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The varieties of Bol-Moufang quasigroups

de�ned by a single operation

Reza Akhtar, Ashley Arp, Michael Kaminski, Jasmine Van Exel,

Davian Vernon and Cory Washington

Abstract. A quasigroup identity is said to be of Bol-Moufang type if it involves three variables,
two of which occur once on each side and one of which appears twice; moreover, the order in
which the variables appear is the same on both sides, and there is only one binary operation in the
identity. Answering a question of Drapál, we classify all varieties of quasigroups of Bol-Moufang
type where the operation involved is ∗, /, or \, determining all inclusions among these and
providing all necessary counterexamples. This work extends that of Phillips and Vojt�echovský,
who described the relationships among the 26 varieties obtained when the operation is ∗. We �nd
that 52 varieties, distinct from each other and from the aforementioned 26, are obtained when
one allows / or \ as the operation. We determine all inclusions among these varieties, furnishing
all necessary counterexamples to complete the classi�cation.

1. Introduction

A quasigroup is a set G together with a binary operation ∗ such that the maps
L(a) : G → G and R(a) : G → G de�ned by [L(a)](x) = a∗x and [R(a)](x) = x∗a
are bijective for all a ∈ G. As such, there are operations \ : G → G and / : G → G
de�ned by a\c = b and c/b = a if only if a ∗ b = c. We often refer to ∗ as the
principal operation in the quasigroup. A quasigroup is called a loop if it has a
two-sided neutral element, i.e., an element e ∈ G such that e ∗ x = x = x ∗ e for
all x ∈ G. From the viewpoint of universal algebra, one may view the variety

of quasigroups as consisting of universal algebras (G, ∗, \, /) satisfying the four
identities:

a ∗ (a\b) = b, (b/a) ∗ a = b, a\(a ∗ b) = b, (b ∗ a)/a = b.

In this article, we classify varieties of quasigroups satisfying an additional iden-
tity, an identity of so-called Bol-Moufang type. Such identities involve three vari-
ables, two of which appear once on both sides of the equation and one of which
appears twice on both sides. We also require that the variables appear in the same
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order on both sides, and that only one operation (either ∗, \, or /) appears in the
identity. For example, x∗((y∗x)∗z) = (x∗y)∗(x∗z) is an identity of Bol-Moufang
type.

The equational perspective is useful in that it lends itself particularly well
to automated theorem proving. Indeed, we made considerable use of the auto-
mated theorem prover Prover9 [3] to deduce which implications among identities
were valid; virtually all counterexamples were found using the �nite model builder
Mace4 [3]. In hindsight, we realized that all the proofs could be written out by
hand, only one of them being somewhat long. Therefore, all proofs that appear in
this paper are �human" proofs, although some of them would have been di�cult
to �nd without the assistance of Prover9.

Our work builds upon that of Phillips and Vojt�echovský [5] who carried out this
classi�cation for varieties of quasigroups de�ned by identities of Bol-Moufang type
involving only the operation ∗. Using the action of the group S3 on the conjugates
of a quasigroup, we argue that an analogous classi�cation holds for varieties de�ned
solely by \ and for varieties de�ned by solely by /; hence, the problem is reduced
to an understanding of how a variety de�ned by an identity involving one of the
three operations is related (if at all) to a variety de�ned by an identity involving
another operation. By using the Phillips-Vojt�echovský classi�cation and the S3-
action, we reduce the problem to checking a much smaller number of implications.
We then provide necessary counterexamples to complete our classi�cation.

2. Notation and background

For simplicity of reference, we adopt and extend notation introduced by Phillips
and Vojt�echovský in [4] and [5] for labeling identities of Bol-Moufang type.

A xxyz
B xyxz
C xyyz
D xyzx
E xyzy
F xyzz

1 0(0(00))
2 0((00)0)
3 (00)(00)
4 (0(00))0
5 ((00)0)0

In labeling an identity, the �rst letter (S, L, or R) refers to the operation used
(star (∗), left division (\) or right division (/)); the next letter, selected from A
through F, refers to the variable ordering as labeled in the above chart, and the
two numbers at the end refer to the parenthesization patterns on the two sides
of the identity. For example, LA25 is the identity x\((x\y)\z) = ((x\x)\y)\z,
while SD34 is the identity (x ∗ y) ∗ (z ∗ x) = (x ∗ (y ∗ z)) ∗ x. Note also that
an identity employing a variable ordering in which x, y, and z are not revealed
in alphabetical order (e.g. zxyz) is equivalent to one described by the above
notation by appropriate permutation of x, y, and z. Thus, there are 180 identities
of Bol-Moufang type to consider, 60 for each operation.
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If I is an identity of Bol-Moufang type, its dual is the identity I∨ obtained
from I by reading from right to left; for example, (SD34)∨ is x ∗ ((z ∗ y) ∗ x) =
(x ∗ z) ∗ (y ∗ x); after switching y and z, we identify this as SD24. Thus the
variable orders A and F are duals of each other, as are B and E, while C and D
are self-dual. Similarly, patterns 1 and 5 are dual to each other, as are 2 and 4,
whereas 3 is self-dual. Since the other three operations de�ned on G (◦, //, and
\\) are de�ned by

x ◦ y = y ∗ x, x//y = y\x, and x\\y = y/x

an identity of Bol-Moufang type involving any one of these operations is equivalent
to an identity involving one of ∗, \, or /. This explains our restriction to identities
of the latter sort.

We say that an identity I implies another identity J and write I ⇒ J if J holds
in every quasigroup satisfying I � in other words, if the variety of quasigroups
de�ned by I is contained in the variety of quasigroups de�ned by J . We say that
I and J are equivalent if I ⇒ J and J ⇒ I, or equivalently if I and J de�ne the
same variety of quasigroups.

Let G be a quasigroup with principal operation ∗. We refer to the operations
in O = {∗, \, /◦, \\, //} as conjugates of the principal operation ∗. If � ∈ O is
any operation, we may consider the quasigroup (G, �) whose underlying set is
G and whose principal operation ∗� is de�ned by a ∗� b = a�b. We call these
quasigroups conjugates of the original quasigroup (G, ∗). There is a natural action
of the symmetric group S3 on O, summarized in Table 1; this extends to an action
of S3 on the conjugates of (G, ∗) by setting σ · (G, �) = (G, σ ·�). The table also
tells one how to interpret each of the conjugate operations in the various conjugate
quasigroups. In particular, given σ ∈ S3, let � be the operation in the �rst column
and in the row corresponding to σ. The entries of this row identify each of the six

operations ∗�, \�, /�, ◦�, \\�
, and //

�
with a corresponding operation in O.

For example, if σ = (13), we have σ ·(G, ·) = (G, \). The entry in the third row and
third column of the table tells us /\ = \\; that is, for any a, b ∈ G, a/\b = a\\b.

* \ / ◦ \\ //

1 * \ / ◦ \\ //
(1 2) ◦ \\ // * \ /
(1 3) \ * \\ // / ◦
(2 3) / // * \\ ◦ \
(1 2 3) // / ◦ \ * \\
(1 3 2) \\ ◦ \ / // *

Table 1. Action of S3 on O

Conjugacy is particularly important in that it allows us to reduce further the
number of implications among Bol-Moufang identities we need to consider. Ex-
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tending the action of S3 on O to an action on the set of all Bol-Moufang identities
involving a single operation, we have the following:

Lemma 2.1. Let I be an identity involving (only) one operation and J an identity

involving a single (potentially di�erent) operation. Then

(I ⇒ J) ⇐⇒ (σ · I ⇒ σ · J) for any σ ∈ S3.

Proof. Suppose I ⇒ J . If σ · I holds in some quasigroup (G, ∗), then I holds in
σ−1(G, ∗). Thus, J holds in σ−1(G, ∗), so σ · J holds in (G, ∗). The proof of the
reverse implication is similar.

Corollary 2.2. Any implication among identities of Bol-Moufang type is equiva-

lent to one of the form SUvw ⇒ LXab.

Proof. By Lemma 2.1, any implication whose premise LUvw is equivalent, by
application of the permutation σ = (1 3), to an implication with premise SUvw.
Similarly, any implication whose premise is RUvw is equivalent, by application
of (2 3), to an implication with premise SUvw. Now all implications of the form
SUvw ⇒ SXab have been determined by Phillips and Vojt�echovský [5], so it re-
mains only to consider implications of the form SUvw ⇒ LXab or SUvw ⇒ RXab.
However, by applying (1 2), we see that the latter is equivalent to S(Uvw)∨ ⇒
L(Xab)∨.

A convenient summary of rules for converting implications is given in Table 2.

Before After

LUvw ⇒ SXab SUvw ⇒ LXab
LUvw ⇒ LXab SUvw ⇒ SXab
LUvw ⇒ RXab SUvw ⇒ R(Xab)∨

RUvw ⇒ SXab SUvw ⇒ RXab
RUvw ⇒ RXab SUvw ⇒ SXab
RUvw ⇒ LXab SUvw ⇒ L(Xab)∨

SUvw ⇒ RXab S(Uvw)∨ ⇒ L(Xab)∨

Table 2. Conversion of implications

3. The main result

In this section we classify all valid implications among identities of Bol-Moufang
type. By Corollary 2.2, we may restrict attention to implications of the form
SUvw ⇒ LXab.

We will make heavy use of the Hasse diagram in Figure 1 which summarizes the
results of [5]. Each node corresponds to a distinct variety of quasigroups de�ned
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by a single Bol-Moufang identity involving (only) the operation ∗. Inside the node
is the abbreviated name of the variety, together with one identity which de�nes
it. The full name of the variety corresponding to each abbreviation, together with
the complete statement of the de�ning identity and what type of neutral element
(2-sided, left, right, or none) exists, may be found in Table 5. The Hasse diagram
is to be interpreted as follows: if there is a path from some variety to another
variety on a lower level, then the upper variety is contained in the lower variety;
that is, the identity de�ning the upper variety implies the one de�ning the lower
variety. Note that by Proposition 2.1, there is a corresponding Hasse diagram for
each of the other operations \ and /.

For convenience, we say that an implication SUvw ⇒ LXab is irreducible if
whenever V xy is an identity such that SUvw ⇒ SV xy ⇒ LXab, we must have
SUvw ⇔ SV xy, and whenever V xy is an identity such that SUvw ⇒ LV xy ⇒
LXab, we must have LV xy ⇔ LXab. It is clear that all valid implications may
be constructed from a list of valid irreducible implications and the relevant Hasse
diagram.

Theorem 3.1. The only valid irreducible implications of the form SUvw ⇒ LXab
are SA25 ⇒ LB25, SB15 ⇒ LA35, and SC24 ⇒ LA35.

Proof. We begin by arguing that all the implications described above are valid.
Note �rst that in a loop both sides of the identity LA35: (x\x)\(y\z)= ((x\x)\y)\z
are equal to y\z. Since SB15 and SC24 de�ne varieties of loops, each of these
implies LA35. From Table 2, SA25 ⇒ LB25 is equivalent to SF14 ⇒ RE14. The
proof of the latter is rather lengthy and is deferred to Section 4.

We now show that no other irreducible implications hold. We begin by giving
examples showing that the maximal identity SA12 in the Hasse diagram does
not imply any minimal identity LUvw when Uvw is equivalent to neither A35
nor B25. Observe that a quasigroup satisfying SA12 is necessarily a group. If
G = Z3 = {e, a, b} is a cyclic group of order 3 in which e denotes the neutral
element and some identity LUvw holds in G, then both sides of LUvw must be
equal when the element a is substituted for each of the variables x, y, and z.
Now if v = 1, the left hand side of LUvw is a\(a\(a\a)) = a\(a\e) = a\b = a.
Similar computations show that if v = 2, 3, or 5 we obtain e and if v = 4 we
obtain b. All this implies that the only identities LUvw which could possibly hold
in G are of form LU23, LU25 or LU35. Referencing Figure ??, we are reduced
to showing SA12 6⇒ LUvw where Uvw ∈ {A23, E25, F25}. In fact, none of these
three identities holds in S3, the symmetric group on three letters: to show that
LA23 does not hold, we take x = z = (1 2), y = (1 2 3), and to show that LE25
and LF25 do not hold we take x = y = (1 2), z = (1 2 3).

To show that SB23 does not imply LB25, we consider a nonassociative extra
loop (i.e., a loop satisfying SB23) de�ned by Goodaire et. al. in [2]. We describe
here a construction of this loop due to Chein [1]: given a group G, de�ne M(G, 2) =
G×{0, 1}, where (g, 0)(h, 0) = (gh, 0), (g, 0)(h, 1) = (hg, 1), (g, 1)(h, 0) = (gh−1, 1)
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and (g, 1)(h, 1) = (h−1g, 0). For our counterexample, we consider M(D4, 2), where
D4 is the dihedral group of order 8 de�ned by generators R and F satsifying
R4 = F 2 = 1 and RF = FR−1. Now de�ne elements of M(D4, 2) by x =
(R, 1), y = (R, 0) and z = (F, 1); direct computation then shows that LB25 does
not hold. The counterexamples associated to each of the remaining (potential)
implications are described in Table 3. The entries in every third column correspond
to quasigroups whose multiplication tables are catalogued in Section ; in each case
below the counterexample is obtained by taking x = y = z = 0.

Uvw Xab No. Uvw Xab No. Uvw Xab No. Uvw Xab No.
A13 A35 3 F13 A35 1 A35 A35 10 A23 B25 6
A15 A35 5 F14 A35 1 B45 A35 2 B25 B25 9
A23 A35 6 F15 A35 8 C15 A35 2 F14 B25 1
A25 A35 7 F34 A35 1 C45 A35 4 F34 B25 1

Table 3. Table of counterexamples

By converting the implications of Theorem 3.1 using Table 2, one obtains a
complete list of valid irreducible implications. The results are summarized below
in Table 4; each box consists of logically equivalent implications.

SA25 ⇒ LB25 LA25 ⇒ SB25 RA25 ⇒ LE14
SF14 ⇒ RE14 LF14 ⇒ RB25 RF14 ⇒ SE14
SB15 ⇒ LA35 LB15 ⇒ SA35 RB15 ⇒ LF13
SB15 ⇒ RF13 LB15 ⇒ RA35 RB15 ⇒ SF13
SC24 ⇒ LA35 LC24 ⇒ SA35 RC24 ⇒ LF13
SC24 ⇒ RF13 LC24 ⇒ RA35 RC24 ⇒ SF13

Table 4. Valid irreducible implications

4. Proof of SF14 ⇒ RE14

In this section we give a proof that SF14 implies RE14, based on output from
Prover9. Since SF14 has been shown to be equivalent to SD14 [5], we prove
instead SD14 ⇒ RE14, as the output from Prover9 is easier to parse. Although
the proof is not particularly intuitive, it is short enough to be written out, and
doing so ensures that all proofs in this article are �human" proofs.

For convenience, we write xy in place of x ∗ y and use juxtaposition notation
to save parentheses. The notation a 7→ b (where a and b are formal expressions
involving quasigroup elements and operations) means �substitute b for a".

We begin with the identity SD14:

(x · yz)x = x(y · zx).
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This readily implies
(x · yz)\(x(y · zx)) = x (1)

and
[x(y · zx)]/x = x · yz. (2)

On the other hand, substituting y 7→ y/z in SD14 gives

xy · x = x(y/z · zx). (3)

By replacing y 7→ y/(zx) in (2), we have (xy)/x = x[y/(zx) · z]. Substituting
y 7→ x and z 7→ y, we obtain

x = x · (x/(yx))y (4)

and dividing by x on the left yields

x\x = (x/yx)y. (5)

Returning to (1) and replacing z 7→ z/x we have x = [x ·y(z/x)]\[x ·y(z/x ·x)],
which simpli�es to

x = [x · y(z/x)]\[x · yz]. (6)

Replacing y 7→ x\y in (3), we have

yx = x[(x\y)/z · zx]. (7)

Putting x 7→ y/zy · z, y 7→ x, and z 7→ y in (7), we have

x(y/zy · z) = (y/zy · z)[((y/zy · z)\x)/y · y(y/zy · z)]

which by (4) simpli�es to (y/zy ·z)[((y/zy ·z)\x)/y ·y]] = x. Thus x = x(y/zy ·z) =
x(y\y) by (5), which establishes the existence of a right neutral element.

Using this we argue

[x/(y/z · x)]y = z\[z · [x/(y/z · x)]y] = [z · (x\x)]\[z · [x/(y/z · x)]y].

Now using (5), the above may be written as

[z · [x/(y/z · x)](y/z)]\[z · [x/(y/z · x)]y]

which by (6) reduces to z. Summarizing, we have

[x/(y/z · x)]y = z. (8)

Dividing this equation on the right by y on the right yields

x/(y/z · x) = z/y, (9)
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and if instead we substitute y 7→ yz, we obtain

x/yx · yz = z. (10)

Returning to (3) and substituting z 7→ z/(xz), we have xy · x = x(y/(z/xz) ·
(z/xz)x). By (5), the right hand side reduces to x(y/(z/xz) · z\z) = x(y/(z/xz)).
Thus, we have

x(y/(z/xz)) = xy · x. (11)

Using (11), (2), and (10) we reason

(y/zy)(zx · z) = (y/zy)(z(x/(y/zy)) = (y/zy · zx)/(y/zy) = x/(y/zy).

Thus we have
x/(y/zy) = (y/zy)(zx · z). (12)

We are �nally ready to prove RE14. Applying (9), we have (x/(y/z))/y =
(x/[x/((z/y)x)])/y, which by (12) equals [(x/((z/y)x)) · ((z/y)x) · (z/y)]/y. Using
(3) we may rewrite this as [(x/((z/y)x)) · ((z/y) · (x/w)(w · (z/y)))]/y, where
for convenience we write w = y/(z/y). By (10), the above expression reduces
to [(x/w) · (w · (z/y))]/y = [x/(y/(z/y)) · y]/y = x/(y/(z/y), which establishes
RE14.

5. Counterexamples

1. ∗ 0 1 2
0 1 0 2
1 2 1 0
2 0 2 1

2. ∗ 0 1 2
0 1 0 2
1 0 2 1
2 2 1 0

3. ∗ 0 1 2 3 4 5 6 7 8
0 1 2 4 0 6 3 8 5 7
1 2 4 6 1 8 0 7 3 5
2 0 1 2 3 4 5 6 7 8
3 7 5 3 8 0 6 1 4 2
4 6 8 7 4 5 2 3 1 0
5 3 0 1 5 2 7 4 8 6
6 8 7 5 6 3 4 0 2 1
7 5 3 0 7 1 8 2 6 4
8 4 6 8 2 7 1 5 0 3

4. ∗ 0 1 2 3 4 5
0 1 2 4 0 5 3
1 2 0 5 1 3 4
2 0 1 3 2 4 5
3 4 5 2 3 0 1
4 5 3 0 4 1 2
5 3 4 1 5 2 0

5. ∗ 0 1 2 3 4
0 1 4 3 0 2
1 3 0 4 2 1
2 0 1 2 3 4
3 2 3 1 4 0
4 4 2 0 1 3

6. ∗ 0 1 2 3
0 1 0 3 2
1 2 3 0 1
2 0 1 2 3
3 3 2 1 0



Varieties of Bol-Moufang quasigroups 9

7. ∗ 0 1 2 3 4 5
0 1 0 4 5 2 3
1 3 2 5 4 0 1
2 0 1 2 3 4 5
3 5 4 3 2 1 0
4 2 3 0 1 5 4
5 4 5 1 0 3 2

8. ∗ 0 1 2 3 4
0 1 2 4 3 0
1 3 0 2 4 1
2 0 4 3 1 2
3 4 1 0 2 3
4 2 3 1 0 4

9. ∗ 0 1 2 3 4 5
0 1 3 0 5 2 4
1 0 1 2 3 4 5
2 4 2 5 0 3 1
3 5 4 3 2 1 0
4 2 0 4 1 5 3
5 3 5 1 4 0 2

10. ∗ 0 1 2 3 4
0 1 3 0 4 2
1 0 1 2 3 4
2 4 0 1 2 3
3 2 4 3 1 0
4 3 2 4 0 1

Variety Abbrev. De�ning identity Name Neutral elt.
Groups GR x(yz) = (xy)z A12 2

RG1-quasigroups RG1 x((xy)z) = ((xx)y)z A25 L
LG1-quasigroups LG1 x(y(zz)) = (x(yz))z F14 R
RG2-quasigroups RG2 x(x(yz)) = (xx)(yz) A23 L
LG2-quasigroups LG2 (xy)(zz) = (x(yz))z F34 R
RG3-quasigroups RG3 x((yx)z) = ((xy)x)z B25 L
LG3-quasigroups LG3 x(y(zy)) = (x(yz))y E14 R

Extra q. EQ x((yx)z) = (xy)(xz) B23 2
Moufang q. MQ x(y(xz)) = ((xy)x)z B15 2
Left Bol q. LBQ x(y(xz)) = (x(yx))z B14 R
Right Bol q. RBQ x((yz)y) = ((xy)z)y E25 L
C-quasigroups CQ x(y(yz)) = ((xy)y)z C15 0

LC1-quasigroups LC1 (xx)(yz) = (x(xy))z A34 2
LC2-quasigroups LC2 x(x(yz)) = (x(xy))z A14 0
LC3-quasigroups LC3 x(x(yz)) = ((xx)y)z A15 L
LC4-quasigroups LC4 x(y(yz)) = (x(yy))z C14 R
RC1-quasigroups RC1 x((yz)z) = (xy)(zz) F23 2
RC2-quasigroups RC2 x((yz)z) = ((xy)z)z F25 0
RC3-quasigroups RC3 x(y(zz)) = ((xy)z)z F15 R
RC4-quasigroups RC4 x((yy)z) = ((xy)y)z C25 L
Left alternative q. LAQ x(xy) = (xx)y A45 L
Right alternative q. RAQ x(yy) = (xy)y C45 R

Flexible q. FQ x(yx) = (xy)x B45 0
Left nuclear q. LNQ (xx)(yz) = ((xx)y)z A35 L

Middle nuclear q. MNQ x((yy)z) = (x(yy))z C24 2
Right nuclear q. RNQ x(y(zz)) = (xy)(zz) F13 R

Table 5. De�nitions of varieties of quasigroups



10 R. Akhtar, A. Arp, M. Kaminski, J. Van Exel, D. Vernon, C. Washington

Figure 1. Varieties of Bol-Moufang type under ∗
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On WIP loops

Asif Ali and Hasib Khan

Abstract. A weak inverse property loop (WIP loop) is a loop L that satis�es x(yx)ρ = yρ or
(xy)λx = yλ for all x, y ∈ L. In this paper we prove some necessary and su�cient conditions
for a WIP loop to be LC, RC, left alternative, right alternative, and C-loop. We also construct
in�nite families of WIP loops of various orders.

1. Introduction

Let L be a loop with identity element 1, then L will be said to satisfy the weak

inverse property if whenever three elements x, y, z of L satisfy the relation xy·z = 1,
they also satisfy the relation x · yz = 1. The study of weak inverse property loops
(WIP loops) was initiated by J. M. Osborn [4] as a class of loops which contains
both IP loops and CIP loops. He proved that a WIP loop is a loop which satis�es
one of the following equivalent identities

x(yx)ρ = y or (xy)λx = yλ.

He further proved that the left, middle and right nuclei of a WIP loop coincide.
If L is a loop all of whose isotopes have the WIP and N is its nucleus, then N is
normal and L/N is a Moufang loop. Isotopy-isomorphy conditions of WIP loops
were considered in [2]. We prove some necessary and su�cient conditions for a
WIP loop to be LC, RC, left alternative, right alternative, and C-loop in section
3 and construct in�nite families of WIP loops of various orders in section 4.

2. Preliminaries

Let L be a loop. Then the sets

Nλ = {x ∈ L : x(yz) = (xy)z for every y, z ∈ L},
Nµ = {x ∈ L : y(xz) = (yx)z for every y, z ∈ L},
Nρ = {x ∈ L : y(zx) = (yz)x for every y, z ∈ L}

are called the left nucleus, middle nucleus and right nucleus respectively. N =
Nλ ∩Nµ ∩Nρ is called the nucleus.

2010 Mathematics Subject Classi�cation: 20N99
Keywords: WIP loop, C-loop, ARIF loop, LC-loop, RC-loop
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A loop L is called left alternative if xx · y = x · xy ∀x, y ∈ L, right alternative
if x · yy = xy · y ∀x, y ∈ L, and alternative if it is both left alternative and right
alternative.

C-loops are loops satisfying the identity x(y(yz)) = ((xy)y)z. Loops satisfying
the identity (xx)(yz)) = (x(xy))z are called LC-loops and loops satisfying the
identity (xy)(yz) = x(y(zz))z are called RC-loops. Loops which are both LC-
loops and RC-loops are C-loops. ARIF loops are de�ned to be �exible loops
satisfying (zx)(yxy) = (z(xyx))y.

3. Necessary and su�cient conditions

LC-loops, RC-loops, C-loops, ARIF loops are subclasses of WIP loop. We prove
here necessary and su�cient conditions for a WIP loop to satisfy these loops which
are its subclasses. We de�ne Lx : a −→ xa, Rx : a −→ ax, J : x −→ x−1 and
P = Rx ◦ Lx ∀ x ∈ L.

Theorem 3.1. Let L be a WIP loop of unique inverses. Then (JP )n = I for any

n ∈ 2Z+, where Z+ denotes the set of positive integers.

Proof. Let y ∈ L. Since P = Rx ◦ Lx, then for (JP )n = I, where n ∈ 2Z+.
Consider n = 2. Then

y(JP )2 = yJPJP = x((x(y−1x))−1x) = x(y−1x)−1 = y.

Thus (JP )2 = I. Now if any n ∈ 2Z+, then n = 2m for some m ∈ Z+, so
(JP )n = (JP )2m = ((JP )2)m = (I)m = I.

Corollary 3.2. (JP )n = I for all n ∈ Z+ if the loop is a WIP loop of exponent

2.

Proof. Let L be a WIP loop of exponent 2. Then

y(JP ) = y−1Rx ◦ Lx = x(y−1x)
= x(y−1x)−1 since L is of exponent 2
= y−1 since L is a WIP loop

= y.

Thus JP = I and hence (JP )n = I for all n ∈ Z+ if the loop is a WIP loop of
exponent 2.

Next we prove necessary and su�cient conditions for a WIP loop to be left
alternative, and right alternative.

Theorem 3.3. Let L be a WIP loop. Then L is left alternative if and only if

Lx = RxJLx2JP .
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Proof. Let L be a WIP loop satisfying Lx = RxJLx2JP. Then

Lx = RxJLx2JP

JR−1
x J = RxJLx2JP since Lx = JR−1

x J

R−1
x J = L−1

x Lx2JP since L−1
x = JRxJ

LxR−1
x P = Lx2(JP )2

LxR−1
x RxLx = Lx2I by Theorem 3.1

LxLx = Lx2

Conversely, if is x(xy) = x2y for all x, y ∈ L, then LxLx = Lx2 for all x ∈L.
Thus LxLxP−1 = Lx2P−1. From this, by Theorem 3.1, we obtain LxR−1

x =
Lx2(JP )2P−1, i.e., R−1

x = L−1
x Lx2JPJ . The last, by left and right cancellation

of J , implies Lx = RxJLx2JP .

Theorem 3.4. Let L be a WIP loop. Then L is right alternative if and only if

Rx = PJRx2JLx.

Proof. If L satis�es Rx = PJRx2JLx, then

JRxJ = JPJRx2JLxJ by multiplication of both sides by J

PL−1
x = PJPJRx2R−1

x by multiplication of both sides by P

RxRx = Rx2 .

Conversely, let L be right alternative. Then RxRx = Rx2 . Hence P−1RxRx

= P−1Rx2 . Thus L−1
x IRx = P−1Rx2 , which implies L−1

x Rx = IP−1Rx2 , and
consequently Rx = PJRx2JLx.

Theorem 3.5. A WIP loop L is an LC loop if and only if it satis�es the identity

JLx2Tz = LzTxJPLz, where Tx = R−1
x Lx.

Proof. Let L be an LC loop. Then xx · yz = (x · xy)z, which implies RzLx2 =
LxLxRz. Thus RzLx2Tz = LxLxRzTz, whence, putting L−1

x = JRxJ , we obtain
JLx2Tz = LzR

−1
x LxJRxJJLxLz. Thus JLx2Tz = LzTxJPLz.

Conversely, if L satis�es JLx2Tz = LzTxJPLz, then also JRzLx2R−1
z = TxJP ,

which implies RzLx2 = LxLxRz. Hence, L is an LC loop.

Theorem 3.6. [2, Theorem 4.2]
A loop L (WIP loop) is a C-Loop if and only if Rx = PJRx2JLx and JLx2Tz =
LzTxJPLz.

4. Various constructions of WIP loops

Here we give the construction of in�nite families of non-associative WIP loops by
extensions of loops.
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Lemma 4.1. Let µ : G×G → A be a factor set. Then (G, A, µ) is a WIP loop if

and only if

µ(h, h−1) + µ(g, g−1h−1) = µ(h, g) + µ(hg, g−1h−1) (D)

for all g, h ∈ G.

Proof. The loop (G, A, µ) is a WIP loop i� (g, a)[(h, b)(g, a)]−1 = (h, b)−1 hold for
every g, h ∈ G and every a, b ∈ A. Straight forward calculation with (A) shows
that this happens i� (D) holds.

We call a factor set µ satis�es (A) and (D) a W -factor set. We now use a
particular W-factor set to construct the above-mentioned families of WIP loops.

Proposition 4.2. Let n > 2 be an integer and let A be an abelian group of order

n with respect to addition with neutral element 0 and α ∈ A be an element of

order bigger than 2. Let G = {1, x, x2} be the cyclic group of order 3 with respect

to multiplication with neutral element 1. De�ne µ : G×G → A by

µ(h, g) =
{

α if (h, g) = (x, x),
0 otherwise.

Then (G, A, µ) is a non-alternative (hence non-associative) commutative WIP loop

with N = {(1, a) : a ∈ A}.

Proof. The map µ is clearly a factor set. To show that (G, A, µ) is a WIP loop, we
verify (D). Since µ is a factor set, there is nothing to prove when g = 1. Assume
that g = x. Then (D) becomes µ(h, h−1)+µ(x, x2h−1) = µ(h, x)+µ(x, x2h−1). If
h = 1, then µ(1, 1) + µ(x, x2) = µ(1, x) + µ(x, x2) and both sides of this equation
are equal to 0. If h = x, thenµ(x, x2) + µ(x, x) = µ(x, x) + µ(x, x) and both
sides of this equation are equal to α. Assume h = x2, then µ(x2, x) + µ(x, 1) =
µ(x2, x) + µ(1, xx) and both sides of this equation are equal to 0. Next assume
that g = x2, then (D) becomes µ(h, h−1)+µ(x2, xh−1) = µ(h, x2)+µ(hx2, xh−1).
If h = 1, then both sides of this equation are equal to 0. Assume h = x, then both
sides of this equation are equal to 0, Assume h = x2, then µ(x2, x) + µ(x2, x2) =
µ(x2, x2) + µ(x, x2) and both sides of this equation are equal to 0. Since α 6= 0,
we have that, (x, a)(x, a) · (x2, a) 6= (x, a) · (x, a)(x2, a). Thus (G, A, µ) is non-
alternative and hence non-associative. Also neither (x, a) ∈ N nor (x2, a) ∈ N for
all a ∈ A. Also we have that (1, a)((h, b)(g, c)) = ((1, a)(h, b))(g, c) for all h, g ∈ G
and a, b, c ∈ A. Which implies that (1, a) belongs to nucleus. Thus {(1, a); a ∈ A}
is the nucleus of the loop (G, A, µ).

Corollary 4.3. For each natural number n there exists a non-alternative commu-

tative WIP loop having nucleus of order n.

Proof. It remains to show that there exist non-alternative commutative WIP loop
having nucleus of order 1. This requirement is ful�lled by the following example.
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Example 4.4. A commutative, non-alternative WIP loop of order 10 having triv-
ial nucleus.

· 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 0 3 2 5 4 8 9 6 7
2 2 3 0 1 6 7 4 5 9 8
3 3 2 1 0 8 9 7 6 4 5
4 4 5 6 8 1 0 9 2 7 3
5 5 4 7 9 0 1 2 8 3 6
6 6 8 4 7 9 2 3 0 5 1
7 7 9 5 6 2 8 0 3 1 4
8 8 6 9 4 7 3 5 1 2 0
9 9 7 8 5 3 6 1 4 0 2

Example 4.5. The smallest group A satisfying the assumption of Proposition
4.2 is the cyclic group {0, 1} of order 2. The construction of Proposition 4.2 with
α = 1 yields the smallest non-alternative commutative WIP loop of order 6.

· 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 0 3 2 5 4
2 2 3 5 4 0 1
3 3 2 4 5 1 0
4 4 5 0 1 2 3
5 5 4 1 0 3 2

Proposition 4.6. Let n > 3 be an integer and let A be an abelian group of order

n with respect to addition with neutral element 0 and α ∈ A be an element of

order bigger than 2. Let G = {1, u, v, w} denotes the Klein group with respect to

multiplication with neutral element 1. De�ne µ : G×G → A by

µ(x, y) =
{

α if (x, y) ∈ {(u, v), (v, w), (w, u)},
0 otherwise.

Then (G, A, µ) is a non-alternative, non-commutative WIP loop with nucleus N =
{(1, a) : a ∈ A}.

Proof. The map µ is clearly a factor set. To show that (G, A, µ) is a WIP loop, we
verify (D). Since µ is a factor set, there is nothing to prove when g = 1. Assume
that g = u, then (D) becomes µ(h, h−1) + µ(u, uh−1) = µ(h, u) + µ(hu, uh−1).
If h = 1, then both sides of this equation are equal to 0. Assume h = v, then
µ(v, v) + µ(u, w) = µ(v, u) + µ(w,w) and both sides of this equation are equal
to 0. Assume h = w, then µ(w,w) + µ(u, v) = µ(w, u) + µ(v, v) and both sides
of this equation are equal to α. Next assume that g = v, then (D) becomes
µ(h, h−1) + µ(v, vh−1) = µ(h, v) + µ(hv, vh−1). If h = 1, then both sides of this
equation are equal to 0. Assume h = u, µ(u, u) + µ(v, w) = µ(u, v) + µ(w,w) and
both sides of this equation are equal to α. Assume h = v, then µ(v, v) + µ(v, 1) =
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µ(v, v) + µ(1, 1) both sides of this equation are equal to 0. Assume h = w, then
µ(w,w)+µ(v, u) = µ(w, v)+µ(u, u) and both sides of this equation are equal to 0.
Next assume that g = w, then (D) becomes µ(h, h−1) + µ(w,wh−1) = µ(h, w) +
µ(hw,wh−1). If h = 1, then both sides of this equation are equal to 0. Assume
h = u, then this equation is equal to µ(u, u) + µ(w, v) = µ(u, w) + µ(v, v) and
both sides of this equation are equal to 0. Assume h = v, then µ(v, v)+µ(w, u) =
µ(v, w) + µ(u, u) and both sides of this equation are equal to α. Assume h = w,
then µ(w,w)+µ(w, 1) = µ(w,w)+µ(1, 1) and both sides of this equation are equal
to 0. Since α 6= 0, and we have that, (u, a)(u, a) · (v, a) 6= (u, a) · (u, a)(v, a) also we
have that, (w, a)(u, a)·(u, a) 6= (w, a)·(u, a)(u, a). Thus (G, A, µ) is non-alternative
and hence non-associative. Also (u, a), (v, a), (w, a) /∈ N for all a ∈ A. Also we
have that (1, a)((h, b)(g, c)) = ((1, a)(h, b))(g, c) for all h, g ∈ G and a, b, c ∈ A.
Which implies that (1, a) belongs to the nucleus. Thus {(1, a) : a ∈ A} is the
nucleus of the loop (G, A, µ).

Corollary 4.7. For each n > 1 there exists a non-alternative non-commutative

WIP loop having nucleus of order n.

Proof. It remains to show that there exist a non-alternative non-commutative WIP
loop having nuclei of order 1 and 2. The �rst requirement follows by Example 4.8
while the second requirement follows by Example 4.9.

Example 4.8. A non-alternative non-commutative WIP loop having nucleus of
order 1.

· 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 4 6 2 7 3 5
2 2 7 5 0 3 1 4 6
3 3 5 0 4 6 2 7 1
4 4 6 3 1 7 0 5 2
5 5 3 7 2 0 6 1 4
6 6 4 1 7 5 3 2 0
7 7 2 6 5 1 4 0 3

Example 4.9. A non-alternative non-commutative WIP loop having nucleus of
order 2.

· 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 0 5 6 4 3
2 2 0 1 6 5 3 4
3 3 6 5 4 0 1 2
4 4 5 6 0 3 2 1
5 5 3 4 2 1 6 0
6 6 4 3 1 2 0 5
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Example 4.10. The smallest group A satisfying the assumption of Proposition
4.6 is the cyclic group {0, 1, 2}. The construction of Proposition 4.6 with α = 1
yields the smallest non-alternative commutative WIP loop of order 12.

· 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 2 3 4 5 6 7 8 9 10 11
1 1 2 0 4 5 3 7 8 6 10 11 9
2 2 0 1 5 3 4 8 6 7 11 9 10
3 3 4 5 0 1 2 11 9 10 6 7 8
4 4 5 3 1 2 0 9 10 11 7 8 6
5 5 3 4 2 0 1 10 11 9 8 6 7
6 6 7 8 9 10 11 0 1 2 5 3 4
7 7 8 6 10 11 9 1 2 0 3 4 5
8 8 6 7 11 9 10 2 0 1 4 5 3
9 9 10 11 8 6 7 3 4 5 0 1 2
10 10 11 9 6 7 8 4 5 3 1 2 0
11 11 9 10 7 8 6 5 3 4 2 0 1

GAP gives these extra informations about the above WIP loop. It is (1) power
associative, (2) not Moufang, (3) neither automorphic nor anti-automorphic, (4)
neither left nor right Bol.

Proposition 4.11. Let n > 3 be an integer and let A be an abelian group of order

n with respect to addition with neutral element 0 and α ∈ A be an element of

order bigger than 2. Let G = {1, u, v, w} denotes the Klein group with respect to

multiplication with neutral element 1. De�ne µ : G×G → A by

µ(x, y) =
{

α if (x, y) ∈ {(u, v), (v, u), (u, w), (w, u), (v, w), (w, v)},
0 otherwise.

Then (G, A, µ) is a non-alternative, commutative WIP loop with nucleus N =
{(1, a) : a ∈ A}.

Proof. The map µ is clearly a factor set. To show that (G, A, µ) is a WIP loop, we
verify (D). Since µ is a factor set, there is nothing to prove when g = 1. Assume
that g = u, then (D) becomes µ(h, h−1) + µ(u, uh−1) = µ(h, u) + µ(hu, uh−1).
If h = 1, then µ(h, h−1) + µ(u, u) = µ(1, u) + µ(u, u) both sides of this equation
are equal to 0. Assume h = u then µ(u, u) + µ(u, 1) = µ(u, u) + µ(1, 1) both
sides of this equation are equal to 0. Assume h = v, then µ(v, v) + µ(u, w) =
µ(v, u) + µ(w,w) and both sides of this equation are equal to α. Assume h = w,
then µ(w,w) + µ(u, v) = µ(w, u) + µ(v, v) and both sides of this equation are
equal to α. Next assume that g = v, then (D) becomes µ(h, h−1) + µ(v, vh−1) =
µ(h, v) + µ(hv, vh−1). If h = 1, then µ(1, 1) + µ(v, v) = µ(1, v) + µ(v, v) and both
sides of this equation are equal to 0. Assume h = u, then µ(u, u) + µ(v, w) =
µ(u, v) + µ(w,w) and both sides of this equation are equal to α. Assume h = v,
then µ(v, v) + µ(v, 1) = µ(v, v) + µ(1, 1) both sides of this equation are equal to
0. Assume h = w, then µ(w,w) + µ(v, u) = µ(w, v) + µ(u, u) and both sides
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of this equation are equal to α. Next assume that g = w, then (D) becomes
µ(h, h−1)+µ(w,wh−1) = µ(h, w)+µ(hw,wh−1). If h = 1, then µ(1, 1)+µ(w,w) =
µ(1, w) + µ(w,w) both sides of this equation are equal to 0. Assume h = u,
then µ(u, u) + µ(w, v) = µ(u, w) + µ(v, v) and both sides of this equation are
equal to α. Assume h = v, then µ(v, v) + µ(w, u) = µ(v, w) + µ(u, u) and both
sides of this equation are equal to α. Assume h = w, then µ(w,w) + µ(w, 1) =
µ(w,w) + µ(1, 1) and both sides of this equation are equal to 0. Since α 6= 0, and
we have that, (u, a)(u, a) · (v, a) 6= (u, a) · (u, a)(v, a). Also (w, a)(u, a) · (u, a) 6=
(w, a) · (u, a)(u, a). Thus (G, A, µ) is non-alternative and hence non-associative.
Also (u, a), (v, a), (w, a) /∈ N for all a ∈ A. Also we have that (1, a)((h, b)(g, c)) =
((1, a)(h, b))(g, c) for all h, g ∈ G and a, b, c ∈ A. Which implies that (1, a) belongs
to the nucleus. Thus {(1, a) : a ∈ A} is the nucleus of the loop (G, A, µ).

Example 4.12. The smallest group A satisfying the assumption of Proposition
4.11 is the cyclic group {0, 1, 2}. The construction of Proposition 4.11 with α = 1
then yields the smallest non-alternative commutative WIP loop of order 12.

· 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 2 3 4 5 6 7 8 9 10 11
1 1 2 0 4 5 3 7 8 6 10 11 9
2 2 0 1 5 3 4 8 6 7 11 9 10
3 3 4 5 0 1 2 11 9 10 8 6 7
4 4 5 3 1 2 0 9 10 11 6 7 8
5 5 3 4 2 0 1 10 11 9 7 8 6
6 6 7 8 11 9 10 0 1 2 5 3 4
7 7 8 6 9 10 11 1 2 0 3 4 5
8 8 6 7 10 11 9 2 0 1 4 5 3
9 9 10 11 8 6 7 5 3 4 0 1 2
10 10 11 9 6 7 8 3 4 5 1 2 0
11 11 9 10 7 8 6 4 5 3 2 0 1

GAP [3] gives these extra informations about the above WIP loop. It is (1)
power associative, (2) not automorphic inverse property loop, (2) neither LC-loop
nor RC-loop.

Proposition 4.13. Let n > 2 be an integer and let A be an abelian group of order

n with respect to addition with neutral element 0 and α ∈ A be an element of order

bigger than 2. Let G = {1, x, x2, x3, x4} be the Cyclic group of order 5 with respect

to multiplication with neutral element 1. De�ne µ : G×G → A by

µ(h, g) =
{

α if (h, g) ∈ {(x2, x2), (x, x2), (x2, x)},
0 otherwise.

Then (G, A, µ) is a non-alternative commutative WIP loop with nucleus N =
{(1, a) : a ∈ A}.
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Proof. The map µ is clearly a factor set. To show that (G, A, µ) is a WIP loop, we
verify (D). Since µ is a factor set, there is nothing to prove when g = 1. Assume
that g = x, then (D) becomes µ(h, h−1) + µ(x, x4h−1) = µ(h, x) + µ(hx, x4h−1).
If h = 1, then µ(h, h−1) + µ(x, x4h−1) = µ(h, x) + µ(hx, x4h−1) and both sides of
this equation equals to 0. h = x, then µ(x, x4) + µ(x, x3) = µ(x, x) + µ(x2, x3)
then both sides of this equation are equal to 0,Assume h = x2, then µ(x2, x3) +
µ(x, x2) = µ(x2, x) + µ(x3, x2) and both sides of this equation are equal to α.
Assume h = x3, then µ(x3, x2) + µ(x, x) = µ(x3, x) + µ(x4, x) and both sides of
this equation are equal to 0 Assume h = x4, then µ(x4, x) + µ(x, 1) = µ(x4, x) +
µ(1, 1)and both sides of this equation are equal to 0 assume that g = x2, then
(D) becomes µ(h, h−1) + µ(x2, x3h−1) = µ(h, x2) + µ(hx2, x3h−1). If h = 1, then
µ(1, 1) + µ(x2, x3) = µ(1, x2) + µ(x2, x3) and both sides of this equation equals
to 0. Assume h = x, then µ(x, x4) + µ(x2, x2) = µ(x, x2) + µ(x3, x2) then both
sides of this equation are equal to α, Assume h = x2, then µ(x2, x3) + µ(x2, x) =
µ(x2, x2)+µ(x4, x) and both sides of this equation are equal to α. Assume h = x3,
then µ(x3, x2) + µ(x2, 1) = µ(x3, x2) + µ(1, 1) and both sides of this equation are
equal to 0. Assume h = x4, then µ(x4, x) + µ(x2, x4) = µ(x4, x2) + µ(x, x4) and
both sides of this equation are equal to 0. Assume that g = x3, then µ(h, h−1) +
µ(x3, x2h−1) = µ(h, x3) + µ(hx3, x2h−1). If h = 1, then µ(1, 1) + µ(x3, x2) =
µ(1, x3) + µ(x3, x2) and both sides of this equation equals to 0. Assume h = x,
then this equation equals to µ(x, x4) + µ(x3, x) = µ(x, x3) + µ(x4, x) then both
sides of this equation are equal to 0, Assume h = x2, then µ(x2, x3) + µ(x3, 1) =
µ(x2, x3) + µ(1, 1) and both sides of this equation are equal to 0. Assume h = x3,
then µ(x3, x2) + µ(x3, x4) = µ(x3, x3) + µ(x, x4) and both sides of this equation
are equal to 0. Assume h = x4, then µ(x4, x) + µ(x3, x3) = µ(x4, x3) + µ(x2, x3)
and both sides of this equation are equal to 0, Assume that g = x4, then (D)
becomes µ(h, h−1)+µ(x4, xh−1) = µ(h, x4)+µ(hx4, xh−1). If h = 1, then µ(1, 1)+
µ(x4, x) = µ(1, x4) + µ(x4, x) both sides of this equation equals to 0. Assume
h = x, then µ(x, x4)+µ(x4, 1) = µ(x, x4)+µ(1, 1) and both sides of this equation
are equal to 0, Assume h = x2, then µ(x2, x3) + µ(x4, x4) = µ(x2, x4) + µ(x, x4)
and both sides of this equation are equal to 0. Assume h = x3, then µ(x3, x2) +
µ(x3, x4) = µ(x3, x3) + µ(x, x4) and both sides of this equation are equal to 0.
Assume h = x4, then µ(x4, x) + µ(x4, x2) = µ(x4, x4) + µ(x3, x2) and both sides
of this equation are equal to 0. Since α 6= 0, we have that, (x3, a) · (x2, a)(x2, a) 6=
(x3, a)(x2, a)·(x2, a). Also (x2, a)·(x, a)(x3, a) 6= (x, 3a+α) = (x2, a)(x, a)·(x3, a).
Thus (G, A, µ) is non-alternative and hence non-associative WIP loop. Also neither
(x, a), (x2, a), (x3, a) ∈ N for all a ∈ A. Similarly (x4, a) /∈ A. Also we have that
(1, a)((h, b)(g, c)) = ((1, a)(h, b))(g, c) for all h, g ∈ G and a, b, c ∈ A. Which
implies that (1, a) belongs to the nucleus. Thus {(1, a); a ∈ A} is the nucleus of
the loop (G, A, µ).

Example 4.14. The smallest group A satisfying the assumption of Proposition
4.13 is the cyclic group {0, 1, 2} of order 3. The construction of Proposition 4.13
with α = 1 yields the smallest non-alternative commutative WIP loop of order 10.
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· 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 0 3 2 5 4 7 6 9 8
2 2 3 4 5 7 6 8 9 0 1
3 3 2 5 4 6 7 9 8 1 0
4 4 5 7 6 9 8 0 1 2 3
5 5 4 6 7 8 9 1 0 3 2
6 6 7 8 9 0 1 2 3 4 5
7 7 6 9 8 1 0 3 2 5 4
8 8 9 0 1 2 3 4 5 6 7
9 9 8 1 0 3 2 5 4 7 6

GAP shows that the following properties do not hold in this WIP loop: (1)
automorphic inverse property, (2) anti-automorphic inverse property, (3) LC, (4)
RC, (5) left Bol, (6) right Bol, (7) Moufang, (8) power alternative, (9) power
associative, (10) left nuclear square, (13) right nuclear square, (14) left inverse
and (15) right inverse property.
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Parametrization of actions of a subgroup

of the modular group

Muhammad Ashiq, Qaiser Mushtaq and Tariq Maqsood

Abstract. Graham Higman proposed the problem of parametrization of actions of the extended
Modular Group PGL(2, Z) on the projective line over Fq. The problem was solved by Q.
Mushtaq. In this paper, we take up the problem and parametrize the actions of 〈u, v, t : u3 =
v3 = t2 = (ut)2 = (vt)2 = 1〉 on the projective line over �nite Galois �elds.

1. Introduction

It is well known [3, 4, 6] that the modular group PSL(2, Z), where Z is the ring
of integers, is generated by the linear-fractional transformations x : z −→ −1

z and
y : z −→ z−1

z and has the presentation 〈x, y : x2 = y3 = 1〉.
Let v = xyx, and u = y. Then (z)v = −1

z+1 and thus u3 = v3 = 1. So, the
group G(2, Z) = 〈u, v〉 is a proper subgroup of the modular group PSL(2, Z) and
the linear-fractional transformation t:z → 1

z inverts u and v, that is, t2 = (ut)2 =
(vt)2 = 1 and so extends the group G(2, Z) to G∗(2, Z) = 〈u, v, t : u3 = v3 = t2 =
(ut)2 = (vt)2 = 1〉.

As u and v have the same orders, there exists an automorphism which inter-
changes u and v yielding the split extension G∗(2, Z).

Let PL(Fq) denote the projective line over the Galois �eld Fq , where q is
a prime, that is, PL(Fq) = Fq ∪ {∞}. The group G∗(2, q) is then the group of
linear-fractional transformations of the form z → az+b

cz+d , where a, b, c, d ∈ Fq and
ad − bc 6= 0, while G(2, q) is its subgroup consisting of all those linear-fractional
transformations of the form z → az+b

cz+d , where a, b, c, d ∈ Fq and ad−bc is a non-zero
square in Fq.

We use coset diagrams for the group and study its action on PL(Fq). Our coset
diagrams consist of triangles; they are called coset diagrams because the vertices
of the triangles are identi�ed with cosets of the group. These diagrams are de�ned
for a particular group which has a presentation with three generators. The coset
diagrams de�ned for the actions of G∗ (2, Z) on PL(Fq) are special in a number of
ways [3]. First, they are de�ned for a particular group, namely, G∗ (2, Z), which
has a presentation in terms of three generators t, u and v. Since there are only three

2010 Mathematics Subject Classi�cation: 20F05; 20G40.
Keywords: Linear-fractional transformation, non-degenerate homomorphism, conjugacy
classe, parametrization, projective line.
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generators, it is possible to avoid using colors as well as the orientation of edges
associated with the involution t. For u, and v both have order 3, there is a need to
distinguish u from u2 and v from v2. The three cycles of the transformation u are
denoted by three (blue) unbroken edges of a triangle permuted anti-clockwise by
u and the three cycles of the transformation v are denoted by three (red) broken
edges of a triangle permuted anti-clockwise by v. The action of t is depicted by the
symmetry about vertical axis. Fixed points of u and v, if they exist, are denoted
by heavy dots. The method is well explained in [1, 2].

G. Higman proposed the problem of parametrization of actions of PGL(2, Z)
on PL(Fq). The problem was solved by Q. Mushtaq in [5]. In this paper, we take
up the problem and parametrize the actions of G∗(2, Z) on PL(Fq). We have shown
here that any non-degenerate homomorphism α from G(2, Z) into G(2, q) can be
extended to a non-degenerate homomorphism α from G∗(2, Z) into G∗(2, q). It
has been shown also that every element in G∗(2, q), not of order 1 or 3, is the
image of uv under α. It is also proved that the conjugacy classes of α : G∗(2, Z) →
G∗(2, q) are in one-to-one correspondence with the conjugacy classes of non-trivial
elements of G∗(2, q), under a correspondence which assigns to the homomorphism
α the class containing (uv)α.

2. Conjugacy classes

A homomorphism α : G∗(2, Z) → G∗(2, q) amounts to choosing u = uα, v = vα
and t = tα, in G∗(2, q) such that

u3 = v3 = t
2 = (ut)2 = (vt)2 = 1. (1)

We call α to be a non-degenerate homomorphism if neither of the generators
u, v of G∗(2, Z) lies in the kernel of α. Two homomorphisms α and β from G∗(2, Z)
to G∗(2, q) are called conjugate if there exists an inner automorphism ρ of G∗(2, q)
such that β = ρα. Let δ be the automorphism on G∗(2, Z) de�ned by uδ =
tut, vδ = v, and tδ = t. Then the homomorphism ά = δα is called the dual

homomorphism of α. This, of course, means that if α maps u, v, t to u,v, t, then
ά maps u, v, t to tut, v, t respectively. Since the elements u,v,t as well as tut, v,
t satisfying the above relations, therefore the solutions of these relations occur in
dual pairs. Of course, if α is conjugate to β then ά is conjugate to β́.

3. Parametrization

If the natural mapping GL(2, q) → G∗(2, q) maps a matrix M to the element of

g of G∗(2, q) then θ = (tr(M))2 / det(M) is an invariant of the conjugacy class of
g. We refer to it as the parameter of g or of the conjugacy class. Of course, every
element in Fq is the parameter of some conjugacy class in G∗(2, q). For instance,
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the class represented by a matrix with characteristic polynomial z2 − θz + θ if
θ 6= 0 or z2 − 1 if θ = 0.

If q is odd. There are two classes with parameter 0. Of course a matrix M
in GL(2, q) represents an involution in G∗(2, q) if and only if its trace is zero.
This means that the two classes with parameter 0 contain involutions. One of
the classes is contained in G(2, q) and the other not. In any case, there are two
classes with parameter 4; the class containing the identity element and the class
containing the element z → z + 1. Thus apart from these two exceptions, the
correspondence between classes and parameters is one-to-one.

If q is odd and g is not an involution, then g belongs to G(2, q) if and only if θ
is a square in Fq. On the other hand, g : z → az+b

cz+d , where a, b, c, d ∈ Fq, has a �xed
point k in the representation of G∗(2, q) on PL(Fq) if and only if the discriminant,
a2 + d2− 2ad + 4bc, of the quadratic equation k2c + k(d− a)− b = 0 is a square in
Fq. Since the determinant ad − bc is 1 and the trace a + d is r, the discriminant,
a2 + d2 − 2ad + 4bc = (a + d)2 − 4(ad − bc) = r2 − 4 = θ − 4. Thus, g has �xed
point in the representation of G∗(2, q) on PL(Fq) if and only if (θ− 4) is a square
in Fq.

If U and V are two non-singular 2×2 matrices corresponding to the generators
u and v of G∗(2, q) with det(UV ) = 1 and trace r, then for a positive integer k

(UV )k = {
(

k − 1
0

)
rk−1 −

(
k − 2

1

)
rk−3 + . . .}UV

−{
(

k − 2
0

)
rk−2 −

(
k − 3

1

)
rk−4 + . . .}I. (2)

Furthermore, suppose

f(r) =
(

k − 1
0

)
rk−1 −

(
k − 2

1

)
rk−3 + . . . (3)

The replacement of θ for r2 in f(r) yields a polynomial f(θ) in θ. Thus, one
can �nd a minimal polynomial for positive integer k such that q ≡ ±1(mod k) by
the equation:

gk(θ) =
fk(θ)

gd1(θ)gd2(θ)...gdn
(θ)

(4)

where d1, d2, . . . dn, are the divisors of k such that 1 < di < k, i = 1, 2, ..., n and
fk(θ) is obtained by the equation (3).

The degree of the minimal polynomial is obtained as:

deg[gk(θ)] = deg[fk(θ)]−
∑

deg[gdi
(θ)] (5)

where deg[fk(θ)] =
{

k−1
2 , if k is odd

k
2 , if k is even

}
. Also, deg[g2n(θ)] = 2n

2 − 2n−1

2 , and

deg[gpn(θ)] = pn

2 − pn−1

2 , if p is an odd prime. Thus:
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k Minimal equation satis�ed by θ

1 θ − 4 = 0

2 θ = 0

3 θ − 1 = 0

4 θ − 2 = 0

5 θ2 − 3θ + 1 = 0

6 θ − 3 = 0

7 θ3 − 5θ2 + 6θ − 1 = 0

8 θ2 − 4θ + 2 = 0

9 θ3 − 6θ2 + 9θ − 1 = 0

10 θ2 − 5θ + 5 = 0

Table 1.

and so on.

Let U =
[

a b
c d

]
be an element of GL(2, q) corresponding to u. Then, since

u3 = 1, U3 is a scalar matrix, and hence the det(U) is a square in Fq. Thus,
replacing U by a suitable scalar multiple, we assume that det(U) = 1.

Since, for any matrix M, M3 = λI if and only if (tr(M))2 = det(M), we may

assume that tr(U) = a + d = −1 and det(U) = 1. Thus U =
[

a b
c −a− 1

]
.

Similarly, V =
[

e f
g −e− 1

]
. Since u3 = 1 also implies that the tr(u) = −1,

every element of GL(2, q) of trace equal to −1 has up to scalar multiplication, a

conjugate of the form

[
0 −1
1 −1

]
. Therefore U will be of the form

[
0 −1
1 −1

]
.

Now let t be represented by T =
[

l m
n j

]
. Since t

2 = 1, the trace of T is

zero. So, up to scalar multiplication, the matrix representing t will be of the form[
0 −k
1 0

]
. Because (ut)2 = (vt)2 = 1, the tr(ut) = tr(vt) = 0 and so b = kc and

f = gk.
Thus the matrices corresponding to generators u, v and t of G∗(2, q) will be:

U =
[

a kc
c −a− 1

]
, V =

[
e gk
g −e− 1

]
, and T =

[
0 −k
1 0

]
respectively,

where a, c, e, g, k ∈ Fq. Then,

1 + a + a2 + kc2 = 0 (6)

and
1 + e + e2 + kg2 = 0 (7)

because the determinants of U and V are 1.
This certainly evolves elements satisfying the relations U3 = V 3 = λI, where

λ is a scalar and I is the identity matrix. The non-degenerate homomorphism
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α is determined by u, v because one-to-one correspondence assigns to α the class
containing u v. So it is su�cient to check on the conjugacy class of u v. The matrix
UV has the trace

r = a(2e + 1) + 2kgc + (e + 1) (8)

If tr(UV T ) = ks, then
s = 2ag − c(2e + 1) + g (9)

So the relationship between (8) and (9) is

r2 + ks2 = r + 2. (10)

We set
θ = r2 (11)

4. Main results

Lemma 4.1. Either uv is of order 3 or there exists an involution t in G∗(2, q)
such that t

2 = (ut)2 = (vt)2 = 1.

Proof. Let tr(UV ) = r = gk−g + e+1. Then, gk−g = r− e−1. Also det(UV ) =
−g2k − e2 − e = −(g2k + e2 + e) = 1. Because, t

2 = (ut)2 = (vt)2 = 1, m = n− l
and so

(2e− g + 1)l + (gk + g)n = 0 (12)

Now for T to be a non-singular matrix, we should have det(T ) 6= 0, that is

nl − l2 − n2 6= 0. (13)

Thus the necessary and su�cient conditions for the existence of t in G∗(2, q) are
the equations (12), and (13). Hence t exists in G∗(2, q) unless nl− l2−n2 = 0. Of
course, if both 2e−g+1 and gk+g are equal to zero, then the existence of t is trivial.
If not, then l/n = −(gk + g)/(2e − g + 1), and so equation (13) is equivalent to
(gk+g)2+(2e−g+1)2+(2e−g+1)(gk+g) 6= 0. Thus there exists t in G∗(2, q) such
that t

2 = (ut)2 = (vt)2 = 1 unless (gk+g)2+(2e−g+1)(gk+g) = −(2e−g+1)2. But
if (gk+g)2+ (2e−g+1)(gk+g) = −(2e−g+1)2, then, g2k2+g2+2g2k +2egk+2eg
−g2k−g2+gk+g = −(4e2+g2+1+4e−2g−4eg) = −{4e2+4e+1+g2−2g−4eg} =
−{−4g2k − 3 + g2 − 2g − 4eg}. So, after simpli�cation

(gk − g)2 + (gk − g) + 2e(gk − g)− g2k = 3 (14)

Since gk − g = r − e− 1, equation (14) can be further simpli�ed as

r2 − 2 = r (15)

Square both sides of equation (15), and substitute r2 = θ in the equation
θ2 − 5θ + 4 = 0 giving θ = 1, 4.

By Table 1, θ = 1 implies that the order of u v is 3 and θ = 4 implies that the
order of u v is 1.
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It can happen that both u v is of order 3 and the pair (u, v) is invertible if u

v = v u. For example, if U =
[

2 2
2 −3

]
, V =

[
2 2
2 −3

]
, and T =

[
0 −1
1 0

]
.

In fact, because of the following result this is the only case in which t exists and
u v is of order 3.

Lemma 4.2. One and only one of the following holds:

(i) The pair (u, v) is invertible.

(ii) u v has order 3 and u v 6= v u.

In what follows we shall �nd a relationship between the parameters of the dual
homomorphisms. We �rst prove the following.

Lemma 4.3. Any non trivial element g of G∗(2, q) whose order is not equal to 2
or 6 is the image of uv under some non-degenerate homomorphism α of G∗(2, Z)
into G∗(2, q).

Proof. Using Lemma4.1, we show that every non-trivial element of G∗(2, q) is a
product of two elements of orders 3. So we �nd elements u, v and, t of G∗(2, q)
satisfying the equation (1) with u v in a given conjugacy class.

The class to which we want u v to belong do not consist of involutions because
g = u v is not of order 2. Thus the traces of the matrices UV and UV T are not
equal to zero. Hence r 6= 0, and s 6= 0, so that we have θ = r2 6= 0; and it is
su�cient to show that we can choose a, c, e, g, k, in Fq so that r2 is indeed equal
to θ. The solution of θ is therefore arbitrarily in Fq. We can choose r to satisfy
θ = r2, equation (10), yields ks2 = 2+ r− r2. If r2 6= 2+ r, we select k as above.

Any quadratic polynomial λz2 + µz + ν, with coe�cients in Fq takes at least
(q+1)/2 distinct values, as z runs through Fq; since the equation λz2 +µz+ν = k
has at most two roots for �xed k; and there are q elements in Fq, where q is odd.
In particular, e2 + e and −kg2 − 1 each take at least (q + 1)/2 distinct values as
e and g run through Fq. Hence we can �nd e and g so that e2 + e = −kg2 − 1
(equation 7).

Finally by substituting the values of r, s, e, g, k in equations (8) and (9) we
obtain the values of a and c.

It is clear from (10) and (11) that θ = 0 when r = 0 and θ = 1 or 4 when
s = 0. The possibility that θ = 0 gives rise to the situation where uv is of order 2.
Similarly, the possibility θ = 1 leads to the situation where u v is of order 3, and
similarly θ = 4 yields u v of order 1.

Lemma 4.4. Any two non-degenerate homomorphisms α, β of G∗(2, Z) into

G∗(2, q) are conjugate if (uv)α = (uv)β.

Proof. Let α: G∗(2, Z) → G∗(2, q) be such that u v has parameter θ constructed
as in the proof of lemma 4.3. We also suppose that β:G∗(2, Z) → G∗(2, q) has the
same parameter θ.
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First, since there are just two classes of elements of order 2 in G∗(2, Z), one
in G∗(2, Z) and the other not, we can pass to a conjugate of β in which tβ is

represented by

[
0 −k′

1 0

]
for some k′ 6= 0 in Fq. Then because uβ and vβ are

both of orders 3, uβ must be represented by a matrix

[
a′ k′c′

c′ −a′ − 1

]
and vβ

must be represented by a matrix

[
e′ k′g′

g′ −e′ − 1

]
, with a′, c′, e′, g′, k′ satisfying

the equations from (6) to (9). Then θ = r′2 = r2 and (2 + r) − θ = k′s′2 = ks2.
Here since θ and (2 + r)− θ are non-zero, so it follows that k′/k is a square in Fq.

Now vα and vβ are both of orders 3 and so are conjugate in G∗(2, q). So we
can pass to a conjugate of β (which we still call β) with vα = vβ. As tα and tβ
are involutions which invert vα, and so belong to N(〈vα〉) there are two classes of

such involutions, one in G∗(2, q) and the other not. Because tα is

[
0 −k
1 0

]
and

tβ is conjugate to

[
0 −k′

1 0

]
and k′/k is a square, tα and tβ either both belong

to G∗(2, q) or neither. Hence they are conjugate in N(〈vα〉). That is, passing to a
new conjugate (still called β) we can assume vα = vβ, tα = tβ. This means that
in the notations above, we can assume k′ = k , g = g′ and e = e′. We can also,
by multiplying the matrix representing uβ by a scalar, assume r = r′ and s = s′.
Then the equations from (6) to (9) with a, c, e, g, k and then with a′, c′, e′, g′, k′

and ensure that a = a′and c = c′. That is α = β.

Theorem 4.5. The conjugacy classes of non-degenerate homomorphisms of G∗(2, Z)
into G∗(2, q) are in one-to-one correspondence with the non-trivial conjugacy classes

of elements of G∗(2, q) under a correspondence which assigns to any non-degenerate

homomorphism α the class containing (uv)α.

Proof. Let α : G∗(2, Z) → G∗(2, q) be such that it maps u, v to u,v. Let θ be the
parameter of the class represented by u v. Now α is determined by u,v and each
θ evolves a pair u,v, so that α is associated with θ. We shall call the parameter θ
of the class containing u v, the parameter of G∗(2, Z) → G∗(2, q). Now

UT =
[

ck −ak
−a− 1 −ck

]
implies that det(UT ) = −k(a2 + a + kc2) = k (equation 6). Also,

(UT )V =
[

kec− akg k2gc + ak(e + 1)
−ae− e− kgc −akg − kg + ck(e + 1)

]
implies that the tr((UT )V ) = 2kec−2akg−kg+kc = −1(2akg−2kec+kg−kc) =
−ks. If u, v, t satisfy equation (1), then so do tut, v, t. So that the solution of
equation (1) occur in dual pairs. Hence replacing the solutions in lemma-4.3 by
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tut, v, t, we obtain θ = [tr((UT )V ]
det(UT )

2
= k2s2

k = ks2. We then �nd a relationship

between the parameters of the dual non-degenerate homomorphisms.

There is an interesting relationship between the parameters of the dual non-
degenerate homomorphisms.

Corollary 4.6. If α : G∗(2, Z) → G∗(2, q) is a non-degenerate homomorphism,

α
′
is its dual and θ, ϕ are their respective parameters then θ + ϕ = r + 2.

Proof. Let α : G∗(2, Z) → G∗(2, q) satisfy the relations uα = u, vα = v and tα =

t. Let α′ be the dual of α. As, we choose the matrices U =
[

a ck
a −a− 1

]
,

V =
[

e g k
g −e− 1

]
and T =

[
0 −k
1 0

]
, representing u, v and t, respectively

such that they satisfy the equations from (6) to (10). Now, (u v)2 = 1 implies
that tr(UV ) = 0. Also, we have {tr(UV T )}/k = s = 0 if and only if (u vt)2 = 1.
Now det(UV ) = 1, thus giving the parameter of u v equal to r2 = θ, say. Also
since tr(UV T ) = ks and det(UV T ) = k (since det(U) = 1, det(V ) = 1 and
det(T ) = k), we obtain the parameter of u vt equal to ks2, which we denote by ϕ.
Thus θ+ϕ = r2 +ks2. Substituting the values from equation (10), we thus obtain
θ + ϕ = r + 2. Hence if θ is the parameter of the non-degenerate homomorphism
α, then ϕ = r + 2− θ is the parameter of the dual α′ of α.

Theorem 4.5, of course, means that we can actually parametrize the non-
degenerate homomorphisms of G∗(2, Z) to G∗(2, q) except for a few uninteresting
ones, by the elements of Fq. Since G∗(2, q) has a natural permutation represen-
tation on PL(Fq), any homomorphism α : G∗(2, Z) → G∗(2, q) gives rise to an
action of G∗(2, Z) on PL(Fq).
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A Zariski topology for k-semirings

Shahabaddin Ebrahimi Atani and Reza Ebrahimi Atani

Abstract. The prime k-spectrum Speck(R) of a k-semiring R will be introduced. It will be
proven that it is a topological space, and some properties of this space will be investigated.
Connections between the topological properties of Speck(R) and possible algebraic properties of
the k-semiring R will be established.

1. Introduction

Semirings which are regarded as a generalization of rings have been found useful in
solving problems in di�erent disciplines of applied mathematics and information
sciences because semirings provides an algebraic framework for modeling. Ideals
of semirings play a central role in the structure theory and are useful for many
purposes. However, they do not in general coincide with the usual ring ideals and,
for this reason; their use is somewhat limited in trying to obtain analogues of ring
theorems for semirings. Indeed, many results in rings apparently have no analogues
in semirings using only ideals. Let R be a commutative ring with identity. The
prime spectrum Spec(R) and the topological space obtained by introducing Zariski
topology on the set of prime ideals of R play an important role in the �elds of
commutative algebra, algebraic geometry and lattice theory. Also, recently the
notion of prime submodules and Zariski topology on Spec(M), the set of all prime
submodules of a module M over R, are studied by many authors (for example see
[11]). In this paper, we concentrate on Zariski topology of semirings and generalize
the some well known results of Zariski topology on the sets of prime ideals of a
commutative ring to prime ideals of a commutative semiring and investigate the
basic properties of this topology. For example, we prove that if R is a k-semiring,
then Speck(R) is a T0-space and it is a compact space.

Throughout this paper R is a commutative semiring with identity. For the
de�nitions of monoid, semirings, semimodules and subsemimodules we refer [1,
6, 8, 10, 11]. All semiring in this paper are commutative with non-zero identity.
Allen [1] has presented the notion of Q-ideal I in the semiring R and constructed
the quotient semiring R/I (also see [3, 5, 7]). Let R be a semiring. A subtractive

ideal (= k-ideal) I is a ideal of R such that if x, x + y ∈ I, then y ∈ I (so {0R}
is a k-ideal of R). A prime ideal of R is a proper ideal P of R in which x ∈ P or
y ∈ P whenever xy ∈ P . So P is prime if and only if whenever IJ ⊆ P for some

2010 Mathematics Subject Classi�cation: 16Y60
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ideals I, J of R implies that I ⊆ P or J ⊆ P . Furthermore, the collection of all
prime k-ideals of R is called the spectrum of R and denoted by Speck(R). An ideal
I of R is said to be semiprime if I is an intersection of prime k-ideals of R. If I
is a proper ideal of R, then the radical rad(I) of I (in R) is the intersection of all
prime k-ideals of R containing I (see [4]). Note that I ⊆ rad(I) and that rad(I)
is a semiprime k-ideal of R. An ideal I of R is called extraordinary if whenever
A and B are semiprime k-ideals of R with A ∩ B ⊆ I, then A ⊆ I or B ⊆ I. A
semiring is called a partitioning semiring, if every proper principal ideal of R is a
partitioning ideal (= a Q-ideal) (see [7]). A non-zero element a of a semiring R
with identity is said to be a semiunit in R if 1 + ra = sa for some r, s ∈ R.

Lemma 1.1. Let R be a semiring. If {Ii}i∈Λ is a collection of k-ideals of R, then∑
i∈Λ Ii and

⋂
i∈Λ Ii are k-ideals of R.

2. Properties of top semirings

Let R be a semiring with 1 6= 0. Then R has at least one maximal k-ideal and if
I is a proper Q-ideal of R, then I ⊆ P for some maximal k-ideal P of R (see [5]).
Now by [3], R/P is a semi�eld and hence it is a semidomain. Thus P is prime and
Speck(R) 6= ∅ (see [3]). Then we have the following

Lemma 2.1. If P is a maximal Q-ideal of a semiring R, then P is a prime k-ideal
of R. In particular, Speck(R) 6= ∅.

Let R be a semiring R with non-zero identity. For any k-ideal I of R by V (I)
we mean the set of all prime k-ideals of R containing I. Clearly, V (R) = ∅ and
V ({0}) = Spec(R).

De�nition 2.2. A semiring is called a k-semiring, if every ideal of R is a k-ideal.

Example 2.3. Assume that E+ be the set of all non-negative integers and let
R = E+ ∪ {∞}. De�ne a + b = max{a, b} and ab = min{a, b} for all a, b ∈ R.
Then R is a commutative semiring with 1R = ∞ and 0R = 0. An inspection will
show that the list of ideals of R are: R, E+ and for every non-negative integer n

In = {0, 1, . . . , n}.

It is clear that every ideal of R is a k-ideal; so R is a k-semiring. Moreover, every
proper ideal of R is a prime k-ideal; so Spec(R) = {E+, I0, . . .}.

Lemma 2.4. Let R be a k-semiring. Then the following statements hold:

(i) If S is a subset of R, then V (S) = V (〈S〉).

(ii) V (I) ∪ V (J) = V (IJ) = V (I ∩ J) for every k-ideals I and J of R.

(iii) If I is a k-ideal of R, then V (I) = V (rad(I)).
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(iv) If V (I) ⊆ V (J), then J ⊆ rad(I) for every deals I, J of R.

(v) V (I)=V (J) if and only if rad(I)=rad(J) for every ideals I, J of R.

(vi) If {Ii}i∈Λ is a family of ideals of R, then V (
∑

i∈Λ Ii) =
⋂

i∈Λ V (Ii).

Proof. (i) and (iv) are obvious.
(ii) It is clear that V (I) ∪ V (J) ⊆ V (I ∩ J) ⊆ V (IJ). Let P ∈ V (IJ). Then
IJ ⊆ P , and hence I ⊆ P or J ⊆ P . Thus P ∈ V (I) or P ∈ V (J), i.e.,
P ∈ V (I) ∪ V (J). Hence V (IJ) ⊆ V (I) ∪ V (J).

(iii) Since I ⊆ rad(I), we have V (rad(I)) ⊆ V (I). For the reverse inclusion,
assume that P ∈ V (I). Then I ⊆ P . Hence rad(I) ⊆ P , and so we have the
equality.

(v) Let V (I) = V (J). By (iii), we have V (I) ⊆ V (rad(J); hence rad(J) ⊆ rad(I)
by (iv). Similarly, rad(I) ⊆ rad(J), and so we have the equality. The other
implication is similar.

(vi) Let P ∈
⋂

i∈Λ V (Ii). Then Ii ⊆ P for every i ∈ Λ, so
∑

i∈Λ Ii ⊆ P , which
implies that

⋂
i∈Λ V (Ii) ⊆ V (

∑
i∈Λ Ii). The reverse inclusion is similar.

Let R be a k-semiring. If ζ(R) denotes the collection of all subsets V (I) of
Speck(R), then ζ(R) contains the empty set and Spec(R) = X and is closed under
arbitrary intersection by Lemma 2.4 (vi). If also ζ(R) is closed under �nite union,
that is, for every ideals I and J of R such that V (I)∪V (J) = V (L) for some ideal
L of R, for in this case ζ(R) satis�es the axioms of closed subsetes of a topological
spaces, which is called Zariski topology. The following de�nition is the same as
that introduced by MacCasland, Moore, and Smith in [11].

De�nition 2.5. Let R be a k-semiring. An R-semimodule M equipped with
Zariski topology is called top semimodule. A k-semiring R which is a top semi-
module as an R-semimodule is called a top semiring.

Proposition 2.6. Every k-semiring with a non-zero identity is a top semiring.

Proof. Apply Lemma 2.4.

Theorem 2.7. Every ideal of a k-semiring with a non-zero identity is extraordi-

nary.

Proof. Note that Speck(R) 6= ∅ by Lemma 2.1. Let P be any ideal of R and
let I and J be semiprime ideals of R such that I ∩ J ⊆ P . By Proposition 2.6,
there exists an ideal U of R such that V (I) ∪ V (J) = V (U). Since I =

⋂
i∈Λ Pi,

where Pi are prime k-ideals of R (i ∈ Λ), for each i ∈ Λ, Pi ∈ V (I) ⊆ V (U), so
that U ⊆ Pi. Thus U ⊆ I. Similarly, U ⊆ J . Thus U ⊆ I ∩ J . Now we have
V (I)∪V (J) ⊆ V (I ∩ J) ⊆ V (U) = V (I)∪V (J), that is, V (I)∪V (J) = V (I ∩ J).
Hence P ∈ V (I ∩ J) gives I ⊆ P or J ⊆ P .
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De�nition 2.8. A semiring is called a strong partitioning semiring, if every proper
�nitely generated ideal of R is a partitioning ideal (= a Q-ideal).

Proposition 2.9. Assume that R is a strong partitioning semiring and let I be

the proper ideal of R generated by a family {at}t∈Λ of elements R. Then I is a

Q-ideal of R.

Proof. Since R =
⋃
{q +Rat : q ∈ Q} for some t ∈ Λ, we must have R =

⋃
{q + I :

q ∈ Q}. Let X ∈ (q1 + I) ∩ (q2 + I) 6= ∅. Then X = q1 + ri1ai1 + . . . + rinain =
q2 + sj1aj1 + . . . + sjm

ajm
for some ajk

, ait
∈ I and rit

, sjk
∈ R (1 6 t 6 n, 1 6

k 6 m). Let J be the ideal of R generated by ri1ai1 , ..., rin
ain

, sj1aj1 , . . . , sjm
ajm

.
By assumption, J is a Q-ideal of R and X ∈ (q1 + J) ∩ (q2 + J); hence q1 = q2.
Thus I is a Q-ideal of R.

Remark 2.10. Let X = Speck(R). For each subset S of R, by XS we mean
X − V (S) = {P ∈ X : S * P}. If S = {f}, then by Xf we denote the set
{P ∈ X : f /∈ P}. Clearly, the sets Xf are open, and they are called basic open

sets.

Theorem 2.11. Let R be a strong partitioning semiring and X =
⋃

i∈Λ Xai . If I
is the ideal of R generated by {ai}i∈Λ, then I = R.

Proof. Suppose not. Since I is a proper Q-ideal of R by Proposition 2.9, we have
I ⊆ P for some maximal k-ideal P of R. By assumption, P /∈ Xai

for every i ∈ Λ,
which is a contradiction.

Theorem 2.12. Let R be a strong partitioning semiring. Then the following

statements hold:

(i) Xf ∩Xe = Xfe for all f, e ∈ R.

(ii) Xf = ∅ if and only if f is nilpotent.

(iii) Xf = X if and only if f is a semiunit in R.

Proof. (i) If P ∈ Xf ∩Xe, then e, f /∈ P , so ef /∈ P , which implies that P ∈ Xfe.
Thus Xf ∩Xe ⊆ Xef . The other inclusion is similar.

(ii) Assume that an element f is nilpotent and let P be any element of X. Then
fs = 0 ∈ P for some positive integer s. Thus P prime k-ideal gives f ∈ P ; hence
P /∈ Xf for every P ∈ X. Thus Xf = ∅. Conversely, assume that Xf = ∅. Then
for each P ∈ X, we have f ∈ P ; whence f ∈

⋂
P∈X P = rad(0) (see [4]). Thus f

is nilpotent.

(iii) Let f be a semiunit. Since the inclusion Xf ⊆ X is trivial, we will prove the
reverse inclusion. Let P be any element of X. If Rf ⊆ P , then R = P by [5],
which is a contradiction. Thus f /∈ P ; hence P ∈ Xf , and so we have equality.
Conversely, assume that X = Xf . Then for any P ∈ X, we must have f /∈ P . If
f is not a semiunit in R, then Rf is a Q-ideal of R and hence it is contained in
a maximal k-ideal of R which is a prime k-ideal by Lemma 2.1, a contradiction.
Thus f is semiunit.
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Theorem 2.13. Let R be a k-semiring. Then the set A = {Xf : f ∈ R} forms a

base for the Zariski topology on X.

Proof. Suppose that U is an open set in X. Then U = X − V (I) for some k-
ideal I of R. Let I = 〈{fi : i ∈ Λ}〉, where {fi : i ∈ Λ} is a generator set of
I. Then V (I) = V (

∑
i∈Λ Rfi) =

⋂
i∈λ V (Rfi) by Lemma 2.4(vi). It follows that

U = X − V (I) = X −
⋂

i∈Λ V (Rfi) =
⋃

i∈Λ Xfi
. Thus A is a base for the Zariski

topology on X.

Proposition 2.14. Let I be an ideal of a k-semiring R. Then

(i) XI =
⋃

a∈I Xa. Moreover, if I = 〈a1, a2, . . . , an〉, then XI =
⋃n

i=1 Xai
.

(ii) Let {ai}i∈Λ be the collection of elements of R and a ∈ R. Then Xa ⊆⋃
i∈Λ Xai if and only if there are elements ai1 , . . . , ain ∈ {ai}i∈Λ such that

a ∈ rad(〈ai1 , . . . , ain〉).

Proof. (i) Assume that a ∈ I and let P ∈ Xa. Then a /∈ P which implies P ∈ XI .
Thus

⋃
a∈I Xa ⊆ XI . For the reverse inclusion, assume that P ∈ XI . Then

P ∈ Xb for some b ∈ I − P , and so we have the equality. Finally, since the
inclusion

⋃n
i=1 Xai

⊆ XI is clear, we will prove the reverse inclusion. Let P ∈ XI .
Then there exist a ∈ I − P and ri ∈ R (1 6 i 6 n) such that P ∈ Xa and
a =

∑n
i=1 riai. It follows that there exists a positive integer j (1 6 j 6 n) such

that aj /∈ P ; hence P ∈ Xaj
, as needed.

(ii) Let a ∈ rad(〈ai1 , . . . , ain
〉). Then there exists a positive integer m and ri ∈ R

(1 6 i 6 n) such that am =
∑n

j=1 rjaij . Now, let P ∈ Xa. So a /∈ P gives am /∈ P ;
hence P ∈ Xaik

for some k. Thus Xa ⊆
⋃

i∈Λ Xai .
Conversely, assume that Xa ⊆

⋃
i∈Λ Xai

and let I be the ideal of R gen-
erated by {ai : i ∈ Λ}. It is clear that if P ∈ X and P /∈

⋃
i∈Λ Xai

, then
ai ∈ P implies that a ∈ P . Therefore we have V (I) ⊆ V (〈a〉). It follows that
a ∈

⋂
P∈V (<a>) P ⊆

⋂
P∈V (I) P = rad(I). So, there exist i1, i2, . . . , is ∈ Λ and

t1, t2, . . . , ts ∈ R such that am = t1ai1 + . . . + tsais for some positive integer m;
thus a ∈ rad(〈ai1 , . . . , ain

〉).

Theorem 2.15. Let R be a k-semiring. For every a ∈ R, the set Xa is compact.

Speci�cally the whole space X1 = X is compact.

Proof. By Theorem 2.13, it su�ces to show that every cover of basic open sets has
a �nite subcover. Suppose that Xa ⊆

⋃
i∈Λ Xai

. By Proposition 2.14 (ii), there are
ai1 , . . . , ain

∈ R such that a ∈ rad(〈ai1 , . . . , ain
〉). Since V (rad(〈ai1 , . . . , ain

〉)) =
V (〈ai1 , . . . , ain

〉) by Lemma 2.4 (iii), we must have Xa ⊆
⋃n

i=1 Xai
by Proposition

2.14 (i). This completes the proof.

From Theorem 2.13 and Theorem 2.15 the next result is immediate.

Corollary 2.16. Let R be a k-semiring. Then an open set of X is compact if and

only if it is a �nite union of basic open sets.
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Let R be a k-semiring. The topological space X = Speck(R) is said to be a
T0-space if for every P, P ′ ∈ X, P 6= P ′ there is either a neighborhood Xa of P
such that Xa ∩ P ′ = ∅ or a neighborhood Xb of P ′ such that Xb ∩ P = ∅.

Theorem 2.17. Let R be a k-semiring. Then the topological space X = Speck(R)
is a T0-space.

Proof. Let P, P ′ ∈ X with P 6= P ′. We note that the set Xa is a neighborhood of
P if and only if a /∈ P . Assume that P ′ ∈ Xa for all a /∈ P . Then we conclude that
a ∈ P ′ implies that a ∈ P ; hence P ′ ⊂ P . Now let b ∈ P − P ′. Then b /∈ P ′ gives
Xb is a neighborhood of P ′, but b ∈ P , so P /∈ Xb. This completes the proof.

Quotient semimodules over a semiring R have already been introduced and
studied by present authors in [6]. Chaudhari and Bonde extended the de�nition of
QM -subsemimodule of a semimodule and some results given in the Section 2 in [6]
to a more general quotient semimodules case in [8] (for the structure of quotient
semimodules we refer [8]).

Convention. For each QR-subsemimodule I of the R-semimodule R, we mean I
is a QR-ideal of R. Now If I is a QR-ideal of a semiring R, then R/I is a quotient
semimodule of R by I. Now we give an example of semimodules over a semiring
that are top semimodules.

Lemma 2.18. Let I be a QR-ideal (or a QR-subsemimodule) of a semiring R. If

J is a k-ideal of R containing I, then (J :R R) = (J/I :R R/I).

Proof. Let r ∈ (J : R). If q + I ∈ R/I, then there exists a unique element q′ of
QR such that r(q + I) = q′ + I, where rq + I ⊆ q′ + I; so q′ ∈ J ∩QR since rq ∈ J
and J is a k-ideal. Thus (J : R) ⊆ (J/I : R/I).

Conversely, assume that a ∈ (J/I : R/I) and s ∈ R. Then s = q1 + t for some
q1 ∈ QR and t ∈ I; so there is a unique element q2 of QR with a(q1 + I) = q2 + I ∈
J/I, where aq1 + I ⊆ q2 + I. Thus J k-ideal gives aq1 ∈ J . As as = aq1 + at ∈ J ,
we have a ∈ (J : R).

Proposition 2.19. Let I be a QR-ideal of a semiring R. Then there is a one-

to-one correspondence between prime k-subsemimodules of R-semimodule R/I and

prime k-ideals of R containing I.

Proof. Let J be a prime k-ideal of R containing I. Then it follows from [3] that
J/I is a proper k-subsemimodule of R/I. Let a(q1 + I) = q2 + I ∈ J/I, where
q2 ∈ QR ∩ J and aq1 + I ⊆ q2 + I, so aq1 ∈ J since J is a k-ideal of R. But J
is prime, hence either q1 ∈ J (so q1 + I ∈ J/I) or a ∈ (J : R) = (J/I : R/I) by
Lemma 2.18. Thus, J/I is a prime k-subsemimodule of R/I.

Conversely, assume that J/I is a prime k-subsemimodule of R/I. To show
that J is a prime k-ideal of R, suppose that rx ∈ J , where r, x ∈ R. We may
assume that r 6= 0. There are elements q ∈ QR and n ∈ I such that x = q + n,
so rx = rq + rn ∈ J ; hence rq ∈ J since J is a k-ideal. Therefore, there exists a
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unique element q′ ∈ QR such that r(q + I) = q′ + I, where rq + I ⊆ q′ + I; hence
q′ ∈ J . Thus r(q + I) ∈ J/I. Then J/I prime gives either q + I ∈ J/I (so x ∈ J)
or r ∈ (J/I : R/I) = (J : R), and the proof is complete.

Corollary 2.20. Let I be a QR-ideal of a semiring R. Then there is a one-to-

one correspondence between semiprime k-subsemimodules of R/I and semiprime

k-ideals of R containing I.

Proof. Apply Theorem 2.19 (note that (
⋂

i∈J Pi)/I =
⋂

i∈J(Pi/I), where Pi is a
prime k-ideal for all i ∈ J).

Theorem 2.21. Let I be an QR-ideal of a semiring R with a non-zero ideantity.

Then the following statements hold:

(i) Every k-subsemimodule of R/I is extraordinary.

(ii) R/I is a top R-semimodule.

Proof. (i) Wemay assume that Spec(R/I) 6= ∅. Then any semiprime k-subsemimo-
dule of R/I has the form A/I where A is a semiprime k-ideal of R containing I
by Corollary 2.20. Let B/I be any k-subsemimodule of R/I and let U/I and L/I
be semiprime k-subsemimodules of R/I such that (L/I) ∩ (U/I() ⊆ B/N . Then
(L ∩ U)/I ⊆ (L/I) ∩ (U/I) ⊆ B/I, so U ∩ L ⊆ B; hence either U ⊆ B or L ⊆ B
since T is extraordinary by Theorem 2.7. Thus either U/I ⊆ B/I or L/I ⊆ B/I,
as needed.

(ii) First we show that V (U/I) ∪ V (L/I) = V (U/I ∩ L/I) for any semiprime
subsemimodules U/I and L/I of R/I.

Clearly V (U/I) ∪ V (L/I) ⊆ V (U/I ∩ L/I). Let P/I ∈ V (U/I ∩ L/I), where
P is a semiprime by Corollary 2.20. Then U ∩ L ⊆ P and hence L ⊆ P or
U ⊆ P (see Theorem 2.7), i.e., P/I ∈ V (U/I) or P/I ∈ V (L/I). This proves that
V (U/I ∩ L/I) ⊆ V (U/I) ∪ V (L/I) ans hence V (U/I) ∪ V (L/I) = V (U/I ∩ L/I).
Next, let A/I and B/I be any subsemimodules of R/I. If V (A/I) is empty then
V (A/I) ∪ V (B/I) = V (B/I). Suppose that V (A/I) and V (B/I) are both non-
empty. Then V (A/I) ∩ V (B/I) = V (rad(A/I)) ∩ V (rad(B/I)) = V (rad(A/I) ∩
rad(B/I)). This proves (ii).

Example 2.22. Let R be the k-semiring as described in Example 2.3. Then
Spec(R) is compact and it is a T0-space by Theorems 2.15 and 2.17.
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Some enumerational results relating

the numbers of latin and frequency squares

of order n

Francis N. Castro, Gary L. Mullen and Ivelisse Rubio

Abstract We discuss some enumerational results relating the numbers of F (n; λ1, ..., λm) and
F (n; λ′

1, ..., λ′
k) frequency squares of order n. In particular, for any frequency vector (λ1, ..., λm)

of n, we discuss some enumerational results relating the number of F (n; λ1, ..., λm) frequency
squares and the number of latin squares of order n. In Section 4 we also discuss some enumera-
tional results for latin rectangles.

1. Introduction

A latin square of order n is an n×n array in which each of the numbers 1, 2, . . . , n
appears exactly once in each row and each column. By an F (n;λ1, . . . , λm) fre-
quency square is meant an n × n array in which each of the numbers i with
1 6 i 6 m appears exactly λi times in each row and each column. Thus we
have n = λ1 + · · ·+ λm and an F (n; 1, . . . , 1) frequency square is a latin square of
order n.

Let F(n;λ1, . . . , λm) denote the total number of distinct F (n;λ1, . . . , λm) fre-
quency squares and let f(n;λ1, . . . , λm) represent the number of reduced squares
where a frequency square as above is reduced if the �rst row and �rst column are
both in standard order with λ1 1's, λ2 2's, and continuing, λm m's.

It is known from [1] that

Theorem 1.1. For any frequency vector (λ1, . . . , λm) of n

F(n;λ1, . . . , λm) =
(

n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

)
f(n;λ1, . . . , λm). �

See [9] for some enumerational and classi�cation results concerning latin squares.
Let Ln denote the total number of latin squares of order n and let ln denote the
number of reduced latin squares of order n. It is known ([2], page 142) and easy
to prove that

Corollary 1.2. For n > 2, Ln = n!(n− 1)!ln.

2010 Mathematics Subject Classi�cation: 05B15.
Keywords: Latin square, frequency square, latin rectangle.
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In this paper we prove several results relating the total number Ln of distinct
latin squares of order n and the number of frequency squares with a �xed frequency
vector. We also prove results relating the numbers of frequency squares of order
n with two di�erent frequency vectors.

It is known (see for example [8], Thm. 7.1) that a latin square of order n is
equivalent to a 1-factorization of Kn,n, a bipartite graph in which each vertex of
U is joined to each vertex of W , where U,W represent the rows and columns of a
latin square of order n so that both U and W contain exactly n elements. If the
symbol in position (i, j) is k, then we color the edge from i to j with color k. See
page 107 of [8] for more details.

Now let ~Kn (see page 111 of [8]) be the complete directed graph with loops
on n vertices. Then in Cor. 7.10 of [8] it is shown that the number of latin
squares of order n with �rst row in standard order is the same as the number of
1-factorizations of ~Kn. Also see [5] for connections between enumerating certain
frequency squares and 1-factorizations of certain graphs.

Thus one can certainly show that counting latin squares can be done by count-
ing 1-factorizations of an appropriate graph. In our paper we are not just counting
or enumerating frequency squares, rather we are showing how to enumerate fre-
quency squares with one frequency vector relative to the number of frequency
squares with a di�erent frequency vector. This is the main point of the current
paper.

In [10] Wanless considers k-plexes for latin squares. Such objects are generaliza-
tions of transversals in latin squares. Many of our results could be stated using the
terminlogy of k-plexes, but we prefer to use terminology involving i-transversals
that is de�ned in the next section.

In [6] it was shown in Theorem 3.1 that one could relate the number of latin
squares of order n to the number of 1-factorizations of frequency squares with
frequency vector λ1, ..., λm via the use of isotopy classes. While the result in that
paper is valid, the proof was incomplete in that it assumed (without proof) that
each frequency square in an isotopy class had the same number of 1-factorizations.
While this fact turns out to be true, it does require some proof. This proof is now
given in Lemma 2.1 of the current paper.

In this paper we also extend the result from equation (2) in [6] dealing with
latin and frequency squares, to the case where we relate the number of frequency
squares with one frequency vector to the number of frequency squares with a
di�erent frequency vector.

2. Numbers of frequency and latin squares

Let F (n;λ1, . . . , λm) be a frequency square of order n with frequency vector
(λ1, . . . , λm). For i = 1, . . . ,m, by an i-transversal is meant a set of n cells,
one in each row and one in each column, each containing the symbol i. A set of n
transversals containing λi, i-transversals for each i = 1, . . . ,m, forms a partition
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of the frequency square if for each i, the i-transversals disjointly partition the set
of nλi cells containing i. We de�ne an i-partition to be the subset of a partition
consisting of all i-transversals in the partition.

As in [1] two frequency squares F1 and F2 of the same order and frequency vec-
tor, are said to be isotopic if there exist permutations σr, σc, σ# so that F2 can be
obtained from F1 by applying σr to the rows of F1, and then successively applying
σc to the columns and σ# to the numbers of each resulting square, respectively.

We now prove that frequency squares from the same isotopy class yield exactly
the same number of partitions. This will greatly reduce our calculations which
will of course be very helpful for larger values of n.

Lemma 2.1. Assume that two frequency squares F1 and F2 (of the same order
n and frequency vector) are isotopic. Then the number of partitions of F1 is the
same as the number of partitions of F2.

Proof. Let F1 and F2 be frequency squares of order n with the same frequency
vector. Suppose that F1 and F2 are isotopic. Fix permutations σr, σc and σ#

and de�ne a function from the set of partitions of F1 to the set of partitions
of F2 by applying σr, σc, σ# to the transversals of the partitions. Let F r

1 be
the frequency square obtained after we apply σr to F1. Given an i-transversal
{(1, i1), (2, i2), . . . , (n, in)} of F1 and applying σr to the i-transversal we obtain

{(σr(1), i1), . . . , (σr(n), in)},

an i-transversal of F r
1 . Let F c

1 be the frequency square obtained after we apply
σc to F r

1 . Given an i-transversal {(1, i1), (2, i2), . . . , (n, in)} of F r
1 and applying

σc to the i-transversal, we obtain {(1, σc(i1)), . . . , (n, σc(in))}, an i-transversal of

F c
1 . Let F#

1 be the frequency square obtained after we apply σ# to F c
1 . Note that

F2 = F#
1 for some r, c,#. Given an i-transversal {(1, i1), (2, i2), . . . , (n, in)} of F c

1

we obtain the σ#(i)-transversal {(1, i1), . . . , (n, in)} of F2. Hence σr, σc, σ# take
a transversal of F1 to a transversal of F2.

Let A = {(1, i1), . . . , (n, in)} 6= B = {(1, j1), . . . , (n, jn)} be two distinct i-
transversals of F1. We claim that applying σr, σc, or σ# to A and B we obtain dis-
tinct transversals. Suppose that σc(A) = {(1, σc(i1)), . . . , (n, σc(in))} = σc(B) =
{(1, σc(j1)), · · · , (n, σc(jn))}. Then σc(ik) = σc(jk) for k = 1, . . . , n. This implies
that ik = jk for k = 1, . . . , n, contradicting the fact that A 6= B. The same can be
proved for σr and σ#. We also claim that if A ∩ B = ∅, then σc(A) ∩ σc(B) = ∅.
Suppose not. Then (k, σc(ik)) = (k, σc(jk)) for some k = 1, . . . , n. Then ik = jk,
contradicting that A ∩ B = ∅. The same can be proved for σr and σ#. Hence,
applying σr, σc, σ# to a partition of F1 we obtain a partition of F2.

The above shows that σ# ◦ σc ◦ σr is a well de�ned function between the sets
of partitions of F1 and F2. This implies that the number of partitions of F1 is
less than or equal to the number of partitions of F2. But we can repeat the same
process starting with F2 and we obtain that the number of partitions of F2 is
less than or equal to the number of partitions of F1. Therefore, the number of
partitions of F1 and F2 are equal.
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It is clear from the previous proof that permutations of rows and columns take
an i-transversal to another i-transversal. These permutations also take di�erent i-
transversals into di�erent i-transversals; hence the number of
i-transversals is preserved by permutations of rows and columns as the next lemma
states.

Lemma 2.2. Let F1 and F2 be frequency squares of the same order and fre-
quency vector. Suppose that F2 can be obtained from F1 by successively applying
permutations of rows and columns. Then, F1 and F2 have the same number of
i-transversals.

Remark 1. Note that permutations σ# of symbols of a frequency square take
i-transversals to σ#(i)-transversals and therefore it is false in general that the
number of i-transversals of frequency squares belonging to the same isotopy class
is �xed, as it is shown in the next example.

Example 2.3. Considere the following reduced frequency squares with vector
(5; 2, 2, 1):

F1 =


1 1 2 2 3
1 1 2 3 2
2 2 3 1 1
2 3 1 1 2
3 2 1 2 1

, F ′
1 =


1 1 2 2 3
1 3 1 2 2
2 2 3 1 1
2 2 1 3 1
3 1 2 1 2

.

The square F ′
1 can be obtained from square F1 by interchanging entries 1 ↔ 2

and permuting the rows and columns to convert it into a reduced square and hence
the two squares are isotopic. It can be checked that F1 has 2, 1-transversals and
4, 2-transversals, and F ′

1 has 4, 1-transversals and 2, 2-transversals. Note that
σ#(1) = 2 and the number of 1-transversals of F1 is the number of 2-transversals
of F ′

1.

Let Λ(n;λ1, . . . , λm) denote the number of distinct isotopy classes of frequency
squares F (n;λ1, . . . , λm). For a �xed frequency vector, from Theorem 1.1, we
know that the number of isotopy classes of frequency squares is the same as the
number of isotopy classes of reduced frequency squares. Assume that the j-th class
contains nj reduced squares so that

Λ(n;λ1,...,λm)∑
j=1

nj = f(n;λ1, . . . , λm). (1)

We now prove

Theorem 2.4. For any frequency vector (λ1, . . . , λm) of n(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ(n;λ1,...,λm)∑
j=1

njδ
(j)λ1! · · ·λm! (2)
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= n!(n− 1)!ln = Ln,

where δ(j) denotes the number of distinct partitions of any reduced frequency square
F (n;λ1, . . . , λm) in the j-th isotopy class of reduced squares which contains nj

reduced squares.

Proof. How many distinct latin squares of order n does the left hand side of (2)
generate? Consider the j-th isotopy class. By Lemma 2.1 each frequency square
in this class has the same number δ(j) of partitions so consider a �xed reduced
frequency square F = F (n;λ1, . . . , λm) in this class. Using this reduced frequency
square one can construct di�erent latin squares in the following way.

Fix a partition P of F . For each 1-transversal in P , replace each value 1 in
the cells given by the 1-transversal by a number k, k = 1, · · · , λ1, one number for
each of the λ1 1-transversals. Since the 1-transversals are disjoint, this gives λ1!
di�erent latin squares of order n. Similarly, for each 2-transversal of F , replace
the number 2 by λ1 + 1, · · · , λ1 + λ2. Doing the same for each i = 1, · · · ,m, the
partition P generates λ1!× · · ·×λm! distinct latin squares of order n. Each of the(

n
λ1,...,λm

)(
n−1

λ1−1,...,λm

)
distinct frequency squares obtained by permuting rows and

columns of F will also produce λ1!× · · · × λm! latin squares.
Continuing, this can be repeated for each of the nj reduced squares in the j-th

isotopy class. Finally, we doing this for each class we get that the number of latin
squares of order n generated from the left hand side will be at most Ln.

Conversely, given a latin square L1 of order n, construct a frequency square
FS1 = F1(n;λ1, . . . , λm) in the following way: replace the numbers 1, 2, . . . , λ1 in
the latin square by 1, the numbers λ1 + 1, . . . , λ1 + λ2 by 2 and continuing, until
the numbers λ1 + · · ·+ λm−1 + 1, . . . , n by m.

Consider the a1, . . . , aλ1 , 1-transversals forming a 1-partition of FS1. Note that
any latin square with the numbers λ1+1, . . . , n in the same positions as L1 and with
a value i1, 1 6 i1 6 λ1 in the positions of a1, a value i2 6= i1, 1 6 i2 6 λ1 in the
positions of a2 and so on gives FS1 if we apply the above construction. There are
δ1(FS1)λ1! latin squares that give FS1 under this construction, where δ1(FS1) is
the number of
1-partitions of FS1 and there are no other latin squares that give FS1 under this
construction. Something similar happens for all the other i-partitions. Let C1 be
the set of all these latin squares; this is, C1 is the set of all the latin squares that give
FS1 under this construction. There are exactly δ1(FS1) · · · δm(FS1)λ1! · · ·λm! dif-
ferent latin squares in C1, where δi(FS1) is the number of i-partitions of FS1.

Take another latin square of order n that it is not in C1 and construct a
frequency square FS2 with the above construction. This gives another set C2 of
latin squares associated to FS2. Repeat until we have a set {C1, · · · , Ck} such
that any latin square of order n belongs to a Cs and each Cs corresponds to a
unique FSs. We then have that

Ln =
k∑

s=1

|Cs| =
k∑

s=1

δ(s)λ1! · · ·λm!



42 F. N. Castro, G. L. Mullen and I. Rubio

6
F∑

s=1

δ(s)λ1! · · ·λm! =
(

n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) f∑
s=1

δ(s)λ1! · · ·λm!,

where F is the total number of frequency squares F (n;λ1, . . . , λm), f is the total
number of reduced frequency squares with the same frequency vector and δ(s) =
δ1(FSs) · · · δm(FSs) is the number of partitions of the frequency square FSs.

Using (1) one can now sum over the isotopy classes of reduced frequency squares
to see that δ(s) coincides with δ(j) in equation (2) and get that

Ln 6

(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ(n;λ1,...,λm)∑
j=1

njδ
(j)λ1! · · ·λm!. �

One can easily simplify the result of the theorem to obtain

Corollary 2.5. For any frequency vector (λ1, . . . , λm) of n

n!
(

n− 1
λ1 − 1, . . . , λm

) Λ(n;λ1,...,λm)∑
j=1

njδ
(j) = n!(n− 1)!ln = Ln,

where δ(j) denotes the number of distinct partitions of any reduced frequency square
F (n;λ1, . . . , λm) in the j-th isotopy class which contains nj reduced squares.

We note that results for the number of isotopy classes of frequency squares of
order n 6 6 can be found in [1] while results for orders 7 and 8 can be found in
[7].

Example 2.6. For n = 4, from [1] there are �ve reduced F (4; 2, 2) frequency
squares and these are given by

F1 =

1 1 2 2
1 1 2 2
2 2 1 1
2 2 1 1

, F2 =

1 1 2 2
1 2 1 2
2 2 1 1
2 1 2 1

, F3 =

1 1 2 2
1 2 2 1
2 2 1 1
2 1 1 2

F4 =

1 1 2 2
1 2 2 1
2 1 1 2
2 2 1 1

, F5 =

1 1 2 2
1 2 1 2
2 1 2 1
2 2 1 1

Square #1− trans. #2− trans. δj

F1 4 4 4
F2 2 2 1
F3 2 2 1
F4 2 2 1
F5 2 2 1
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Note that from [1], there are just two distinct isotopy classes; the �rst contain-
ing just the square F1 while the second class contains the four squares F2, . . . , F5.
Hence our theorem yields(

4
2, 2

)(
3

2, 1

)
[4(2!)(2!) + 4(2!)(2!)] = 6(3)(16 + 16) = 576 = 4!3!(4) = L4. �

Remark 2. The above results simplify considerably when there is only one isotopy
class. This is the case for frequency squares F (n;n− 1, 1).

The next argument shows that there is only one isotopy class for
F (n;n− 1, 1) frequency squares. Since each row and column contains only one 2
and the rest 1's, we can easily interchange rows and columns to show that every
F (n;n− 1, 1) frequency square is isotopic to the square

1 1 · · · 1 2
1 1 · · · 2 1
. . . . .
. . . . .
. . . . .
2 1 · · · 1 1

which has 2's on the back diagonal. It is easy to see that there are (n−2)! reduced
frequency squares of this type.

3. Enumerating frequency squares

In this section we enumerate frequency squares of certain frequency vectors using
the number of i-transversals of frequency squares of a related frequency vector. We
also give a formula to compute the number of 1-transversals of frequency squares
F (n;n−1, 1). As a consequence we can compute the number of frequency squares
F (n;n− 2, 1, 1) for any n > 3. Let F (n) be a frequency square of order n and let
Ti(F (n)) be the number of i-transversals of F (n).

Lemma 3.1. Let (λ1, . . . , λm, 1, . . . , 1︸ ︷︷ ︸
s

) be a frequency vector of n where λm 6= λj

for all j 6= m, and let Λ = Λ(n;λ1, . . . , λm, 1, . . . , 1︸ ︷︷ ︸
s

) be the number of distinct

isotopy classes of frequency squares associated to it. Then(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ∑
j=1

njTm(Fj(n)) (3)

= F(n;λ1, . . . , λm−1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+1

)
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where λm > 2, s > 0, and Tm(Fj(n)) denotes the number of distinct m-transver-
sals of any reduced frequency square F (n;λ1, . . . , λm, 1, . . . , 1) in the j-th isotopy
class of reduced frequency squares which contains nj reduced squares.

Proof. Assume that λm 6= λj for all j 6= m. This implies that the permutations
used to construct the isotopy classes of the frequency vector
(n;λ1, . . . , λm, 1, . . . , 1) do not include permutations σ# of the symbol m because,
if one apply the permutation σ#(m), the resulting frequency square will have a
di�erent frequency vector and all the vectors in the isotopy class must have the
same frequency vector. Hence, by Lemma 2.2 the number of m-transversals within
an isotopy class is �xed.

Given a frequency square FSm = F (n;λ1, . . . , λm, 1, . . . , 1) we construct an-
other frequency square FSm−1 = F (n;λ1, . . . , λm−1, λm − 1, 1, 1, . . . , 1) in the fol-
lowing way: consider an m-transversal of FSm and replace the m's in the entries
given by the m-transversal by the number l = m+s+1. Each of the Tm(FSm) dif-
ferent m-transversals of FSm gives a di�erent frequency square FSm−1. The same
can be done with each of the Tm(Fj(n)) m-transversals of the

(
n

λ1,...,λm

)(
n−1

λ1−1,...,λm

)
di�erent frequency squares FSm given by each of the nj reduced frequency squares
in the j-th isotopy class of FSm. Hence,(

n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ∑
j=1

njTm(Fj(n))

6 F(n;λ1, . . . , λm−1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+1

)

Conversely, given a frequency square FSm−1
1 construct a frequency squa-

re FSm
1 by replacing the number l = m + s + 1 by the number m. Any frequency

square with the number i in the λi positions of FSm−1
1 for i 6= m, l will produce

the same frequency square FSm
1 . Let C1 be the set of all the frequency squares

FSm−1 that produce FSm
1 under the above construction. The number of squares

FSm−1 in C1 is the number of m-transversals of FSm
1 . Take another frequency

square FSm−1
2 that it is not in C1 and construct FSm

2 . This gives another set C2,
and, repeating the construction, we get a set {C1, · · · , Ck}, where each frequency
square FSm−1 belongs to a Ci and each Cs corresponds to a unique FSm. This
gives

F(n;λ1, . . . , λm−1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+1

) =
k∑

i=1

|Ci|

=
k∑

i=1

Tm(FSm
i ) 6

F∑
i=1

Tm(FSm
i ),

where F is the total number of frequency squares F (n;λ1, . . . , λm, 1, . . . , 1). Since

the number of m-transversals do not change with row and column permutations
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and the number of m-transversals does not change within the isotopy classes we
have that

F(n;λ1, . . . , λm−1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+1

)

6

(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) f∑
j=1

Tm(Fj(n))

=
(

n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ∑
j=1

njTm(Fj(n)),

where f is the number of reduced frequency squares with frequency vector of the
form (n;λ1, . . . , λm, 1, . . . , 1) and nj is the number of reduced squares in the j-th
isotopy class.

Example 3.2. The above lemma gives a way to compute F(8; 6, 1, 1) using re-
duced frequency squares with frequency vector (7, 1). Namely, it is known that
f(n;n − 1, 1) = (n − 2)! and, by Remark 2, there is only one isotopy class of
frequency squares with frequency vector (n− 1, 1). Hence

F(8; 6, 1, 1) = 8× 7× 6!× T1(8; 7, 1) = 598, 066, 560,

as reported in [7].

Example 3.3. In general, to compute F(n;n − 2, 1, 1) using reduced frequency
squares with frequency vector (n − 1, 1), we need to compute
T1(F (n;n− 1, 1)), and then

F(n;n− 2, 1, 1) = n!× T1(F (n;n− 1, 1)).

Theorem 3.8 gives a formula to compute F(n;n− 2, 1, 1) for any n.

Remark 3. If λm = λi for some i, then Lemma 3.1 is false. The reason is that
one can interchange the numbers m and i in a frequency square to obtain another
frequency square in the same isotopy class but both having di�erent numbers of
m-transversals. In fact, two reduced frequency squares in the same isotopy class
can have have di�erent m-transversals as we saw in Example 2.3. Therefore, in
this case one cannot group the reduced squares in the isotopy class to get nj in
equation (3). However, if instead of summing over the isotopy classes, one sums
over all the reduced frequency squares, one obtains a formula that works for any
frequency vector as we see in Lemma 3.5.

Remark 4. Note that, since one can relabel i ↔ m, and interchange the positions
of λm, λi, it is enough to have any λi be such that λi 6= λj for all j 6= i.

Lemma 3.1 can be applied successively to obtain the following result.
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Theorem 3.4. Let (λ1, . . . , λl, · · · , λm, 1, . . . , 1︸ ︷︷ ︸
s

) be a frequency vector of n where

λi 6= λj for i = l, · · · ,m, j = 1, · · · ,m, and let Λ be the number of distinct isotopy
classes of reduced frequency squares associated to it. Then(

n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ∑
j=1

njTl+1(Fj(n)) · · ·Tm(Fj(n))

= F(n;λ1, . . . , λl, λl+1 − 1, . . . , λm−1 − 1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+m−l+1

),

where λl > 2, . . . , λm > 2, s > 0, and Tl(Fj(n)) denote the number of distinct l-
transversals of any reduced frequency square Fj(n;λ1, . . . , λm, 1, . . . , 1) in the j-th
isotopy class of reduced squares which contains nj reduced squares.

Note that Lemma 3.1 requires λm 6= λi for all i 6= m. Alternatively, one can
sum over all the reduced frequency squares and then this assumption is not needed:

Lemma 3.5. For any frequency vector (λ1, . . . , λm, 1, . . . , 1︸ ︷︷ ︸
s

) of n, let f be the

number of distinct reduced frequency squares with this frequency vector. Then(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) f∑
j=1

Tm(Fj(n))

= F(n;λ1, . . . , λm−1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+1

)

where λm > 2, s > 0, and Tm(Fj(n)) denotes the number of distinct m-transversals
of the reduced frequency square Fj(n;λ1, . . . , λm, 1, . . . , 1) and the sum is over the
f di�erent reduced frequency squares.

Theorem 3.6. For any frequency vector (λ1, . . . , λm, 1, . . . , 1︸ ︷︷ ︸
s

) of n, let f be the

number of distinct reduced frequency squares with this frequency vector. Then(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) f∑
j=1

Tl+1(Fj(n)) · · ·Tm(Fj(n))

= F(n;λ1, . . . , λl, λl+1 − 1, . . . , λm−1 − 1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+m−l+1

),

where λl > 2, . . . , λm > 2, s > 0, and Tl(Fj(n)) denote the number of distinct
l-transversals of the reduced frequency square Fj(n;λ1, . . . , λm, 1, . . . , 1) and the
sum is over the f di�erent reduced frequency squares.
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The following is a well known result for derangements. When it is reinterpreted
for frequency squares, it gives a formula to compute the number of 1-transversals
of a frequency square with frequency vector (n− 1, 1).

Lemma 3.7. Let T1(F (n;n−1, 1)) be the number of 1-transversals of an F (n;n−
1, 1) frequency square. Then

T1(F (n;n− 1, 1)) = (n− 1) (T1(F (n− 1;n− 2, 1)) + T1(F (n− 2;n− 3, 1)))

= n!
n∑

i=2

(−1)i

i!
. �

Note that this is the number of derangements of n symbols. The above result,
together with Lemma 3.1, and the fact that there is only one isotopy class for
frequency squares F (n;n − 1, 1) with (n − 2)! reduced frequency squares is used
to obtain a formula for the number of frequency squares F(n;n − 2, 1, 1) for any
n > 3.

Theorem 3.8. Let F(n;n − 2, 1, 1) be the number of frequency squares with fre-
quency vector (n− 2, 1, 1). Then,

F(n;n− 2, 1, 1) = n!n!
n∑

i=2

(−1)i

i!
. �

The number of reduced frequency squares f(n;n−2, 1, 1) for n 6 8 where given
in [1] and [7]. Theorem 3.8 gives a formula for the value of f(n;n− 2, 1, 1) for any
n > 3.

Corollary 3.9. Let f(n;n − 2, 1, 1) be the number of reduced frequency squares
with frequency vector (n− 2, 1, 1). Then,

f(n;n− 2, 1, 1) = (n− 3)!(n− 2)!n
n∑

i=2

(−1)i

i!
.

n f(n, n− 2, 1, 1)
7 7416
8 254280
9 12014640
10 747578160
11 59329146240
12 5814256049280
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4. Transversals and latin rectangles

Let T1(n;n − 1, 1) be the number of 1-transversals of an F (n;n − 1, 1) frequency
square. Consider the two line latin rectangles with �rst row 1,2,3:

R1 =
(

1 2 3
2 3 1

)
, R2 =

(
1 2 3
3 1 2

)
.

We can associate 1-transversals to the above two line latin rectangles as follows.
Consider the frequency square

Fd(3) =

(
2 1 1
1 2 1
1 1 2

)
.

with 2's on the main diagonal. The 1-transversal of Fd(3) associated to R1 is

{(1, 2), (2, 3), (3, 1)},

and the 1-transversal associated to R2 is

{(1, 3), (2, 1), (3, 2)}.

Note that there are correspondences {(1, 2), (2, 3), (3, 1)} 7→ (2 3 1) and
{(1, 3), (2, 1), (3, 2)} 7→ (3 1 2).

We can generalize this construction for any n since no 1-transversal of the
frequency square Fd(n) with 2's in the diagonal will contain the pair (i, i) for
i = 1, . . . , n. In general, consider the �diagonal� frequency square of order n

Fd(n) =


2 1 · · · 1
1 2 · · · 1

...
1 1 · · · 2

. (4)

Note that the set of 1-transversals of Fd(n) is

A = {{(1, i1), (2, i2), · · · , (n, in)} | il 6= l, ik 6= il for k 6= l} ,

and
{(1, i1), (2, i2), · · · , (n, in)} 7→ (i1 i2 · · · in)

de�nes a 1-1 correspondence between the set of 1-transversals A and the set of two
line latin rectangles whose �rst row is in the natural order 1, 2, . . . , n and second
row is (i1 i2 · · · in).

For m 6 n, let R(m,n) be the number of m line latin rectangles of order n
whose �rst row is in standard order 1, 2, . . . , n.

Corollary 4.1. For each n > 2, R(2, n) = T1(n;n− 1, 1).
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The correspondence of pairs of disjoint 1-transversals of Fd(n) and 3 line latin
rectangles is similar. Consider the diagonal frequency square (4) and note that
the set of pairs of disjoint 1-transversals of this square is

A = {{{(1, i1), (2, i2), · · · , (n, in)} , {(1, j1), (2, j2), · · · , (n, jn)}} |

il, jl 6= l, ik 6= il and jk 6= jl for k 6= l, and ik 6= jk} .

Now each element in A (a pair) de�nes the last two rows

(i1 i2 · · · in), (j1 j2 · · · jn)

of a three line latin rectangle with �rst row in the natural order. Since we can in-
terchange the order of the last 2 rows, we have 2 di�erent three line latin rectangles

with �rst row in the natural order for each element in A. Let T
(m)
1 (n;n− 1, 1) be

the number of sets of m disjoint 1-transversals of the frequency square (2). Hence

T
(1)
1 (n;n− 1, 1) = T1(n;n− 1, 1).

Corollary 4.2. For each n > 3, R(3, n) = 2T
(2)
1 (n;n− 1, 1).

The construction for m line latin rectangles is similar: the set A is the set of
all sets of m− 1 disjoint 1-transversals of (4). Each element in A gives m− 1 rows
of the m line latin rectangle. There are (m− 1)!, m line latin rectangles for each
element in A.

Corollary 4.3. For 1 6 m 6 n, R(m,n) = (m− 1)!T (m−1)
1 (n;n− 1, 1).

See page 142 of [2] for the number of m line latin rectangles of order n 6 11.

Corollary 4.4. For each n > 2, T
(n−1)
1 (n;n − 1, 1) = ln, the number of reduced

latin squares of order n.

5. Relating the numbers of frequency squares

with two di�erent frequency vectors

In this section we extend our results from Section 2 in order to be able to go from
one frequency vector to another, not just from a given frequency vector to the
vector (1, . . . , 1) involving latin squares.

Let λ1 + · · ·+ λm be a partition of n. Another partition

λ′11 + · · ·+ λ′1e1
+ · · ·+ λ′m1 + · · ·+ λ′mem

of n is a re�nement, if for each i = 1, . . . ,m, λi = λ′i1 + · · ·+λ′iei
. In this case, will

call (λ′11, . . . , λ
′
mem

) a re�nement vector of (λ1, . . . , λm)
For each i = 1, . . . ,m, we have λin cells (λi in each row and column) in the

F (n;λ1, . . . , λm) frequency square containing the symbol i. For each i = 1, . . . ,m,
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we now form an (λ′i1, . . . , λ
′
iei

)-array containing ei disjoint blocks. The �rst block
has λ′i1n cells with λ′i1 cells in each row and column. Continuing, the ei-th block
has λ′iei

n cells with λ′iei
cells occurring in each row and column.

In Section 2, to construct latin squares from frequency squares, we replaced the
values of the cells given by each of the i-transversals of an
i-partition by a symbol, one symbol for each transversal, hence λi symbols for
each i-partition. Now, to construct frequency squares with frequency vector
(n;λ′11, . . . , λ

′
mem

), we will replace the values of the cells given in each block of
a (λ′i1, . . . , λ

′
iei

)-array by a symbol, one symbol for each block, hence ei symbols
for each (λ′i1, . . . , λ

′
iei

)-array.
Let δi(F ) be the number of such arrays arising from the symbol i which occurs

in the reduced frequency square F = F (n;λ1, . . . , λm). Following the proof of
Lemma 2.1, one can prove that the product δ = δ1(F ) · · · δm(F ) is invariant in an
isotopy class:

Lemma 5.1. Assume that two frequency squares F1 and F2 (of the same order n
and frequency vector) are isotopic. Then the number of arrays from F1 is the same
as the number of arrays from F2; that is δ1(F1) · · · δm(F1) = δ1(F2) · · · δm(F2).

Remark 5. As in Example 2.3, for a �xed i, δi(F1) might not be equal to δi(F2),
but, since we are considering all the symbols in the product, we get that we have
δ1(F1) · · · δm(F1) = δ1(F2) · · · δm(F2).

We now obtain a theorem that extends the result in Theorem 2.4:

Theorem 5.2. If λ = (λ1, . . . , λm) is a frequency vector of n and (λ′11, . . . , λ
′
mem

)
is a �xed re�nement vector of λ, then

(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ(n;λ1,...,λm)∑
j=1

njδ
(j)e1! · · · em!

=
(

n

λ′11, . . . , λ
′
mem

)(
n− 1

λ′11 − 1, . . . , λ′mem

)
f(n;λ′11, . . . , λ

′
mem

)

= F(n;λ′11, . . . , λ
′
mem

)

where δ(j) denotes the number of distinct arrays (as de�ned above) of any reduced
frequency square F (n;λ1, . . . , λm) in the j-th isotopy class of reduced squares which
contains nj reduced squares.

As the proof of this theorem is similar to the proof of Theorem 2.4 in Section
2 for determining the total number of latin squares from reduced F (n;λ1, . . . , λm)
frequency squares, we omit the proof and instead, provide the reader with the
following illustrative example.

We start with reduced F (5; 4, 1) frequency squares and determine the total
number of F (5; 2, 2, 1) frequency squares. There is only one isotopy class and
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(5− 2)! reduced frequency squares with the frequency vector (4, 1). Consider

F =

1 1 1 1 2
1 1 1 2 1
1 1 2 1 1
1 2 1 1 1
2 1 1 1 1

.

There are (4)(5)=20 cells containing the symbol 1. Form a (2,2)-array con-
taining 2 blocks with 10 cells each, 2 per row and column. This is the same as
considering a partition and selecting 2, 1-transversals to construct one block and 2
other 1-transversals to construct the other block. For example, from the partition

P = {{(1, 1), (2, 2), (3, 4), (4, 3), (5, 5)} , {(1, 2), (2, 3), (3, 5), (4, 1), (5, 4)} ,

{(1, 3), (2, 5), (3, 1), (4, 4), (5, 2)} , {(1, 4), (2, 1), (3, 2), (4, 5), (5, 3)} ,

{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}} ,

one can form an array {B1, B2} with the two blocks

B1 = {(1, 1), (2, 2), (3, 4), (4, 3), (5, 5), (1, 2), (2, 3), (3, 5), (4, 1), (5, 4)} ,

B2 = {(1, 3), (2, 5), (3, 1), (4, 4), (5, 2), (1, 4), (2, 1), (3, 2), (4, 5), (5, 3)} .

The 1's in B1 can be changed to 3's to obtain

F ′ =

3 3 1 1 2
1 3 3 2 1
1 1 2 3 3
3 2 3 1 1
2 1 1 3 3

.

Note that there are e1! = 2! ways to replace the symbol 1 using this array.
There are a total of δ1 = 108 distinct arrays containing the symbol 1. Theorem
5.2 implies that there are 72 reduced frequency squares F (5; 2, 2, 1), which agrees
with the results from [1].
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[7] V. Krčadinac, Frequency squares of orders 7 and 8, Utilitas Math. 72(2007),
89− 95.

[8] C.F. Laywine and G.L. Mullen, Discrete Mathematics Using Latin
Squares, Wiley-Interscience Series in Discrete Mathematics and Optimiza-
tion, New York, 1998.

[9] B.D. McKay and I.M. Wanless, On the number of latin squares, Ann.
Comb. 9(2005), 335− 344.

[10] I.M. Wanless, A generalization of transversals for latin squares, Electron J.
Combinatorics 9(2002), #R12.

Received December 10, 2010
Revised January 10, 2012

F. N. Castro
Department of Mathematics, University of Puerto Rico, Río Piedras. PO Box 70377, San Juan,
PR 00936-8377
E-mail: franciscastr@gmail.com

G. L. Mullen
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802,
USA
E-mail: mullen@math.psu.edu

I. Rubio
Department of Computer Science, University of Puerto Rico, Río Piedras, PO Box 70377, San
Juan, PR 00936-8377
E-mail: iverubio@gmail.com



Quasigroups and Related Systems 20 (2012), 53− 60

Some results on E-inversive semigroups

Roman S. Gigo«

Abstract. In the paper we study E-inversive semigroups. We show that E-inversive semigroups
are M -semigroups and we prove that M -biordered sets arise from E-inversive semigroups. More-
over, some connections between bi-ideals of an E-inversive semigroup S and bi-order ideals, order
bi-ideals of the biordered set ES of S are given. Further, some results of Janet Mills concerning
matrix congruences on orthodox semigroups are generalized to E-inversive E-semigroups. Also,
we prove that the class of all E-inversive semigroups is structurally closed.

1. Introduction and preliminaries

In the paper we present some results on E-inversive semigroups. The main result
of this article is Theorem 2.18 i.e. we show that everyM -biordered set arises from
some E-inversive semigroup. Our proof of this result is quite simple. Proving this
result we used the characterization of the M -set of a semigroup (see Prop. 2.12)
and an important Easdown's result (that is, every biordered set comes from some
semigroup). Moreover, we can show in a similar way Nambooripad's Theorem
(i.e., each regular biordered set comes from some regular semigroup). The proofs
of this result were more complicated, see [2, 13]. Also, some equivalent conditions
for a semigroup to be E-inversive are given (Corollaries 2.4, 2.11). Further, some
connections between bi-ideals of an E-inversive semigroup S and order bi-ideals,
bi-order ideals of the biordered set ES are presented in this work (see Prop. 2.14
and Th. 2.16). Moreover, we give some remarks concerning matrix congruences on
E-inversive (E-)semigroups (see Cor. 2.7 and Th. 2.10). Finally, we prove that the
class of E-inversive semigroups is structurally closed (Cor. 2.6).

Let S be a semigroup, a ∈ S. The set W (a) = {x ∈ S : x = xax} is called
the set of all weak inverses of a, and so the elements of W (a) will be called weak

inverse elements of a. A semigroup S is called E-inversive i� for every a ∈ S there
exists x ∈ S such that ax ∈ ES , where ES (or brie�y E) is the set of idempotents
of S (more generally, if A ⊆ S, then EA denotes the set of all idempotents of A).
It is easy to see that a semigroup S is E-inversive if and only if W (a) is nonempty
for all a ∈ S. Hence if S is E-inversive, then for every a ∈ S there is x ∈ S such
that ax, xa ∈ ES (see [10, 11]).

Further, by Reg(S) we shall mean the set of regular elements of S (an element
a of S is called regular if a ∈ aSa) and by V (a) = {x ∈ S : a = axa, x = xax} the

2010 Mathematics Subject Classi�cation: 20M10, 20M12
Keywords: E-inversive semigroup, M -semigroup, bi-ideal, matrix congruence.
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set of all inverse elements of a. It is well known that an element a of S is regular
i� V (a) 6= ∅, so a semigroup S is regular i� V (a) 6= ∅ for every a ∈ S [6]. Finally,
a semigroup S is said to be eventually regular if every element of S has a regular
power [4]. Clearly, eventually regular semigroups are E-inversive.

In [5] Hall observed that the set Reg(S) of a semigroup S with ES 6= ∅ forms a
regular subsemigroup of S i� the product of any two idempotents of S is regular.
In that case, S is said to be an R-semigroup. Also, we say that S is an E-semigroup

if ES
2 ⊆ ES .

A subsemigroup B of a semigroup S is said to be a bi-ideal of S if BSB ⊆ B.
It is clear that there exists the least bi-ideal (X) containing a nonempty subset X
of S. One can easily seen that (X) is of the form: X ∪X2 ∪XSX [1].

A nonempty subset A of a semigroup S is called a quasi ideal i� AS∩SA ⊆ A.
Note that every quasi ideal A of S is a bi-ideal of S and each one-sided ideal of S is
a quasi ideal of S, so it is a bi-ideal of S. If ∅ 6= C ⊆ S, then (C ∪SC)∩ (C ∪CS)
is the smallest quasi ideal of S containing C.

Each subsemigroup eSe of a semigroup S, where e ∈ ES , will be called a local

subsemigroup of S. Furthermore, we say that a semigroup S with ES 6= ∅ is locally
E-inversive i� every local subsemigroup of S is E-inversive.

By a rectangular band we shell mean a semigroupM with the property aba = a
for all a, b ∈M . Note that in that case, M = EM . Also, we say that a congruence
ρ on a semigroup S is a matrix congruence if S/ρ is a rectangular band [9].

Some background material on biordered sets will be useful. For a de�nition of
a biordered set, its related axioms and concepts see [13, 3, 2]. Let S be a semigroup
with ES = E 6= ∅. De�ne

ωl = {(e, f) ∈ E × E : ef = e}, ωr = {(e, f) ∈ E × E : fe = e},

6= ωl ∩ ωr, L = ωl ∩ (ωl)−1, R = ωr ∩ (ωr)−1,

DE = {(e, f) ∈ E × E : ef = e or ef = f or fe = e or fe = f}.

Then the partial algebra E with domain DE is a biordered set, Th. 1.1 (a1) [13].
It is easy to see that the relation 6 is the natural partial order on the set E, and
if e, f ∈ E, then (e, f) ∈ L [R] i� (e, f) ∈ L [R] (in a semigroup S), where L,R
are Green's relations on S. Furthermore, the relations ωl and ωr are quasi-orders
on E. For ρ = ωl or ρ = ωr and any e ∈ E, we put ρ(e) = {g ∈ E : (g, e) ∈ ρ}.

Let E be a biordered set and e, f ∈ E. We de�ne the M-set M(e, f) of e, f by
M(e, f) = ωl(e) ∩ ωr(f) = {g ∈ E : g = ge = fg}. Also, de�ne the sandwich-set

S(e, f) of e, f [13] by

S(e, f) = {g ∈M(e, f) : (∀h ∈M(e, f)) (eh, eg) ∈ ωr, (hf, gf) ∈ ωl}.

Moreover, we de�ne E to be an M-biordered set i� M(e, f) 6= ∅ for all e, f ∈ E.
Let S be a semigroup with ES 6= ∅. We say that S is an M-semigroup if ES is
an M -biordered set. Finally, a subset F of ES is called an order bi-ideal of ES i�
M(e, f) ⊆ F for all e, f ∈ F .
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The following result is probably known:

Lemma 1.1. Let S be an R-semigroup, e, f ∈ ES . Then:

S(e, f) = {g ∈M(e, f) : egf = ef} = {g ∈M(e, f) : g ∈ V (ef)} = fV (ef)e.

Proof. Denote the above four sets by A, B, C and D, respectively.
If g ∈ B, then fge = g, so efgef = egf = ef, gefg = gg = g i.e., g ∈ V (ef).

Thus B ⊂ C.
If g ∈ C, then g = fge and g ∈ V (ef). Hence g ∈ fV (ef)e. Thus C ⊂ D.
Let g = fxe for some x ∈ V (ef). Then clearly g ∈ M(e, f). If h ∈ M(e, f)

(i.e. fh = h = he), then (eg)(eh) = efxeeh = efxe(fh) = (efxef)h = efh = eh.
Thus (eh, eg) ∈ ωr, and similarly (hf, gf) ∈ ωl, so g ∈ A. Consequently, D ⊂ A.

Finally, let g ∈ A, x ∈ V (ef). Then fxe ∈ D ⊂ A. In particular, eg R efxe
(by the de�nition of A). Hence

egf = e(ge)f = (eg)(ef) = eg(efxef) = (eg · efxe)f = efxef = ef.

Thus g ∈ B, as exactly required.

Let S be an R-semigroup. A subset F of ES is called a biorder ideal if and
only if the following two conditions hold:

(i) (∀e ∈ ES , f ∈ F ) e 6 f =⇒ e ∈ F ;
(ii) (∀e, f ∈ F ) S(e, f) ∩ F 6= ∅.

2. The main results

Proposition 2.1. Let S be a semigroup. The following conditions are equivalent :
(i) S is E-inversive;
(ii) every bi-ideal of S contains some idempotent of S;
(iii) every quasi ideal of S contains some idempotent of S;
(iv) every ideal of S contains some idempotent of S.

Proof. (i) =⇒ (ii). Let B be a bi-ideal of S, b ∈ B and x ∈W (b2). Then x = xbbx.
Hence (bxb)2 = b(xbbx)b = bxb ∈ BSB ⊆ B. Thus bxb ∈ EB .

(ii) =⇒ (iii) =⇒ (iv). This is evident.
(iv) =⇒ (i). Let a ∈ S. By assumption SaS has at least one idempotent, that

is, xay = e for some x, y ∈ S, e ∈ ES , so exaye = e. Hence yexayex = yex. Thus
yex ∈W (a).

Lemma 2.2. Every E-inversive semigroup S is locally E-inversive.

Proof. Let a ∈ eSe, where e ∈ ES , x ∈W (a). Then x = xax = x(eae)x. It follows
that exe = (exe)a(exe). Thus exe ∈W (a) in eSe, as exactly required.

Corollary 2.3. Every bi-ideal of an E-inversive semigroup S is E-inversive.
Hence a semigroup S is E-inversive if and only if every bi-ideal of S is E-inversive.
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Proof. Let B be a bi-ideal of S and b ∈ B. By Proposition 2.1, B contains some
idempotent of S, say e. By Lemma 2.2, eSe ∈ BSB ⊆ B is E-inversive and so
(ebe)y ∈ EeSe for some y ∈ eSe. Hence (eb)(ey) ∈ EeSe, say (eb)(ey) = f , where
ey ∈ e(eSe) = eSe. Therefore f(eb)eyf = f , so eyf(eb)eyf = eyf . We conclude
that there exists x ∈ W (eb) in B (for example: x = (ey)f ∈ (eSe)(eSe) ⊆ B), so
x = xebx. Thus (xe)b(xe) = xe and xe ∈ Be ⊆ B. Consequently, B is E-inversive
(remark that even xe = eyfe ∈ eSe).

Let a semigroup S (with ES 6= ∅) be locally E-inversive, b ∈ S and e ∈ ES .
Consider the least bi-ideal, say B, of S containing the set {e, b}. Note that (e) ⊆ B
i.e., eSe ⊆ B. From the proof of Corollary 2.3 and from Lemma 2.2 we obtain:

Corollary 2.4. A semigroup is E-inversive if and only if it is locally E-inversive.

In [7] S. Kopamu de�ned a countable family of congruences on a semigroup S,
as follows: for each ordered pair of non-negative integers (m,n), he put:

θm,n = {(a, b) ∈ S × S : (∀x ∈ Sm, y ∈ Sn) xay = xby},

and he made the convention that S1 = S and S0 denotes the set containing the
empty word. In particular, θ0,0 is the identity relation on S. Let C be a class of
semigroups of the same type T (for example: the class of E-inversive semigroups);
call its elements C-semigroups. A semigroup S is called a structurally C-semigroup

if S/θm,n ∈ C for some integers m,n ≥ 0. Further, denote by SC the class of all
structurally C-semigroups. It is clear that C ⊆ SC. Finally, we say that the class
C is structurally closed if C = SC [8].

Lemma 2.5. Every structurally E-inversive semigroup is locally E-inversive.

Proof. Let S be a structurally E-inversive semigroup, say S/θm,n is E-inversive;
a ∈ eSe, where e ∈ ES . Since the class of E-inversive semigroups is closed under
homomorphic images, then we may suppose that m, n are both positive integers.
Moreover, a = eae, (x, xax) ∈ θm,n for some x ∈ S. Hence emxen = emxaxen, that
is, exe = exaxe = ex(eae)xe and so exe = (exe)a(exe). Therefore exe ∈ W (a) in
the semigroup eSe. Consequently, S is locally E-inversive.

Combining the above lemma with Corollary 2.4 we obtain the following:

Corollary 2.6. The class of all E-inversive semigroups is structurally closed.

By the trace trρ of a congruence ρ on a semigroup S we mean ρ ∩ (ES ×ES).

Corollary 2.7. If ρ is a matrix congruence on an E-inversive semigroup S, then
every ρ-class of S is E-inversive.

Moreover, every matrix congruence on an E-inversive semigroup is uniquely

determined by its trace.
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Proof. The �rst part follows from Corollary 2.3 and the following easy observation:
if A is any ρ-class of S, where ρ is a matrix congruence on S, then A is a bi-ideal.

We show the second part. Let ρ1, ρ2 be matrix congruences on an E-inversive
semigroup S, trρ1 ⊂ trρ2, e ∈ ES . If a ∈ eρ1, then there exists x ∈ W (a) in eρ1.
Hence ax(trρ1)e(trρ1)xa and so ax(trρ2)e(trρ2)xa. Therefore we get a ρ2 axxa ρ2 e
i.e., a ∈ eρ2. Thus ρ1 ⊂ ρ2. Consequently, if trρ1 = trρ2, then ρ1 = ρ2.

Remark 2.8. The second part of the above corollary generalizes Theorem 2.1 [9].
One can modify all results of J. Mills in Section 2 of [9] for E-inversive E-semi-
groups. Denote by ψ the least matrix congruence on a semigroup S. It is clear
that the interval [ψ, S × S] consists of all matrix congruences on S and it is a
complete sublattice of the lattice of all congruences on S. Denote it by MC(S).
Moreover, if S is an E-semigroup, then the symbol MC(ES) means the complete
lattice of matrix congruences on ES .

For terminology and elementary facts about lattices the reader is referred to
the book [14] (Section I.2). The following result will be useful (see Lemma I.2.8
and Exercise I.2.15 (iii) in [14]):

Lemma 2.9. If ϕ is an order isomorphism of a lattice L onto a lattice M , then ϕ
is a lattice isomorphism. Moreover, every lattice ismomorhism of complete lattices

is a complete lattice isomorphism.

In particular, the following theorem is valid (see Theorems 2.5, 2.6 and Corol-
lary 2.7 in [9]):

Theorem 2.10. Let S be an E-inversive E-semigroup. Suppose also that the least

matrix congruence on ES can be extended to a matrix congruence on S. Then each

matrix congruence on ES can be extended uniquely to a matrix congruence on S.
In fact, if it is the case, then for any matrix congruence ρE on ES, the relation ρ
de�ned on S by :

(a, b) ∈ ρ ⇐⇒ (∃ e, f ∈ES) (aψe)ρE(fψb)

is the unique matrix congruence on S which extends ρE . Thus there is an inclusion-

preserving bijection θ between the lattice MC(S) and the lattice MC(ES). In fact,

θ is de�ned by:

θ : ρ→ trρ

for every ρ ∈ MC(S). Furthermore, θ−1 is an inclusion-preserving bijection, too

(by the proof of the second part of Corollary 2.7), so θ is an order isomorphism of

the lattice MC(S) onto the lattice MC(ES). Consequently, θ is a complete lattice

isomorphism between the complete lattices MC(S) and MC(ES), respectively.
Also, ρ is a matrix congruence on an E-inversive E-semigroup S if and only if

trρ is a matrix congruence on ES and every ρ-class of S contains some idempotent

of S.
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Clearly, every semigroup S is an ideal (of S) and so S is a bi-ideal. Also, if A
is a left [right or bi-] ideal of S, a ∈ A, then the principle left [right or bi-] ideal of
S containing a is contained in A. Thus by Proposition 2.1 and Corollary 2.3 we
obtain the following:

Corollary 2.11. Let S be a semigroup. The following conditions are equivalent :
(i) S is E-inversive;

(ii) every left [right ] (principle) ideal of S contains some idempotent of S;
(iii) every (principle) ideal of S contains some idempotent of S;
(iv) every (principle) quasi ideal of S contains some idempotent of S ;
(v) every (principle) bi-ideal of S contains some idempotent of S ;

(vi) every (principle) bi-deal of S is E-inversive;
(vii) every (principle) quasi ideal of S is E-inversive;

(viii) every (principle) left [right ] ideal of S is E-inversive;
(ix) every (principle) ideal of S is E-inversive.

Proposition 2.12. Every E-inversive semigroup S is an M-semigroup. In fact,

M(e, f) = fW (ef)e

for all e, f ∈ ES .

Proof. Let g ∈M(e, f), where e, f ∈ ES . Then g = fge. Also, gefg = gg = g and
so g ∈W (ef). Consequently, g ∈ fW (ef)e.

Conversely, if g = fxe for some x ∈ W (ef), then gg = f(xefx)e = fxe = g.
Hence g ∈ ES . Clearly, g = ge = fg. Thus g ∈M(e, f), as required.

Remark 2.13. The free monoids areM -semigroups but they are not E-inversive.
Note that in [4] Edwards shows that eventually regular semigroups are M -semi-
groups and gives an example of an M -biordered set which does not arise from
eventually regular semigroups.

In the following three results are presented some connections between bi-ideals
of an E-inversive semigroup S and order bi-ideals, bi-order ideals of the biordered
set ES .

Proposition 2.14. Let S be an R-semigroup. Then F is an order bi-ideal of ES

if and only if F is a biorder ideal of ES.

Proof. Let F be an order bi-ideal of ES . Then S(g, h) ⊆ M(g, h) ⊆ F for every
g, h ∈ F , so S(g, h) ∩ F = S(g, h) 6= ∅, since S is an R-semigroup (Lemma 1.1).
Also, if e ∈ ES , then for every f ∈ F such that e 6 f (i.e., e = ef = fe) we have
e ∈ W (f). Consequently, e = fef ∈ fW (ff)f = M(f, f) ⊆ F . Therefore F is a
biorder ideal of ES .

The proof of the opposite implication is similar to the proof of Theorem 1 [1]
and is omitted.
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Lemma 2.15. Let B be a bi-ideal of an E-inversive semigroup S. Then EB is an

order bi-ideal of ES.

Proof. Let B be a bi-ideal of S, g, h ∈ EB , e ∈ M(g, h). Then e = hxg for some
x ∈W (gh) (Proposition 2.12), so e ∈ BSB ⊆ B i.e., e ∈ EB . Thus M(g, h) ⊆ EB

for all g, h ∈ EB . Consequently, EB is an order bi-ideal of ES .

The following theorem generalizes Theorem 2 [1].

Theorem 2.16. Let S be an E-inversive semigroup and B be a bi-ideal of S.
Then EB is an order bi-ideal of ES. Also, A = EBSEB is an E-inversive bi-ideal

of S such that EA = EB .

Conversely, if F is an order bi-ideal of ES, then B = FSF is an E-inversive
bi-ideal of S such that EB = F .

Proof. Indeed, EB is an order bi-ideal of ES . It is clear that A is a bi-ideal of S
and so A is E-inversive (Corollary 2.3). Also, EA = EB , since BSB ⊆ B.

We may show in a similar way the second part of the theorem.

Finally, we show that every M -biordered set E arises from some E-inversive
semigroup. Firstly, we have need the following important Easdown's Theorem:

Theorem 2.17. (Corollary from Theorem 3.3 [3]) Every biordered set comes from

some semigroup.

We say that an element a of a semigroup is E-inversive if W (a) 6= ∅.
The following theorem is the main result of the paper.

Theorem 2.18. EachM -biordered set E arises from some E-inversive semigroup.

Proof. Let E be an M -biordered set. By Easdown's Theorem there exists some
semigroup S with ES = E. Since ES isM -biordered, thenM(e, f) is nonempty for
all e, f ∈ ES , so by Proposition 2.12, W (ef) 6= ∅ for all e, f ∈ ES . We show that
the set T (say) of all E-inversive elements of S forms an E-inversive subsemigroup
of S. Clearly, ES ⊂ T and so T 6= ∅. Moreover, if W (a),W (b) are nonempty,
then xa, by ∈ ES for some x, y ∈ S. Thus W (xaby) 6= ∅ and so s = sxabys for
some s ∈ S. It follows that ysx = ysx(ab)ysx. Therefore W (ab) 6= ∅. We conclude
that E is the set of idempotents of an E-inversive semigroup T (since if t ∈ T and
x ∈W (t) in S, then x ∈ Reg(S) ⊂ T , so x ∈W (t) in T ).

Remark 2.19. A biordered set E is called regular if S(e, f) 6= ∅ for all e, f ∈ E.
By Hall's result, Easdown's Theorem and Lemma 1.1 we obtain Nambooripad's
Theorem [13]:

Theorem 2.20. Every regular biordered set comes from some regular semigroup.
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On fuzzy ordered semigroups

Niovi Kehayopulu and Michael Tsingelis

Abstract. There are two equivalent de�nitions of a fuzzy right ideal, fuzzy left ideal, fuzzy
bi-ideal or fuzzy quasi-ideal f of an ordered semigroup (or a semigroup) S in the bibliography.
The �rst one is based on the fuzzy subset f itself, the other on the multiplication of fuzzy sets
and the greatest fuzzy subset of S. Investigations in the existing bibliography are based on the
�rst de�nition. The present paper serves as an example to show that using the second de�nition
the proofs of the results can be simpli�ed, drastically in some cases, using only the de�nitions
themselves.

1. Introduction and prerequisites

As we have seen in [6], there are two equivalent de�nitions for each of the following:
Fuzzy right ideal, fuzzy left ideal, fuzzy bi-ideal and fuzzy quasi-ideal. These are
the following:

De�nition 1.1. Let (S, ., 6) be an ordered groupoid. A fuzzy subset f of S is
called a fuzzy right ideal of (S, ., 6) (or just a fuzzy right ideal of S) if

(1) f(xy) > f(x) for all x, y ∈ S and
(2) if x 6 y, then f(x) > f(y).

De�nition 1.2. Let (S, ., 6) be an ordered groupoid. A fuzzy subset f of S is
called a fuzzy right ideal of S if

(1) f ◦ 1 � f and
(2) if x 6 y, then f(x) > f(y).

De�nition 1.3. Let (S, ., 6) be an ordered groupoid. A fuzzy subset f of S is
called a fuzzy left ideal of S if

(1) f(xy) > f(y) for all x, y ∈ S and
(2) if x 6 y, then f(x) > f(y).

De�nition 1.4. Let (S, ., 6) be an ordered groupoid. A fuzzy subset f of S is
called a fuzzy left ideal of S if

(1) 1 ◦ f � f and
(2) if x 6 y, then f(x) > f(y).

2010 Mathematics Subject Classi�cation: 06F05, 08A72.
Keywords: Ordered semigroup, regular, intra-regular, left (right) ideal, bi-ideal, fuzzy subset,
fuzzy right (left) ideal, fuzzy bi-ideal.
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De�nition 1.5. Let (S, ., 6) be an ordered semigroup. A fuzzy subset f of S is
called a fuzzy bi-ideal of S if

(1) f(xyz) > min{f(x), f(z)} for all x, y, z ∈ S and
(2) if x 6 y, then f(x) > f(y).

De�nition 1.6. Let S be an ordered semigroup. A fuzzy subset f of S is called
a fuzzy bi-ideal of S if

(1) f ◦ 1 ◦ f � f and
(2) if x 6 y, then f(x) > f(y).

De�nition 1.7. Let (S, ., 6) be an ordered groupoid. A fuzzy subset f of S is
called a fuzzy quasi-ideal of S if

(1) if x 6 bs and x 6 tc for some x, b, s, t, c in S, then f(x) > min{f(b), f(c)}
and

(2) if x 6 y, then f(x) > f(y).

De�nition 1.8. Let (S, ., 6) be an ordered groupoid. A fuzzy subset f of S is
called a fuzzy quasi-ideal of S if

(1) (f ◦ 1) ∧ (1 ◦ f) � f and
(2) if x 6 y, then f(x) > f(y).

A fuzzy subset f of (S, ., 6) is said to be a fuzzy right (resp. left) ideal, fuzzy
bi-ideal or fuzzy quasi-ideal of (S, .) if the following assertions, respectively hold
in (S, ., 6): f(xy) > f(x) (resp. f(xy) > f(y)); f(xyz) > min{f(x), f(z)}; x 6 bs
and x 6 tc imply f(x) > min{f(b), f(c)}.

De�nitions 1.1, 1.3, 1.5 and 1.7 are based on the fuzzy subset f itself while in
1.2, 1.4, 1.6, 1.8 the greatest fuzzy subset 1 of S and the multiplication of fuzzy
subsets play an essential role. Investigations in the existing bibliography are based
on De�nitions 1.1, 1.3, 1.5 and 1.8. De�nition 1.7 has been �rst introduced by
Kehayopulu and Tsingelis in [6]. The present paper serves as an example to show
that with De�nitions 1.2, 1.4, 1.6, 1.8 the proofs of the results can be simpli�ed,
drastically is some cases, using only the de�nitions themselves.

It has been announced without proof in [7] that an ordered semigroup (S, ., 6)
is intra-regular if and only if for every fuzzy right ideal f , every fuzzy left ideal g
and every fuzzy bi-ideal h of (S, ., 6), we have f∧h∧g � g◦h◦f and that it is both
regular and intra-regular if and only if for every fuzzy right ideal f , every fuzzy
left ideal g and every fuzzy bi-ideal h of (S, ., 6), we have f ∧ h ∧ g � h ◦ f ◦ g.
Some more general situations are given in the present paper. According to the
present paper, if an ordered semigroup (S, ., 6) is intra-regular, then for every
fuzzy right ideal f , every fuzzy left ideal g and every fuzzy bi-ideal h of (S, .), we
have f∧h∧g � g◦h◦f . If an ordered semigroup (S, ., 6) is both regular and intra-
regular, then for every fuzzy right ideal f , every fuzzy subset g and every fuzzy
bi-ideal h of (S, .), we have f ∧ h ∧ g � h ◦ f ◦ g. We also prove that if an ordered
semigroup (S, ., 6) is regular, then for every fuzzy right ideal f , every fuzzy left
ideal g and every fuzzy bi-ideal h of (S, .) we have f∧h∧g � f ◦h◦g. "Conversely",
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if for every fuzzy right ideal f , every fuzzy left ideal g and every fuzzy bi-ideal h
of (S, ., 6) we have f ∧ h ∧ g � f ◦ h ◦ g, then S is regular. Characterizations of
regular and both regular and intra-regular ordered semigroups in terms of fuzzy
sets have been also given by Xie in [8].

Let (S, ., 6) be an ordered semigroup. For a subset A of S, denote by (A] the
subset of S de�ned by

(A] := {t ∈ S | t 6 a for some a ∈ A}.

A nonempty subset A of (S, ., 6) is called a left (resp. right) ideal of (S, ., 6) (or
just of S) if (1) SA ⊆ A (resp. AS ⊆ A) and (2) if a ∈ A and S 3 b 6 a, then
b ∈ A. A is called a bi-ideal of S if (1) ASA ⊆ A and (2) if a ∈ A and S 3 b 6 a,
then b ∈ A. It is called a quasi-ideal of S if (1) (SA] ∩ (AS] ⊆ A and (2) if a ∈ A
and S 3 b 6 a, then b ∈ A. A nonempty subset A of (S, ., 6) is said to be a left
ideal, right ideal, bi-ideal or quasi-ideal of (S, .) if the relations SA ⊆ A, AS ⊆ A,
SAS ⊆ A or (AS] ∩ (SA] ⊆ A, respectively hold in S. An ordered semigroup
(S, ., 6) is called regular if for every a ∈ S there exists x ∈ S such that a 6 axa.
Equivalently, if A ⊆ (ASA] for every A ⊆ S. It is called intra-regular if for every
a ∈ S there exist x, y ∈ S such that a 6 xa2y. Equivalently, if A ⊆ (SA2S] for
every A ⊆ S.

Denote by 1 the fuzzy subset of S de�ned by 1 : S → [0, 1] | a → 1. The fuzzy
set 1 is the greatest element in the set of fuzzy subsets of S, that is, f � 1 for
every fuzzy subset f of S. If S is a regular or an intra-regular ordered semigroup,
then we have 1 ◦ 1 = 1. It is well known that an ordered semigroup S is regular
if and only if for every fuzzy right ideal f and every fuzzy left ideal g of (S, ., 6),
we have f ∧ g = f ◦ g equivalently f ∧ g � f ◦ g [4]. It is intra-regular if and
only if for every fuzzy right ideal f and every fuzzy left ideal g of (S, ., 6), we have
f ∧ g � g ◦ f [7]. Moreover, an ordered semigroup S is regular if and only if for
every fuzzy subset f of S, we have f � f ◦ 1 ◦ f [6]. It is intra-regular if and only
if for every fuzzy subset f of S, we have f � 1 ◦ f2 ◦ 1 [5]. If (S, ., 6) is an ordered
groupoid, f, g fuzzy subsets of (S, .) and f � g then, for any fuzzy subset h of
(S, .), we have f ◦ h � g ◦ h and h ◦ f � h ◦ g (cf. also [4]). It is also well known
that if S is a semigroup or an ordered semigroup, then the multiplication of fuzzy
subsets of S is associative (cf. [3]). For the de�nitions and notations not given in
the present paper we refer to [4].

2. Main results

The �rst theorem characterizes the ordered semigroups which are intra-regular
in terms of fuzzy sets. Let us prove it using �rst the �rst and then the second
de�nitions.

Theorem 2.1. Let (S, ., 6) be an ordered semigroup. If S is intra-regular, then
for every fuzzy right ideal f , every fuzzy left ideal g and every fuzzy bi-ideal h of
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(S, .) we have
f ∧ h ∧ g � g ◦ h ◦ f.

"Conversely", if for every fuzzy right ideal f , every fuzzy left ideal g and every
fuzzy bi-ideal h of (S, ., 6) we have f∧h∧g � g◦h◦f , then (S, ., 6) is intra-regular.

Proof of Theorem 2.1 using the De�nitions 1.1, 1.3, 1.5

We need the following lemmas. As our aim is to compare the two de�nitions,
we would like to mention everything we use in the proofs. In that sense, for the
sake of completeness, it is no harm to mention the next lemma related to the real
numbers, as well.

Lemma 2.1. If a, b, c, d, e, f are real numbers, then
(1) If a > b and c > d, then min{a, c} > min{b, d}.
(2) min{min{a, b}, c} = min{a, b, c}.
(3) If a > b, c > d and e > f , then min{a, c, e} > min{b, d, f}.

Lemma 2.2. (cf. also [2; Proposition 2]) Let (S, ., 6) be an ordered groupoid. If
A is a left (resp. right) ideal of (S, ., 6), then the characteristic function fA is a
fuzzy left (resp. fuzzy right) ideal of (S, ., 6). "Conversely", if A is a nonempty
set and fA a fuzzy left (resp. right) ideal of (S, ., 6), then A is a left (resp. right)
ideal of (S, ., 6).

Lemma 2.3. (cf. also [7; Lemma 4]) Let (S, ., 6) be an ordered semigroup. If B
is a bi-ideal of (S, ., 6), then the characteristic function fB is a fuzzy bi-ideal of
(S, ., 6). "Conversely", if B is a nonempty set and fB a fuzzy bi-ideal of (S, ., 6),
then B is a bi-ideal of (S, ., 6).

Lemma 2.4. [4; Proposition 7] If S is an ordered groupoid (or groupoid) and
{Ai | i ∈ I} a nonempty family of subsets of S, then we have∧

i∈I

fAi = f ⋂
i∈I

Ai
.

Lemma 2.5. Let S be an ordered semigroup, n a natural number, n > 2 and
{A1, A2, . . . , An} a set of nonempty subsets of S. Then we have

fA1 ◦ fA2 ◦ . . . ◦ fAn
= f(A1A2...An].

Proof. For n = 2 it is true [4; Proposition 8]. Suppose fA1 ◦ fA2 ◦ . . . ◦ fAm =
f(A1A2...Am] for a natural number m, m > 2. Then we have

fA1 ◦ fA2 ◦ . . . ◦ fAm+1 = f(A1A2...Am] ◦ fAm+1 = f((A1A2...Am]Am+1]

= f((A1A2...Am)Am+1] = f(A1A2...Am+1].

�
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Lemma 2.6. [4; Proposition 5] If S is an ordered groupoid (or groupoid) and A,B
subsets of S, then we have

A ⊆ B ⇐⇒ fA � fB .

Taking into account the Proposition 2 and Lemma 2 in [1], one can easily see that
the following lemma is satis�ed:

Lemma 2.7. Let (S, ., 6) be an ordered semigroup. If (S, ., 6) is intra-regular,
then for every right ideal X, every left ideal Y and every bi-ideal B of (S, .) we
have

X ∩B ∩ Y ⊆ (Y BX].

"Conversely", if for every right ideal X, every left ideal Y and every bi-ideal B of
(S, ., 6) we have X ∩B ∩ Y ⊆ (Y BX], then S is intra-regular.

Proof of Theorem 2.1

=⇒. Let f be a fuzzy right ideal, g a fuzzy left ideal, h a fuzzy bi-ideal of (S, .),
and a ∈ S. Since (S, ., 6) is intra-regular, there exist x, y ∈ S such that a 6 xa2y.
Then we have

a 6 x(xa2y)(xa2y)y = x2a2yxa2y2,

which implies (x2a2yxa, ay2) ∈ Aa ........ (∗) and Aa 6= ∅. Then we have

((g ◦ h) ◦ f)(a) : =
∨

(u,v)∈Aa

min{(g ◦ h)(u), f(v)} (since Aa 6= ∅)

> min{(g ◦ h)(x2a2yxa), f(ay2)} (by (∗)).

Since (x2a, ayxa) ∈ Ax2a2yxa, we have Ax2a2yxa 6= ∅, hence

(g ◦ h)(x2a2yxa) : =
∨

(w,t)∈Aa

min{(g(w), h(t)}

> min{g(x2a), h(ayxa)}.

Then, by Lemma 2.1(1) and (2), we have

((g ◦ h) ◦ f)(a) > min{min{g(x2a), h(ayxa)}, f(ay2)}
= min{g(x2a), h(ayxa), f(ay2)}
= min{f(ay2), h(ayxa), g(x2a)}

Since f is a fuzzy right ideal of (S, .), we have f(ay2) > f(a). Since h is a fuzzy
bi-ideal of (S, .), we have h(ayxa) > h(a). Since g is a fuzzy left ideal of (S, .), we
have g(x2a) > g(a). Then, by Lemma 2.1(3), we have

((g ◦ h) ◦ f)(a) > min{f(a), h(a), g(a)} = (f ∧ h ∧ g)(a).
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As the multiplication of fuzzy subsets is associative, we obtain f ∧h∧g � g ◦h◦f .

⇐=. Let X be a right ideal, Y a left ideal, and B a bi-ideal of (S, ., 6). By Lemma
2.7 it is enough to prove that X ∩ B ∩ Y ⊆ (Y BX]. By Lemmas 2.2 and 2.3, fX

is a fuzzy right ideal, fY a fuzzy left ideal and fB a fuzzy bi-ideal of (S, ., 6).
By hypothesis, we have fX ∧ fB ∧ fY � fY ◦ fB ◦ fX . By Lemma 2.4, we have
fX ∧ fB ∧ fY = fX∩B∩Y . By Lemma 2.5, fY ◦ fB ◦ fX = f(Y BX]. Hence we have
fX∩B∩Y � f(Y BX]. Then, by Lemma 2.6, X ∩B ∩ Y ⊆ (Y BX]. �

Proof of Theorem 2.1 using the De�nitions 1.2, 1.4, 1.6

=⇒. Let f be a fuzzy right ideal, g a fuzzy left ideal, h a fuzzy bi-ideal of (S, .).
Since f ∧ h ∧ g is a fuzzy subset of S and S is intra-regular, we have

f ∧ h ∧ g � 1 ◦ (f ∧ h ∧ g)2 ◦ 1 = 1 ◦ (f ∧ h ∧ g) ◦ (f ∧ h ∧ g) ◦ 1
� 1 ◦ 1 ◦ (f ∧ h ∧ g)2 ◦ 1 ◦ 1 ◦ (f ∧ h ∧ g)2 ◦ 1 ◦ 1
= 1 ◦ (f ∧ h ∧ g) ◦ (f ∧ h ∧ g) ◦ 1 ◦ (f ∧ h ∧ g) ◦ (f ∧ h ∧ g) ◦ 1
� (1 ◦ g) ◦ (h ◦ 1 ◦ h) ◦ (f ◦ 1)
� g ◦ h ◦ f.

⇐=. Let f be a fuzzy right ideal and g a fuzzy left ideal of (S, ., 6). Since 1
is a fuzzy right ideal and f a fuzzy bi-ideal of (S, ., 6), by hypothesis, we have
f ∧ g = 1 ∧ f ∧ g � g ◦ f ◦ 1 � g ◦ f , so S is intra-regular. �

The next theorem characterizes the ordered semigroups which are both regular
and intra-regular using fuzzy sets.

Theorem 2.2. Let (S, ., 6) be an ordered semigroup. If S is both regular and
intra-regular, then for every fuzzy right ideal f , every fuzzy subset g and every
fuzzy bi-ideal h of (S, .) we have

f ∧ h ∧ g � h ◦ f ◦ g.

"Conversely", if for every fuzzy right ideal f , every fuzzy left ideal g and every
fuzzy bi-ideal h of (S, ., 6) we have f ∧h∧ g � h ◦ f ◦ g, then S is both regular and
intra-regular.

Proof of Theorem 2.2 using the De�nitions 1.1, 1.3, 1.5

In addition to Lemmas 2.1�2.6 mentioned above, we need the following lemma.

Lemma 2.8. (cf. also [1; Proposition 3]) Let (S, ., 6) be an ordered semigroup. If
(S, ., 6) is both regular and intra-regular, then for every right ideal X, every subset
Y and every bi-ideal B of (S, .) we have

X ∩B ∩ Y ⊆ (BXY ].
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"Conversely", if for every right ideal X, every left ideal Y and every bi-ideal B of
(S, ., 6) we have X ∩ B ∩ Y ⊆ (BXY ], then (S, ., 6) is both regular and intra-
regular.

Proof of Theorem 2.2

=⇒. Let f be a fuzzy right ideal of (S, .), g a fuzzy subset of S, h a fuzzy bi-ideal
of (S, .), and a ∈ S. Since S is regular, there exists x ∈ S such that a 6 axa.
Since S is intra-regular, there exist z, y ∈ S such that a 6 za2y. Then we have

a 6 ax(axa) 6 ax(za2y)xa = axza2yxa,

(axza2yx, a) ∈ Aa, Aa 6= ∅, and

((h ◦ f) ◦ g)(a) : =
∨

(u,v)∈Aa

min{(h ◦ f)(u), g(v)}

> min{(h ◦ f)(axza2yx), g(a)}.

Since (axza, ayx) ∈ Aaxza2yx, we have Aaxza2yx 6= ∅, and

(h ◦ f)(axza2yx) : =
∨

(w,t)∈Axza2yx

min{h(w), f(t)}

> min{h(axza), f(ayx)}.

Hence we obtain

((h ◦ f) ◦ g)(a) > min{min{h(axza), f(ayx)}, g(a)}
= min{h(axza), f(ayx), g(a)}

Since h is a fuzzy bi-ideal, f a fuzzy right ideal and g a fuzzy subset of S, we
obtain

((h ◦ f) ◦ g)(a) > min{h(a), f(a), g(a)} = (f ∧ h ∧ g)(a).

⇐=. Let X be a right ideal, Y a left ideal and B a bi-ideal of (S, ., 6). Since fX

is a fuzzy right ideal, fY a fuzzy left ideal and fB a fuzzy bi-ideal of (S, ., 6), by
hypothesis, we have fX ∧ fB ∧ fY � fB ◦ fX ◦ fY . Then fX∩B∩Y � f(BXY ], and
X ∩B ∩ Y ⊆ (BXY ]. By Lemma 2.8, S is both regular and intra-regular. �

Proof of Theorem 2.2 using the De�nitions 1.2, 1.4, 1.6

=⇒. Since S is both regular and intra-regular, for any fuzzy subset f of S, we
have f � f ◦ 1 ◦ f2 ◦ 1 ◦ f . Indeed: Since S is regular, we have f � f ◦ 1 ◦ f . Since
S is intra-regular, we have f � 1 ◦ f2 ◦ 1. Thus we have

f � (f ◦ 1 ◦ f) ◦ 1 ◦ f � f ◦ 1 ◦ (1 ◦ f2 ◦ 1) ◦ 1 ◦ f

= f ◦ 1 ◦ f2 ◦ 1 ◦ f.
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Let now f be a fuzzy right ideal, g a fuzzy subset and h a fuzzy bi-ideal of (S, .).
Since f ∧ h ∧ g is a fuzzy subset of S, we have

f ∧ h ∧ g � (f ∧ h ∧ g) ◦ 1 ◦ (f ∧ h ∧ g) ◦ (f ∧ h ∧ g) ◦ 1 ◦ (f ∧ h ∧ g)
� (h ◦ 1 ◦ h) ◦ (f ◦ 1) ◦ g

� h ◦ f ◦ g.

⇐=. Let f be a fuzzy right and g a fuzzy left ideal of (S, ., 6). Since 1 is a fuzzy
right ideal of (S, ., 6) and f a fuzzy bi-ideal of (S, ., 6), by hypothesis, we have
f∧g = 1∧f∧g � f ◦1◦g � f ◦g, and S is regular. Since g is a fuzzy bi-ideal and 1 a
fuzzy left ideal of (S, ., 6), by hypothesis, we have f∧g = f∧g∧1 � g◦f ◦1 � g◦f ,
and S is intra-regular. �

We �nally characterize the ordered semigroups which are regular in terms of fuzzy
sets.

Theorem 2.3. Let (S, ., 6) be an ordered semigroup. If S is regular, then for
every fuzzy right ideal f, every fuzzy left ideal g and every fuzzy bi-ideal h of (S, .)
we have

f ∧ h ∧ g � f ◦ h ◦ g.

"Conversely", if for every fuzzy right ideal f, every fuzzy left ideal g and every
fuzzy bi-ideal h of (S, ., 6) we have f ∧ h ∧ g � f ◦ h ◦ g, then S is regular.

Proof of Theorem 2.3 using the De�nitions 1.1, 1.3, 1.5

In addition to Lemmas 2.1�2.6, we need the following lemma.

Lemma 2.9. (cf. also [1; Proposition 1]) Let (S, ., 6) be an ordered semigroup. If
S is regular, then for every right ideal X, every left ideal Y and every bi-ideal B of
(S, .) we have

X ∩B ∩ Y ⊆ (XBY ].

"Conversely", if for every right ideal X, every left ideal Y and every bi-ideal B of
(S, ., 6) we have X ∩B ∩ Y ⊆ (XBY ], then S is regular.

Proof of Theorem 2.3

=⇒. Let f be a fuzzy right ideal, g a fuzzy left ideal, h a fuzzy bi-ideal of (S, .),
and a ∈ S. Then a 6 axa 6 (axa)x(axa) for some x ∈ S. Then (axaxa, xa) ∈ Aa,
and

((f ◦ h) ◦ g)(a) : =
∨

(u,v)∈Aa

min{(f ◦ h)(u), g(v)}

> min{(f ◦ h)(axaxa), g(xa)}.
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Since (ax, axa) ∈ Aaxaxa, we have

(f ◦ h)(axaxa) : =
∨

(w,t)∈Aaxaxa

min{(f(w), h(t)}

> min{f(ax), h(axa)}.

Then we have

((f ◦ h) ◦ g)(a) > min{min{f(ax), h(axa)}, g(xa)}
= min{f(ax), h(axa), g(xa)}
> min{f(a), h(a), g(a)}
= (f ∧ h ∧ g)(a).

Hence we obtain f ∧ h ∧ g � f ◦ h ◦ g.

⇐=. Let X be a right ideal, Y a left ideal, and B a bi-ideal of (S, ., 6). Then fX

is a fuzzy right ideal, fY a fuzzy left ideal and fB a fuzzy bi-ideal of (S, ., 6). By
hypothesis, we have fX ∧ fB ∧ fY � fX ◦ fB ◦ fY . Since fX ∧ fB ∧ fY = fX∩B∩Y

and fY ◦ fB ◦ fX = f(Y BX], we have fX∩B∩Y � f(Y BX]. Then, by Lemma 2.9,
X ∩B ∩ Y ⊆ (XBY ], and S is regular. �

Proof of Theorem 2.3 using the De�nitions 1.2, 1.4, 1.6

=⇒. Let f be a fuzzy right ideal, g a fuzzy left ideal, h a fuzzy bi-ideal of (S, .).
Since S is regular and f ∧ h ∧ g a fuzzy subset of S, we have

f ∧ h ∧ g � (f ∧ h ∧ g) ◦ 1 ◦ (f ∧ h ∧ g)
� (f ∧ h ∧ g) ◦ 1 ◦ (f ∧ h ∧ g) ◦ 1 ◦ (f ∧ h ∧ g) ◦ 1 ◦ (f ∧ h ∧ g)
� (f ◦ 1) ◦ (h ◦ 1 ◦ h) ◦ (1 ◦ g)
� f ◦ h ◦ g

⇐=. Let f be a fuzzy right ideal and g a fuzzy left ideal of (S, ., 6). Since 1 is a
fuzzy bi-ideal of (S, ., 6), by hypothesis, we have f∧g = f∧1∧g � f ◦(1◦g) � f ◦g,
and S is regular. �

As a conclusion, we have the following

Theorem. An ordered semigroup S is intra-regular (resp. regular) if and only if
for every fuzzy right ideal f , every fuzzy left ideal g and every fuzzy bi-ideal h of
S we have f ∧ h ∧ g � g ◦ h ◦ f (resp. f ∧ h ∧ g � f ◦ h ◦ g). It is both regular
and intra-regular if and only if for every fuzzy right ideal f , every fuzzy left ideal
g and every fuzzy bi-ideal h of S, we have f ∧ h ∧ g � h ◦ f ◦ g.
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Varieties of rectangular quasigroups

Aleksandar Krapeº

Abstract. For the given variety V of quaisgroups, the class of all rectangular V�quasigroups is
de�ned as the class of all groupoids isomorphic to L × Q × R, where Q ∈ V and L(R) is a left
(right) zero semigroup. The identities axiomatizing the new class are given, proving that it is a
variety in the language of the original variety.

1. Introduction

In the papers [6], [7] and [8], the so called rectangular loops and rectangular
quasigroups were de�ned.

De�nition 1.1. Groupoid is a rectangular quasigroup (loop) i� it is isomorphic to
the direct product of a left zero semigroup, a quasigroup (loop) and a right zero
semigroup.

Several di�erent axiomatizations for both these structures were given and the
problems of the axiomatization by independent systems of axioms were posed.

In their paper [5] M. Kinyon and J. D. Phillips solved these problems by giving
the following axioms:

(RQ1) x\xx = x

(RQ2) xx/x = x

(RQ3) x(x\y) = x\xy

(RQ4) (x/y)y = xy/y

(RQ5) (x\y)\((x\y) · zu) = (x\xz)u

(RQ6) (xy · (z/u))/(z/u) = x(yu/u)

2010 Mathematics Subject Classi�cation: 20N02, 20N05, 08B25, 08A5016Y60
Keywords: rectangular V�quasigroup, axiomatization, axiom independence.
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(RL) x\x(y\y) = (x/x)y/y

The system (RQ1)�(RQ6) axiomatizes rectangular quasigroups and, if we add
(RL) to it, we get axioms for rectangular loops.

In this paper we give some new axiomatizations of rectangular loops. More
importantly, if V is a quasigroup variety, we give an axiomatization of the variety
of rectangular V�quasigroups.

2. Axioms for rectangular V�quasigroups
We need to adjust the types of (equational) quasigroups and left (right) zero
semigroups. To achieve this we extend the language of groupoids with further
operations.

De�nition 2.1. Let L = {·, \, /} be the language of quasigroups and M a further
(possibly empty) set of operation symbols disjoint from L. The language L̂ = L∪M
is an extended language of quasigroups.

The language L1 = {·, \, /, e}, obtained from L by the addition of a single
constant, is the language of loops.

De�nition 2.2. A left (right) zero semigroup is an algebra in L̂ satisfying iden-
tities x\y = x/y = xy and xy = x(xy = y).

De�nition 2.3. Let V be a variety of quasigroups in an extended language L̂.
An algebra in the language L̂ is a rectangular V�quasigroup if it is isomorphic to
the direct product of a left zero semigroup, a quasigroup from the variety V and
a right zero semigroup.

There are three exceptions to the de�nition above. In the Section 3 (4) we con-
sider rectangular left (right) symmetric quasigroups which have only two binary
operations. But in that case one of the division operations coincide with multiplica-
tion, so this algebra is equivalent to the (proper) rectangular left (right) symmetric
quasigroup with three binary operations. Similarly, for TS�quasigroups in which
both division operations are equal to multiplication, rectangular TS�quasigroups
are just special groupoids.

Theorem 2.4. Let V be a variety of quasigroups satisfying additional identities

si = ti (i ∈ I) in an extended language L̂ and let x be a variable which does not

occur in either si or ti. Then the variety �V of rectangular V�quasigroups can be

axiomatized by (RQ1)�(RQ6) together with (for all i ∈ I):

(Vi) x · six = x · tix .

Proof. Left (right) zero semigroups as well as all V�quasigroups satisfy (RQ1)�
(RQ6) and all (Vi) (i ∈ I). So do their direct products i.e. rectangular V�
quasigroups.
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If an algebra satis�es (RQ1)�(RQ6) then it is a rectangular quasigroup. Since
all (Vi) are satis�ed, the quasigroup factor has to satisfy them too. But in quasi-
groups identities (Vi) are equivalent to si = ti and these de�ne V.

Theorem 2.5. Theorem 2.4 remains valid if we replace (Vi) by any of the following
identities:

x ◦ (si � x) = x ◦ (ti � x)

(x ◦ si) � x = (x ◦ ti) � x

x/(si\x) = (x/ti)\x

x ◦ (si � y) = x ◦ (ti � y)

(x ◦ si) � y = (x ◦ ti) � y

where x, y do not occur in si, ti and ◦, � ∈ {·, \, /}.

Proof. In the proof of Theorem 2.4 we can replace any (Vi) by some of the above
identities which are, in quasigroups, equivalent to si = ti. The line of reasoning
remains the same.

De�nition 2.6. head(t)(tail(t)) is the �rst (last) variable of the term t.

Theorem 2.7. The equality u = v is true in all rectangular V�quasigroups i�

head(u) = head(v) , tail(u) = tail(v) and u = v is true in all V�quasigroups.

Proof. In one direction the theorem is true because projections are epimorphisms
and so preserve identities. The converse is true because direct products also pre-
serve identities.

Theorem 2.8. Theorem 2.4 remains valid if we replace (Vi) by any of the following
identities:

si ◦ x = ti ◦ x (if head(si) = head(ti))

x ◦ si = x ◦ ti (if tail(si) = tail(ti))

si = ti (provided both head(si) = head(ti) and tail(si) = tail(ti))

where x does not occur in si, ti and ◦ ∈ {·, \, /}.

Example 2.9. Adding associativity x · yz = xy · z to identities (RQ1)�(RQ6)
gives yet another axiomatization of rectangular groups.

Example 2.10. Adding identity x · yx = x · zx to (RQ1)�(RQ6) gives a (way too
complicated) axiomatization of rectangular bands.

Example 2.11. Rectangular commutative quasigroups have identities (RQ1) �
(RQ6) and x(yz · x) = x(zy · x) as axioms.

However, note that commutative rectangular quasigroups are just commutative
quasigroups.
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Example 2.12. Rectangular medial quasigroups are axiomatized by (RQ1)�(RQ6)
and xy · uv = xu · yv.

Example 2.13. Commutative medial quasigroups are characterized by the axiom
xy ·uv = uy ·xv (among others). Rectangular commutative medial quasigroups are
rectangular quasigroups satisfying x(yz · uv) = x(uz · yv).

Example 2.14. Paramedial quasigroups are characterized by the identity xy·uv =
vy · ux. Rectangular paramedial quasigroups are axiomatized by adding identity
x · (yz · uv)x = x · (vz · uy)x to (RQ1)�(RQ6).

It is rather obvious that the following corollaries are true:

Corollary 2.15. If the variety V of quasigroups is de�ned by the identities si =
ti (i ∈ I) such that head(si) = head(ti) , tail(si) = tail(ti) for all i ∈ I, then the

class of rectangular quasigroups satisfying all identities si = ti (i ∈ I) is the class

of all rectangular V�quasigroups.

Corollary 2.16. If the variety V of quasigroups is de�ned by the identities si =
ti (i ∈ I) such that head(si) 6= head(ti) and tail(sj) 6= tail(tj) for some i, j ∈ I,
then the class of rectangular quasigroups satisfying all identities si = ti (i ∈ I) is

just the class of all V�quasigroups.

Example 2.17. Moufang loops are de�ned as loops satisfying any of the four
equivalent identities:

xy · zx = (x · yz)x

x(yz · x) = xy · zx

x(y · xz) = (xy · x)z

x(y · zy) = (xy · z)y.

K. Kunen recently proved in [9] that the existence of the neutral element follows
from any of these identities. Therefore, rectangular Moufang loops are axiomatized
by (RQ1)�(RQ6) and for example xy · zx = (x · yz)x.

Example 2.18. Let (S; ·) and (T ; ◦) be groupoids and f, g, h : S −→ T three
bijections. If f(xy) = g(x) ◦ h(y) we say that (T ; ◦) is an isotope of (S; ·). Isotopy
is an important invariant of quasigroups which generalizes isomorphism.

The result that every quasigroup is an isotope of some loop is a classical one
in quasigroup theory. The class of all isotopes of groups is also signi�cant and
constitutes a variety of quasigroups as proved by V. D. Belousov in [1]. The
de�ning identity of group isotopes is

x(y\(z/u)v) = (x(y\z)/u)v. (2.1)

By the theorem 2.8 the axioms for the class of all rectangular group isotopes are
(RQ1)�(RQ6) and (2.1).
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Note that the class of all isotopes of rectangular groups is strictly greater than

the class of all rectangular group isotopes. Namely, if S = {0, 1}, f =
(

0 1
1 0

)
and xy = f(x), then (S; ·) is an isotope of the left zero semigroup with two elements
but is not a rectangular quasigroup.

Example 2.19. The variety of rectangular quasigroups with an idempotent may
be axiomatized by (RQ1)�(RQ6) and ee = e.

Example 2.20. The variety of rectangular left loops is axiomatized by (RQ1)�
(RQ6) and any of the following 37 identities:

x ◦ ((y/y) � x) = x ◦ ((z/z) � x)

(x ◦ (y/y)) � x = (x ◦ (z/z)) � x

x/((y/y)\x) = (x/(z/z))\x

x ◦ ((y/y) � u) = x ◦ ((z/z) � u)

(x ◦ (y/y)) � u = (x ◦ (z/z)) � u

where ◦, � ∈ {·, \, /}.

Example 2.21. If the variety of left loops is de�ned in the language of loops i.e.
by the identity ex = x, then the variety of rectangular left loops is axiomatized by
(RQ1)�(RQ6) and

x · ey = xy. (2.2)

Example 2.22. The variety of rectangular loops is axiomatized by (RQ1)�(RQ6)
and any of the identities from the Example 2.20, together with the dual of one of
them (to ensure the existence of a right neutral in quasigroup). However, we can
apply the Theorem 2.5 to the single identity y\y = z/z which axiomatizes loops
within quasigroups, and add any of the following identities to (RQ1)�(RQ6) to
obtain axioms for rectangular loops.

x ◦ ((y\y) � x) = x ◦ ((z/z) � x)

(x ◦ (y\y)) � x = (x ◦ (z/z)) � x

x/((y\y)\x) = (x/(z/z))\x

x/((y/y)\x) = (x/(z\z))\x

x ◦ ((y\y) � u) = x ◦ ((z/z) � u)

(x ◦ (y\y)) � u = (x ◦ (z/z)) � u

where ◦, � ∈ {·, \, /}. This gives us a total of 1407 axiom systems for rectangular
loops.
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Example 2.23. In the language of loops, the variety of rectangular loops can be
axiomatized by (RQ1)�(RQ6), (2.2) and

xe · y = xy (2.3)

The identity (2.2) may be replaced by any of identities from the Example 2.20.
Likewise, the identity (2.3) may be replaced by the dual of some of these identities.
This gives us 75 further axiomatizations of rectangular loops.

However, it should be admitted that the axiom system of Kinyon and Phillips
is shorter (smaller language and/or less identities and/or less variables and/or
less symbols) and more appealing then any of the above 1482 systems. The only
exception is perhaps the system with identities (2.2) and (2.3).

3. Rectangular left symmetric quasigroups

The important class of left symmetric quasigroups is characterized by the identity
x · xy = y. Just as in numerous examples in the previous section, we can axiom-
atize rectangular left symmetric quasigroups by identities (RQ1)�(RQ6) and the
identity

x(y · yz) = xz (LS)

as prescribed by the Theorem 2.8.
However, in this case we can do more. Note that by the De�nition 2.2 x\y = xy

in both left and right zero semigroups. In left symmetric quasigroups this is
also true. Therefore, the identity x\y = xy is true in rectangular left symmetric
quasigroups as well. But then the operation \ can be eliminated from axioms and
from the language itself. We have:

Theorem 3.1. An algebra (S; ·, /) is a rectangular left symmetric quasigroup i�

it satis�es:

x · xx = x (LS1)

xx/x = x (LS2)

(x/y)y = xy/y (LS3)

xy · (xy · uv) = (x · xu)v (LS4)

(xy · (u/v))/(u/v) = x(yv/v). (LS5)

Proof. Axiom (RQ3) transforms into trivial identity and may be eliminated. Ax-
ioms (RQ1) and (RQ5) become axioms (LS1) and (LS4) respectively.

Only (LS) remains to be proved. We do it by the series of lemmas below.

Lemma 3.2. (x · xy)z = x(x · yz)

Proof. (x · xy)z = (x · xx) · ((x · xx) · yz) (by (LS4))

= x(x · yz) (by (LS1)) �
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Lemma 3.3. xy · (xy · z) = x · xz

Proof. xy · (xy · z) = xy · (xy · (z · zz)) (by (LS1))

= (x · xz) · zz (by (LS4))

= (x · xx) · ((x · xx) · (z · zz)) (by (LS4))

= x · xz (by (LS1)) �

Lemma 3.4. x(x · xy) = xy

Proof. x(x · xy) = (x · xx)y (by Lemma 3.2)

= xy (by (LS1)) �

Lemma 3.5. xy · x(x · zu) = xy · zu

Proof. xy · x(x · zu) = xy · (x · xz)u (by Lemma 3.2)

= xy · (xy · (xy · zu)) (by (LS4))

= xy · zu (by Lemma 3.4) �

Lemma 3.6. x · x(y · yz) = x · xz

Proof. x · x(y · yz) = (x · xy) · yz (by Lemma 3.2)

= (x · xy) · x(x · yz) (by Lemma 3.5)

= (x · xy) · (x · xy)z (by Lemma 3.2)

= x · xz (by Lemma 3.3) �

Lemma 3.7. x(y · yz) = xz

Proof.
x(y · yz) = x(x · x(y · yz)) (by Lemma 3.4)

= x(x · xz) (by Lemma 3.6)

= xz (by Lemma 3.4) �

The proof above is an adaptation of the proof found by the automated reasoning
program Prover9. Prover9 is the �rst order logic theorem prover developed by
W. W. McCune [11] which is capable of solving di�cult mathematical problems.
For instance, McCune in [10] solved the so called Robbins conjecture using Otter

(an earlier version of Prover9). See [12] for the gentle introduction to Otter with
the leaning to quasigroup theory.

McCune also wrote the model builder program Mace4 [11], which is used in the
following examples to verify the independence of the axioms (LS1)�(LS5).

Example 3.8. Table 1 is the smallest model that satis�es (LS2), (LS3), (LS4),
and (LS5), but not (LS1).

• 0 1
0 1 1
1 0 0

\ 0 1
0 1 1
1 0 0

Table 1. (LS2), (LS3), (LS4) and (LS5), but not (LS1). �
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Example 3.9. Table 2 is the smallest model that satis�es (LS1), (LS3), (LS4),
and (LS5), but not (LS2).

• 0 1
0 0 1
1 1 0

\ 0 1
0 1 0
1 0 1

Table 2. (LS1), (LS3), (LS4) and (LS5), but not (LS2). �

Example 3.10. Table 3 is the smallest model that satis�es (LS1), (LS2), (LS4),
and (LS5), but not (LS3).

• 0 1 2
0 1 0 2
1 2 1 0
2 0 2 1

\ 0 1 2
0 2 0 1
1 0 1 2
2 1 2 0

Table 3. (LS1), (LS2), (LS4) and (LS5), but not (LS3). �

Example 3.11. Table 4 is the smallest model that satis�es (LS1), (LS2), (LS3),
and (LS5), but not (LS4).

• 0 1 2
0 0 1 0
1 1 2 1
2 2 0 2

\ 0 1 2
0 0 2 0
1 1 0 1
2 2 1 2

Table 4. (LS1), (LS2), (LS3) and (LS5), but not (LS4). �

Example 3.12. Table 5 is the smallest model that satis�es (LS1), (LS2), (LS3),
and (LS4), but not (LS5).

• 0 1
0 0 0
1 1 1

\ 0 1
0 0 0
1 0 1

Table 5. (LS1), (LS2), (LS3) and (LS4), but not (LS5). �

4. Right symmetric quasigroups

Right symmetric quasigroups are de�ned by the identity xy · y = x. From the
Theorem 3.1 it follows, by the duality principle for groupoids (see [2]), that the
class of all rectangular right symmetric quasigroups can be axiomatized by the
identities:

x\xx = x (RS1)

xx · x = x (RS2)
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x(x\y) = x\xy (RS3)

(x\y)\((x\y) · uv) = (x\xu)v (RS4)

(xy · uv) · uv = x(yv · v) (RS5)

in the language {·, \}. Moreover, the axioms are mutually independent.

If a quasigroup satis�es both left and right symmetry identities, i.e. if both
x · xy = y and xy · y = x are true, then such a quasigroup is called a totally

symmetric or TS�quasigroup. TS�quasigroups are commutative and both division
operations in them coincide with multiplication. Applying Theorem 3.1 and its
dual we get:

Theorem 4.1. A groupoid (S; ·) is a rectangular TS�quasigroup i�

x · xx = x (TS1)

xx · x = x (TS2)

xy · (xy · uv) = (x · xu)v (TS3)

(xy · uv) · uv = x(yv · v). (TS4)

Example 4.2. Table 6 is the smallest model that satis�es (TS2), (TS3) and (TS4),
but not (TS1).

• 0 1
0 1 1
1 0 0

• 0 1 2
0 0 2 0
1 1 1 1
2 2 0 2

Table 6. (TS2), (TS3) Table 7. (TS1), (TS2)
and (TS4), but not (TS1). and (TS4), but not (TS3).

Example 4.3. Table 7 is the smallest model that satis�es (TS1), (TS2), and
(TS4), but not (TS3).

Independence of (TS2) and (TS4) is proved by models dual to those in Exam-
ples 4.2 and 4.3 respectively.

Acknowledgement. The author would like to thank M. K. Kinyon for his help
and comments on the early version of this paper.
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Essential operations of clones

Adam W. Marczak

Abstract. Clones of algebras consist not only of essential operations but also of operations
not depending on every variable. However, the sets of all essential operations of clones uniquely
determine the clones. In this note we present a short precise proof of this fact and indicate these
essential operations that are equal to inessential elements of clones.

1. Introduction

In the last century research in the theory of �nite automata and deterministic
operators led to problems concerning essential variables of functions. From that
time the theory of essential variables of �nite operations became a quite frequent
research direction. The study of essential variables in functions de�ned on �nite
sets, initiated by A. Salomaa in [11], goes with multiple-valued logic and currently
plays an important role in computer sciences. Essential variables of functions and
essential term operations of algebras were widely studied under di�erent aspects,
see e.g. [1]�[6], [8],[9], [12],[13].

The clone of a given algebra consists of all its term operations � it contains
both essentially n-ary term operations as well as term operations not depending on
every variable. But the clone is uniquely determined by the set of all its constants
and essential operations. This fact is sometimes assumed as intuitive, since every
term operation not depending on every its variable can be obtained by adding
inessential variables to an essential operation. However, this argumentation is
imprecise and it cannot be regarded as su�cient, especially when the essential
operation equal to a given inessential one has to be indicated, as e.g. in [10].
Therefore we decided to give in this note a short precise argument that clones of
algebras are determined only by constants and essentially n-ary term operations.
We indicate these essential elements of clones that are equal to the elements not
depending on every variable.

By an algebra we mean a pair A = (A; FA), where A is a nonempty set and
FA is a family of mappings fA : An → A called fundamental operations of A. The
number n is called the arity of fA. A type of algebras we de�ne as a mapping
τ : F → N ∪ {0} , where F is a nonempty set of fundamental operation symbols
and N is the set of positive integers. An algebra is said to be of type τ if it is of

2010 Mathematics Subject Classi�cation: 20N15
Keywords: algebra, clone of an algebra, essentially n-ary term operation



82 A. W. Marczak

the form A = (A; FA), where FA = {fA : f ∈ F}, and the arity of fA equals τ(f)
for every f ∈ F .

Let an algebra A = (A; FA) of type τ be given. Recall that for every 1 6 i 6 n,
the i-th n-ary projection is the mapping (a1, . . . , an) 7→ ai. It is usually denoted by
en
i (x1, . . . , xn) = xi. The smallest set containing all projections and all elements
of FA that is closed under superpositions is called the set of term operations of A,
or the clone of A. We denote it by Cl (A). An n-ary term operation fA ∈ Cl (A)
depends on the variable xi, if there exist elements a1, . . . , an, b ∈ A such that

fA(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= fA(a1, . . . , ai−1, b, ai+1, . . . , an).

The number of essential variables in fA is called the essential arity of fA. If the
term operation fA depends on every of its variable, then it is said to be essentially
n-ary, or an essential operation of A. Otherwise fA is called inessential.

Following [6], for an algebra A and every positive integer n, Pn(A) denotes
the set of all essentially n-ary term operations of A. P0(A) denotes the set of all
constant non-nullary term operations of A and all its nullary operations.

2. The result

Let an algebra A = (A; FA) of type τ be given. For an n-ary term operation
fA(x1, . . . , xn) ∈ Cl (A) and a permutation σ of 1, . . . , n, de�ne

fA
σ (x1, . . . , xn) = fA(xσ(1), . . . , xσ(n)).

Recall the following two simple observations. They are both easily provable by
induction on the complexity of term operation, see also [7], § 8.

(2.i) Let n > 1. For every n-ary term operation fA ∈ Cl (A), there exists an

(n− 1)-ary term operation gA ∈ Cl (A) such that

fA(a1, . . . , an−1, an−1) = gA(a1, . . . , an−1)

for all a1, . . . , an−1 ∈ A.

(2.ii) If an n-ary term operation fA ∈ Pn(A), then also fA
σ ∈ Pn(A) for every

permutation σ of 1, . . . , n.

Then we have the following.

Lemma. For a given algebra A, if a term operation fA(x1, . . . , xn) depends only

on the variables x1, . . . , xk for some k < n, then there exists a term operation

(f∗)A(x1, . . . , xk) ∈ Pk(A) such that

fA(x1, . . . , xn) = (f∗)A(
en
1 (x1, . . . , xn), . . . , en

k (x1, . . . , xn)
)
,

where en
i (x1, . . . , xn) = xi for every i = 1, . . . , k.
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Proof. Consider a term operation fA(x1, . . . , xn) ∈ Cl (A) that depends on x1, ..., xk

for some k < n. From (2.i), there exists a k-ary term operation (f∗)A ∈ Cl (A)
such that

(f∗)A(a1, . . . , ak) = fA(a1, . . . , ak, . . . , ak)

for every a1, . . . , ak ∈ A. We shall prove that (f∗)A
is essentially k-ary. Indeed,

since fA(x1, . . . , xn) depends on xi for every i = 1, . . . , k−1, there exist elements
a1, . . . , ai, . . . , an, bi ∈ A such that

fA(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= fA(a1, . . . , ai−1, bi, ai+1, . . . , an).

Since fA does not depend on xj for j > k, so we have

fA(a1, . . . , ai−1, ai, ai+1, . . . , ak, ak+1, . . . , an) =
fA(a1, . . . , ai−1, ai, ai+1, . . . , ak, ak, . . . , ak)

and

fA(a1, . . . , ai−1, bi, ai+1, . . . , ak, ak+1, . . . , an) =
fA(a1, . . . , ai−1, bi, ai+1, . . . , ak, ak, . . . , ak),

and consequently

(f∗)A(a1, . . . , ai−1, ai, ai+1, . . . , ak) 6= (f∗)A(a1, . . . , ai−1, bi, ai+1, . . . , ak)

for every i = 1, . . . , k − 1. Therefore the term operation (f∗)A
depends on xi for

every i < k. Moreover, since fA depends also on xk, we have

fA(c1, . . . , ck−1, ck, ck+1, . . . , cn) 6= fA(c1, . . . , ck−1, dk, ck+1, . . . , cn)

for some elements c1, . . . , cn, dk ∈ A. But fA does not depend on xj for every
j > k, so we have

fA(c1, . . . , ck−1, ck, ck+1, . . . , cn) = fA(c1, . . . , ck−1, ck, ck, . . . , ck)

and

fA(c1, . . . , ck−1, dk, ck+1, . . . , cn) = fA(c1, . . . , ck−1, dk, dk, . . . , dk)

and consequently

(f∗)A(c1, . . . , ck−1, ck) 6= (f∗)A(c1, . . . , ck−1, dk).

Thus (f∗)A(x1, . . . , xk) ∈ Pk(A) ⊂ Cl (A). Finally, let (f∗∗)A
denote the term

operation obtained from (f∗)A
by substituting every its variable xi for the n-ary

projection en
i (x1, . . . , xn) for every i = 1, . . . , k. We have

(f∗∗)A(x1, . . . , xn) = (f∗)A(
en
1 (x1, . . . , xn), . . . , en

k (x1, . . . , xn)
)
.
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Note that for every a1, . . . , an ∈ A we have

(f∗∗)A(a1, . . . , an) = (f∗)A(
en
1 (a1, . . . , an), . . . , en

k (a1, . . . , an)
)

=

(f∗)A(a1, . . . , ak) = fA(a1, . . . , ak, ak, . . . , ak)

and since fA does not depend on xj for any j > k, we obtain

fA(a1, . . . , ak, ak, . . . , ak) = fA(a1, . . . , ak, ak+1, . . . , an)

and consequently

(f∗∗)A(x1, . . . , xn) = fA(x1, . . . , xn),

completing the proof.

Theorem. Let A1 = (A; F A1) and A2 = (A; GA2) be algebras of types τ1

and τ2, respectively. Then Cl (A1) = Cl (A2) if and only if Pn(A1) = Pn(A2) for

every n ∈ N ∪ {0}.

In another words, the clone Cl (A) of a given algebra A is uniquely determined by
the subset of Cl (A) consisting of all term operations depending on every variable
and all constant operations.

Proof. The necessity of the theorem is obvious. For the proof of su�ciency assume
that Pn(A1) = Pn(A2) for every nonnegative integer n. Let a mapping f be
a nullary, constant non-nullary or essentially n-ary term operation of A1. Then,
by the assumption, f ∈ Pn(A1) if and only if f ∈ Pn(A2) for some n ∈ N ∪ {0}.
Let fA1(x1, . . . , xn) ∈ Cl (A1) be a term operation depending only on k, k < n,
its variables. Consider a term operation fA1

σ (x1, . . . , xn) = fA1(xσ(1), . . . , xσ(n))
for a permutation σ ∈ Sn such that fA1

σ depends on x1, . . . , xk. From (2.ii),
fA1 ∈ Cl (A1) implies that fA1

σ ∈ Cl (A1). Then, from Lemma, there exists a term

operation (f∗σ)A1 ∈ Pk(A1) such that

(f∗σ)A1(a1, . . . , ak) = fA1
σ (a1, . . . , ak, ak+1, . . . , an)

for every a1, . . . , an ∈ A. But since (f∗σ)A1 is essentially k-ary, so � by the as-

sumption � (f∗σ)A1 belongs also to the set Pk(A2) ⊆ Cl (A2) and hence fA1
σ ∈

Cl (A2). Now, from (2.ii) again, fA1 ∈ Cl (A2) and consequently the inclusion
Cl (A1) ⊆ Cl (A2) holds. The proof of the opposite inclusion is analogous. So,
Cl (A1) = Cl (A2), completing the proof.
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The spectrum of a variety of modular groupoids

Robert A. R. Monzo

Abstract. We prove that the spectrum of the variety of idempotent, right modular and anti-
rectangular groupoids consists of all powers of four. We also prove that any �nite or countable
groupoid anti-isomorphic to a groupoid in that variety is isomorphic to it. Finally, it is proved
that, to within isomorphism, there is only one countable groupoid in that variety and that it is
isomorphic to a proper subgroupoid of itself.

1. Introduction

Kazim and Naseeruddin studied a groupoid variety consisting of what they called
left almost semigroups, groupoids satisfying the equation xy · z = zy · x [9]. Such
groupoids have also been referred to as left invertive [5], Abel-Grassmann's [8,
10, 11, 12, 14, 15, 16] and right modular [7]. Various aspects of these groupoids
have been studied over the years, such as partial ordering and congruences [6],
in�ations [15], idempotent structure [14], zeroids and idempoids [12], structure of
unions of groups [10], power groupoids and inclusion classes [11] simplicity [7] and
combinatorial chacterization [1].

In this paper we study the variety I ∩RM ∩AR of idempotent, right modular,
anti-rectangular groupoids, the collection of groupoids that satisfy the equations
x = x2, xy · z = zy · x and xy · x = y. These groupoids also satisfy the equation
x · yz = z · yx and are therefore modular. They were called anti-rectangular AG-
bands in [14] and are also known, perhaps more commonly, as a�ne spaces over

GF (4) [1, 4]. The main result of this paper is that there is, up to isomorphism,
exactly one groupoid of order 4n in I∩RM∩AR for each n ∈ {0, 1, 2, . . .} and that
there are no �nite groupoids in I ∩RM ∩AR of any other orders. We also prove
that, up to isomorphism, there is only one countable groupoid in I ∩ RM ∩ AR
and that it is isomorphic to a proper subgroupoid of itself.

2. Preliminary de�nitions, notation and results

We use G, H, J, . . . to denote groupoids, xy or x · y to denote the product of x on
the left with y on the right. For example, (xy · z) · yz = [(x · y) · z] · (y · z). The
varieties of idempotent and anti-rectangular groupoids are denoted by I and AR

2010 Mathematics Subject Classi�cation: 20N02, 14R10
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and are the collection of groupoids satisfying the equations x = x2 and xy · x = y
respectively.

The set of orders of the �nite algebras in a groupoid variety V is called the spec-
trum of V. We will denote this by sp(V ). T. Evans [3] showed that the spectrum
of the groupoid variety de�ned by the equation xy ·yz = y is the set {n2 : n ∈ N}.
Evans generalised this result and obtained, for each positive integer n ∈ N , a va-
riety of groupoids having as spectrum all nth powers [2]. The main result in this
paper, referred to in the introduction above, is that the spectrum of I ∩RM ∩AR
is {4n : n ∈ N ∪ {0}}.

There is another reason to study the structure of groupoids in I ∩ RM ∩ AR.
Let RM denote the variety of right modular groupoids determined by the equation
xy · z = zy · x. Proti¢ and Stepanovi¢ [14] proved that any idempotent, right
modular groupoid G is an idempotent, right modular groupoid YG of members of
I ∩RM ∩AR. In other words,

Lemma 2.1. [14, Theorem 2.1]
If G ∈ I ∩RM, then there exists a groupoid YG ∈ I ∩RM such that G is a disjoint

union of groupoids Gα (α ∈ YG), GαGβ ⊆ Gαβ (α, β ∈ YG) and Gα ∈ I∩RM∩AR
(α ∈ YG).

So, the �nite members of I ∩ RM ∩ AR are basic building blocks of the �nite
members of I∩RM . As we shall see, the basic building block of the �nite members
of I ∩RM ∩AR is the following groupoid T4 of order 4, called Traka 4 in [14]. It
is isomorphic to any groupoid generated by any two distinct elements, a and b say,
of any member of I ∩ RM ∩ AR and, therefore, T4 ∈ I ∩ RM ∩ AR (see Lemma
2.4 below). The multiplication table of T4 is:

T4 a b ab ba
a a ab ba b
b ba b a ab
ab b ba ab a
ba ab a b ba

We will also show that if G ∈ I ∩ RM ∩ AR and |G| = 4n then G consists of
4n−1 disjoint copies of T4 (see Corollary 3.8). Some of the following results will
be used throughout this paper. Several of the proofs are straightforward and are
omitted.

Lemma 2.2. [13] If G ∈ RM, then G satis�es the identity xu · vy = xv · uy.

Lemma 2.3. If G ∈ I ∩RM ∩AR. then G satis�es the identity x · yz = z · yx.

Proof. z · yx = (yx · z) · z = (zx · y) · z = [zx · (zy · z)] · z =
= [(z · zy) · (xz)] · z = (z · xz) · (z · zy) = x · [(zy · z) · z] = x · yz. �

Lemma 2.4. Let G ∈ I ∩ RM ∩ AR with {c, d} ⊆ G and c 6= d. Then the

subgroupoid 〈c, d〉 of G generated by c and d is isomorphic to T4. One isomorphism

is given by the mapping c→ a, d→ b, cd→ ab and dc→ ba.
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Lemma 2.5. Any two distinct elements of T4 generate T4.

Lemma 2.6. Any bijection on T4 is either an isomorphism or an anti-isomorphism.

Four-cycles and two-cycles are anti-isomorphisms and the identity mapping, three-

cycles and products of two-cycles are isomorphisms.

Lemma 2.7. Any groupoid anti-isomorphic to T4 is isomorphic to T4. In partic-

ular, if Φ : T4 → G is an anti-isomorphism, then the mapping a → Φa, b → Φb,
ab→ Φ(ba) and ba→ Φ(ab) is an isomorphism.

Lemma 2.8. Suppose that H and K are subgroupoids of G ∈ I ∩ RM ∩ AR and

that H ∼= T4
∼= K. Then either H = K, H ∩K = ∅ or H ∩K = {c}.

Notation 2.9. G ∼= H [G∼=←−H] will denote that G and H are isomorphic [anti-

isomorphic].

Lemma 2.10. If G ∈ I ∩RM ∩AR and G∼=←−H, then H ∈ I ∩RM ∩AR.

Proof. Let Φ : G → H be an anti-isomorphism. Then it is straightforward to
show that H is an idempotent groupoid that satis�es the equation xy · x = y.
Let {h1, h2, h3} ⊆ H. Then there exists {g1, g2, g3} ⊆ G such that hi = Φgi, i ∈
{1, 2, 3}. Using Lemma 2.3, h1h2 · h3 = (Φg1) (Φg2) · (Φg3) = Φ (g2g1) · (Φg3) =
Φ(g3 · g2g1) = Φ(g1 · g2g3) = Φ (g2g3) · (Φg1) = (Φg3) (Φg2) · (Φg1) = h3h2 · h1 and
so H satis�es the equation xy · z = zy · x. Hence, H ∈ I ∩RM ∩AR.

3. The structure of �nite members of I ∩RM ∩AR

We use G ≤ H [G ≺ H] to denote that G is a subgroupoid [proper subgroupoid]
of the groupoid H. Recall that a ∈ T4.

Theorem 3.1. If T4 ≤ H ≺ R, R ∈ I ∩ RM ∩ AR and r ∈ R − H, then

Hr = H ∪ {rh}h∈H ∪ {hr}h∈H ∪ {ar · h}h∈H is a subgroupoid of R and, therefore,

Hr ∈ I ∩RM ∩AR. If H has n elements then Hr has 4n elements.

Proof. We will prove that Hr is closed under the multiplication inherited from R
and that its multiplication table is as follows:

Hr k rk kr ar · k
h hk ar · (ka · h) r · kh (hk · ah) r
rh kh · r r · hk ar · (k · ah) a · hk
hr ar · (ha · kh) kh hk · r r (ah · k)

ar · h r (h · ka) (hk · a) r ak · ha ar · hk

Table 1. The multiplication table for {h, k} ⊆ H.

We will use Lemma 2.2 and Lemma 2.3, together with the fact that R is in
I ∩RM ∩AR to calculate the products in rows 2, 3, 4 and 5 of the table.
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Row 2: The product in column 2 follows from the fact that H is a subgroupoid
of R. The product in column 4 follows from Lemma 2.3. For column 3, h · rk =
h · (ar · a) k = h · (ka · ar) = ar · (ka · h). For column 5, h · (ar · k) = (h · ar) ·hk =
(r · ah) · hk = (hk · ah) · r.

Row 3: The product in column 2 follows from the right modularity of R.
The product in column 3 follows from Lemma 2.2 and the fact that R is an
idempotent groupoid. For the product in column 4, rh · kr = rk · hr = rk ·
(ah · a) r = rk · (ra · ah) = (r · ra) (k · ah) = ar · (k · ah) . For the product in
column 5, rh · (ar · k) = (r · ar) · hk = a · hk.

Row 4: For the product in column 2, hr · k = [h (ar · a)] k = [k (ar · a)]h =
kh·[(ar · a) h] = kh·(ha · ar) = ar (ha · kh). For the product in column 3, hr ·rk =
(rk · r) h = kh. For the product in column 4, hr · kr = hk · r. For column 5,
hr · (ar · k) = (h · ar) · rk = (r · ah) · rk = r (ah · k).

Row 5: For the product in column 2, (ar · h) k = (ar · h) (a · ka) = r (h · ka).
For column 3, (ar · h) · rk = (ar · r) · hk = ra · hk = (hk · a) r. For column 4,
(ar · h) · kr = (hr · a) · kr = (ha · ra) · kr = (ha · k) · a = ak · ha. The product in
column 5 follows from Lemma 2.2 and the fact that R is an idempotent groupoid.

Thus, Hr is closed under the groupoid operation and hence Hr belongs to
I ∩RM ∩AR.

It is straightforward to show that the sets H, {rh}h∈H , {hr}h∈H and {ar·h}h∈H

are pairwise disjoint sets. Furthermore, it is easy to show that, for {h, k} ⊆ H,
two elements rh and rk [hr and kr; ar ·h and ar ·k] are equal if and only if h = k.
Therefore, if H contains n elements then Hr contains 4n elements.

De�nition 3.2. We will call Hr the extension of H by r.

Corollary 3.3. sp (I ∩RM ∩AR) = {4n : n ∈ N ∪ {0}}.

Corollary 3.4. A groupoid G ∈ I ∩RM ∩AR of order 4n has (n+1) generators,
n ∈ {0, 1, . . . }.

Theorem 3.5. Suppose that T4 ≤ H ∈ I ∩ RM ∩ AR and r /∈ H. We de�ne

pairwise disjoint sets A = {rh}h∈H , B = {hr}h∈H and C = {ar ◦h}h∈H such that

A∩H = B∩H = C ∩H = ∅. De�ne Hr = H ∪A∪B∪C with a product ◦ de�ned
as in Table 2 below. Then Hr ∼= Hr and therefore Hr ∈ I ∩RM ∩AR.

Hr k rk kr ar ◦ k

h hk ar ◦ (ka · h) r(kh) (hk · ah)r

rh (kh)r r(hk) ar ◦ (k · ah) a · hk

r ar ◦ (ha · kh) kh (hk)r r(ah · k)

ar ◦ h r(h · ka) (hk · a)r ak · ha ar ◦ hk

Table 2. The multiplication table for ◦ with {h, k} ⊆ H.

Proof. The product ◦ is well de�ned and closed and so Hr is a groupoid. We
de�ne a mapping Φ : Hr → Hr as follows: for any h ∈ H, Φh = h, Φ(rh) = rh,
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Φ(hr) = hr and Φ(ar ◦ h) = ar · h. It is clear that Φ is one-to-one and onto Hr.
We now show that Φ is a homomorphism. Let {x, y} ⊆ Hr. There are 16 possible
forms x ◦ y can take.

Let {h, k} ⊆ H.

Case 1. x = h, y = k. Then Φ(x ◦ y) = Φ(hk) = hk = Φh · Φk = Φx · Φy.

Case 2. x = h, y = rk. Then Φ(x◦y) = Φ(h◦rk) = Φ(ar◦ka·h)) = ar(ka·h) =
h · rk = Φh · Φ(rk) = Φx · Φy.

Case 3. x = h, y = kr. Then Φ(x ◦ y) = Φ(h ◦ kr) = Φ(r ◦ kh) = r · kh =
h · kr = Φh · Φ(kr) = Φx · Φy.

Case 4. x = h, y = ar ◦ k. Then we have Φ(x ◦ y) = Φ(h ◦ (ar ◦ k)) =
Φ((hk · ah)r) = (hk · ah)r = h(ar · k) = Φh · Φ(ar ◦ k) = Φx · Φy.

Case 5. x = rh, y = k. Then Φ(x ◦ y) = Φ(rh ◦ k) = Φ((kh)r) = kh · r =
rh · k = Φ(rh) · Φk = Φx · Φy.

Case 6. x = rh, y = rk. Then Φ(x ◦ y) = Φ(rh ◦ rk) = Φ(r(hk)) = r · hk =
rh · rk = Φ(rh) · Φ(rk) = Φx · Φy.

Case 7. x = rh, y = kr. Then Φ(x ◦ y) = Φ(rh ◦ kr) = Φ(ar ◦ (k · ah)) =
ar · (k · ah) = rh · kr = Φ(rh) · Φ(kr) = Φx · Φy.

Case 8. x = rh, y = ar ◦ k. Then Φ(x ◦ y) = Φ(rh ◦ (ar ◦ k)) = a · hk =
rh · (ar · k) = Φ(rh) · Φ(ar · k) = Φx · Φy.

Case 9. x = hr, y = k. Then Φ(x ◦ y) = Φ(hr ◦ k) = Φ(ar ◦ (ha · kh)) =
ar · (ha · kh) = hr · k = Φ(hr) · Φk = Φx · Φy.

Case10. x = hr, y = rk. Then Φ(x◦ y) = Φ(hr ◦ rk) = Φ(kh) = kh = hr · rk =
Φ(hr) · Φ(rk) = Φx · Φy.

Case 11. x = hr, y = kr. Then Φ(x ◦ y) = Φ(hr ◦ kr) = Φ((hk)r) = hk · r
= hr · kr = Φ(hr) · Φ(kr) = Φx · Φy.

Case 12. x = hr, y = ar ◦ k. Then Φ(x ◦ y) = Φ(hr ◦ (ar ◦ k)) = Φ(r(ah · k)) =
r(ah · k) = hr · (ar · k) = Φ(hr) · Φ(ar · k) = Φx · Φy.

Case 13. x = ar · h, y = k. Then Φ(x ◦ y) = Φ((ar ◦ h) ◦ k) = Φ(r(h · ka)) =
r(h · ka) = (ar · h) · k = Φ(ar ◦ h) · Φk = Φx · Φy.

Case 14. x = ar ◦ h, y = rk. Then Φ(x ◦ y) = Φ((ar ◦ h) ◦ rk) = Φ((hk · a)r) =
(hk · a)r = (ar · h) · rk = Φ(ar · h) · Φ(rk) = Φx · Φy.

Case 15. x = ar ◦ h, y = kr. Then Φ(x ◦ y) = Φ((ar ◦ h) ◦ kr) = ak · ha =
(ar · h) · kr = Φ(ar · h) · Φ(kr) = Φx · Φy.

Case 16. x = ar ◦ h, y = ar ◦ k. Then Φ(x ◦ y) = Φ((ar ◦ h) ◦ (ar ◦ k)) =
Φ(ar(hk)) = ar · hk = (ar · h) · (ar · k) = Φ(ar · h) · Φ(ar · k) = Φx · Φy.

Hence, Φ is an isomorphism and Hr ∼= Hr.

De�nition 3.6. We de�ne G0 as the trivial groupoid, G1 = T4 and by induction,
Gn = G

rn−1
n−1 , n > 2, where rn /∈ Gn, n > 1.

Corollary 3.7. Any �nite member of I ∩RM ∩AR is isomorphic to Gn for some

n ∈ {0, 1, 2 . . .}. If G ∈ I ∩RM ∩AR and |G| = 4n, then G ∼= Gn.
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Corollary 3.8. For n ∈ N , Gn is a disjoint union of groupoids Gα with GαGβ ⊆
Gαβ and Gα

∼= Gn−1, α, β ∈ T4. Therefore, Gn is a disjoint union of 4n−1 copies

of T4.

4. The countable member of I ∩RM ∩AR

In this section we show that, to within isomorphism, there is precisely one count-
able member of I∩RM∩AR. This result will follow from the following construction
of such a groupoid.

Construction 4.1. Let H =
⋃∞

n=1 Gn, with the Gn's as in De�nition 3.6. De�ne
a product ∗ on H as follows. If {u, v} ⊆ H with u ∈ Gnu − Gnu−1 and v ∈
Gnv −Gnv−1 then u ∗ v is de�ned as the product of u and v in Gmax{nu,nv}.

Theorem 4.2. H in Construction 4.1 is countable and H ∈ I ∩RM ∩AR.

Proof. Clearly ∗ is well de�ned and H is closed with respect to ∗. By The-
orem 3.5, Gn ∈ I ∩ RM ∩ AR, n ∈ N, and since max{max{nu, nv}, nw} =
max{max{nw, nv}, nu}, it follows easily that H ∈ I ∩ RM ∩ AR. Since each
Gn, n ∈ N, is countable, so is H.

Theorem 4.3. A countable K ∈ I∩RM∩AR is isomorphic to H in Construction

4.1.

Proof. Let K =
⋃∞

n=1{yn}, with yi = yj if and only if i = j. De�ne K0 = ∅,
K1 = {y1, y2, y1y2, y2y1} and R1 = K − K1. De�ne K2 = K

yt1
1 , where t1 is the

minimum of the subscripts of the yn's in R1. De�ne R2 = K−K2 and K3 = K
yt2
2 ,

where t2 is the minimum subscript of the yn's in R2. In general, by induction we
de�ne Rn = K − Kn and Kn+1 = K

ytn
n , where tn is the minimum subscript of

the yn's in Rn. Then every yn must eventually appear in some Kt and therefore
K =

⋃∞
n=0 Kn. Note that if {h, k} ⊆ K, with h ∈ Kn−Kn−1 and k ∈ Km−Km−1,

then the product hk in K equals the product hk in KM , where M = max{n, m}.
By Lemma 2.4, K1

∼= G1 = T4. Call this isomorphism Φ1. Note that Φ1(y1) =
a, Φ1(y2) = b, Φ1(y1y2) = ab and Φ1(y2y1) = ba.

Now by induction we de�ne Φn : Kn → Gn, n > 2, as follows. Firstly,
Φn = Φn−1 on Kn−1. Then for k ∈ Kn −Kn−1 we de�ne

Φn(ytn−1k) = rn−1 ∗ (Φn−1k), Φn(kytn−1) = (Φn−1k) ∗ rn−1 and
Φn((y1ytn−1)k) = ((Φn−1y1) ∗ rn−1) ∗ (Φn−1k).

We now prove by induction on n that Φn is an isomorphism (n > 2). Assume
that for 1 6 t ≺ n, Φt is an isomorphism and Φty1 = a. Then the fact that
Φn is one-to-one and onto Gn follows from the de�nition of Φn and the fact that
Φn−1 is one-to-one and onto Gn−1. The fact that Φn(xy) = (Φnx)(Φny) for any
{x, y} ⊆ Kn follows from the de�nition of product in Kn and Gn (see Tables 3



The spectrum of a variety of modular groupoids 93

and 4 below) and the facts that Φn−1 is an isomorphism and Φn−1y1 = a. We
leave the straightforward details of these calculations to the reader.

Kn=K
ytn−1
n−1 m ytn−1m mytn−1 y1ytn−1 ·m

l lm y1ytn−1·(my1·l) ytn−1 ·ml (lm·y1l)·ytn−1

ytn−1 l ml · ytn−1 ytn−1 · lm y1ytn−1·(m·y1l) y1 · lm
lytn−1 y1ytn−1·(ly1·ml) ml lm · ytn−1 ytn−1·(y1l·m)

y1ytn−1 · l ytn−1 · (l ·my1) (lm · y1) · ytn−1 y1l ·my1 y1ytn−1 · lm

Table 3. The multiplication table for {l, m} ⊆ Kn−1.

Gn = G
rn−1
n−1 k rn−1k krn−1 arn−1 · k

h hk arn−1 ·(ka·h) rn−1(kh) (hk ·ah)rn−1

rn−1h (kh)rn−1 rn−1(hk) arn−1 ·(k ·ah) a · hk
hrn−1 arn−1 ·(ha·kh) kh (hk)rn−1 rn−1(ah·k)

arn−1 ·h rn−1(h · ka) (hk · a)rn−1 ak · ha arn−1 ·hk

Table 4. The multiplication table for {h, k} ⊆ Gn−1.

So every Φn : Kn → Gn is an isomorphism.

We now de�ne Φ : K → H as follows: for x ∈ Kn −Kn−1, Φx = Φnx. Note
that if x ∈ Kn − Kn−1 and M > n then, since Kn ⊆ Kn+1 ⊆ . . . ⊆ KM−1 and
Φt = Φt−1 on Kt−1, t ∈ N − {1}, ΦM = Φn on Kn. Then for any {x, y} ⊆ K,
with x ∈ Kn −Kn−1 and y ∈ Km −Km−1, Φ(xy) = ΦM (xy) = (ΦMx)(ΦMy) =
(Φnx)(Φmy) = (Φx)(Φy), where M = max{n, m}. Using the de�nition of the Φn's
it is straightforward to prove that Φ is one-to-one and onto H. So, H ∼= K.

Corollary 4.4. A countable member of I ∩ RM ∩ AR is a union of a countable

number of disjoint, isomorphic copies of T4.

Corollary 4.5. A countable member of I ∩ RM ∩ AR is isomorphic to a proper

subgroupoid of itself.

Proof. Consider H in Construction 4.1. Let J1 = {a, ar1, r1a, r1}. For 1 ≺ n
de�ne Jn by induction as Jn = Jrn

n−1. Then J =
⋃∞

n=1 Jn, with the multiplication
inherited from H, is a proper, countable subgroupoid of H. By Theorem 4.3, J
and H are isomorphic.

It follows from Lemma 2.10, Corollary 3.7 and Theorem 4.3 that:

Corollary 4.6. If G ∈ I ∩ RM ∩ AR, G is �nite or countable and G∼=←−H, then

G ∼= H.
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5. Smallest (W,W) groupoids in RM−AR

De�nition 5.1. A groupoid G is called a groupoid YG of groupoids Gα, α ∈ YG if
G is a disjoint union of the groupoids Gα and GαGβ ⊆ Gαβ , α, β ∈ YG. If a ∈ Gα,
then Ga will denote Gα.

In De�nition 5.1, if YG ∈ U and Gα ∈ V (α ∈ YG) for some groupoid varieties
U and V, then G is called a (U, V )-groupoid.

In this section W will denote the variety I ∩RM ∩AR.

Looking closely at Lemma 2.1, it is natural to wonder whether a right modular
(W,W )-groupoid is anti-rectangular and, hence, a member of W. The converse
statement is trivial, since any G ∈W is a groupoid YG = G of trivial members of
W. However, there is a (W,W )-groupoid G ∈ RM − AR. In fact we �nd a right
modular (W,W )-groupoid G of order 16, which is the minimal order for a right
modular (W,W )-groupoid that is not anti-rectangular, as we proceed to prove.
We also prove that G is unique up to isomorphism and that any right modular
(W,W )-groupoid K /∈ AR contains an isomorphic copy of G.

Lemma 5.2. If K ∈ RM is a groupoid YK of groupoids Kα, α ∈ YK , with

YK ∈W and Kα ∈W (α ∈ YK), then
1) K is cancellative,

2) for any {a, b} ⊆ K, |Ka| = |Kb|,
3) for any {a, b} ⊆ K, ab · a = b if and only if ba · b = a.

Proof. 1) Suppose that a ∈ Kα = Ka, b ∈ Kβ = Kb and c ∈ Kγ = Kc. If
ca = cb, then γα = γβ and, since YK is cancellative, α = β. Then ab · a = b and
bc = (ab · a)c = ca · ab = cb · ab = (ab · b)c = ba · c.

Hence, (ca ·c)b = bc ·ca = (ba ·c) ·ca = (ca ·c) ·ba. But since {b, ba, ca ·c} ⊆ Kβ ,
and Kβ is cancellative, b = ba. Therefore b = ba = bb. So a = b. Dually, if ac = bc,
then a = b. Therefore K is cancellative.

2) Now let c ∈ Kα = Ka. Then ab·c ∈ Kβ . Since K is cancellative |Kα| 6 |Kβ |.
Dually |Kβ | 6 |Kα| and so |Kα| = |Kβ |.

3) Note that ab · a = a · ba and so we can write aba to denote ab · a. If aba = b,
then ba · b = a((bab)a) = a((ba)(aba)) = a((ba)b). But {a, bab} ⊂ Ka and Ka is
cancellative. Hence a = bab. Dually, bab = a implies aba = b.

Now suppose that K ∈ RM is a groupoid YK of groupoids Kα (α ∈ YK), with
YK ∈ W and Kα ∈ W , (α ∈ YK). If K is not anti-rectangular, then it follows
from Lemma 5.2 that there is a set {a, b, c, d} ⊆ K with aba = d 6= b, bab = c 6= a,
{a, c, ac, ca} ⊆ Ka, {b, d, bd, db} ⊆ Kb, ab 6= cd and ba 6= dc.

It follows from Lemma 2.4 and the fact that K is a groupoid YK of groupoids
Kα, (α ∈ YK), with YK ∈W and Kα ∈W that {a, c, ac, ca} = Ga, {b, d, bd, db} =
Gb, {ab, cd, ab · cd, cd · ab} = Gab and {ba, dc, ba · dc, dc · ba} = Gba are disjoint,
isomorphic copies of T4 contained in Ka, Kb, Kab and Kba respectively. We
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proceed to demonstrate that the union G =
⋃

Gg, g ∈ {a, b, ab, ba}, of these four
copies of T4 is a subgroupoid of K and is a groupoid T4 of groupoids Gg.

Recall that K ∈ I∩RM is cancellative. We have ab·a = d. Then ab·c = cb·a =
(bab · b)a = (b · ba)a = aba · b = db, ab ·ac = (aba)(ab · c) = aba · (cb ·a) = d ·db = bd
and ab · ca = (ab · c) · aba = db · d = b. We have shown that Gb = (ab)Ga.

Similarly we can calculate that Gab = Gab and Gba = bGa.
We can then calculate the Cayley table consisting of the 256 products of pairs

of elements of G. In order to have su�cient space to show the Cayley table we
de�ne the following two ordered 16�tuples as equal:
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) =

(a, c, ac, ca, b, d, bd, db, ab, cd, ab · cd, cd · ab, ba, dc, ba · dc, dc · ba).
G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 3 4 2 9 11 12 10 16 14 13 15 6 8 7 5
2 4 2 1 3 12 10 9 11 13 15 16 14 7 5 6 8
3 2 4 3 1 10 12 11 9 15 13 14 16 5 7 8 6
4 3 1 2 4 11 9 10 12 14 16 12 13 8 6 5 7
5 13 15 16 14 5 7 8 6 2 4 3 1 12 10 9 11
6 16 14 13 15 8 6 5 7 3 1 2 4 9 11 12 10
7 14 16 15 13 6 8 7 5 1 3 4 2 11 9 10 12
8 15 13 14 16 7 5 6 8 4 2 1 3 10 12 11 9
9 6 8 7 5 13 15 16 14 9 11 12 10 4 2 1 3
10 7 5 6 8 16 14 13 15 12 10 9 11 1 3 4 2
11 5 7 8 6 14 16 15 13 10 12 11 9 3 1 2 4
12 8 6 5 7 15 13 14 16 11 9 10 12 2 4 3 1
13 9 11 12 10 2 4 3 1 8 6 5 7 13 15 16 14
14 12 10 9 11 3 1 2 4 5 7 8 6 16 14 13 15
15 10 12 11 9 1 3 4 2 7 5 6 8 14 16 15 13
16 11 9 10 12 4 2 1 3 6 8 7 5 15 13 14 16

Table 5.
G h (ab) · h hb bh
g gh [c(g · ah)] b b [(a · hg)c] (ab) · (ga · h)

(ab) · g b(ca · hg) (ab) · (gh) cg · ha (gh · a)b
gb (ab) · (ha · gh) b(hg · ca) (gh)b h · (ag · c)
bg (hg)b h · gc (ab) · (g · ch) b(gh)

Table 6. The multiplication table for {g, h} ⊆ Ga = {a, c, ac, ca}.

Table 6 is derived using calculations obtained from Table 5. Notice that Table
6 yields the following Cayley table in set theoretic notation:

G Ga Gb = (ab)Ga Gab = Gab Gba = bGa

Ga Ga Gab Gba Gb

Gb = (ab)Ga Gba Gb Ga Gab

Gab = Gab Gb Gba Gab Ga

Gba = bGa Gab Ga Gb Gba

Table 7.

Note that the subscripts of the G′
gs, g ∈ {a, b, ab, ba}, multiply in exactly the

same way as the elements of T4. The fact that G ∈ RM follows from the fact that
G ≤ K and K ∈ I ∩RM ⊆ RM . This proves that G is a right modular groupoid
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T4 of groupoids Gg, where each Gg
∼= T4. Note however that {a, b, ab, ba} is not

even a subgroupoid of G! We have therefore proved:

Theorem 5.3. G ∈ I∩RM and G is a groupoid T4 of (four) isomorphic copies of
T4. However G /∈W . Also, if (W,W )-groupoid K ∈ RM −AR, then K contains

an isomorphic copy of G.
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Right k-weakly regular hemirings

Muhammad Shabir and Rukhshanda Anjum

Abstract. In this paper we de�ne right k-weakly regular hemirings, which are generalization
of k-regular hemirings. We characterize these hemirings by the properties of their right k-ideals
and also by the properties of their fuzzy right k-ideals.

1. Introduction

There are many concepts of universal algebra generalizing an associative ring
(R,+, ·). Some of them, nearrings and several kinds of semirings, have been
proven very useful. The notion of semiring was introduced by H. S. Vandiver
in 1934 [12]. Semirings provide a common generalization of rings and distribu-
tive lattices, appear in a natural manner in some applications to the theory of
automata, formal languages, optimization theory and other branches of applied
mathematics. Hemirings, semirings with commutative addition and zero element,
have also proved to be an important algebraic tool in theoretical computer sci-
ence. The concept of a fuzzy set, introduced by Zadeh [14], was applied by many
researchers to generalize some of the basic concepts of algebra. The notions of
automata and formal languages have been generalized and extensively studied in
a fuzzy frame work.

Ideals of semirings play a central role in the structure theory and are useful
for many purposes. However in general, they do not coincide with usual ring
ideals. For this, their use is somewhat limited in trying to obtain analogues of ring
theorems for semirings. Henriksen de�ned in [6] a more restricted class of ideals
in semirings, which is called the class of k-ideals. These ideals have the property
that if the semiring R is a ring then a complex in R is a k-ideal if and only if it is
a ring ideal.

Investigations of fuzzy semirings were initiated in [2]. Fuzzy k-ideals are studied
in [3, 5, 7, 11]. In this paper we characterize hemirings in which each right k-ideal
is idempotent and those hemirings for which each fuzzy right k-ideal is idempotent.
We also study right pure and purely prime k-ideals and fuzzy right pure and fuzzy
purely prime k-ideals in hemirings.

2010 Mathematics Subject Classi�cation: 20N05
Keywords: hemiring, right weakly regular hemiring, k-ideal, right pure k-ideal, purely
prime k-ideal, right pure fuzzy k-ideal, purely prime fuzzy k-ideal.
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2. Preliminaries

For the de�nitions of semiring, hemiring, left (right) ideal we refer to [4].

A left (right) ideal A of a hemiring R is called a left (right) k-ideal of R if for
any a, b ∈ A and x ∈ R from x + a = b it follows x ∈ A.

The k-closure of a non-empty subset A of a hemiring R is de�ned as

A = {x ∈ R | x + a = b for some a, b ∈ A} .

It is clear that if A is a left (right) ideal of R, then A is the smallest left (right)
k-ideal of R containing A. Also, A = A for all left (right) k-ideals of R. Obviously

A = A for each non-empty A ⊆ R. Also A ⊆ B for all A ⊆ B ⊆ R. A right k-ideal
A with the property A2 = A is called k-idempotent.

Lemma 2.1. AB = A B for any subsets A, B of a hemiring R. �

Lemma 2.2. [10] If A and B are right and left k-ideals of a hemiring R respec-

tively, then AB ⊆ A ∩B. �

An element a of a hemiring R is called regular if there exists x ∈ R such
that a = axa. A hemiring R is called regular if each element of R is regular.
Generalizing the concept of regularity, in [1, 9] k-regular hemirings are de�ned as
a hemiring in which for each a ∈ R, there exist x, y ∈ R such that a + axa = aya.

Obviously, every regular hemiring is a k-regular but the converse is not true.
If R is a ring, then the regular and k-regular coincide.

Theorem 2.3. [9] A hemiring R is k-regular if and only if for any fuzzy right

k-ideal A and any fuzzy left k-ideal B, we have AB = A ∩B. �

For any fuzzy subsets λ and µ of X we de�ne

λ 6 µ ⇐⇒ λ (x) 6 µ (x) ,

(λ ∧ µ)(x) = λ(x) ∧ µ(x) = min{λ(x), µ(x)},
(λ ∨ µ) (x) = λ (x) ∨ µ (x) = max{λ(x), µ(x)}

for all x ∈ X.
More generally, if {λi : i ∈ I} is a collection of fuzzy subsets of X, then by the

intersection and the union of this collection we mean the fuzzy subsets( ∧
i∈I

λi

)
(x) =

∧
i∈I

λi(x) = inf
i∈I

{λi(x)},( ∨
i∈I

λi

)
(x) =

∨
i∈I

λi(x) = sup
i∈I

{λi(x)},

respectively.
A fuzzy subset λ of a hemiring R is called a fuzzy left (right) ideal of R if for

all a, b ∈ R we have
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(1) λ (a + b) > λ(a) ∧ λ(b),

(2) λ (ab) > λ(b), (λ(ab) > λ(a)).

Note that λ(0) > λ(x) for all x ∈ R.
A fuzzy left (right) ideal λ of a hemiring R is called a fuzzy left (right) k-ideal

if x + y = z =⇒ λ (x) > λ(y) ∧ λ(z) holds for all x, y, z ∈ R.
A fuzzy right k-ideal is de�ned analogously. The basic properties of fuzzy

k-ideals in semirings are described in [3].
Let λ be a fuzzy subset of a universe X and t ∈ [0, 1]. Then the subset

U (λ; t) = {x ∈ X : λ (x) > t} is called level subset of λ.
The following Proposition is a consequence of transfer principle [8].

Proposition 2.4. Let A be a non-empty subset of a hemiring R. Then a fuzzy

set λA de�ned by

λA(x) =
{

t if x ∈ A

s otherwise

where 0 6 s < t 6 1, is a fuzzy left (right) k-ideal of R if and only if A is a left

(right) k-ideal of R. �

Corollary 2.5. Let A be a non-empty subset of a hemiring R. Then the charac-

teristic function χA of A is a fuzzy right k-ideal of R if and only if A is a right

k-ideal of R. �

Proposition 2.6. If A,B are subsets of a hemiring R such that ImλA = ImλB

then

(1) A ⊆ B ⇐⇒ λA 6 λB,

(2) λA ∧ λB = λA∩B. �

De�nition 2.7. [11] The k-product of two fuzzy subsets µ and ν on R is de�ned
by

(µ�k ν)(x) =
∨

x+
m∑

i=1
aibi=

n∑
j=1

a′
jb′

j

[
m∧

i=1

[µ(ai) ∧ ν(bi)] ∧
n∧

j=1

[
µ(a′j) ∧ ν(b′j)

]]

and (µ�k ν)(x) = 0 if x cannot be expressed as x +
m∑

i=1

aibi =
n∑

j=1

a′jb
′
j .

A fuzzy subset λ such that λ�k λ = λ is called k-idempotent.

Proposition 2.8. Let µ, ν, ω, λ be fuzzy subsets on R. Then

(1) µ 6 ω and ν 6 λ =⇒ µ�k ν 6 ω �k λ.

(2) χA �k χB = χAB for characteristic functions of A,B ⊂ R. �
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Lemma 2.9. If µ, ν are fuzzy left (right) k-ideals of a hemiring R, then µ ∧ ν is

also a fuzzy left (right) k-ideal of R. �

Theorem 2.10. [11]
(i) If λ and µ are fuzzy k-ideals of R, then so is λ�k µ. Moreover,

λ�k µ 6 λ ∧ µ.
(ii) If λ is fuzzy right k-ideal of R and µ a fuzzy left k-ideals of R, then

λ�k µ 6 λ ∧ µ. �

Theorem 2.11. [11] A hemiring R is k-regular if and only if for any fuzzy right

k-ideal µ and any fuzzy left k-ideal ν of R we have µ�k ν = µ ∧ ν. �

3. Right k-weakly regular hemirings

De�nition 3.1. A hemiring R is called right (left) k-weakly regular if for each

x ∈ R, x ∈ (xR)2
(
res. x ∈ (Rx)2

)
.

That is for each x ∈ R we have ri, si, tj , pj ∈ R such that x +
n∑

i=1

xrixsi =
m∑

j=1

xtjxpj

(
x +

n∑
i=1

rixsix =
m∑

j=1

tjxpjx
)
. Thus each k-regular hemiring with iden-

tity is right k-weakly regular but the converse is not true. However for a commu-
tative hemiring both the concept coincide.

Proposition 3.2. The following statements are equivalent for a hemiring R with

identity:

1. R is right k-weakly regular hemiring,

2. all right k-ideals of R are k-idempotent,

3. BA = B ∩A for all right k-ideals B and two-sided k-ideals A of R.

Proof. (1) =⇒ (2) Let R be a right k-weakly regular hemiring and B be a right
k-ideal of R. Clearly B2 ⊆ B.

Let x ∈ B. Since R is right k-weakly regular, so x ∈ (xR)2 where xR is the
right ideal of R generated by x and so xR is the right k-ideal of R generated by
x. Thus xR ⊆ B, this implies x ∈ (xR) (xR) ⊆ BB = B2. Thus B ⊆ B2. So,
B2 = B.

(2) =⇒ (3) Let B be a right k-ideal of R and A a two-sided k-ideal of R, then
by Lemma 2.2, BA ⊆ B ∩ A. To prove the reverse inclusion, let x ∈ B ∩ A and
xR and RxR are right ideal and two-sided ideal of R generated by x, respectively.
Thus xR ⊆ B and RxR ⊆ A.

x ∈ xR ⊆ xR = xR xR = xRxR = (xR) (xR) = x (RxR) ⊆ xA ⊆ BA
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Hence B ∩A ⊆ BA and so B ∩A = BA.
(3) =⇒ (1) Let x ∈ R and RxR and xR be the two-sided ideal and right ideal

of R generated by x, respectively. Then

x ∈ xR ∩RxR ⊆ xR ∩RxR = xR RxR = xRRxR = xR2xR = (xR)2.

Hence R is right k-weakly regular hemiring.

Theorem 3.3. For a hemiring R with identity, the following statements are equiv-

alent:

1. R is right k-weakly regular hemiring,

2. all fuzzy right k-ideals of R are k-idempotent,

3. λ �k µ = λ ∧ µ for all fuzzy right k-ideals λ and all fuzzy two-sided k-ideals

µ of R.

Proof. (1) =⇒ (2) Let λ be a fuzzy right k-ideal of R, then λ�k λ 6 λ.
For the reverse inclusion, let x ∈ R. Since R is right k-weakly regular so there

exist si, ti, s
′
j , t

′
j ∈ R such that x +

∑m
i=1 xsixti =

∑n
j=1 xs′jxt′j . Hence

λ(x) = λ(x) ∧ λ(x) 6
m∧

i=1

(λ(xsi) ∧ λ(xti)).

Also

λ(x) = λ(x) ∧ λ(x) 6
n∧

j=1

(
λ(xs′j) ∧ λ(xt′j)

)
.

Therefore

λ(x) 6
m∧

i=1

(λ(xsi) ∧ λ(xti)) ∧
n∧

j=1

(
λ(xs′j) ∧ λ(xt′j)

)

6
∨

x+
m∑

i=1
xsixti =

n∑
j=1

xs′
jxt′j

 m∧
i=1

(λ(xsi) ∧ λ(xti)) ∧
n∧

j=1

(
λ(xs′j) ∧ λ(xt′j)

)
= (λ�k λ)(x).

Hence λ 6 λ�k λ, which proves λ�k λ = λ.
(2) =⇒ (3) Let λ and µ be fuzzy right and two sided k-ideal of R, respectively.

Then λ ∧ µ is a fuzzy right k-ideal of R. By Theorem 2.10, λ �k µ 6 λ ∧ µ. By
hypothesis,(λ ∧ µ) = (λ ∧ µ)�k (λ ∧ µ) 6 λ�k µ. Hence λ�k µ = λ ∧ µ.

(3) =⇒ (1) Let B be a right k-ideal of R and A be a two-sided k-ideal of R,
then the characteristic functions χB and χA of B and A are fuzzy right and fuzzy
two-sided k-ideal of R, respectively. Hence by the hypothesis and Propositions
2.6 and 2.8, we have χB �k χA = χB ∧ χA, i.e., χBA = χB∩A, which implies
BA = B ∩A. Thus, by Proposition 3.2, R is right k-weakly regular hemiring.
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Theorem 3.4. For a hemiring R with identity, the following statements are equiv-

alent:

1. R is right k-weakly regular hemiring,

2. all right k-ideals of R are k-idempotent,

3. BA = B ∩A for all right k-ideals B and two-sided k-ideals A of R,

4. all fuzzy right k-ideals of R are k-idempotent,

5. λ�k µ = λ ∧ µ for all fuzzy right k-ideals λ and all fuzzy two-sided k-ideals
µ of R.

If R is commutative, then the above statements are equivalent to

6. R is k-regular.

Proof. 1, 2, 3 are equivalent by Proposition 3.2. 1, 4, 5 are equivalent by Theorem
3.3. Finally, if R is commutative, then by Theorem 2.3, also 1 and 6 are equivalent.

De�nition 3.5. [11] The k-sum λ +k µ of fuzzy subsets λ and µ of R is de�ned
by

(λ +k µ) (x) =
∨

x+(a1+b1)=(a2+b2)

[λ(a1) ∧ λ(a2) ∧ µ(b1) ∧ µ(b2)],

where x, a1, b1, a2, b2 ∈ R.

Theorem 3.6. [11] The k-sum of fuzzy k-ideals of R is also a fuzzy k-ideal of R.

�

Theorem 3.7. The collection of all k-ideals of a right k-weakly regular hemiring

R forms a complete distributive lattice.

Proof. The collection LR of all k-ideals of a right k-weakly regular hemiring R is
a partially ordered set under the inclusion of sets and is a complete lattice under
the operations t, u de�ned as A tB = A + B and A uB = A ∩B.

Let A,B, C ∈ LR, then obviously (A ∩B) + (A ∩ C) ⊆ A ∩ (B + C). For

the reverse inclusion, let x ∈ A ∩ (B + C) = A(B + C). Then x + a = b for
some a, b ∈ A(B + C). Hence a = a1y1 and b = a2y2 for some a1, a2 ∈ A and
y1, y2 ∈ (B + C). Then y1 + b1 + c1 = b2 + c2 and y2 + b3 + c3 = b4 + c4 for
some b1, b2, b3, b4 ∈ B and c1, c2, c3, c4 ∈ C. Thus a1y1 +a1b1 +a1c1 = a1b2 +a1c2

yields a + a1b1 + a1c1 = a1b2 + a1c2 which implies a ∈ AB + AC. Similarly b ∈
AB + AC and thus x ∈ AB + AC. Hence A∩(B + C) = A(B + C) ⊆ AB + AC ⊆
AB + AC = (A ∩B) + (A ∩ C). Thus (A ∩B) + (A ∩ C) = A ∩ (B + C).

The following example shows that if the collection of all k-ideals of a hemiring
R is a complete distributive lattice then R is not necessarily a right k-weakly
regular hemiring.
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Example 3.8. Consider the hemiring R = {0, a, b} with + and · de�ned by
x + y = max{x, y}, where 0 < a < b and x · y = b for x = y = b and x · y = 0
otherwise.

The k-ideals of R are {0}, {0, a} and R. Since {0} ⊆ {0, a} ⊆ R. So the
collection of k-ideals is a complete distributive lattice but R is not right k-weakly
regular hemiring. �

Theorem 3.9. If R is a right k-weakly regular hemiring, then the set LR of all

fuzzy k-ideals of R (ordered by 6) is a distributive lattice.

Proof. The set LR of all fuzzy k-ideals of R (ordered by 6) is clearly a lattice
under the k-sum and intersection of fuzzy k-ideals. Now we show that LR is a
distributive lattice, that is for any fuzzy k-ideals λ, µ, δ of R we have (λ ∧ δ)+µ =
(λ + µ) ∧ (δ + µ) .

For any x ∈ R

[(λ ∧ δ) + µ] (x) =
∨

x+(a1+b1)=(a2+b2)

[
(λ ∧ δ) (a1) ∧ (λ ∧ δ) (a2)∧

(µ) (b1) ∧ (µ) (b2)

]

=
∨

x+(a1+b1)=(a2+b2)

[
λ (a1) ∧ λ (a2) ∧ µ (b1)∧
µ (b2) ∧ δ (a1) ∧ δ (a2)

]

=
∨

x+(a1+b1)=(a2+b2)

[
[λ (a1) ∧ λ (a2) ∧ µ (b1) ∧ µ (b2)]∧
[δ (a1) ∧ δ (a2) ∧ µ (b1) ∧ µ (b2)]

]
=

( ∨
x+(a1+b1)=(a2+b2)

[λ (a1) ∧ λ (a2) ∧ µ (b1) ∧ µ (b2)]
)

∧
( ∨

x+(a1+b1)=(a2+b2)

[δ (a1) ∧ δ (a2) ∧ µ (b1) ∧ µ (b2)]
)

= (λ + µ) (x) ∧ (δ + µ) (x) = [(λ + µ) ∧ (δ + µ)] (x) . �

4. Prime and Fuzzy prime right k-ideals

De�nition 4.1. A right k-ideal P of a hemiring R is called k-prime (k-semiprime)
if for any right k-ideals A,B of R,

AB ⊆ P =⇒ A ⊆ P or B ⊆ P
(
A2 ⊆ P =⇒ A ⊆ P

)
.

P is k-irreducible (k-strongly irreducible) if for any right k-ideals A,B of R

A ∩B = P =⇒ A = P or B = P (A ∩B ⊆ P =⇒ A ⊆ P or B ⊆ P ) .

A fuzzy right k-ideal µ of a hemiring R is called a fuzzy k-prime (k-semiprime)
right k-ideal of R if for any fuzzy k-right ideals λ, δ of R,

λ�k δ 6 µ =⇒ λ 6 µ or δ 6 µ (λ�k λ 6 µ =⇒ λ 6 µ) .
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µ is called a fuzzy k-irreducible (k-strongly irreducible) if for any fuzzy right k-ideals
λ, δ of R,

λ ∧ δ = µ =⇒ λ = µ or δ = µ (λ ∧ δ 6 µ =⇒ λ 6 µ or δ 6 µ) .

Lemma 4.2. In any hemiring R
(a) a (fuzzy) k-prime right k-ideal is a (fuzzy) k-semiprime right k-ideal,
(b) an intersection of (fuzzy) k-prime right k-ideals is a (fuzzy) k-semi

prime right k-ideal. �

Theorem 4.3. Each proper right k-ideal of a right k-weakly regular hemiring R
is the intersection of right k-irreducible k-ideals which contain it.

Proof. Let I be a proper right k-ideal of R and let {Iα : α ∈ Λ} be a family of
right k-irreducible k-ideals of R which contain I. Clearly I ⊆ ∩α∈ΛIα. Suppose
a /∈ I. Then by Zorn's Lemma there exists a right k-ideal Iβ such that Iβ is
maximal with respect to the property I ⊆ Iβ and a /∈ Iβ . We will show that Iβ

is k-irreducible. Let A,B be right k-ideals of R such that Iβ = B ∩ A. Suppose
Iβ ⊂ B and Iβ ⊂ A. Then by the maximality of Iβ , we have a ∈ B and a ∈ A.
But this implies a ∈ B ∩ A = Iβ , which is a contradiction. Hence either Iβ = B
or Iβ = A. So there exists a k-irreducible k-ideal Iβ such that a /∈ Iβ and I ⊆ Iβ .
Hence ∩Iα ⊆ I. Thus I = ∩Iα.

Proposition 4.4. Let R be a right k-weakly regular hemiring. If λ is a fuzzy right

k-ideal of R with λ (a) = α, where a is any element of R and α ∈ (0, 1], then there

exists a fuzzy k-irreducible right k-ideal δ of R such that λ 6 δ and δ (a) = α.

Proof. Let X = {µ : µ is a fuzzy right k-ideal of R, µ (a) = α and λ 6 µ}. Then
X 6= ∅, since λ ∈ X. Let F be a totally ordered subset of X, say F = {λi : i ∈ I}.
We claim that

∨
i∈I

λi is a fuzzy right k-ideal of R. For any x, r ∈ R, we have( ∨
i

λi∈I

)
(x) =

∨
i∈I

(λi (x)) 6
∨
i∈I

(λi (xr)) =
( ∨

i∈I

λi

)
(xr).

Let x, y ∈ R, consider(∨
i∈I

λi

)
(x)∧

(∨
i∈I

λi

)
(y) =

( ∨
i∈I

λi (x)
)
∧

( ∨
j∈I

λj (y))
)

=
∨
j∈I

( ∨
i∈I

(λi (x) ∧ λj (y))
)

6
∨
j∈I

( ∨
i∈I

(max{λi(x), λj(x)} ∧max{λi(y), λj(y)})
)

6
∨
j∈I

( ∨
i∈I

max{λi(x + y), λj(x + y)}
)

6
∨
i∈I

max{λi(x + y), λj(x + y)} =
( ∨

i∈I

λi

)
(x + y).
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Now, let x + a = b, where a, b ∈ R. Then( ∨
i∈I

λi

)
(a) ∧

( ∨
i∈I

λi

)
(b) =

( ∨
i∈I

λi(a)
)
∧

( ∨
j∈I

λj(b)
)

=
∨
j∈I

( ∨
i∈I

λi(a) ∧ λj(b)
)

6
∨
j∈I

( ∨
i∈I

max{λi(a), λj(a)} ∧max{λi(b), λj(b)}
)

=
∨

i,j∈I

max{λi(x), λj(x)} 6
∨
i∈I

λi(x).

Thus
∨
i∈I

λi is a fuzzy right k-ideal of R. Clearly λ 6
∨
i

λi and
∨
i

λi (a) = α. Thus∨
i

λi is the l.u.b of F . Hence by Zorn's lemma there exists a fuzzy right k-ideal δ

of R which is maximal with respect to the property that λ 6 δ and δ (a) = α.
We will show that δ is fuzzy k-irreducible right k-ideal of R. Let δ = δ1 ∧ δ2,

where δ1, δ2 are fuzzy right k-ideals of R. Thus δ 6 δ1 and δ 6 δ2. We claim that
either δ = δ1 or δ = δ2. Suppose δ 6= δ1 and δ 6= δ2. Since δ is maximal with
respect to the property that δ (a) = α and since δ � δ1 and δ � δ2, so δ1 (a) 6= α
and δ2 (a) 6= α. Hence α = δ (a) = (δ1 ∧ δ2) (a) = (δ1) (a) ∧ (δ2) (a) 6= α, which is
impossible. Hence δ = δ1 or δ = δ2. Thus δ is a fuzzy k-irreducible right k-ideal
of R.

Theorem 4.5. Every fuzzy right k-ideal of a hemiring R is the intersection of all

fuzzy k-irreducible right k-ideals of R which contain it.

Proof. Let λ be the fuzzy right k-ideal of R and let {λα : α ∈ Λ} be the family of all
fuzzy k-irreducible right k -ideals of R which contain λ. Obviously λ 6

∧
α∈Λ

λα. We

show that
∧

α∈Λ

λα 6 λ. Let a be any element of R, then by Proposition 4.4, there

exists a fuzzy k-irreducible right k-ideal λβ such that λ 6 λβ and λ (a) = λβ (a).
Hence λβ ∈ {λα : α ∈ Λ}. Hence

∧
α∈Λ

λα 6 λβ , so
∧

α∈Λ

λα (a) 6 λβ (a) = λ (a), i.e.,∧
α∈Λ

λα 6 λ. Hence
∧

α∈Λ

λα = λ.

Theorem 4.6. A hemiring with identity is right k-weakly regular if and only if

each its right k-ideal is k-semiprime.

Proof. Suppose every right k-ideal is idempotent. Let I, J be right k-ideals of R,
such that J2 ⊆ I. Thus J2 ⊆ I. By Theorem 3.4, J = J2, so J ⊆ I. Hence I is a
k-semiprime right k-ideal of R.

Conversely, if each each right k-ideal I of R is k-semiprime, then I2 is also a
right k-ideal of R and I2 ⊆ I2. Hence by hypothesis I ⊆ I2. But I2 ⊆ I always.
Hence I = I2. Thus by Theorem 3.4, R is right k-weakly regular.
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Theorem 4.7. For a hemiring R with identity the following statements are equiv-

alent:

1. R is right k-weakly regular hemiring,

2. all fuzzy right k-ideals of R are k-idempotent,

3. λ�k µ = λ ∧ µ for all fuzzy right k-ideals λ and all fuzzy two-sided k-ideals
µ of R,

4. each fuzzy right k-ideal of R is also fuzzy k-semiprime.

Proof. 1, 2, 3 are equivalent by Theorem 3.3.
If δ is a fuzzy right k-ideal of R, then λ �k λ 6 δ, where λ is a fuzzy right

k-ideal of R. By (2) λ �k λ = λ, so λ 6 δ. Thus δ is a fuzzy k-semiprime right
k-ideal of R.

Conversely, if δ is a fuzzy right k-ideal of R, then also δ �k δ is a fuzzy right
k-ideal of R and so by (4) δ �k δ is a fuzzy k-semiprime right k-ideal of R. As
δ �k δ 6 δ �k δ we have δ 6 δ �k δ. But δ �k δ 6 δ always. So δ �k δ = δ.

Theorem 4.8. If every right k-ideal of a hemiring R is k-prime , then R is a

right k-weakly regular hemiring and the set of k-ideals of R is totally ordered.

Proof. Suppose R is a hemiring in which each right k-ideal is prime right k-ideal.
Let A be a right k-ideal of R then A2 is a right k-ideal of R. As A2 ⊆ A2

=⇒ A ⊆ A2. But A2 ⊆ A always. Hence A = A2. Thus R is right k-weakly
regular.

Let A,B be any k-ideals of R then AB ⊆ A ∩ B. As A ∩ B is a k-ideal of R,
so a k-prime right k-ideal. Thus either A ⊆ A ∩ B or B ⊆ A ∩ B. That is either
A ⊆ B or B ⊆ A.

Theorem 4.9. If R is a right k-weakly regular hemiring and the set of all right

k-ideals of R is totally ordered, then every right k-ideal of R is k-prime.

Proof. Let A,B, C be right k-ideals of R such that AB ⊆ C. Since the set of all
right k-ideals of R is totally ordered, so we have A ⊆ B or B ⊆ A. If A ⊆ B then
A = AA ⊆ AB ⊆ C. If B ⊆ A then B = BB ⊆ AB ⊆ C. Thus C is a k-prime
right k-ideal.

Theorem 4.10. If every fuzzy right k-ideal of a hemiring R is a fuzzy k-prime

right k-ideal, then R is a right k-weakly regular hemiring and the set of fuzzy

k-ideals of R is totally ordered.

Proof. Suppose R is a hemiring in which each fuzzy right k-ideal is fuzzy prime.
Let λ be a fuzzy right k-ideal of R. Then λ�k λ is also a fuzzy right k-ideal of R.
As λ �k λ 6 λ �k λ =⇒ λ 6 λ �k λ. But λ �k λ 6 λ always. Hence λ = λ �k λ.
Thus R is a right k-weakly regular hemiring.

Let λ, µ be any fuzzy k-ideals of R. Then λ�k µ 6 λ ∧ µ. As λ ∧ µ is a fuzzy
k-ideal of R so it is fuzzy k-prime. Thus either λ 6 λ ∧ µ or µ 6 λ ∧ µ. That is
either λ 6 µ or µ 6 λ.
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Theorem 4.11. If the set of all fuzzy right k-ideals of a right k-weakly regular

hemiring R is totally ordered, then every fuzzy right k-ideal of R is a fuzzy k-prime

right k-ideal of R.

Proof. Let λ, µ, ν be fuzzy right k-ideals of R such that λ�k µ 6 ν. Since the set
of all fuzzy right k-ideals of R is totally ordered, so we have λ 6 µ or µ 6 λ. If
λ 6 µ then λ = λ �k λ 6 λ �k µ 6 ν. If µ 6 λ then µ = µ �k µ 6 λ �k µ 6 ν.
Thus ν is a fuzzy k-prime right k-ideal.

Example 4.12. Consider the set R = {0, x, 1} in which a + b = max{a, b} and
ab = min{a, b} are de�ned by the chains 0 < 1 < x and 0 < x < 1. Then (R,+, ·)
is a hemiring.

The right k-ideals of R are {0}, {0, x}, {0, x, 1}. The k-ideals {0} {0, x, 1} are
idempotent.

In order to examine the right fuzzy k-ideals of R, we observe the following
facts.

Fact 1. A fuzzy subset λ of R is a fuzzy right ideal if and only if λ (0) > λ (x) >
λ (1).

Indeed, since 0 = x · 0 = 1 · 0 so λ (0) > λ (x) and λ (0) > λ (1). Also
λ (x) = λ (1 · x) > λ (1). Thus λ (0) > λ (x) > λ (1) .

Conversely, If λ is a fuzzy subset of R such that λ (0) > λ (x) > λ (1) , then
by the de�nition of + in R, we have m + m′ = m or m′ for every m,m′ ∈ R, and
certainly λ (m) ∧ λ (m′) 6 λ (m) and λ (m) ∧ λ (m′) 6 λ (m′). Thus λ (m + m′) >
λ (m) ∧ λ (m′). By the de�nition of · de�ned on R, it is easy to verify that
λ (ma) > λ (m) for all m,a in R. Hence λ is a fuzzy right ideal of R.

Fact 2. λ is a fuzzy right k-ideal of R if and only if λ (0) > λ (x) = λ (1).
Indeed, by the Fact 1 we have λ (0) > λ (x) > λ (1). Since 1 + x = x, so

λ (1) > λ (x) ∧ λ (x) = λ (x). Thus λ (0) > λ (x) = λ (1). Conversely, if λ (0) >
λ (x) = λ (1), then by the Fact 1, λ is a fuzzy right ideal of R.

If x + a = b for a, b, x ∈ R then λ (x) > λ (a) ∧ λ (b). So λ is a fuzzy right
k-ideal of R.

Obviously R is a right k-weakly regular hemiring. But each fuzzy right k-ideal
of R is not k-prime. Because λ, µ, ν de�ned by λ(0) = 0.8, λ(x) = λ(1) = 0.6,
µ(0) = 0.9, µ(x) = µ(1) = 0.5 and ν(0) = 0.85, ν(x) = ν(1) = 0.55 are fuzzy
k-ideals of R such that λ�k µ 6 ν but neither λ 6 ν nor µ 6 ν. �

5. Right pure k-ideals

In this section we de�ne right pure k-ideals of a hemiring R and also right pure
fuzzy k-ideals of R. We prove that a two-sided k-ideal I of a hemiring R is right
pure if and only if for every right k-ideal A of R, we have A ∩ I = AI.

De�nition 5.1. A k-ideal I of a hemiring R is called right pure if for each x ∈ I,
x ∈ xI, i.e., if for each x ∈ I there exist y, z ∈ I such that x + xy = xz.
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Lemma 5.2. A k-ideal I of a hemiring R is right pure if and only if A ∩ I = AI
for every right k-ideal A of R.

Proof. Suppose that I is a right pure k-ideal of R and A is a right k-ideal of R.
Then AI ⊆ A ∩ I. Clearly, a ∈ A ∩ I implies a ∈ A and a ∈ I. Since I is right
pure, so a ∈ aI ⊆ AI. Thus A ∩ I ⊆ AI. Hence A ∩ I = AI.

Conversely, assume that A ∩ I = AI for every right k-ideal A of R. Let x ∈ I.
Take A, the principal right k-ideal generated by x, that is, A = xR + N◦x, where

N◦ = {0, 1, 2, .....}. By hypothesis A ∩ I = AI = (xR + N◦x)I = (xR + N◦x)I ⊆
xI. So x ∈ xI. Hence I is a right pure k-ideal of R.

De�nition 5.3. A fuzzy k-ideal λ of a hemiring R is called right pure if and only
if µ ∧ λ = µ�k λ for every fuzzy right k-ideal µ of R.

Proposition 5.4. The characteristic function of a non-empty subset A of a hemir-

ing R is its right pure fuzzy k-ideal if and only if A is a right pure k-ideal of R.

Proof. Let A be a right pure k-ideal of R. Then χA is a fuzzy k-ideal of R. To
prove that χA is right pure we have to show that for any fuzzy right k-ideal µ of
R, µ ∧ χA = µ�h χA. Now if x /∈ A, then

(µ ∧ χA) (x) = µ (x) ∧ χA (x) = 0 6 (µ�h χA) (x) .

For the case x ∈ A, as A is a right pure k-ideal of R, so there exist a, b ∈ A,
such that x + xa = xb. As x, a, b ∈ A, this implies χA (x) = χA (a) = χA (b) = 1.
Now,

(µ�k χA) (x) =
∨

x+
m∑

i=1
aibi=

n∑
j=1

a′
jb′

j

 m∧
i=1

[µ(ai) ∧ χA(bi)] ∧
n∧

j=1

[
µ(a′j) ∧ χA(b′j)

]
> min [µ (x) ∧ χA (a) ∧ µ (x) ∧ χA (b)]
> min [µ (x) ∧ χA (x) ∧ µ (x) ∧ χA (x)]
> µ (x) ∧ χA (x) = (µ ∧ χA) (x) .

So, in both the cases µ�k χA > µ∧χA. But µ�k χA 6 µ∧χA is always true.
Thus, µ ∧ χA = µ�k χA. So, χA is right pure fuzzy k-ideal of R.

Conversely, let χA be a right pure fuzzy k-ideal of R. Then A is a k-ideal of
R. Let B be a right k-ideal of R, then χB is a fuzzy right k-ideal of R. Hence by
hypothesis χB �k χA = χB ∧ χA = χB∩A. By Proposition 2.8, χB �k χA = χBA.
This implies that B ∩A = BA. Therefore A is a right pure k-ideal of R.

Proposition 5.5. Intersection of right pure k-ideals of R is a right pure k-ideal
of R.
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Proof. Let A,B be right pure k-ideals of R and I be any right k-ideal of R. Then

I ∩ (A ∩ B) = (I ∩ A) ∩ B = (IA) ∩ B = (IA)B = (IA)B = I(AB) = I(A ∩B)
because (IA) is a right k-ideal. Hence A ∩B is a right pure k-ideal of R.

Proposition 5.6. Let λ1, λ2 are right pure fuzzy k-ideals of R, then so is λ1∧λ2.

Proof. Indeed, λ1∧λ2 is a fuzzy k-ideal of R. We have to show that, for any fuzzy
right k-ideal µ of R, µ�k (λ1 ∧ λ2) = µ ∧ (λ1 ∧ λ2).

Since λ2 is right pure fuzzy k-ideal of R so it follows that λ1 �k λ2 = λ1 ∧ λ2.
Hence µ�k (λ1 �k λ2) = µ�k (λ1 ∧ λ2).

Also, µ ∧ (λ1 ∧ λ2) = (µ ∧ λ1) ∧ λ2 = (µ�k λ1) ∧ λ2 = (µ�k λ1) �k λ2 =
µ�k (λ1 �k λ2) since µ�k λ1 is a fuzzy right k-ideal of R.

Thus µ ∧ (λ1 ∧ λ2) = µ�k (λ1 ∧ λ2).

Proposition 5.7. For a hemiring R with identity the following statements are

equivalent:

1. R is right k-weakly regular hemiring,

2. all right k-ideals of R are k-idempotent,

3. every k-ideal of R is right pure.

Proof. 1 and 2 are equivalent by Proposition 3.2.
(1) =⇒ (3) Let I and A be k-ideal and right k-ideal of R, respectively. Then

A ∩ I = AI. Thus by Lemma 5.2, A is right pure.
(3) =⇒ (1) Let I be a k-ideal of R and A a right k-idealof R, then by hypothesis,

I is right pure and so A ∩ I = AI. Thus, by Proposition 3.2, R is right k-weakly
regular.

Proposition 5.8. The following statements are equivalent for a hemiring R with

identity:

1. R is right k-weakly regular hemiring,

2. all right k-ideals of R are k-idempotent,

3. every k-ideal of R is right pure,

4. all fuzzy right k-ideals of R are k-idempotent,

5. every fuzzy k-ideal of R is right pure.

If R is commutative, then the above statements are equivalent to

6. R is k-regular.

Proof. 1, 2, 3 are equivalent by Proposition 5.7, 1, 4 by Theorem 3.3.
(4) =⇒ (5) Let λ and µ be fuzzy right and two sided k-ideals of R, respectively.

Then λ ∧ µ is a fuzzy right k-ideal of R. By Theorem 2.10, λ �k µ 6 λ ∧ µ. By
hypothesis,(λ ∧ µ) = (λ ∧ µ)�k (λ ∧ µ) 6 λ�k µ. Hence λ�k µ = λ ∧ µ. Thus µ
is right pure.
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(5) =⇒ (1) Let B be a right k-ideal of R and A be a two-sided k-ideal of R
then the characteristic functions χB and χA are fuzzy right and fuzzy two-sided
k-ideals of R, respectively. Hence χB �h χA = χB ∧χA implies χBA = χB∩A, i.e.,
BA = B ∩A. Thus by Proposition 3.2, R is right k-weakly regular.

Finally, for a commutative hemiring, by Theorem 2.11, 1 and 6 are equivalent.

6. Purely prime k-ideals

De�nition 6.1. A proper right pure k-ideal I of a hemiring R is called purely

prime if for any right pure k-ideals A,B of R, A ∩B ⊆ I implies A ⊆ I or B ⊆ I,
or equivalently, if AB ⊆ I implies A ⊆ I or B ⊆ I.

De�nition 6.2. A proper right pure k-ideal µ of a hemiring R is called purely

prime if for any right pure fuzzy k-ideals λ, δ of R, λ ∧ δ 6 µ implies λ 6 µ or
δ 6 µ, or equivalently, if λ�k δ 6 µ implies λ 6 µ or δ 6 µ.

Proposition 6.3. For a k-ideal I of a right k-weakly regular hemiring R with

identity the following statements are equivalent:

1. A ∩B = I =⇒ A = I or B = I,
2. A ∩B ⊆ I =⇒ A ⊆ I or B ⊆ I,

where A,B are k-ideals of R.

Proof. (1) =⇒ (2) Suppose A,B are k-ideals of R such that A ∩ B ⊆ I. Then
by Theorem 3.4, I = (A ∩B) + I = (A + I) ∩ (B + I). Hence by the hypothesis
I = (A + I) or I = (B + I), i.e., A ⊆ I or B ⊆ I.

(2) =⇒ (1) Suppose A,B are k-ideals of R such that A ∩B = I. Then I ⊆ A
and I ⊆ B. On the other hand by hypothesis A ⊆ I or B ⊆ I. Thus A = I or
B = I.

Proposition 6.4. Let R be a right k-weakly regular hemiring. Then any proper

right pure k-ideal of R is contained in a purely prime k-ideal of R.

Proof. Let I be a proper right pure k-ideal of a weakly regular hemiring R and
a ∈ R such that a /∈ I. Consider the set X of all proper right pure k-ideals J
of R containing I and such that a /∈ J . Then X is non-empty because I ∈ X.
By Zorn's Lemma this family contains a maximal element, say M . This maximal
element is purely prime. Indeed, let A∩B = M for some some right pure k-ideals
A,B of R. If A,B both properly contains M , then by the maximality of M , a ∈ A
and a ∈ B. Thus a ∈ A ∩B = M , which is a contradiction. Hence either A = M
or B = M .

Proposition 6.5. Let R be a right k-weakly regular hemiring. Then each proper

right pure k-ideal is the intersection of all purely prime k-ideals of R which contain

it.
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Proof. The proof is similar to the proof of Theorem 4.3.

Proposition 6.6. Let R be a right k-weakly regular hemiring. If λ is a right pure

fuzzy k-ideal of R with λ (a) = t where a ∈ R and t ∈ [0, 1] , then there exists a

purely prime fuzzy k-ideal µ of R such that λ 6 µ and µ (a) = t.

Proof. The proof is similar to the proof of Proposition 4.4.

Proposition 6.7. Let R be a right k-weakly regular hemiring. Then each proper

fuzzy right pure k-ideal is the intersection of all purely prime fuzzy k-ideals of R
which contain it.

Proof. The proof is similar to the proof of Theorem 4.5.
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Congruences on ternary semigroups

Sheeja G. and Sri Bala S.∗

Abstract. We study congruences on ternary semigroups. We have extended Lallement's
lemma for a regular ternary semigroups. We have characterized minimum group congruence and
maximum idempotent pair separating congruence on a strongly regular ternary semigroups. We
have also obtained a characterization for maximum idempotent pair separating congruence and
smallest strongly regular congruence on an orthodox ternary semigroup.

1. Introduction

Ternary semigroups, i.e., algebras of the form (T, [ ]), where [ ] is a ternary
operation T 3 −→ T : (x, y, z) −→ [xyz] satisfying the associative law

[xy[uvw]] = [x[yuv]w] = [[xyu]vw]

are studied by many authors. The study of ideals and radicals of ternary semi-
groups was initiated in [11]. The concept of regular ternary semigroups was intro-
duced in [10]. In [6] regular ternary semigroups was characterized by ideals. In
[8] regular ternary semigroups are characterized by idempotent pairs. Orthodox
ternary semigroups are investigated in [9]. Congruences on ternary semigroups are
described in [2].

In this paper we generalize to ternary semigroups some important results on
congruences on binary semigroups such as the Lallement's Lemma for example.
We also characterize the minimal congruence on ternary semigroup under which
the quotient algebra is a ternary group and �nd a maximal congruence separating
idempotent pairs.

2. Preliminaries

For simplicity a ternary semigroup (T, [ ]) will be denoted by T and the symbol of
an inner ternary operation [ ] will be deleted, i.e., instead of [[xyz]uw] or [x[yzu]w]
or [xy[zuw]] we will write [xyzuw].

∗According to the authors request we write their names in the form used in India.
2010 Mathematics Subject Classi�cation: 20N10
Keywords: Idempotent pair, strongly regular ternary semigroup, congruence.
The second author is supported by University Grants Commission, India.
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Recall that an element x of a ternary semigroup T is called regular if there
exists y ∈ T such that [xyx] = x. A ternary semigroup in which each element is
regular is called regular. An element x ∈ T is inverse to y ∈ T if [xyx] = x and
[yxy] = y. Clearly, if x is inverse to y, then y is inverse to x. Thus every regular
element has an inverse. The set of all inverses of x in T is denoted by I(x).

De�nition 2.1. A pair (a, b) of elements of T is an idempotent pair if [ab[abt]] =
[abt] and [[tab]ab] = [tab] for all t ∈ T . An idempotent pair (a, b) in which an
element a is inverse to b is called a natural idempotent pair.

According to Post [7] two pairs (a, b) and (c, d) are equivalent if [abt] = [cdt]
and [tab] = [tcd] for all t ∈ T. Equivalent pairs are denoted by (a, b) ∼ (c, d). If
(a, b) is an idempotent pair, then ([aba], [bab]) is a natural idempotent pair and
(a, b) ∼ ([aba], [bab]). The equivalence class containing (a, b) will be denoted by
〈a, b〉. By ET we denote the set of all equivalence classes of idempotent pairs in T .

For a, b ∈ T consider the maps La,b : T −→ T : x −→ [abx] and Ra,b : x −→
[xab]. On the set

M = {m(a, b) |m(a, b) = (La,b,Ra,b), a, b ∈ T},

which can be identi�ed with T × T, we introduce a binary product by putting

m(a, b)m(c, d) = m([abc], d) = m(a, [bcd]).

Then M is a semigroup. This semigroup can be extended to the semigroup ST =
T ∪M as follows. For A,B ∈ ST we de�ne

AB =


m(a, b) if A = a, B = b ∈ T,
[abx] if A = m(a, b) ∈ ST , B = x ∈ T,
[xab] if A = x ∈ T, B = m(a, b) ∈ ST ,

m([abc], d) if A = m(a, b), B = m(c, d) ∈ ST .

The semigroup ST is a covering semigroup in the sense of Post [7] (see also [1]).
The product [abc] in T is equal to abc in ST . The element m(a, b) in ST is usually
denoted by ab.

It is shown in [8] that T is a regular (strongly regular) ternary semigroup if and
only if ST is a regular (inverse) semigroup. There is a bijective correspondence
between ET and the set EST

of idempotents of ST . Note that (a, b) is an idempotent
pair in T if and only if m(a, b) is an idempotent in ST and 〈a, b〉 corresponds to
m(a, b).

De�nition 2.2. A ternary semigroup T is called a ternary group if for a, b, c ∈ T
the equations [abx] = c, [ayb] = c and [zab] = c have (unique) solutions in T.

De�nition 2.3. An element a of a ternary semigroup T is said to be invertible if
there exists an element b ∈ T such that [abx] = x = [bax] = [xab] = [xba] for all
x ∈ T.
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An invertible element is regular. In ternary group each element is invertible.
Moreover, directly from the de�nition of a ternary group it follows that in ternary
groups each element is regular and invertible. An element which is inverse to x is
called it skew to x and is denoted by x (see [1] or [3]). Obviously it is uniquely
determined and x = x.

In this paper we will denote the unique inverse of x (also in ternary semigroups)
by x−1.

As a simple consequence of results proved in [3] and [7] we can deduce

Theorem 2.4. A ternary semigroup T is a ternary group if and only if one of
the following equivalent conditions is satis�ed.

(i) T is regular and cancellative.

(ii) T is regular and all idempotent pairs are equivalent.

(iii) All elements of T are invertible.

(iv) T contains no proper one sided ideals.

More information on ternary groups one can �nd in [4] and [5].

De�nition 2.5. A regular ternary semigroup T is called orthodox if for any two
idempotents pairs (a, b) and (c, d) the pair ([abc], d) is also an idempotent pair.

If T is an orthodox ternary semigroup, then ET is a band. Hence ET is a
semilattice of rectangular bands. Clearly ET ' EST

as bands.
For a, b ∈ T denote by W (a, b) the set of all equivalence classes 〈u, v〉 such

that (u, v) ∈ T × T and [abuvabt] = [abt], [tabuvab] = [tab], [uvabuvt] = [uvt],
[tuvabuv] = [tuv].

Clearly, 〈x, y〉 ∈ W (a, b) if and only if xy ∈ I(ab) in ST . Since ET is a semi-
lattice of rectangular bands, from the fact that 〈a, b〉 and 〈c, d〉 are elements of
ET it follows that 〈[abc], d〉 and 〈[cda], b〉 are in the same component of ET and
consequently W ([abc], d) = W ([cda], b).

Proposition 2.6. [I(c)I(b)I(a)] ⊂ I([abc]) for all elements a, b, c of each orthodox
ternary semigroup.

Proposition 2.7. A regular ternary semigroup is orthodox if and only if for all
its elements a, b from I(a) ∩ I(b) 6= ∅ it follows I(a) = I(b).

The proofs of the above two facts are found in [9].

3. Congruences on ternary semigroups

Lemma 3.1. If (a, b) is an idempotent pair in an orthodox ternary semigroup T,
then ([uab], u′), ([abu], u′), ([uu′a], b) and ([buu′], a) are idempotent pairs for any
u ∈ T and u′ ∈ I(u).



116 Sheeja G. and Sri Bala S.

Proof. Indeed, we have [uabu′uabu′t] = [uabu′uab[u′uu′]t] = [u[abu′uabu′uu′]t] =
[u[abu′uu′]t] = [uabu′t] for all t ∈ T. Similarly, [tuabu′uabu′] = [tuabu′uabu′uu′] =
[tu[abu′uabu′uu′]] = [tuabu′]. Therefore ([uab], u′) is an idempotent pair. For
([abu], u′), ([uu′a], b) and ([buu′], a) the proof is analogous.

Corollary 3.2. If (a, b) is an idempotent pair in a strongly regular ternary semi-
group T, then ([uab], u−1),([abu], u−1) ([uu−1a], b) and ([buu−1], a) are idempotent
pairs for any u ∈ T.

Lemma 3.3. If (a, b) is an idempotent pair in an orthodox ternary semigroup T,
then ([uva], [bv′u′]) is an idempotent pair for all u′ ∈ I(u), v′ ∈ I(v) and u, v ∈ T.

Proof. By Lemma 3.1 ([vab], v′) is an idempotent pair and for all u′ ∈ I(u) and v′ ∈
I(v) we obtain [uvabv′u′uvabv′u′t] = [u[vabv′u′uvabv′u′uu′t]] = [uvabv′u′uu′t] =
[uvabv′u′t] for t ∈ T. Similarly [tuvabv′u′uvabv′u′] = [tuvabv′u′uvabv′u′uu′] =
[tuvabv′u′uu′] = [tuvabv′u′].

Corollary 3.4. If (a, b) is an idempotent pair in a strongly regular ternary semi-
group T, then ([uva], [bv−1u−1]) is an idempotent pair for all u, v∈T.

Lemma 3.5. (Generalised Lallement's Lemma)
Let ρ be a congruence on a regular ternary semigroup T. If (aρ, bρ) is an idempotent
pair in T/ρ then there exists an idempotent pair (p, q) in T such that (aρ, bρ) ∼
(pρ, qρ). Moreover, (p, q) satis�es the property that [Tpq] ⊆ [Tab] and [pqT ] ⊆
[abT ]

Proof. It is clear that T/ρ is a ternary semigroup. Let (aρ, bρ) be an idempo-
tent pair in T/ρ. If b′ is an inverse of b and u be an inverse of [[aba]bb′], then
for p = [abb′], q = [uab] and t ∈ T we have [pq[pqt]] = [[abb′][uab][abb′][uab]t] =
[abb′[uababb′u]abt] = [[abb′][uab]t] = [pqt]. Similarly [[tpq]pq] = [t[abb′][uababb′u]ab]
= [tpq]. Hence (p, q) is an idempotent pair. Moreover [pρqρxρ] = [[abb′]ρ[uab]ρxρ] =
[aρbρb′ρuρaρbρxρ] = [aρbρaρbρb′ρuρaρbρaρbρb′ρbρxρ] = [[[[aba]bb′]u[[aba]bb′]]bx]ρ
= [[aba]bx]ρ = [aρbρaρbρxρ] = [aρbρxρ] for x ∈ T. Analogously [xρpρqρ] =
[xρaρbρ] for all x ∈ T. Thus (aρ, bρ) ∼ (pρ, qρ) in T/ρ. From the choice of p
and q it is clear that [Tpq] ⊆ [Tab] and [pqT ] ⊆ [abT ].

Corollary 3.6. If T is a regular ternary semigroup and ρ is a congruence on T,
then T/ρ is a regular ternary semigroup.

De�nition 3.7. A congruence ρ on a ternary semigroup T is said to be a ternary
group congruence if T/ρ is a ternary group.

De�nition 3.8. A congruence ρ on a regular ternary semigroup T is called strongly
regular if T/ρ is a strongly regular ternary semigroup, and idempotent pair sepa-
rating if (a, b) and (c, d) are equivalent in T for each idempotent pairs (a, b), (c, d)
such that (aρ, bρ) and (cρ, dρ) are equivalent in T/ρ.

Lemma 3.9. Let ρ : T −→ Tρ be a ternary homomorphism of an orthodox ternary
semigroup T. Then Tρ is an orthodox ternary semigroup.
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Lemma 3.10. Let ρ be a ternary homomorphism of a strongly regular ternary
semigroup T. Then Tρ is a strongly regular ternary semigroup such that (aρ)−1 =
a−1ρ for all t ∈ T.

Proof. For idempotent pairs (aρ, bρ) and (xρ, yρ) in Tρ, by Lemma 3.5, there
exists idempotent pairs (p, q) and (u, v) such that (pρ, qρ) ∼ (aρ, bρ) and (uρ, vρ) ∼
(xρ, yρ). Thus [aρbρxρyρtρ] = [pρqρuρvρtρ] = [pquvt]ρ = [uvpqt]ρ = [uρvρpρqρtρ]
= [xρyρaρbρtρ] and [tρaρbρxρyρ] = [tρxρyρaρbρ]. Hence the idempotent pairs
(aρ, bρ) and (xρ, yρ) commute in T/ρ. Thus Tρ is strongly regular. Moreover, for
any a ∈ T we have [aρa−1ρaρ] = aρ and [a−1ρaρa−1ρ] = a−1ρ. Thus a−1ρ =
(aρ)−1, by [9].

Any congruence ρ on a ternary semigroup T can be extended to the relation
ρe de�ned on ST = T ∪M in the following way:

(x, y) ∈ ρe ⇔
{

(x, y) ∈ ρ and x, y ∈ T, or
x=ab, y=cd∈M and ([abt],[cdt]), ([tab],[tcd])∈ρ ∀t∈T.

Lemma 3.11. ρe is a congruence on ST .

Proof. It is clear that ρe is an equivalence relation on ST . To prove that it is a
congruence suppose xρey and x, y ∈ ST .

(i) If x, y ∈ T and z ∈ T, then [zxt]ρ[zyt] and [tzx]ρ[tzy] for any t ∈ T, so
zxρezy. Similarly [xzt]ρ[yzt] and [txz]ρ[tyz]. Hence xzρeyz. If z = uv, then zx =
[uvx], zy = [uvy] and [uvx]ρ[uvy]. Also [xuv]ρ[yuv]. Thus zxρezy and xzρeyz.

(ii) Suppose x = ab, y = cd and z = pq. Then xz = ([abp], q) and yz =
([cdp], q). Since xρey, we have [abt] = [cdt] and [tab] = [tcd] for all t ∈ T. Therefore
[abpqt] = [cdpqt] and [tabpq] = [tcdpq]. Hence xzρeyz. Similarly, [pqabt] = [pqcdt]
and [tpqab] = [tpqcd]. So, zxρezy.

(iii) If x = ab,y = cd, then for any z ∈ T we have [zab]ρ[zcd] and [abz]ρ[cdz].
Therefore zxρezy and xzρeyz. Hence ρe is a congruence.

Lemma 3.12. If T is a regular ternary semigroup, then ρe is an idempotent
separating congruence in ST if and only if ρ is an idempotent pair separating
congruence in T.

Proof. Let ρe be an idempotent separating congruence in ST . If (a, b) and (c, d) are
idempotent pairs in T such that (aρ, bρ) and (cρ, dρ) are equivalent in T/ρ, then
[abt]ρ[cdt] and [tab]ρ[tcd] for all t ∈ T. Hence abρecd in ST . Since ab and cd are
idempotents in ST and ρe is idempotent separating we have ab = cd. This means
that [abt] = [cdt] and [tab] = [tcd] and so (a, b) ∼ (c, d). Conversely suppose ρ is an
idempotent pair separating congruence in T. Let e, f be idempotents in ST such
that eρef. Let e = ab and f = cd for some idempotent pairs (a, b) and (c, d) in
T. Then eρef implies [abt]ρ[cdt] and [tab]ρ[tcd]. Hence (aρ, bρ) ∼ (cρ, dρ) in T/ρ,
which gives (a, b) ∼ (c, d) in T. So, e = f. Thus ρe is an idempotent separating
congruence on ST .
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4. Strongly regular ternary semigroups

In this section T denotes a strongly regular ternary semigroup. Below we will
construct congruences on T which are analogous to the group congruence and
maximum idempotent separating congruence on an ordinary inverse semigroup.

We start with the relation σ de�ned on T as follows:

(x, y) ∈ σ ⇐⇒ [abx] = [aby] for some idempotent pair (a, b) ∈ T.

Lemma 4.1. σ is a congruence on T.

Proof. Clearly σ is an equivalence relation on T. To prove that it is a congruence
suppose xσy and u, v ∈ T. Then [abx] = [aby] for some idempotent pair (a, b), and
so [abxuv] = [abyuv]. Hence ([xuv], [yuv]) ∈ σ. By Corollary 3.2, for any u, v ∈ T,
([v−1u−1u], v) is an idempotent pair and by Corollary 3.4, ([uva], [bv−1u−1]) is
also an idempotent pair. So,[

[uva][bv−1u−1][uvx]
]

=
[
uvabv−1u−1uvabv−1u−1uvx

]
=

[
uvabv−1u−1uvv−1u−1uvabx

]
=

[
uvabv−1u−1uvabx

]
= [uvabv−1u−1uvaby]

=
[
uvababv−1u−1uvy

]
= [uvabv−1u−1uvy].

Therefore ([uvx], [uvy]) ∈ σ. Similarly ([vab], v−1) and (u−1, u) are idempotent
pairs and they commute. Hence[

[uva][bv−1u−1][uxv]
]

= [uvabv−1u−1uvabv−1u−1uxv]
= [u[vabv−1u−1uv]abv−1u−1uxv]]
=

[
uu−1u[vabv−1vabv−1u−1]uxv

]
=

[
u[vabv−1u−1]uxv

]
= [uv[abv−1u−1u]xv]

= [uvv−1u−1uabxv] = [uvv−1u−1uabyv]
= [uvabv−1u−1uyv].

Therefore ([uxv], [uyv]) ∈ σ. Hence σ is a congruence.

Proposition 4.2. T/σ is a ternary group.

Proof. By Theorem 2.4 and Lemma 3.9, it is enough to show that all idempotent
pairs in T/σ are equivalent. If (aσ, bσ), (uσ, vσ) are two idempotent pairs in T/σ,
then we have to prove [abt]σ[uvt] and [tab]σ[tuv] for all t ∈ T. By Lemma 3.5,
without loss of generality we can assume that (a, b) and (u, v) are idempotent pairs
of T. Then ([abu], v) and ([uva], b) are idempotent pairs. For any t ∈ T we have
[[abu]v[abt]] = [ababuvt] = [abuvt] = [abuvuvt] = [[abu]v[uvt]] since idempotent
pairs commute in T. Therefore [abt]σ[uvt]. Similarly [[tab][uva]b] = [tabuvab] =
[tuvab] = [[tuv][uva]b]. Hence [tab]σ[tuv]. So, (aσ, bσ) and (uσ, vσ) are equivalent
in T/σ. Thus in T/σ all idempotent pairs are equivalent and T/σ is a ternary
group.
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Theorem 4.3. σ is the minimum ternary group congruence on a strongly regular
ternary semigroup T.

Proof. By Proposition 4.2, T/σ is a ternary group. Suppose θ is a congruence on
T such that T/θ is a ternary group. We prove that σ ⊆ θ. Suppose (p, q) ∈ σ,
then [abp] = [abq] for some idempotent pair (a, b) in T. Then [aθbθpθ] = [aθbθqθ].
Since T/θ is a ternary group cancellation law holds and so pθ = qθ.

Now we consider the relation µ de�ned as follows:

(a, b) ∈ µ ⇐⇒ ([axx−1], a−1) ∼ ([bxx−1], b−1) ∀(x, x−1) ∈ T × T.

In other words, (a, b) ∈ µ if [axx−1a−1t] = [bxx−1b−1t] and [taxx−1a−1] =
[tbxx−1b−1] for every t ∈ T.

Lemma 4.4. µ is a congruence on T.

Proof. Clearly µ is an equivalence relation. Suppose (a, b) ∈ µ and u, v ∈ T.
For every idempotent pair (x, x−1), by Corollary 3.2 ([uvx], [x−1v−1u−1]) is an
idempotent pair and so we obtain [auvxx−1v−1u−1a−1t] = [buvxx−1v−1u−1b−1t],
[tauvxx−1v−1u−1a−1] = [tbuvxx−1v−1u−1b−1]. Hence ([auv], [buv]) ∈ µ. Since
[axx−1a−1t] = [bxx−1b−1t] for all t ∈ T, we have [uvaxx−1a−1t] = [uvbxx−1b−1t].
Replacing t by [v−1u−1t] we get [uvaxx−1a−1v−1u−1t] = [uvbxx−1b−1v−1u−1t].
In a similar way we obtain [tuvaxx−1a−1v−1u−1] = [tuvbxx−1b−1v−1u−1]. Thus
([uva], [uvb]) ∈ µ. Hence for every idempotent pair (x, x−1) also ([vxx−1], v−1)
is an idempotent pair. Therefore for all t ∈ T we have [avxx−1v−1a−1t] =
[bvxx−1v−1b−1t]. In particular for t = u−1 we obtain [avxx−1v−1a−1u−1] =
[bvxx−1v−1b−1u−1]. Hence [[uav]xx−1[v−1a−1u−1]t] = [[ubv]xx−1[v−1b−1u−1]t]
for t ∈ T. Analogously we obtain [tuavxx−1v−1a−1u−1] = [tubvxx−1v−1b−1u−1].
Hence ([uav], [ubv]) ∈ µ. Thus µ is a congruence.

Theorem 4.5. µ is the maximum idempotent pair separating congruence on T.

Proof. Let (a, a−1) and (b, b−1) be such that (aµ, a−1µ) and (bµ, b−1µ) are equiv-
alent idempotent pairs in T/µ. We claim that (a, a−1) and (b, b−1) are equiva-
lent idempotent pairs in T. From the hypothesis it follows that in T we have
[aa−1t]µ[bb−1t] and [taa−1]µ[tbb−1] for all t ∈ T. The �rst relation for t = a and
t = b gives aµ[bb−1a] and [aa−1b]µb. Putting in the second relation t = a−1 and
t = b−1 we obtain a−1µ[a−1bb−1] and [b−1aa−1]µb−1. Therefore for all idempotent
pairs (z, z−1) and for all t ∈ T we have

[azz−1a−1t] = [bb−1azz−1a−1bb−1t], (4.1)

[bzz−1b−1t] = [aa−1bzz−1b−1aa−1t]. (4.2)

From (4.1) for z = a−1 and t = a we get [aa−1aa−1a] = [bb−1aa−1bb−1a] = [bb−1a].
Therefore

a = [bb−1a]. (4.3)
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Thus a−1 = [a−1bb−1]. From (4.2) putting z = b−1 and t = b we obtain [bb−1bb−1b]
= [aa−1bb−1aa−1b] = [aa−1b]. Therefore

b = [aa−1b]. (4.4)

Hence b−1 = [b−1aa−1]. Now using (4.3) and (4.4) we see that

[aa−1t] = [bb−1a[a−1bb−1]t] = [b[b−1aa−1]bb−1t] = [bb−1bb−1t] = [bb−1t]

for all t ∈ T. Similarly

[taa−1] = [t[bb−1a][a−1bb−1]] = [tb[b−1aa−1]bb−1] = [tbb−1bb−1] = [tbb−1].

Therefore (a, a−1) ∼ (b, b−1). Hence µ is an idempotent pair separating congruence
in T.

Suppose that ρ is another idempotent pair separating congruence on T. If
aρ = bρ, then a−1ρ = b−1ρ by Lemma 3.10. For any idempotent pair (x, x−1) ∈ T
we have [axx−1a−1t]ρ = [bxx−1b−1t]ρ and [taxx−1a−1]ρ = [tbxx−1b−1]ρ. Hence
([axx−1]ρ, a−1ρ) and ([bxx−1]ρ, b−1ρ) are equivalent idempotent pairs in T/ρ.
Since ([axx−1], a−1) and ([bxx−1], b−1) are idempotent pairs in T we see that
they are equivalent in T. Hence aµb. Therefore ρ ⊆ µ.

5. Congruences on orthodox ternary semigroups

In this section by T will denote an orthodox ternary semigroup. By γ we denote
the relation on T such that

(a, b) ∈ γ ⇐⇒ I(a) = I(b).

Theorem 5.1. The relation γ is a congruence on T.

Proof. Clearly γ is an equivalence relation. Suppose (a, b) ∈ γ and x, y ∈ T.
Then for any u ∈ I(a) = I(b) and for any v ∈ I(x), w ∈ I(y) it follows from
Proposition 2.6, that [uwv] ∈ I([xya])∩ I([xyb]). Hence by Proposition 2.7 we get
I([xya]) = I([xyb]) and so ([xya], [xyb]) ∈ γ. Similarly [wvu] ∈ I([axy])∩ I([bxy]).
Therefore ([axy], [bxy]) ∈ γ. Also ([xay], [xby]) ∈ γ. Hence γ is a congruence.

Theorem 5.2. The relation γ is the smallest congruence on T for which T/γ is
a strongly regular ternary semigroup.

Proof. ET = ∪Eα is a semilattice of rectangular bands. For any 〈a, b〉, 〈c, d〉
and 〈e, f〉 in ET , elements ([abcde], f) and ([cdabe], f) belong to the same class
Eα and so I(〈[abcde], f〉) = I(〈[cdabe], f〉) in ET . This can be interpreted in T
as W ([abcde], f) = W ([cdabe], f) = W (a, [bcdef ]). Let (aγ, bγ) and (cγ, dγ) be
two idempotent pairs in T/γ. Fix t ∈ T. If u ∈ I([abcdt]), then [abcdtuabcdt] =
[abcdt] and [uabcdtu] = u. We �rst show that (t, u) ∈ W ([cdabt], t′), for some
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t′ ∈ I(t). For all z ∈ T we have [tuz] = [t[uabcdtu]z] = [tuabcdtt′tuz] and
[abcdtt′z] = [[abcdtuabcdt]t′z] = [abcdtt′tuabcdtt′z]. Therefore we see that (t, u)
is in W ([abcdt], t′) = W ([cdabt], t′). Thus, for all z ∈ T

[cdabtt′tucdabtt′z] = [cdabtt′z], (5.1)

[tucdabtt′tuz] = [tuz], (5.2)

[zcdabtt′tucdabtt′] = [zcdabtt′], (5.3)

[ztucdabtt′tu] = [ztu]. (5.4)

(5.1) for z = t gives [cdabtt′tucdabtt′t] = [cdabtt′t]. Therefore

[cdabtucdabt] = [cdabt]. (5.5)

Multiplying (5.2) on the left by [uabcd] and on the right by u we obtain the equation
[uabcdtucdabtt′tuzu] = [uabcdtuzu]. Therefore [ucdabtuzu] = [uzu], which for z =
[abcdt] gives [ucdabt[uabcdtu]] = [uabcdtu]. Hence

[ucdabtu] = u. (5.6)

From (5.5) and (5.6) we get u ∈ I([cdabt]). Thus u ∈ I([abcdt])∩ I([cdabt]), which
implies I([abcdt]) = I([cdabt]) (cf. [9]). Hence

[abcdt]γ[cdabt]. (5.7)

Now we show that I([tabcd]) = I([tcdab]). Indeed, if u ∈ I([tabcd]), then
[tabcdutabcd] = [tabccd] and [utabcdu] = u. Moreover, for every z from T we have
[utz] = [[utabcdu]tz] = [utt′tabcdutz], [zut] = [zutabcdut] = [zutt′tabcdut]. Simi-
larly, [t′tabcdz] = [t′[tabcd]z] = [t′[tabcdutabcd]z] = [t′tabcdutt′tabcdz], [zt′tabcd] =
[zt′[tabcdutabcd]] = [zt′tabcdutt′tabcd] = [zt′tabcdutt′tabcd]. Therefore (u, t) is in
W ([t′, [tabcd]) = W (t′, [tcdab]). Hence for all z ∈ T,

[utt′tcdabutz] = [utz], (5.8)

[t′tcdabutt′tcdabz] = [t′tcdabz], (5.9)

[zutt′tcdabut] = [zut], (5.10)

[zt′tcdabutt′tcdab] = [zt′tcdab]. (5.11)

Multiplying (5.10) on the left by u and on the right by [abcdu] we obtain the
equation [uzutcdab[utabcdu]] = [uz[utabcdu] = [uzu]. This for z = [tabcd] gives
[[utabcdu]tcdabu] = [utabcdu] = [utabcdu]. Therefore

[utcdabu] = u. (5.12)

(5.11) for z = t gives [tt′tcdabutt′tcdab] = [tt′tcdab]. Therefore

[tcdabutcdab] = [tcdab]. (5.13)
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From (5.12) and (5.13) we get u ∈ I([tcdab]). Thus I([tabcd]) = I([tcdab]). Hence

[tabcd]γ[tcdab]. (5.14)

Now, from (5.7) and (5.14) it follows that (aγ, bγ) and (cγ, dγ) commute in T/γ
and so T/γ is strongly regular.

Suppose that ρ is a congruence on T such that T/ρ is a strongly regular ternary
semigroup. If (a, b) ∈ γ, then for any x ∈ I(a) = I(b), aρ and bρ are both inverses
of xρ in T/ρ. Since T/ρ is strongly regular, the element xρ has a unique inverse
and so aρ = bρ. Hence γ ⊆ ρ. Thus γ is the smallest strongly regular ternary
semigroup congruence.

Theorem 5.3. The relation µ de�ned by

(a, b) ∈ µ ⇐⇒

{
for every idempotent pair (x, x′) ∃a′ ∈ I(a),∃b′ ∈ I(b)
([axx′], a′) ∼ ([bxx′], b′) and ([a′xx′], a) ∼ ([b′xx′], b).

is a congruence on T.

Proof. We �rst prove that µ is an equivalence relation. Clearly µ is re�exive
and symmetric. For any (a, b), (b, c) ∈ µ there exists a′ ∈ I(a), b′, b′′ ∈ I(b)
and c′ ∈ I(c) such that for every idempotent pair (x, x′) we have [axx′a′t] =
[bxx′b′t] and [taxx′a′] = [tbxx′b′], [a′xx′at] = [b′xx′bt] and [ta′xx′a] = [tb′xx′b],
[bxx′b′′t] = [cxx′c′t] and [tbxx′b′′] = [tcxx′c′], [b′′xx′bt] = [c′xx′ct] and [tb′′xx′b] =
[tc′xx′c]. Put a∗ = [b′′ba′bb′]. We see that [bb′a] = [bb′aa′aa′a] = [bb′ba′ab′a] =
[ba′ab′a] = [aa′aa′a] = [aa′a] = a and [aa∗a] = [ab′′ba′bb′a] = [bb′′bb′bb′a] =
[bb′bb′a] = [bb′a] = a. Thus [a∗aa∗] = [b′′ba′bb′ab′′ba′bb′] = [b′′bb′bb′bb′′ba′bb′] =
[b′′bb′′ba′bb′] = [b′′ba′bb′] = a∗. Hence a∗ ∈ I(a). Similarly for c∗ = [b′′bc′bb′]
we have [cc∗c] = [cb′′bc′bb′c] = [cb′′bb′′bb′b] = [cb′′bb′b] = [cc′bb′c] = [cc′c] = c,
[c∗cc∗] = [b′′bc′bb′cb′′bc′bb′] = [b′′bb′′bb′bb′′bc′bb′] = [b′′bb′′bc′bb′] = [b′′bc′bb′] = c∗.
Therefore c∗ ∈ I(c). Now for all idempotent pair (x, x′) in T and all t ∈ T we obtain
[a∗xx′at] = [b′′ba′bb′xx′at] = [b′′bb′bb′xx′bt] = [b′′bb′xx′bt] = [b′′bb′′bb′xx′bt] =
[b′′bc′bb′xx′ct] = [c∗xx′ct] and [ta∗xx′a] = [tc∗xx′c], [axx′a∗t] = [axx′b′′ba′bb′t] =
[bxx′b′′bb′bb′t] = [bxx′b′′bb′t] = [bxx′b′′bb′′bb′t] = [cxx′b′′bc′bb′t] = [cxx′c∗t]. Also
we have [taxx′a∗] = [tcxx′c∗]. Hence (a, c) ∈ µ, proving µ is a transitive relation.
Thus µ is an equivalence relation.

Suppose (a, b) ∈ µ and u, v ∈ T so that for every idempotent pair (x, x′) in T
and for all t ∈ T,

[axx′a′t] = [bxx′b′t], (5.15)

[taxx′a′] = [tbxx′b′], (5.16)

[a′xx′at] = [b′xx′bt], (5.17)

[ta′xx′a] = [tb′xx′b]. (5.18)

In (5.15), replacing (x, x′) by ([uvx], [x′v′u′]) we get [auvxx′v′u′a′t] = [buvxx′v′u′b′t].
Similarly, (5.16) becomes [tauvxx′v′u′a′] = [tbuvxx′v′u′b′]. In (5.17) replacing
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t by [uvt] and multiplying on the left by v′ and u′ we get [v′u′a′xx′auvt] =
[v′u′b′xx′buvt] ∀t ∈ T. In (5.18) replacing t by [tv′u′] and multiplying on the
right by u and v, we get [tv′u′a′xx′auv] = [tv′u′b′xx′buv]. Since [v′u′a′] ∈ I([auv])
and [v′u′b′] ∈ I([buv]) we have ([auv], [buv]) ∈ µ. Similarly we can show that
([uva], [uvb]) ∈ µ and ([uav], [ubv]) ∈ µ.

Theorem 5.4. µ is the maximum idempotent pair separating congruence on T.

Proof. Let (aµ, a′µ) and (bµ, b′µ) be two equivalent idempotent pairs in T/µ so
that [aa′t]µ[bb′t], [taa′]µ[tbb′], [a′at]µ[b′bt] and [ta′a]µ[tb′b] ∀t ∈ T. Putting t = a
and t = b in the �rst relation we get aµ[bb′a] and [aa′b]µb. Putting t = a′ and t = b′

in the second relation we get a′µ[a′bb′] and [b′aa′]µb′. Hence for every idempotent
pair (x, x′) and for all t ∈ T we have

[axx′a′t] = [bb′axx′[bb′a]′t], (5.19)

[bxx′b′t] = [aa′bxx′[aa′b]′t], (5.20)

[ta′′xx′a′] = [t[a′bb′]′xx′a′bb′], (5.21)

[tb′′xx′b′] = [t[b′aa′]′xx′b′aa′] (5.22)

for some [bb′a]′ ∈ I([bb′a]). From (5.19) for (x, x′) = (a′, a) and t = a we get
a = [bb′aa′a[bb′a]′t] = [[bb′a][bb′a]′t]. Multiplying on the left by b and b′ we have
[bb′a] = [bb′[bb′a][bb′a]′t] = a. Therefore [bb′a] = a. Putting (x, x′) = (b′, b)
and t = b in (5.20) we obtain b = [aa′bb′b[aa′b]′b] = [aa′b[aa′b]′b]. Multiply-
ing on the left by a and a′ we get [aa′b] = [aa′aa′b[aa′b]′b] = [aa′b[aa′b]′b] =
a. Therefore [aa′b] = a. Replacing in (5.21) x by a′ and x′ by a′′ we obtain
[ta′′a′] = [t[a′bb′]′a′a′′a′bb′] = [t[a′bb′]′a′bb′] for every t ∈ T, which for t = a′

implies a′ = [a′[a′bb′]′a′bb′]. Multiplying this on the right by b and b′ we get
[a′bb′] = [a′[a′bb′]′a′bb′bb′] = a′. Therefore [a′bb′] = a′. (5.22) for x = b′ and
x′ = b′′ gives [tb′′b′] = [t[b′aa′]′b′b′′b′aa′] = [t[b′aa′]′b′aa′], ∀t ∈ T. In particular,
for t = b′ we get b′ = [b′[b′aa′]′b′aa′]. Multiplying this on the right by a and a′

we obtain [b′aa′] = [b′[b′aa′]′b′aa′aa′] = [b′[b′aa′]′b′aa′] = b′. Therefore [b′aa′] = b′

and [aa′t] = [[bb′a][a′bb′]t] = [b[b′aa′]bb′t] = [bb′bb′t] = [bb′t], ∀t ∈ T, Similarly
[taa′] = [t[bb′a][a′bb′]] = [tb[b′aa′]bb′] = [tbb′bb′] = [tbb′]. Hence (a, a′) ∼ (b, b′).
Thus µ is an idempotent pair separating congruence on T.

Suppose that θ is an idempotent pair separating congruences on T and θe is
the congruence induced on ST by θ. If xθy, then xθey in ST . ST is orthodox
and by Lemma 3.12, θe is an idempotent separating congruences on ST . Hence
θe ⊂ H, where H is the Green's equivalence on ST . Hence xHy in ST we can
�nd inverse x′ of x and y′ of y such that xx′ = yy′ and x′x = y′y in ST . There-
fore for all t ∈ T, [xx′t] = [yy′t] and [txx′] = [tyy′]. Similarly, [x′xt] = [y′yt]
and [tx′x] = [ty′y] in T. Therefore x = [xx′x] = [yy′x], x′ = [x′xx′] = [x′yy′],
y′ = [y′yy′]. Thus x′ = [x′yy′]θ[x′xy′] = y′. Hence for every idempotent pair
(u, v) in T , [x′uvxt]θ[y′uvyt]; [xuvx′t]θ[yuvy′t]. ([x′uv]θ, xθ) ∼ ([y′uv]θ, yθ) and
([xuv]θ, x′θ) ∼ ([yuv]θ, y′θ) in T/θ. Since θ is idempotent pair separating we have
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([xuv], x′) ∼ ([yuv], y′). In a similar way we can show that ([x′uv], x) ∼ ([y′uv], y).
Thus xµy. Hence θ ⊆ µ and so µ is the maximum idempotent pair separating
congruences on T.
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Quotient hyper residuated lattices

Omid Zahiri, Rajabali A. Borzooei and Mahmud Bakhshi

Abstract. We de�ne the concept of regular compatible congruence on hyper residuated lattices.
Then we attempt to construct quotient hyper residuated lattices. Finally, we state and prove
some theorem with appropriate results such as the isomorphism theorems.

1. Introduction

Residuated lattices, introduced by Ward and Dilworth [7], are a common structure
among algebras associated with logical systems. In this de�nition to any bounded
lattice (L,∨,∧, 0, 1), a multiplication `∗' and an operation `→' are equipped such
that (L, ∗, 1) is a commutative monoid and the pair (∗,→) is an adjoint pair, i.e.,

x ∗ y 6 z if and only if x 6 y → z, ∀x, y, z ∈ L.

The main examples of residuated lattices are MV-algebras introduced by Chang
[2] and BL-algebras introduced by Hájek [4].

The hyperstructure theory was introduced by Marty [5], at the 8th Congress of
Scandinavian Mathematicians. In his de�nition, a function f : A× A −→ P ∗(A),
of the set A × A into the set of all nonempty subsets of A, is called a binary
hyperoperation, and the pair (A, f) is called a hypergroupoid. If f is associative, A
is called a semihypergroup, and it is said to be commutative if f is commutative.
Also, an element 1 ∈ A is called the unit or the neutral element if a ∈ f(1, a), for
all a ∈ A.

Recently, R. A. Borzooei et al. introduced and study hyper K-algebras and
Sh. Ghorbani et al. applied the hyper structure to MV -algebras and introduced
the concept of hyper MV -algebra, which is generalization of MV -algebra. In
this paper, we want to introduced the concept of hyper residuated lattices and
construct the quotient structure in hyper residuated lattices and give results as
mentioned in the abstract.

2010 Mathematics Subject Classi�cation: 03G10, 06B99, 06B75.
Keywords: Hyper residuated lattice, quotient, �lter, isomorphism theorem.
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2. Preliminaries

De�nition 2.1. A residuated lattice is a structure (L,∨,∧,�,→, 0, 1) of type
(2, 2, 2, 2, 0, 1) satisfying the following axioms:

(1) (L,∨,∧, 0, 1) is a bounded lattice,

(2) (L,�, 1) is a commutative monoid,

(3) x� y 6 z if and only if x 6 y → z, for all x, y ∈ L.

Let (L′,∨′,∧′,�′,→′, 0′, 1′) and (L,∨,∧,�,→, 0, 1) be two residuated lattices.
The map f : L → L′ is called a homomorphism if f(x ∗ y) = f(x) ∗ f(y), for all
x, y ∈ L, where ∗ ∈ {�,∨,∧,→}

De�nition 2.2. [6] A super lattice is a partially ordered set (S;6) endowed with
two binary hyperoperations ∨ and ∧ satisfying the following properties: for all
a, b, c ∈ S,

(SL1) a ∈ (a ∨ a) ∩ (a ∧ a),
(SL2) a ∨ b = b ∨ a, a ∧ b = b ∧ a,

(SL3) (a ∨ b) ∨ c = a ∨ (b ∨ c), (a ∧ b) ∧ c = a ∧ (b ∧ c),
(SL4) a ∈ ((a ∨ b) ∧ a) ∩ ((a ∧ b) ∨ a),
(SL5) a 6 b implies b ∈ a ∨ b and a ∈ a ∧ b,

(SL6) if a ∈ a ∧ b or b ∈ a ∨ b then a 6 b.

De�nition 2.3. Let A be a set, � be a binary hyperoperation on A and 1 ∈ A.
(A;�, 1) is called a commutative semihypergroup with 1 as an identity if it satis�es
the following properties: for all x, y, z ∈ A,

(CSHG1) x� (y � z) = (x� y)� z,

(CSHG2) x� y = y � x,

(CSHG3) x ∈ 1� x.

Proposition 2.4. Let (L,6) be a partially ordered set. De�ne the binary hy-

peroperations ∨ and ∧ on L as follows: a ∨ b = {c | a 6 c and b 6 c} and

a ∧ b = {c | c 6 a and c 6 b}, for all a, b ∈ L.Then (L;∨,∧) is a bounded su-

per lattice.

De�nition 2.5. Let (P,6) be a partially ordered set and γ be an equivalence
relation on P . Then γ is called regular if the set P/γ = {[x] |x ∈ P} can be
ordered in such a way that the natural map π : P → P/γ is order preserving.

De�nition 2.6. Let γ be a regular equivalence relation on partially ordered set
(P,6).

(i) By a γ-fence we shall mean an ordered subset of P having the following
diagram (Figure 1), where ai 6 bi+1 and three vertical lines indicate the equiva-
lence modulo γ. We often denote this γ-fence by 〈a1, bn〉γ and say that a γ-fence
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〈a1, bn〉γ joins a1 to bn.
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Figure 1. γ-fence
(ii) By a γ-crown we shall mean an ordered subset of P having the following

diagram (Figure 2)
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Figure 2. γ-crown
where ai 6 bi+1, an 6 b1 and three vertical lines indicate the equivalence modulo
γ. We often denote this γ-crown by 〈〈a1, bn〉〉γ .

(iii) A γ-crown 〈a1, bn〉γ is called γ-closed, when aiγbj , for all i, j ∈ {1, 2, ..., n}.

Theorem 2.7. [1] Let γ be an equivalence relation on ordered set (P,6) and 6γ

be the relation on P/γ = {[x] |x ∈ P} de�ned by [x] 6γ [y] if and only if there is

a γ-fence that joins x to y. Then the following statements are equivalent:

(i) 6γ is an order on P/γ,
(ii) γ is regular,

(iii) every γ-crown is γ-closed.

3. Quotient hyper residuated lattices

De�nition 3.1. By a hyper residuated lattice we mean a nonempty set L endowed
with four binary hyperoperations ∨, ∧, �, → and two constants 0 and 1 satisfying
the following conditions:

(HRL1) (L;∨,∧, 0, 1) is a bounded super lattice,
(HRL2) (L;�, 1) is commutative semihypergroup with 1 as an identity,
(HRL3) a� c � b if and only if c � a → b,

where A � B means that there exist a ∈ A and b ∈ B such that a 6 b, for all
nonempty subset A and B of L.

A hyper residuated lattice is called nontrivial if 0 6= 1. An element a of hyper
residuated lattice L is called scalar if |a� x| = 1, for all x ∈ L.

De�nition 3.2. Let (L;∨,∧,�,→, 0, 1) and (L′;∨′,∧′,�′,→′, 0′, 1′) be two hyper
residuated lattices and f : L → L′ be a function. f is called a homomorphism if it
satis�es the following conditions: for all x, y ∈ L,

(i) f(x ∨ y) ⊆ f(x) ∨′ f(y),
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(ii) f(x ∧ y) ⊆ f(x) ∧′ f(y),

(iii) f(x� y) ⊆ f(x)�′ f(y),

(iv) f(x → y) ⊆ f(x) →′ f(y),

(v) f(1) = 1′ and f(0) = 0′.

If f satis�es (v) and the conditions (i)�(iv) holds for the equality instead of the
inclusion, f is said to be a strong homomorphism, brie�y an S-homomorphism.

A homomorphism which is one to one, onto or both is called a monomorphism,
epimorphism or an isomorphism, respectively. Similarly, an S-homomorphism
which is one-to-one, onto or both is called an S-monomorphism, S-epimorphism or
S-isomorphism, respectively.

De�nition 3.3. A nonempty subset F of L satisfying

(F) x 6 y and x ∈ F imply y ∈ F

is called a

• hyper �lter if x� y ⊆ F , for all x, y ∈ F ,

• weak hyper �lter if F � x� y, for all x, y ∈ F .

A �lter F of L is called proper if F 6= L and this is equivalent to that 0 /∈ F . Let
F be a proper (weak) hyper �lter of L. Then F is called a maximal if F ⊆ J ⊆ L
implies F = J or J = L, for all (weak) hyper �lters J of L. Moreover, hyper
residuated lattice L is called simple if {{1}, L} is the set of all weak hyper �lters
of L. Obviously, in any hyper residuated lattice L, {1} is a weak hyper �lter and
L is a hyper �lter of L.

Remark 3.4. Clearly, any hyper �lter of L is a weak hyper �lter of L. Moreover,
1 ∈ F , for any (weak) hyper �lter F of L.

From now on, in this section, L and L′ will denote two hyper residuated lattices
and for convenience, we use the same notations for the hyper operations of L and
L′, unless otherwise stated.

In the following, we introduced the concept of regular compatible congruence
relations on a hyper residuated lattices and verify some useful properties of these
relations. Then we attempted to �ne the S-homomorphisms, whose ker are reg-
ular compatible congruence relations. Then we stated and proved isomorphism
theorems on hyper residuated lattices.

De�nition 3.5. Let θ be an equivalence relation on L and A,B ⊆ L. Then
(i) AθB means that there exist a ∈ A and b ∈ B such that aθb,
(ii) AθB means that for all a ∈ A, there exists b ∈ B such that aθb and for all

b ∈ B, there exists a ∈ A such that aθb,

De�nition 3.6. An equivalence relation θ on L is called a congruence relation if
for all x, y, z, w ∈ L, xθy and zθw imply (x ∗ z)θ(y ∗ w), where ∗ ∈ {∧,∨,�,→}.
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Proposition 3.7. Let θ be a regular equivalence on L. Then [1] = {x ∈ L |xθ1}
is a weak hyper �lter of L.

Proof. Clearly, [1] 6= ∅. Let x, y ∈ [1]. Since (x � y)θ(1 � 1) and 1 ∈ 1 � 1, then
(x� y)θ1. Hence (x� y) ∩ [1] 6= ∅ and so [1] � x� y. Now, let x, y ∈ L be such
that x ∈ [1] and x 6 y. Then we have

r
r

r
r

r
r

�
�

�

�
�

�

HH
HHHH

x y x

1 y 1

and so {x, 1, y, y, x, 1}, forms a θ-crown on L. Since θ is regular, by Theorem 2.7,
xθy and so y ∈ [1]. Therefore, [1] is a weak hyper �lter of L.

Lemma 3.8. Let θ be a regular congruence relation on L, L/θ = {[x] |x ∈ L}
and 6θ be the relation on L/θ de�ned as in Theorem 2.7. For all x, y ∈ L, de�ne
[x]�[y] = [x�y], [x]∨[y] = [x∨y], [x]∧[y] = [x∧y] and [x] [y] = [x → y], where
[A] = {[a] | a ∈ A}, for all A ⊆ L. Then

(i) �,∨,∧ and  are well de�ned,

(ii) [x] �θ [y] [z] if and only if [x]�[y] �θ [z], where [A] �θ [B] if and
only if [a] 6θ [b], for some a ∈ A and b ∈ B.

Proof. (i) Let [x1] = [x2] and [y1] = [y2], for some x1, x2, y1, y2 ∈ L. Since θ is a
congruence relation on L, we have (x1 � y1)θ(x2 � y2). Let u ∈ [x1]�[y1]. Then
[u] = [a], for some a ∈ x1 � y1. By (x1 � y1)θ(x2 � y2), we conclude that aθb, for
some b ∈ x2 � y2 and so [u] = [a] = [b] ∈ [x2]�[y2]. Hence [x1]�[y1] ⊆ [x2]�[y2].
By the similar way, we can prove that [x2]�[y2] ⊆ [x1]�[y1]. Therefore, � is well
de�ned. Similarly, it is proved that ∨,∧ and  are well de�ned.

(ii) Let [x]�[y] �θ [z]. Then there exists u ∈ x � y such that [u] 6θ [z] and
so there exists a θ-fence that joins u to z. Let 〈a1, bn〉 be a θ-fence of L that joins
u to z, where u = a1 and z = bn. Since u ∈ x � y and u 6 b2, then x � y � b2

and so x 6 c2 ∈ y → b2. By b2θa2, we get (y → b2)θ(y → a2) whence c2θd2,
for some d2 ∈ y → a2. Now, from d2 ∈ y → a2 it follows that d2 � y → a2,
and so d2 � y � a2 6 b3. Hence d2 6 c3 ∈ y → b3. Since (y → b3)θ(y → a3),
then c3θd3, for some d3 ∈ y → a3. Hence x 6 c2θd2 6 c3θd3. By the similar
way, there are ci ∈ y → bi, for any i ∈ {2, 3, . . . , n} and dj ∈ y → aj , for any
j ∈ {2, 3, . . . , n − 1} such that x 6 c2θd2 6 c3θd3 6 . . . 6 cn−1θdn−1 6 cn.
Hence the set {x, d2, . . . , dn−1, c2, . . . , cn} forms a θ-fence that joins x to cn and
so [x] 6θ [cn]. Since cn ∈ y → bn = y → z, we have [x] �θ [y → z] = [y]  [z].
Conversely, let [x] �θ [y] [z]. Then [x] 6θ [u], for some u ∈ y → z. Hence there
is a θ-fence, 〈a1, bn〉θ, that joins x to u, where x = a1 and u = bn. By an−1 6 u ∈
y → z, we get an−1 � y � z, whence en−1 6 z, for some en−1 ∈ an−1 � y. Since
an−1θbn−1, then (an−1 � y)θ(bn−1 � y) and so there exists fn−1 ∈ bn−1 � y such
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that fn−1θen−1. From fn−1 ∈ bn−1 � y it follows that bn−1 � y � fn−1, whence
an−2 6 bn−1 � y → fn−1. Hence an−2�y � fn−1 and so there is en−2 ∈ an−2�y
such that en−2 6 fn−1. From (an−2 � y)θ(bn−2 � y) it follows that en−2θfn−2,
for some fn−2 ∈ bn−2 � y. By a similar way, there are ei ∈ ai � y and fi ∈ bi � y
such that fiθei and ej 6 fj+1, for all i ∈ {2, . . . , n− 1} and j ∈ {1, 2, . . . , n− 2}.
Therefore, {e1, . . . , en−1, f2, . . . , fn−1, z} forms a θ-fence that joins e1 to z and so
[e1] 6θ [z]. Since e1 ∈ a1 � y = x� y, then [x]�[y] = [x� y] �θ [z].

De�nition 3.9. Let θ be a regular congruence relation on L. We say that 6θ, ∨
and ∧ are compatible if they satisfy the following conditions: for all x, y ∈ L,

(i) [x] ∈ [x]∨[y] if and only if [x] 6θ [y],
(ii) [x] ∈ [x]∧[y] if and only if [x] 6θ [y].
By a regular compatible congruence relation on L we mean a regular congruence

relation on L such that 6θ, ∨ and ∧ are compatible.

Theorem 3.10. Let θ be a regular compatible congruence relation on L. Then

(L/θ,∨,∧,�, , [0], [1]) is a hyper residuated lattice.

Proof. Since θ is regular, by Theorem 2.7, 6θ is a partially order on L. Clearly,
[0] and [1] are the minimum and the maximum elements of (L/θ,6θ). Moreover,
[x]�[y] = [x � y] = [y � x] = [y]�[x], for any x, y ∈ L. By the similar way,
we can show that (L/θ,�, [1]) is a commutative semihypergroup with [1] as an
identity. Hence by Lemma 3.8 and De�nition 3.9, (L/θ,∨,�, , [0], [1]) is a hyper
residuated lattice.

Example 3.11. Let ({0, a, b, c, 1},6) be a partially ordered set such that 0 < a <
b < c < 1, L = {0, a, b, c, 1}. Consider the following tables:

Table 1
∨ 0 a b c 1
0 {0,a,c,1} {a,c,1} {b,c,1} {c,1} {1}
a {a,c,1} {a,c,1} {b,c,1} {c,1} {1}
b {b,c,1} {b,c,1} {b,c,1} {c,1} {1}
c {c,1} {c,1} {c,1} {c,1} {1}
1 {1} {1} {1} {1} {1}

Table 2
∧ 0 a b c 1
0 {0} {0} {0} {0} {0}
a {0} {a,0} {a,0} {a,0} {a,0}
b {0} {a,0} {b,0} {b,a,0} {b,a,0}
c {0} {a,0} {b,a,0} {c,a,0} {c,a,0}
1 {0} {a,0} {a,b,0} {c,a,0} {0,1,a,c}
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Table 3
→ 0 a b c 1
0 {1} {1} {1} {1} {1}
a {1,a,c} {a,1} {b,1} {c,1} {1}
b {1,b,c} {b,1} {b,1} {c,1} {1}
c {1,c} {c} {c} {c,1} {1}
1 {1,c} {1,c} {1,c} {1,c} {1}

Let � = ∧. It is easy to verify that (L;∨,∧,�,→, 0, 1) is a hyper residuated
lattice. Let θ = {(x, x) |x ∈ L} ∪ {(a, b), (b, a)}. Routine calculations show that
θ is a congruence relation on L, such that ∨, ∧ and 6θ are compatible. Consider
the partially order relation [0] ≺ [a] ≺ [c] ≺ [1] on L/θ. Since the mapping
π : L → L/θ de�ned by π(x) = [x], for all x ∈ L is an ordered preserving map,
then θ is regular. Therefore, by Theorem 3.10, (L;∨,∧,�, , [0], [1]) is a hyper
residuated lattice.

Proposition 3.12. Let θ be a regular compatible congruence relation on L. Then

(i) [1] is a hyper �lter of L if and only if {[1]} is a hyper �lter of L/θ.

(ii) if [1] is a maximal weak hyper �lter of L, then L/θ is simple.

Proof. (i) Let [1] be a hyper �lter of L. Then {[1]} is a weak hyper �lter of L/θ.
It su�ces to show that [1]�[1] = [1]. Since 1 ∈ [1] and [1] is a hyper �lter of L,
then 1 � 1 ⊆ [1] and so [1]�[1] = [1 � 1] = [1]. Hence {[1]} is a hyper �lter of L.
Conversely, assume that {[1]} is a hyper �lter of L/θ. By Proposition 3.7, [1] is a
weak hyper �lter of L. Let a, b ∈ [1]. Since [1]�[1] = [1] and [a] = [b] = [1], then
[a � b] = [a]�[b] = [1]�[1] = [1]. Hence a � b ⊆ [1] and so [1] is a hyper �lter of
L/θ.

(ii) By Proposition 3.7, [1] is a weak hyper �lter of L. Assume [1] is a maximal
weak hyper �lter of L and F is a weak hyper �lter of L. Let M = ∪{[x] | [x] ∈ F}.
Then clearly, M 6= ∅. If u, v ∈ M , then [u] ∈ F and [v] ∈ F and so [u � v] =
[u]�[v] ∩ F 6= ∅. Hence there exists a ∈ u � v such that [a] ∈ F and so a ∈ M .
Hence (u� v)∩M 6= ∅. Now, let x ∈ M and x 6 y, for some y ∈ L. Then clearly,
{x, y} formes a θ-fence that joins x to y and so [x] 6θ [y]. Since [x] ∈ F and F is
a weak hyper �lter of L/θ, then [y] ∈ F and so y ∈ M . Therefore, M is a weak
hyper �lter of L. Clearly, [1] ⊆ M . Since [1] is a maximal weak hyper �lter of L,
then [1] = M or M = L. If M = L, then F = L/θ. Moreover, if [1] = M , then
F = {[1]}. Therefore, {{[1]}, L/θ} is the set of all weak hyper �lters of L/θ and
so L/θ is simple.

The converse of Proposition 3.12(ii) may not be true.

Example 3.13. Let L = {0, a, b, c, 1} and (L,6) be a partially ordered set such
that 0 < c < a < b < 1. De�ne the binary hyperoperations ∨, � and ∧ on L as
follows: a ∨ b = {c | a 6 c and b 6 c} and a� b = a ∧ b = {c | c 6 a and c 6 b}, for
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all a, b ∈ L. Now, let → be a hyperoperation on L de�ned by the following table.

Table 4
→ 0 a b c 1
0 {1} {1} {1} {1} {1}
a {0,1} {1} {1} {c,1} {1}
b {0,1} {b,a,1} {1} {c,1} {1}
c {1} {1} {1} {1} {1}
1 {0,1} {a,b,1} {b,1} {c,1} {1}

It is not di�cult to check that (L,∨,∧,�,→, 0, 1) is a hyper residuated lattice.
Let θ = {(x, x)|x ∈ L} ∪ {(1, a), (a, 1), (1, b), (b, 1), (a, b), (b, a), (c, 0), (0, c)}.

Clearly, θ is an equivalence relation on L and L/θ = {[1], [0]}. De�ne a relation
≺ on L/θ by [0] ≺ [1] and [x] ≺ [x], for all x ∈ L/θ. Then ≺ is a partially order
on L/θ. Moreover, the map f : L → L/θ de�ned by f(x) = [x], for all x ∈ L
is an ordered preserving map and so θ is regular. Hence By Theorem 2.7, 6θ is
a partially order on L/θ. It is easy to check that 6θ=≺. Clearly, [y] ∈ [x]∨[y]
([x] ∈ [x]∧[y]) if and only if [x] 6θ [y], for all [x], [y] ∈ L/θ. Hence θ is a regular
compatible congruence relation of L and so by Theorem 3.10, (L/θ,∨,∧,�, 
, [0], [1]) is a hyper residuated lattice. Since L/θ = {[0], [1]}, then L/θ is simple.
Moreover, F = {1, a, b, c} is a weak hyper �lter of L and [1] ⊂ F ⊂ L and so
[1] = {1, a, b} is not a maximal weak hyper �lter of L. Therefore, the converse of
Proposition 3.12 (ii) may not be true.

Let L and L′ be two hyper residuated lattices and f : L → L′ be a homomor-
phism. It is straightforward to check that ker(f) = {(x, y) ∈ L×L | f(x) = f(y)}
is an equivalence relation on L. In Theorem 3.14, we want to verify this relation.

Theorem 3.14. Let f : L → L′ be an S-homomorphism and θ = ker(f). If

f(x) 6 f(y) implies there is a θ-fence that joins x to y, for all x, y ∈ L, then

(i) θ is a regular compatible congruence relation on L and L/ker(f) is a hyper

residuated lattice,

(ii) f induces a unique S-homomorphism f : L/ker(f) → L′ by f([x]) = f(x),
for all x ∈ L such that Im(f) = Im(f) and f is an S-monomorphism.

Proof. (i) Let xθy and uθv, for some x, y, u, v ∈ L. Then f(x) = f(y) and
f(u) = f(v). Since f is an S-homomorphism, then f(x ∧ u) = f(x) ∧ f(u) =
f(y) ∧ f(v) = f(y ∧ v) and so (x ∧ u)θ(y ∧ v). By the similar way we can prove
the other cases. Now, we show that θ is regular. Let 〈〈a1, bn〉〉θ be a θ-crown of
L. Then f(ai) = f(bi), for all i ∈ {1, 2, ..., n}. Since ai 6 bi+1, then ai ∈ ai ∧ bi+1

and so f(ai) ∈ f(ai ∧ bi+1) = f(ai)∧ f(bi+1) = f(ai)∧ f(ai+1). Similarly, an 6 b1

implies that f(an) 6 f(b)1. Hence f(ai) 6 f(ai+1), for all i ∈ {1, 2, . . . , n − 1}
and so f(x) = f(a1) 6 f(a2) 6 f(a3) 6 · · · 6 f(an−1) 6 f(an) 6 f(b1) = f(a1).
Therefore, f(ai) = f(bj), for all i, j ∈ {1, 2, . . . , n} and so [ai] = [aj ] = [bk],
for all i, j, k ∈ {1, 2, . . . , n}. By Proposition 2.7, θ is regular. In the follow, we
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show that [x] ∈ [x]∧[y] ⇔ [x] 6θ [y] ⇔ [y] ∈ [x]∨[y]. Let [x] 6θ [y], for some
x, y ∈ L. Then there exists a θ-fence, 〈a1, bn〉 that joins x to y, where x = a1

and y = bn. By a1 6 b2, it follows that f(a1) ∈ f(a1) ∧ f(b2) = f(a1) ∧ f(a2)
and so f(a1) 6 f(a2). By a similar way, we can show that f(ai) 6 f(ai+1), for
all i ∈ {1, 2, . . . , n − 1}. Since f(an−1) 6 f(bn) = f(y), then we conclude that
f(x) 6 f(y) and so f(x) ∈ f(x)∧ f(y) = f(x∧ y) (f(y) ∈ f(x)∨ f(y) = f(x∨ y)).
Hence f(x) = f(a), for some a ∈ x ∧ y (a ∈ x ∨ y), whence [x] ∈ [x ∧ y] = [x]∧[y]
([y] ∈ [x ∨ y] = [x]∨[y]). Conversely, let [x] ∈ [x ∧ y] = [x]∧[y] ([y] ∈ [x ∨ y] =
[x]∨[y]), for some x, y ∈ L. Then there is a ∈ x∧y (a ∈ x∨y) such that [x] = [a] and
so f(x) = f(a) ∈ f(x ∧ y) = f(x) ∧ f(y) (f(x) = f(a) ∈ f(x ∨ y) = f(x) ∨ f(y)).
Hence f(x) 6 f(y), whence by hypothesis, there is a θ-fence that joins x to y.
That is [x] 6θ [y]. Therefore, θ is a regular congruence relation on L and θ, ∨, ∧
are compatible and so by Theorem 3.10, (L/ker(f),∨,∧,�, , [0], [1]) is a hyper
residuated lattice.

(ii) Clearly, f : L/ker(f) → L′ is an S-homomorphism and Im(f) = Im(f).
Let f([x]) = f([y]), for some x, y ∈ L. Then f(x) = f(y) and so [x] = [y].
Therefore, f is a one to one S-homomorphism.

Example 3.15. If L and L′ are two residuated lattices and f : L → L′ is a
homomorphism, then f(x) 6 f(y) implies f(x) = f(x) ∧ f(y) = f(x ∧ y) and so
the set {x, x, x∧y, y}, forms a ker(f)-fence that joins x to y. Therefore, f satis�es
the conditions (i) and (ii) in Theorem 3.14.

Example 3.16. Let (L = {0, a, b, c, 1},6) and (L′ = {0, e, 1},6′) be two partially
ordered sets such that 0 < a < b < c < 1 and 0 < e < 1. De�ne the binary
hyperoperations ∨,∧,∨′ and ∧′ by x ∨ y = {u ∈ L |x 6 u, y 6 u}, a ∨′ b = {u ∈
L′ | a 6′ u, b 6′ u}, x ∧ y = {u ∈ L |u 6 x, u 6 y} and a ∧′ b = {u ∈ L′ |u 6′

a, u 6′ b}, for all x, y ∈ L and a, b ∈ L′. Then by Proposition 2.4, (L,∨,∧, 0, 1)
and (L′,∨′,∧′, 0, 1) are two bounded super lattices. Let � and �′ are de�ned by

a� b =
{
{0} if a = 0 or b = 0,
(a ∧ b)− {0} if a, b ∈ L− {0}.

a�′ b =
{
{0} if a = 0 or b = 0,
(a ∧′ b)− {0} if a, b ∈ L′ − {0}.

Now, consider the following tables:

Table 5 Table 6
→ 0 a b c 1
0 {1} {1} {1} {1} {1}
a {0} {b,1} {b,1} {c,1} {1}
b {0} {b,c} {b,1} {1} {1}
c {0} {a,c} {b,c} {c,1} {1}
1 {0} {b,1} {b,1} {1} {1}

→′ 0 e 1
0 {1} {1} {1}
e {0} {e,1} {1}
1 {0} {1,e} {1}
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It is easy to verify that (L,∨,∧,�,→, 0, 1) and (L′,∨′,∧′,�′,→′, 0, 1) are hyper
residuated lattices. De�ne f : L → L′ by f(0) = 0, f(a) = f(b) = e and f(c) =
f(1) = 1. Then f is an S-homomorphism,

ker(f) = {(x, x) |x ∈ L}∪{(a, b), (b, a), (1, c), (c, 1)} and L/ker(f) = {[0], [a], [1]}.
Assume≺= {(x, x) |x ∈ L/ker(f)}∪{([0], [a]), ([a], [1]), ([0], [1])}. Then clearly,

≺ is a partially order on L/ker(f). Since the map π : L → L/θ de�ned by
π(x) = [x] is an order preserving map, then ker(f) is regular. Easy calculations
show that f(x) 6 f(y) implies there exists a θ-fence on L that joins x to y, for any
x, y ∈ L and so by Theorem 3.14, f : L/θ → L′ is a one to one homomorphism.

Lemma 3.17. Let θ and χ be two regular compatible congruence relations on L
such that θ ⊆ χ. Then χ/θ is a regular compatible congruence relation on L/θ,
where χ/θ = {([x]θ, [y]θ) ∈ L/θ × L/θ | (x, y) ∈ χ}.

Proof. By Theorem 3.10, (L/θ,∨,∧,�, , [0], [1]) is a hyper residueted lattice.
Clearly, χ/θ is an equivalence relation on L/θ. Let ([x]θ, [y]θ)([a]θ, [b]θ) ∈ χ/θ.
Then (x, y), (a, b) ∈ χ. Since χ is a congruence relation on L we have (a∧x)χ(b∧y)
and so by de�nition of ∧ we get ([a]θ∧[x]θ)χ/θ([b]θ∧[y]θ). By the similar way, we
can show that

([a]θ∨[x]θ)χ/θ([b]θ∨[y]θ, ([a]θ�[x]θ)χ/θ([b]θ�[y]θ), ([a]θ [x]θ)χ/θ([b]θ [y]θ).

Hence χ/θ is a congruence relation on L/θ. Let R = χ/θ and (L/θ)/R =
{[[x]θ]R | [x]θ ∈ L/θ}. De�ne the hyperoperations t, u, ⊗ and 7→ by

[[x]θ]R t [[y]θ]R = [[x]θ∨[y]θ]R , [[x]θ]R u [[y]θ]R = [[x]θ∧[y]θ]R ,

[[x]θ]R ⊗ [[y]θ]R = [[x]θ�[y]θ]R and [[x]θ]R 7→ [[y]θ]R = [[x]θ  [y]θ]R

for all [[x]θ]R, [[y]θ]R ∈ (L/θ)/R. Since R is a congruence relation on L/θ, then
these hyperoperations are well de�ned. Now, we show that R is regular. Let
〈〈[a1]θ, [bn]θ〉〉R be an R-crown in L/θ. Then [an]θ 6θ [b1]θ, [ai]θR[bi]θ and [aj ]θ 6θ

[bj+1]θ, for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n − 1}. Hence there are ni ∈ N
such that a2,i, a3,i, . . . , ani−1,i, b2,i, b3,i, . . . , bni−1,i ∈ L/θ such that
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Figure 3. θ-fence joins ai to bi+1

for all i ∈ {1, 2, . . . , n − 1}. Moreover, there exists a θ-fence 〈x1, yn〉θ, that joins
an to b1. Since [ai]θR[bi]θ, for all i ∈ {1, 2, . . . , n} and θ ⊆ χ, then we can obtain
the following χ-crown.
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Figure 4. χ-crown

Since χ is regular, then by Theorem 2.7, (ai, bj) ∈ χ and so [ai]θR[bj ]θ, for
all i, j ∈ {1, 2, . . . , n}, whence 〈[a1]θ, [bn]θ〉R is χ/θ closed. Now, by Theorem
2.7, R is regular. Finally, we show that R is compatible. Let x, y ∈ L such
that [x]θ 6R [y]θ. Then there is an R-fence 〈[a1]θ, [bn]θ〉R that joins [x]θ to [y]θ,
where [x]θ = [a1]θ and [y]θ = [bn]θ. By [aj ]θR[bj ]θ, we get (aj , bj) ∈ χ, for all
j ∈ {2, 3, . . . , n− 1}. Since [ai]θ 6θ [bi+1]θ, for all i ∈ {1, 2, . . . , n− 1}, then there
exists θ-fence 〈a1,i, bni,i〉θ joins ai to bi+1, where ai = a1,i and bi+1 = bni,i, for all
i ∈ {1, 2, . . . , n − 1}. Hence by θ ⊆ χ, we can obtain the following χ-fence that
joins x to y.
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Figure 5. χ-fence joins x to y

Therefore, [x]χ 6χ [y]χ. Since χ is a compatible regular congruence relation

on L, then [x]χ ∈ [x]χ∧[y]χ = [x ∧ y]χ and [y]χ ∈ [y]χ∨[y]χ = [x ∨ y]χ, where ∧
and ∨ are hyper operation induced by χ in Lemma 3.8. Hence

[[y]θ]R ∈ [[x ∨ y]θ]R = [[x]θ∨[y]θ]R = [[x]θ]R t [[y]θ]R.

By the similar way, [[x]θ]R ∈ [[x]θ]R u [[y]θ]R. Conversely, let [[x]θ]R ∈ [[x]θ]R u
[[y]θ]R. Then [[x]θ]R ∈ [[x ∧ y]θ]R and so [[x]θ]R = [[u]θ]χ, for some u ∈ x ∧ y. By

de�nition of R, we conclude that (x, u) ∈ χ and so [x]χ ∈ [x∧y]χ = [x]χ∧[y]χ. Since
χ is a compatible regular congruence relation on L, then [x]χ 6χ [y]χ and so there
exists a χ-fence 〈a1, bn〉χ, that joins x to y, where x = a1 and y = bn. Clearly,
〈[a1]θ, [bn]θ〉R is a R-fence on L/θ and so [[x]θ]R 6R [[y]θ]R. By a similar way,
[[y]θ]R ∈ [[x]θ]R t [[y]θ]R implies [[x]θ]R 6R [[y]θ]R. Therefore, R is a compatible
regular congruence relation on L/θ.

Theorem 3.18. Let θ and χ be two regular compatible congruence relations on L

such that θ ⊆ χ. Then
L/θ
χ/θ and L/χ are S-isomorphic.

Proof. By Theorem 3.10, (L/θ,∨,∧,�, , [0]θ, [1]θ) and (L/χ,∨,∧,�, , [0]χ, [1]χ)
are two hyper residuated lattices. Let t, u, ⊗ and 7→ be the hyperoperations
de�ned in Lemma 3.17. Then by Lemma 3.17 and Theorem 3.10, we see that

(L/θ
χ/θ ,t,u,⊗, 7→, [[0]θ]χ/θ, [[1]θ]χ/θ) is a hyper residuated lattice.
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De�ne f : L/θ
χ/θ → L/χ by f([[x]θ]χ/θ) = [x]χ. Let [[x]θ]χ/θ = [[y]θ]χ/θ, for some

x, y ∈ L. Then by de�nition of χ/θ, we get (x, y) ∈ χ and so [x]χ = [y]χ. Hence f
is well de�ned. Let x, y ∈ L. Then

f([[x]θ]χ/θ u [[y]θ]χ/θ) = f([[x]θ∧[y]θ]χ/θ)
= f([[x ∧ y]θ]χ/θ) = {f([[u]θ]χ/θ)|u ∈ x ∧ y}
= {[u]χ|u ∈ x ∧ y} = [x ∧ y]χ = [x]χ∧[y]χ
= f([[x]θ]χ/θ)∧f([[y]θ]χ/θ).

By the similar way, we can show that

f([[x]θ]χ/θ t [[y]θ]χ/θ) = f([[x]θ]χ/θ)∨f([[y]θ]χ/θ),

f([[x]θ]χ/θ ⊗ [[y]θ]χ/θ) = f([[x]θ]χ/θ)�f([[y]θ]χ/θ),

f([[x]θ]χ/θ 7→ [[y]θ]χ/θ) = f([[x]θ]χ/θ) f([[y]θ]χ/θ).

Hence f is an S-homomorphism. Now, we show that f is one to one and onto.
Clearly, f is an onto map. Let f([[x]θ]χ/θ) = f([[y]θ]χ/θ), for some x, y ∈ L. Then
[x]χ = [y]χ and so (x, y) ∈ χ. Hence [[x]θ]χ/θ = [[y]θ]χ/θ and so f is one to one.
Therefore, f is an S-isomorphism.

Remark 3.19. Let (L1;∨1,∧1,�1,→1, 01, 11) and (L2;∨2,∧2,�2,→2, 02, 12) be
two hyper residuated lattices. We de�ne the hyperoperations ∨, ∧, → and � on
L = L1 × L2 as follows:

(x1, x2) ∨ (y1, y2) = (x1 ∨1 y1, x2 ∨2 y2),
(x1, x2) ∧ (y1, y2) = (x1 ∧1 y1, x2 ∧2 y2),
(x1, x2)� (y1, y2) = (x1 �1 y1, x2 �2 y2),

(x1, x2) → (y1, y2) = (x1 →1 y1, x2 →2 y2).

where (A,B) = {(a, b) | a ∈ A, b ∈ B}, for all subsets A ⊆ L1 and B ⊆ L2. Then
(L1 × L2,6) satis�es (HRL1)-(HRL3) in which the order ≤ is given by

(a, b) 6 (c, d) ⇔ a 6 c, bd, ∀a, c ∈ L1, b, d ∈ L2.

Hence (L,∨,∧,�,→, 0, 1) is a hyper residuated lattice, where 1 = (1, 1) and 0 =
(0, 0).

Theorem 3.20. If θ1 and θ2 are two regular compatible congruence relations on

L1 and L2, respectively, and θ is a relation on L1 × L2 de�ned by (a, b)θ(u, v) if

and only if (a, u) ∈ θ1 and (b, v) ∈ θ2. Then θ is a regular compatible congruence

relation on L and

L/θ ∼= (L1/θ1)× (L2/θ2).
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Proof. Since θ1 and θ2 are regular compatible congruence relations on L1 and
L2, respectively, then by Theorem 3.10, (L1/θ1,6θ1) and (L2/θ2,6θ2) are hy-
per residuated lattices. Let 6′ be a partial order on (L1/θ1) × (L2/θ2), where
([x], [y]) 6′ ([a], [b]) means that [x] 6θ1 [a] and [y] 6θ2 [b]. Clearly, θ is a congru-
ence relation on L = L1×L2. Let 〈〈(a1, b1), (c1, d1)〉〉θ be a θ-crown in L. Then by
de�nition of 6, we get 〈〈a1, cn〉〉 is a θ1-crown on L1 and 〈〈b1, dn〉〉 is a θ2 crown
on L2. Since θ1 is regular, then by Theorem 2.7, ai

∼= cj , for all i, j ∈ {1, 2, . . . , n}.
By a similar way, we can show that bi

∼= dj , for all i, j ∈ {1, 2, . . . , n}. Hence
(ai, bi)θ(ci, di), for all i, j ∈ {1, 2, . . . , n} and so by Theorem 2.7, θ is regular.
Now, we show that θ is compatible. Let [x]i = {a ∈ Li |xθia}, for all i ∈ {1, 2}.
If x, a ∈ L1, y, b ∈ L2 and ∨ ∧ are the hyperoperations on L induced by ∨ and ∧,
then we have

[(x, y)] ∈ [(x, y)]∧[(a, b)] ⇔ [(x, y)] ∈ [(x ∧1 a, y ∧2 b)]
⇔ [x] ∈ [x ∧1 a]1 and [y] ∈ [y ∧1 b]2
⇔ x 61 a, y 62 b, since θ1 and θ2 are compatible

⇔ (x, y) 6 (a, b).

By a similar way, we can show that [(x, y)] ∈ [(x, y)]∨[(a, b)] ⇔ (x, y) 6 (a, b).
Hence θ is compatible and so by Theorem 3.10, L/θ is a hyper residuated lattice.
De�ne the map f : L → (L1/θ1) × (L2/θ2), by f((x, y)) = ([x]1, [y]2), for any
(x, y) ∈ L. Let ∗ ∈ {∨,∧,�,→}. Then

f((x, y) ∗ (a, b)) = f(x ∗ a, y ∗ b)
= ([x ∗1 a]1, [y ∗2 b]2)
= ([x]1 ∗1 [a]1, [y]2 ∗2 [b]2)
= ([x]1, [y]2) ∗ ([a]1, [b]2)
= f((x, y)) ∗ f((a, b)).

Hence f is a S-homomorphism. Clearly, f is onto. Now, we show that ker(f) = θ.

ker(f) = {((x, y), (a, b)) ∈ L× L | f((x, y)) = f((a, b))}
= {((x, y), (a, b)) ∈ L× L | ([x]1, [y]2) = ([a]1, [b]2)}
= {((x, y), (a, b)) ∈ L× L | [x]1 = [a]1, [y]1 = [b]1}
= θ.

Now, let f((x, y)) 6′ f((a, b)). Then ([x]1, [y]2) 6′ ([a]1, [b]2) and so [x]1 6θ1 [a]1
and [y]2 6θ2 [b]2. Hence by de�nition of 6θ1 and 6θ2 , there are 〈u1, vn〉θ1 , that
joins x to a and 〈w1, zm〉θ2 , that joins y to b. Without loss of generality, we
assume that n 6 m. Then the set

{(u1, w1), (v2, z2) . . . , (vn, zn), (vn, wn+1)(vn, zn+1), . . . ,
. . . , (vn, zm−1), (vn, wm−1), (vn, zm)}

is a θ-fence that joins (x, y) to (a, b). Hence by Theorem 3.14 we obtain L/θ =
L/ker(f) ∼= (L1/θ1)× (L2/θ2), which completes the proof.
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