idempotent and ϕ ∈ Aut(G, ·) satis�es [ϕ, θ] = Iu,
where Iu is the inner automorphism of G, corresponding to u. The converse is
also true and so we have a complete description of automorphisms of Aut(G, f)
in terms of automorphisms of (G, ·) and idempotents. Now, for any idempotent u
and i ∈ Zn−1, de�ne

δ(i, u) = θ(u)θ2(u) · · · θi(u).

Note that for the case i = 0, we have δ(0, u) = δ(n − 1, u) = e. If Λ ∈ Aut(G, f)
and u = Λ(e), then we de�ne a map qu : G∗

u → G∗
e by qu(i, x) = (i, xδ(i, u)).

Lemma 2.2. The map qu is an isomorphism.

Proof. We �rst assume that i, j 6= 0. Note that in G∗
u, we have

(i, x) ∗ (j, y) = (i + j + 1, f∗(x,
(i)
u , y,

(j)
u , u,

(i,j)
u ))

= (i + j + 1,Λ(f∗(Λ−1(x),
(i)
e ,Λ−1(y),

(j)
e , e,

(i,j)
e )))

= (i + j + 1,Λ(Λ−1(x)θi+1(Λ−1(y)))).

Now, as we said before, Λ = Ruϕ such that ϕ ∈ Aut(G) and [ϕ, θ] = Iu. Therefore

(i, x) ∗ (j, y) = (i + j + 1, Ruϕ(ϕ−1R−1
u (x)θi+1(ϕ−1R−1

u (y))))
= (i + j + 1, Ru((xu−1)ϕθi+1ϕ(yu−1))).

Since [ϕ, θ] = Iu, so we have ϕθi+1ϕ−1 = (Iuθ)i+1. But

(Iuθ)i+1(z) = uθ(u) · · · θi(u)θi+1(z)θ(u)−1 · · · θ(u)−1u−1

= uδ(i, u)θi+1(z)δ(i, u)−1u−1.

Hence, we have

(i, x) ∗ (j, y) = (i + j + 1, Ru(xu−1uδ(i, u)θi+1(yu−1)δ(i, u)−1u−1))
= (i + j + 1, xδ(i, u)θi+1(yu−1)δ(i, u)−1).

Now, we are ready to show that qu is a homomorphism. First, note that

qu((i, x) ∗ (j, y)) = qu(i + j + 1, xδ(i, u)θi+1(yu−1)δ(i, u)−1)
= (i + j + 1, xδ(i, u)θi+1(yu−1)δ(i, u)−1δ(i + j + 1, u)).

On the other hand

qu(i, x) ∗ qu(j, y) = (i, xδ(i, u)) ∗ (j, yδ(j, u))
= (i + j + 1, xδ(i, u)θi+1(yδ(j, u)))
= (i + j + 1, xδ(i, u)θi+1(y)θi+1(δ(j, u))).
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Hence, qu is a homomorphism, if and only if we have

θi+1(δ(j, u)) = θi+1(u−1)δ(i, u)−1δ(i + j + 1, u).

But, we have,

θi+1(u−1)δ(i, u)−1δ(i + j + 1, u) = θi+2(u) · · · θi+j+1(u) = θi+1(δ(j, u)).

The case i = 0 can be veri�ed similarly, so qu is a homomorphism. It is easy to
see that also qu is a bijection and so we proved the lemma.

Combining two isomorphisms qu and Λ∗e, we obtain an automorphism Λ∗ =
qu ◦ Λ∗e ∈ Aut(G∗

e). Note that, we have

Λ∗(i, x) = (i, Λ(x)δ(i, u)) = (0,Λ(x)) ∗ (0, u)i.

Lemma 2.3. The map Λ 7→ Λ∗ is an embedding from Aut(G, f) into Aut(G∗
e).

Proof. Let Λ1,Λ2 ∈ Aut(G, f) and u = Λ1(e) and v = Λ2(e). Suppose also
w = Λ1(v) = (Λ1 ◦ Λ2)(e). We have

(Λ1 ◦ Λ2)∗(i, x) = (i, Λ1(Λ2(x))δ(i, w)).

On the other hand

Λ∗1(Λ
∗
2(i, x)) = Λ∗1(i,Λ2(x)δ(i, v)) = (i,Λ1(Λ2(x)δ(i, v))δ(i, u)).

But we have

Λ1(Λ2(x)δ(i, v)) = Λ1(Λ2(x)θ(v) · · · θi(v)θi+1(e) · · · θn−2(e)e)

= Λ1(f(Λ2(x),
(i)
v ,

(n−i−2)
e , e))

= f(Λ1(Λ2(x)),
(i)
w,

(n−i−2)
u ,Λ1(e))

= Λ1(Λ2(x))δ(i, w)θi+1(u) · · · θn−2(u)Λ1(e).

Note that we have

θi+1 · · · θn−2Λ1(e)δ(i, u) = θi+1(u) · · · θn−2(u)uθ(u) · · · θi(u) = e,

because,

θ(u) · · · θi(u)θi+1(u) · · · θn−2(u)Λ1(e) = u−1Λ1(f(
(n)
e )) = u−1Λ1(e) = e.

Therefore we obtain

Λ∗1(Λ
∗
2(i, x)) = (i, Λ1(Λ2(x))δ(i, w)),

and this shows that the map Λ 7→ Λ∗ is a homomorphism. Now suppose Λ∗ = id.
Then Λ(x)δ(i, u) = x for all x and i, so if we put x = e, then δ(i, u) = u−1 for all i.
Assuming i = 1, we get θ(u) = u−1 and so assuming i = 2, we obtain u−1u = u−1,
hence u = e and consequently Λ = id. This completes the proof of the lemma.
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Remember that we proved

G∗
e = (Zn−1 n G)(1,e)

∼= Zn−1 n G,

and this isomorphism is given by ϕ(i, x) = (1, e)−1(i, x). So,

ϕ(i, x) = (n− 2, e)(i, x) = (n + i− 2, θn−2(x)) = (i− 1, θn−2(x)).

Now, for any Λ ∈ Aut(G, f), de�ne

α(Λ) = ϕ−1 ◦ Λ∗ ◦ ϕ.

Therefore α(Λ) is an automorphism of Zn−1 n G and the map Λ 7→ α(Λ) is an
embedding. We have

α(Λ)(i, x) = ϕ−1(i− 1,Λ(θ−1(x))δ(i− 1, u))
= (1, e)(i− 1,Λ(θ−1(x))δ(i− 1, u))
= (i, (θΛθ−1)(x)θ(u−1)δ(i, u)).

Since Λ = Ruϕ, so (θΛθ−1)(x) = (θϕθ−1)(x)θ(u). Hence

α(Λ)(i, x) = (i, (θϕθ−1)(x)δ(i, u)).

On the other hand θϕθ−1 = I−1
u ϕ and hence

α(Λ)(i, x) = (i, u−1ϕ(x)uδ(i, u)).

Summarizing, we obtain the following corollary:

Corollary 2.4. There is an embedding α : Aut(G, f) → Aut(Zn−1 nG), such that

α(Λ)(i, x) = (i, u−1ϕ(x)uδ(i, u)).

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose Ĝ = AnG where A = 〈a〉 is a cyclic of order n−1.
De�ne an automorphism of G by θ(x) = axa−1, so θn−1 = id. Let

(G, f) = derθ(G, ·).

So, there is an embedding α : Aut(G, f) → Aut(Ĝ) such that

α(Λ)(ai, x) = (ai, u−1ϕ(x)uδ(i, u)).

Since u is an idempotent, so f(
(n)
u ) = u, and therefore

uθ(u) · · · θn−1(u) = u,
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which implies that

aua−1a2ua−2 · · · an−2ua−(n−2)u = e.

Hence (au)n−1 = 1. Similarly, δ(i, u) = (au)ia−i, so for any ϕ ∈ Aut(G) and for
any u ∈ G, the hypotheses

(au)n−1 = 1, [ϕ, θ] = Iu

imply that the map
(ai, x) 7→ (ai, u−1ϕ(x)u(au)ia−i)

is an automorphism of Ĝ. Clearly this is an embedding and hence the theorem is
proved.

Example 2.5. Let E = GF (q) be the Galois �eld of order q and m > 1. Let
G = (Em,+) and suppose α : Em → Em is a linear map of order n − 1. Then
A = 〈α〉 acts naturally on G, so Ĝ = A n G ∼= Zn−1 n Em. In this case θ = α−1

and for any u ∈ ker(1 + α + · · ·+ αn−2) and any

ϕ ∈ CGLm(q)(α)

we have [θ, ϕ] = 1 = Iu. Note that we have u ∈ ker(1 + α + · · · + αn−2), i�
u = α(v)− v for some v ∈ Em. This shows that for any such v and ϕ, the map

(αi, x) 7→ (αi, ϕ(x) + (αi−1 − α−1)(v))

is an automorphism of Zn−1 n Em.
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